ASoC: Add compress_type as a member to snd_soc_codec
[deliverable/linux.git] / sound / soc / soc-core.c
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
6 * Copyright (C) 2010 Slimlogic Ltd.
7 * Copyright (C) 2010 Texas Instruments Inc.
8 *
9 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10 * with code, comments and ideas from :-
11 * Richard Purdie <richard@openedhand.com>
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 *
18 * TODO:
19 * o Add hw rules to enforce rates, etc.
20 * o More testing with other codecs/machines.
21 * o Add more codecs and platforms to ensure good API coverage.
22 * o Support TDM on PCM and I2S
23 */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h>
35 #include <sound/core.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/soc.h>
39 #include <sound/initval.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/asoc.h>
43
44 #define NAME_SIZE 32
45
46 static DEFINE_MUTEX(pcm_mutex);
47 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
48
49 #ifdef CONFIG_DEBUG_FS
50 static struct dentry *debugfs_root;
51 #endif
52
53 static DEFINE_MUTEX(client_mutex);
54 static LIST_HEAD(card_list);
55 static LIST_HEAD(dai_list);
56 static LIST_HEAD(platform_list);
57 static LIST_HEAD(codec_list);
58
59 static int snd_soc_register_card(struct snd_soc_card *card);
60 static int snd_soc_unregister_card(struct snd_soc_card *card);
61 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
62
63 /*
64 * This is a timeout to do a DAPM powerdown after a stream is closed().
65 * It can be used to eliminate pops between different playback streams, e.g.
66 * between two audio tracks.
67 */
68 static int pmdown_time = 5000;
69 module_param(pmdown_time, int, 0);
70 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
71
72 /*
73 * This function forces any delayed work to be queued and run.
74 */
75 static int run_delayed_work(struct delayed_work *dwork)
76 {
77 int ret;
78
79 /* cancel any work waiting to be queued. */
80 ret = cancel_delayed_work(dwork);
81
82 /* if there was any work waiting then we run it now and
83 * wait for it's completion */
84 if (ret) {
85 schedule_delayed_work(dwork, 0);
86 flush_scheduled_work();
87 }
88 return ret;
89 }
90
91 /* codec register dump */
92 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
93 {
94 int ret, i, step = 1, count = 0;
95
96 if (!codec->driver->reg_cache_size)
97 return 0;
98
99 if (codec->driver->reg_cache_step)
100 step = codec->driver->reg_cache_step;
101
102 count += sprintf(buf, "%s registers\n", codec->name);
103 for (i = 0; i < codec->driver->reg_cache_size; i += step) {
104 if (codec->driver->readable_register && !codec->driver->readable_register(i))
105 continue;
106
107 count += sprintf(buf + count, "%2x: ", i);
108 if (count >= PAGE_SIZE - 1)
109 break;
110
111 if (codec->driver->display_register) {
112 count += codec->driver->display_register(codec, buf + count,
113 PAGE_SIZE - count, i);
114 } else {
115 /* If the read fails it's almost certainly due to
116 * the register being volatile and the device being
117 * powered off.
118 */
119 ret = codec->driver->read(codec, i);
120 if (ret >= 0)
121 count += snprintf(buf + count,
122 PAGE_SIZE - count,
123 "%4x", ret);
124 else
125 count += snprintf(buf + count,
126 PAGE_SIZE - count,
127 "<no data: %d>", ret);
128 }
129
130 if (count >= PAGE_SIZE - 1)
131 break;
132
133 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
134 if (count >= PAGE_SIZE - 1)
135 break;
136 }
137
138 /* Truncate count; min() would cause a warning */
139 if (count >= PAGE_SIZE)
140 count = PAGE_SIZE - 1;
141
142 return count;
143 }
144 static ssize_t codec_reg_show(struct device *dev,
145 struct device_attribute *attr, char *buf)
146 {
147 struct snd_soc_pcm_runtime *rtd =
148 container_of(dev, struct snd_soc_pcm_runtime, dev);
149
150 return soc_codec_reg_show(rtd->codec, buf);
151 }
152
153 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
154
155 static ssize_t pmdown_time_show(struct device *dev,
156 struct device_attribute *attr, char *buf)
157 {
158 struct snd_soc_pcm_runtime *rtd =
159 container_of(dev, struct snd_soc_pcm_runtime, dev);
160
161 return sprintf(buf, "%ld\n", rtd->pmdown_time);
162 }
163
164 static ssize_t pmdown_time_set(struct device *dev,
165 struct device_attribute *attr,
166 const char *buf, size_t count)
167 {
168 struct snd_soc_pcm_runtime *rtd =
169 container_of(dev, struct snd_soc_pcm_runtime, dev);
170 int ret;
171
172 ret = strict_strtol(buf, 10, &rtd->pmdown_time);
173 if (ret)
174 return ret;
175
176 return count;
177 }
178
179 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
180
181 #ifdef CONFIG_DEBUG_FS
182 static int codec_reg_open_file(struct inode *inode, struct file *file)
183 {
184 file->private_data = inode->i_private;
185 return 0;
186 }
187
188 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
189 size_t count, loff_t *ppos)
190 {
191 ssize_t ret;
192 struct snd_soc_codec *codec = file->private_data;
193 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
194 if (!buf)
195 return -ENOMEM;
196 ret = soc_codec_reg_show(codec, buf);
197 if (ret >= 0)
198 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
199 kfree(buf);
200 return ret;
201 }
202
203 static ssize_t codec_reg_write_file(struct file *file,
204 const char __user *user_buf, size_t count, loff_t *ppos)
205 {
206 char buf[32];
207 int buf_size;
208 char *start = buf;
209 unsigned long reg, value;
210 int step = 1;
211 struct snd_soc_codec *codec = file->private_data;
212
213 buf_size = min(count, (sizeof(buf)-1));
214 if (copy_from_user(buf, user_buf, buf_size))
215 return -EFAULT;
216 buf[buf_size] = 0;
217
218 if (codec->driver->reg_cache_step)
219 step = codec->driver->reg_cache_step;
220
221 while (*start == ' ')
222 start++;
223 reg = simple_strtoul(start, &start, 16);
224 if ((reg >= codec->driver->reg_cache_size) || (reg % step))
225 return -EINVAL;
226 while (*start == ' ')
227 start++;
228 if (strict_strtoul(start, 16, &value))
229 return -EINVAL;
230 codec->driver->write(codec, reg, value);
231 return buf_size;
232 }
233
234 static const struct file_operations codec_reg_fops = {
235 .open = codec_reg_open_file,
236 .read = codec_reg_read_file,
237 .write = codec_reg_write_file,
238 .llseek = default_llseek,
239 };
240
241 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
242 {
243 struct dentry *debugfs_card_root = codec->card->debugfs_card_root;
244
245 codec->debugfs_codec_root = debugfs_create_dir(codec->name,
246 debugfs_card_root);
247 if (!codec->debugfs_codec_root) {
248 printk(KERN_WARNING
249 "ASoC: Failed to create codec debugfs directory\n");
250 return;
251 }
252
253 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
254 codec->debugfs_codec_root,
255 codec, &codec_reg_fops);
256 if (!codec->debugfs_reg)
257 printk(KERN_WARNING
258 "ASoC: Failed to create codec register debugfs file\n");
259
260 codec->dapm.debugfs_dapm = debugfs_create_dir("dapm",
261 codec->debugfs_codec_root);
262 if (!codec->dapm.debugfs_dapm)
263 printk(KERN_WARNING
264 "Failed to create DAPM debugfs directory\n");
265
266 snd_soc_dapm_debugfs_init(&codec->dapm);
267 }
268
269 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
270 {
271 debugfs_remove_recursive(codec->debugfs_codec_root);
272 }
273
274 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
275 size_t count, loff_t *ppos)
276 {
277 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
278 ssize_t len, ret = 0;
279 struct snd_soc_codec *codec;
280
281 if (!buf)
282 return -ENOMEM;
283
284 list_for_each_entry(codec, &codec_list, list) {
285 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
286 codec->name);
287 if (len >= 0)
288 ret += len;
289 if (ret > PAGE_SIZE) {
290 ret = PAGE_SIZE;
291 break;
292 }
293 }
294
295 if (ret >= 0)
296 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
297
298 kfree(buf);
299
300 return ret;
301 }
302
303 static const struct file_operations codec_list_fops = {
304 .read = codec_list_read_file,
305 .llseek = default_llseek,/* read accesses f_pos */
306 };
307
308 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
309 size_t count, loff_t *ppos)
310 {
311 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
312 ssize_t len, ret = 0;
313 struct snd_soc_dai *dai;
314
315 if (!buf)
316 return -ENOMEM;
317
318 list_for_each_entry(dai, &dai_list, list) {
319 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
320 if (len >= 0)
321 ret += len;
322 if (ret > PAGE_SIZE) {
323 ret = PAGE_SIZE;
324 break;
325 }
326 }
327
328 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
329
330 kfree(buf);
331
332 return ret;
333 }
334
335 static const struct file_operations dai_list_fops = {
336 .read = dai_list_read_file,
337 .llseek = default_llseek,/* read accesses f_pos */
338 };
339
340 static ssize_t platform_list_read_file(struct file *file,
341 char __user *user_buf,
342 size_t count, loff_t *ppos)
343 {
344 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
345 ssize_t len, ret = 0;
346 struct snd_soc_platform *platform;
347
348 if (!buf)
349 return -ENOMEM;
350
351 list_for_each_entry(platform, &platform_list, list) {
352 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
353 platform->name);
354 if (len >= 0)
355 ret += len;
356 if (ret > PAGE_SIZE) {
357 ret = PAGE_SIZE;
358 break;
359 }
360 }
361
362 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
363
364 kfree(buf);
365
366 return ret;
367 }
368
369 static const struct file_operations platform_list_fops = {
370 .read = platform_list_read_file,
371 .llseek = default_llseek,/* read accesses f_pos */
372 };
373
374 static void soc_init_card_debugfs(struct snd_soc_card *card)
375 {
376 card->debugfs_card_root = debugfs_create_dir(card->name,
377 debugfs_root);
378 if (!card->debugfs_card_root) {
379 dev_warn(card->dev,
380 "ASoC: Failed to create codec debugfs directory\n");
381 return;
382 }
383
384 card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
385 card->debugfs_card_root,
386 &card->pop_time);
387 if (!card->debugfs_pop_time)
388 dev_warn(card->dev,
389 "Failed to create pop time debugfs file\n");
390 }
391
392 static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
393 {
394 debugfs_remove_recursive(card->debugfs_card_root);
395 }
396
397 #else
398
399 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
400 {
401 }
402
403 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
404 {
405 }
406
407 static inline void soc_init_card_debugfs(struct snd_soc_card *card)
408 {
409 }
410
411 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
412 {
413 }
414 #endif
415
416 #ifdef CONFIG_SND_SOC_AC97_BUS
417 /* unregister ac97 codec */
418 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
419 {
420 if (codec->ac97->dev.bus)
421 device_unregister(&codec->ac97->dev);
422 return 0;
423 }
424
425 /* stop no dev release warning */
426 static void soc_ac97_device_release(struct device *dev){}
427
428 /* register ac97 codec to bus */
429 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
430 {
431 int err;
432
433 codec->ac97->dev.bus = &ac97_bus_type;
434 codec->ac97->dev.parent = codec->card->dev;
435 codec->ac97->dev.release = soc_ac97_device_release;
436
437 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
438 codec->card->snd_card->number, 0, codec->name);
439 err = device_register(&codec->ac97->dev);
440 if (err < 0) {
441 snd_printk(KERN_ERR "Can't register ac97 bus\n");
442 codec->ac97->dev.bus = NULL;
443 return err;
444 }
445 return 0;
446 }
447 #endif
448
449 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
450 {
451 struct snd_soc_pcm_runtime *rtd = substream->private_data;
452 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
453 struct snd_soc_dai *codec_dai = rtd->codec_dai;
454 int ret;
455
456 if (codec_dai->driver->symmetric_rates || cpu_dai->driver->symmetric_rates ||
457 rtd->dai_link->symmetric_rates) {
458 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n",
459 rtd->rate);
460
461 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
462 SNDRV_PCM_HW_PARAM_RATE,
463 rtd->rate,
464 rtd->rate);
465 if (ret < 0) {
466 dev_err(&rtd->dev,
467 "Unable to apply rate symmetry constraint: %d\n", ret);
468 return ret;
469 }
470 }
471
472 return 0;
473 }
474
475 /*
476 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
477 * then initialized and any private data can be allocated. This also calls
478 * startup for the cpu DAI, platform, machine and codec DAI.
479 */
480 static int soc_pcm_open(struct snd_pcm_substream *substream)
481 {
482 struct snd_soc_pcm_runtime *rtd = substream->private_data;
483 struct snd_pcm_runtime *runtime = substream->runtime;
484 struct snd_soc_platform *platform = rtd->platform;
485 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
486 struct snd_soc_dai *codec_dai = rtd->codec_dai;
487 struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
488 struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
489 int ret = 0;
490
491 mutex_lock(&pcm_mutex);
492
493 /* startup the audio subsystem */
494 if (cpu_dai->driver->ops->startup) {
495 ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
496 if (ret < 0) {
497 printk(KERN_ERR "asoc: can't open interface %s\n",
498 cpu_dai->name);
499 goto out;
500 }
501 }
502
503 if (platform->driver->ops->open) {
504 ret = platform->driver->ops->open(substream);
505 if (ret < 0) {
506 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
507 goto platform_err;
508 }
509 }
510
511 if (codec_dai->driver->ops->startup) {
512 ret = codec_dai->driver->ops->startup(substream, codec_dai);
513 if (ret < 0) {
514 printk(KERN_ERR "asoc: can't open codec %s\n",
515 codec_dai->name);
516 goto codec_dai_err;
517 }
518 }
519
520 if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
521 ret = rtd->dai_link->ops->startup(substream);
522 if (ret < 0) {
523 printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
524 goto machine_err;
525 }
526 }
527
528 /* Check that the codec and cpu DAIs are compatible */
529 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
530 runtime->hw.rate_min =
531 max(codec_dai_drv->playback.rate_min,
532 cpu_dai_drv->playback.rate_min);
533 runtime->hw.rate_max =
534 min(codec_dai_drv->playback.rate_max,
535 cpu_dai_drv->playback.rate_max);
536 runtime->hw.channels_min =
537 max(codec_dai_drv->playback.channels_min,
538 cpu_dai_drv->playback.channels_min);
539 runtime->hw.channels_max =
540 min(codec_dai_drv->playback.channels_max,
541 cpu_dai_drv->playback.channels_max);
542 runtime->hw.formats =
543 codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
544 runtime->hw.rates =
545 codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
546 if (codec_dai_drv->playback.rates
547 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
548 runtime->hw.rates |= cpu_dai_drv->playback.rates;
549 if (cpu_dai_drv->playback.rates
550 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
551 runtime->hw.rates |= codec_dai_drv->playback.rates;
552 } else {
553 runtime->hw.rate_min =
554 max(codec_dai_drv->capture.rate_min,
555 cpu_dai_drv->capture.rate_min);
556 runtime->hw.rate_max =
557 min(codec_dai_drv->capture.rate_max,
558 cpu_dai_drv->capture.rate_max);
559 runtime->hw.channels_min =
560 max(codec_dai_drv->capture.channels_min,
561 cpu_dai_drv->capture.channels_min);
562 runtime->hw.channels_max =
563 min(codec_dai_drv->capture.channels_max,
564 cpu_dai_drv->capture.channels_max);
565 runtime->hw.formats =
566 codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
567 runtime->hw.rates =
568 codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
569 if (codec_dai_drv->capture.rates
570 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
571 runtime->hw.rates |= cpu_dai_drv->capture.rates;
572 if (cpu_dai_drv->capture.rates
573 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
574 runtime->hw.rates |= codec_dai_drv->capture.rates;
575 }
576
577 snd_pcm_limit_hw_rates(runtime);
578 if (!runtime->hw.rates) {
579 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
580 codec_dai->name, cpu_dai->name);
581 goto config_err;
582 }
583 if (!runtime->hw.formats) {
584 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
585 codec_dai->name, cpu_dai->name);
586 goto config_err;
587 }
588 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
589 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
590 codec_dai->name, cpu_dai->name);
591 goto config_err;
592 }
593
594 /* Symmetry only applies if we've already got an active stream. */
595 if (cpu_dai->active || codec_dai->active) {
596 ret = soc_pcm_apply_symmetry(substream);
597 if (ret != 0)
598 goto config_err;
599 }
600
601 pr_debug("asoc: %s <-> %s info:\n",
602 codec_dai->name, cpu_dai->name);
603 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
604 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
605 runtime->hw.channels_max);
606 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
607 runtime->hw.rate_max);
608
609 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
610 cpu_dai->playback_active++;
611 codec_dai->playback_active++;
612 } else {
613 cpu_dai->capture_active++;
614 codec_dai->capture_active++;
615 }
616 cpu_dai->active++;
617 codec_dai->active++;
618 rtd->codec->active++;
619 mutex_unlock(&pcm_mutex);
620 return 0;
621
622 config_err:
623 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
624 rtd->dai_link->ops->shutdown(substream);
625
626 machine_err:
627 if (codec_dai->driver->ops->shutdown)
628 codec_dai->driver->ops->shutdown(substream, codec_dai);
629
630 codec_dai_err:
631 if (platform->driver->ops->close)
632 platform->driver->ops->close(substream);
633
634 platform_err:
635 if (cpu_dai->driver->ops->shutdown)
636 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
637 out:
638 mutex_unlock(&pcm_mutex);
639 return ret;
640 }
641
642 /*
643 * Power down the audio subsystem pmdown_time msecs after close is called.
644 * This is to ensure there are no pops or clicks in between any music tracks
645 * due to DAPM power cycling.
646 */
647 static void close_delayed_work(struct work_struct *work)
648 {
649 struct snd_soc_pcm_runtime *rtd =
650 container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
651 struct snd_soc_dai *codec_dai = rtd->codec_dai;
652
653 mutex_lock(&pcm_mutex);
654
655 pr_debug("pop wq checking: %s status: %s waiting: %s\n",
656 codec_dai->driver->playback.stream_name,
657 codec_dai->playback_active ? "active" : "inactive",
658 codec_dai->pop_wait ? "yes" : "no");
659
660 /* are we waiting on this codec DAI stream */
661 if (codec_dai->pop_wait == 1) {
662 codec_dai->pop_wait = 0;
663 snd_soc_dapm_stream_event(rtd,
664 codec_dai->driver->playback.stream_name,
665 SND_SOC_DAPM_STREAM_STOP);
666 }
667
668 mutex_unlock(&pcm_mutex);
669 }
670
671 /*
672 * Called by ALSA when a PCM substream is closed. Private data can be
673 * freed here. The cpu DAI, codec DAI, machine and platform are also
674 * shutdown.
675 */
676 static int soc_codec_close(struct snd_pcm_substream *substream)
677 {
678 struct snd_soc_pcm_runtime *rtd = substream->private_data;
679 struct snd_soc_platform *platform = rtd->platform;
680 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
681 struct snd_soc_dai *codec_dai = rtd->codec_dai;
682 struct snd_soc_codec *codec = rtd->codec;
683
684 mutex_lock(&pcm_mutex);
685
686 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
687 cpu_dai->playback_active--;
688 codec_dai->playback_active--;
689 } else {
690 cpu_dai->capture_active--;
691 codec_dai->capture_active--;
692 }
693
694 cpu_dai->active--;
695 codec_dai->active--;
696 codec->active--;
697
698 /* Muting the DAC suppresses artifacts caused during digital
699 * shutdown, for example from stopping clocks.
700 */
701 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
702 snd_soc_dai_digital_mute(codec_dai, 1);
703
704 if (cpu_dai->driver->ops->shutdown)
705 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
706
707 if (codec_dai->driver->ops->shutdown)
708 codec_dai->driver->ops->shutdown(substream, codec_dai);
709
710 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
711 rtd->dai_link->ops->shutdown(substream);
712
713 if (platform->driver->ops->close)
714 platform->driver->ops->close(substream);
715 cpu_dai->runtime = NULL;
716
717 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
718 /* start delayed pop wq here for playback streams */
719 codec_dai->pop_wait = 1;
720 schedule_delayed_work(&rtd->delayed_work,
721 msecs_to_jiffies(rtd->pmdown_time));
722 } else {
723 /* capture streams can be powered down now */
724 snd_soc_dapm_stream_event(rtd,
725 codec_dai->driver->capture.stream_name,
726 SND_SOC_DAPM_STREAM_STOP);
727 }
728
729 mutex_unlock(&pcm_mutex);
730 return 0;
731 }
732
733 /*
734 * Called by ALSA when the PCM substream is prepared, can set format, sample
735 * rate, etc. This function is non atomic and can be called multiple times,
736 * it can refer to the runtime info.
737 */
738 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
739 {
740 struct snd_soc_pcm_runtime *rtd = substream->private_data;
741 struct snd_soc_platform *platform = rtd->platform;
742 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
743 struct snd_soc_dai *codec_dai = rtd->codec_dai;
744 int ret = 0;
745
746 mutex_lock(&pcm_mutex);
747
748 if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
749 ret = rtd->dai_link->ops->prepare(substream);
750 if (ret < 0) {
751 printk(KERN_ERR "asoc: machine prepare error\n");
752 goto out;
753 }
754 }
755
756 if (platform->driver->ops->prepare) {
757 ret = platform->driver->ops->prepare(substream);
758 if (ret < 0) {
759 printk(KERN_ERR "asoc: platform prepare error\n");
760 goto out;
761 }
762 }
763
764 if (codec_dai->driver->ops->prepare) {
765 ret = codec_dai->driver->ops->prepare(substream, codec_dai);
766 if (ret < 0) {
767 printk(KERN_ERR "asoc: codec DAI prepare error\n");
768 goto out;
769 }
770 }
771
772 if (cpu_dai->driver->ops->prepare) {
773 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
774 if (ret < 0) {
775 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
776 goto out;
777 }
778 }
779
780 /* cancel any delayed stream shutdown that is pending */
781 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
782 codec_dai->pop_wait) {
783 codec_dai->pop_wait = 0;
784 cancel_delayed_work(&rtd->delayed_work);
785 }
786
787 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
788 snd_soc_dapm_stream_event(rtd,
789 codec_dai->driver->playback.stream_name,
790 SND_SOC_DAPM_STREAM_START);
791 else
792 snd_soc_dapm_stream_event(rtd,
793 codec_dai->driver->capture.stream_name,
794 SND_SOC_DAPM_STREAM_START);
795
796 snd_soc_dai_digital_mute(codec_dai, 0);
797
798 out:
799 mutex_unlock(&pcm_mutex);
800 return ret;
801 }
802
803 /*
804 * Called by ALSA when the hardware params are set by application. This
805 * function can also be called multiple times and can allocate buffers
806 * (using snd_pcm_lib_* ). It's non-atomic.
807 */
808 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
809 struct snd_pcm_hw_params *params)
810 {
811 struct snd_soc_pcm_runtime *rtd = substream->private_data;
812 struct snd_soc_platform *platform = rtd->platform;
813 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
814 struct snd_soc_dai *codec_dai = rtd->codec_dai;
815 int ret = 0;
816
817 mutex_lock(&pcm_mutex);
818
819 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
820 ret = rtd->dai_link->ops->hw_params(substream, params);
821 if (ret < 0) {
822 printk(KERN_ERR "asoc: machine hw_params failed\n");
823 goto out;
824 }
825 }
826
827 if (codec_dai->driver->ops->hw_params) {
828 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
829 if (ret < 0) {
830 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
831 codec_dai->name);
832 goto codec_err;
833 }
834 }
835
836 if (cpu_dai->driver->ops->hw_params) {
837 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
838 if (ret < 0) {
839 printk(KERN_ERR "asoc: interface %s hw params failed\n",
840 cpu_dai->name);
841 goto interface_err;
842 }
843 }
844
845 if (platform->driver->ops->hw_params) {
846 ret = platform->driver->ops->hw_params(substream, params);
847 if (ret < 0) {
848 printk(KERN_ERR "asoc: platform %s hw params failed\n",
849 platform->name);
850 goto platform_err;
851 }
852 }
853
854 rtd->rate = params_rate(params);
855
856 out:
857 mutex_unlock(&pcm_mutex);
858 return ret;
859
860 platform_err:
861 if (cpu_dai->driver->ops->hw_free)
862 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
863
864 interface_err:
865 if (codec_dai->driver->ops->hw_free)
866 codec_dai->driver->ops->hw_free(substream, codec_dai);
867
868 codec_err:
869 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
870 rtd->dai_link->ops->hw_free(substream);
871
872 mutex_unlock(&pcm_mutex);
873 return ret;
874 }
875
876 /*
877 * Frees resources allocated by hw_params, can be called multiple times
878 */
879 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
880 {
881 struct snd_soc_pcm_runtime *rtd = substream->private_data;
882 struct snd_soc_platform *platform = rtd->platform;
883 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
884 struct snd_soc_dai *codec_dai = rtd->codec_dai;
885 struct snd_soc_codec *codec = rtd->codec;
886
887 mutex_lock(&pcm_mutex);
888
889 /* apply codec digital mute */
890 if (!codec->active)
891 snd_soc_dai_digital_mute(codec_dai, 1);
892
893 /* free any machine hw params */
894 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
895 rtd->dai_link->ops->hw_free(substream);
896
897 /* free any DMA resources */
898 if (platform->driver->ops->hw_free)
899 platform->driver->ops->hw_free(substream);
900
901 /* now free hw params for the DAIs */
902 if (codec_dai->driver->ops->hw_free)
903 codec_dai->driver->ops->hw_free(substream, codec_dai);
904
905 if (cpu_dai->driver->ops->hw_free)
906 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
907
908 mutex_unlock(&pcm_mutex);
909 return 0;
910 }
911
912 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
913 {
914 struct snd_soc_pcm_runtime *rtd = substream->private_data;
915 struct snd_soc_platform *platform = rtd->platform;
916 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
917 struct snd_soc_dai *codec_dai = rtd->codec_dai;
918 int ret;
919
920 if (codec_dai->driver->ops->trigger) {
921 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
922 if (ret < 0)
923 return ret;
924 }
925
926 if (platform->driver->ops->trigger) {
927 ret = platform->driver->ops->trigger(substream, cmd);
928 if (ret < 0)
929 return ret;
930 }
931
932 if (cpu_dai->driver->ops->trigger) {
933 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
934 if (ret < 0)
935 return ret;
936 }
937 return 0;
938 }
939
940 /*
941 * soc level wrapper for pointer callback
942 * If cpu_dai, codec_dai, platform driver has the delay callback, than
943 * the runtime->delay will be updated accordingly.
944 */
945 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
946 {
947 struct snd_soc_pcm_runtime *rtd = substream->private_data;
948 struct snd_soc_platform *platform = rtd->platform;
949 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
950 struct snd_soc_dai *codec_dai = rtd->codec_dai;
951 struct snd_pcm_runtime *runtime = substream->runtime;
952 snd_pcm_uframes_t offset = 0;
953 snd_pcm_sframes_t delay = 0;
954
955 if (platform->driver->ops->pointer)
956 offset = platform->driver->ops->pointer(substream);
957
958 if (cpu_dai->driver->ops->delay)
959 delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
960
961 if (codec_dai->driver->ops->delay)
962 delay += codec_dai->driver->ops->delay(substream, codec_dai);
963
964 if (platform->driver->delay)
965 delay += platform->driver->delay(substream, codec_dai);
966
967 runtime->delay = delay;
968
969 return offset;
970 }
971
972 /* ASoC PCM operations */
973 static struct snd_pcm_ops soc_pcm_ops = {
974 .open = soc_pcm_open,
975 .close = soc_codec_close,
976 .hw_params = soc_pcm_hw_params,
977 .hw_free = soc_pcm_hw_free,
978 .prepare = soc_pcm_prepare,
979 .trigger = soc_pcm_trigger,
980 .pointer = soc_pcm_pointer,
981 };
982
983 #ifdef CONFIG_PM
984 /* powers down audio subsystem for suspend */
985 static int soc_suspend(struct device *dev)
986 {
987 struct platform_device *pdev = to_platform_device(dev);
988 struct snd_soc_card *card = platform_get_drvdata(pdev);
989 struct snd_soc_codec *codec;
990 int i;
991
992 /* If the initialization of this soc device failed, there is no codec
993 * associated with it. Just bail out in this case.
994 */
995 if (list_empty(&card->codec_dev_list))
996 return 0;
997
998 /* Due to the resume being scheduled into a workqueue we could
999 * suspend before that's finished - wait for it to complete.
1000 */
1001 snd_power_lock(card->snd_card);
1002 snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
1003 snd_power_unlock(card->snd_card);
1004
1005 /* we're going to block userspace touching us until resume completes */
1006 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
1007
1008 /* mute any active DACs */
1009 for (i = 0; i < card->num_rtd; i++) {
1010 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1011 struct snd_soc_dai_driver *drv = dai->driver;
1012
1013 if (card->rtd[i].dai_link->ignore_suspend)
1014 continue;
1015
1016 if (drv->ops->digital_mute && dai->playback_active)
1017 drv->ops->digital_mute(dai, 1);
1018 }
1019
1020 /* suspend all pcms */
1021 for (i = 0; i < card->num_rtd; i++) {
1022 if (card->rtd[i].dai_link->ignore_suspend)
1023 continue;
1024
1025 snd_pcm_suspend_all(card->rtd[i].pcm);
1026 }
1027
1028 if (card->suspend_pre)
1029 card->suspend_pre(pdev, PMSG_SUSPEND);
1030
1031 for (i = 0; i < card->num_rtd; i++) {
1032 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1033 struct snd_soc_platform *platform = card->rtd[i].platform;
1034
1035 if (card->rtd[i].dai_link->ignore_suspend)
1036 continue;
1037
1038 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
1039 cpu_dai->driver->suspend(cpu_dai);
1040 if (platform->driver->suspend && !platform->suspended) {
1041 platform->driver->suspend(cpu_dai);
1042 platform->suspended = 1;
1043 }
1044 }
1045
1046 /* close any waiting streams and save state */
1047 for (i = 0; i < card->num_rtd; i++) {
1048 run_delayed_work(&card->rtd[i].delayed_work);
1049 card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level;
1050 }
1051
1052 for (i = 0; i < card->num_rtd; i++) {
1053 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1054
1055 if (card->rtd[i].dai_link->ignore_suspend)
1056 continue;
1057
1058 if (driver->playback.stream_name != NULL)
1059 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1060 SND_SOC_DAPM_STREAM_SUSPEND);
1061
1062 if (driver->capture.stream_name != NULL)
1063 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1064 SND_SOC_DAPM_STREAM_SUSPEND);
1065 }
1066
1067 /* suspend all CODECs */
1068 list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1069 /* If there are paths active then the CODEC will be held with
1070 * bias _ON and should not be suspended. */
1071 if (!codec->suspended && codec->driver->suspend) {
1072 switch (codec->dapm.bias_level) {
1073 case SND_SOC_BIAS_STANDBY:
1074 case SND_SOC_BIAS_OFF:
1075 codec->driver->suspend(codec, PMSG_SUSPEND);
1076 codec->suspended = 1;
1077 break;
1078 default:
1079 dev_dbg(codec->dev, "CODEC is on over suspend\n");
1080 break;
1081 }
1082 }
1083 }
1084
1085 for (i = 0; i < card->num_rtd; i++) {
1086 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1087
1088 if (card->rtd[i].dai_link->ignore_suspend)
1089 continue;
1090
1091 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
1092 cpu_dai->driver->suspend(cpu_dai);
1093 }
1094
1095 if (card->suspend_post)
1096 card->suspend_post(pdev, PMSG_SUSPEND);
1097
1098 return 0;
1099 }
1100
1101 /* deferred resume work, so resume can complete before we finished
1102 * setting our codec back up, which can be very slow on I2C
1103 */
1104 static void soc_resume_deferred(struct work_struct *work)
1105 {
1106 struct snd_soc_card *card =
1107 container_of(work, struct snd_soc_card, deferred_resume_work);
1108 struct platform_device *pdev = to_platform_device(card->dev);
1109 struct snd_soc_codec *codec;
1110 int i;
1111
1112 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
1113 * so userspace apps are blocked from touching us
1114 */
1115
1116 dev_dbg(card->dev, "starting resume work\n");
1117
1118 /* Bring us up into D2 so that DAPM starts enabling things */
1119 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
1120
1121 if (card->resume_pre)
1122 card->resume_pre(pdev);
1123
1124 /* resume AC97 DAIs */
1125 for (i = 0; i < card->num_rtd; i++) {
1126 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1127
1128 if (card->rtd[i].dai_link->ignore_suspend)
1129 continue;
1130
1131 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
1132 cpu_dai->driver->resume(cpu_dai);
1133 }
1134
1135 list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1136 /* If the CODEC was idle over suspend then it will have been
1137 * left with bias OFF or STANDBY and suspended so we must now
1138 * resume. Otherwise the suspend was suppressed.
1139 */
1140 if (codec->driver->resume && codec->suspended) {
1141 switch (codec->dapm.bias_level) {
1142 case SND_SOC_BIAS_STANDBY:
1143 case SND_SOC_BIAS_OFF:
1144 codec->driver->resume(codec);
1145 codec->suspended = 0;
1146 break;
1147 default:
1148 dev_dbg(codec->dev, "CODEC was on over suspend\n");
1149 break;
1150 }
1151 }
1152 }
1153
1154 for (i = 0; i < card->num_rtd; i++) {
1155 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1156
1157 if (card->rtd[i].dai_link->ignore_suspend)
1158 continue;
1159
1160 if (driver->playback.stream_name != NULL)
1161 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1162 SND_SOC_DAPM_STREAM_RESUME);
1163
1164 if (driver->capture.stream_name != NULL)
1165 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1166 SND_SOC_DAPM_STREAM_RESUME);
1167 }
1168
1169 /* unmute any active DACs */
1170 for (i = 0; i < card->num_rtd; i++) {
1171 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1172 struct snd_soc_dai_driver *drv = dai->driver;
1173
1174 if (card->rtd[i].dai_link->ignore_suspend)
1175 continue;
1176
1177 if (drv->ops->digital_mute && dai->playback_active)
1178 drv->ops->digital_mute(dai, 0);
1179 }
1180
1181 for (i = 0; i < card->num_rtd; i++) {
1182 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1183 struct snd_soc_platform *platform = card->rtd[i].platform;
1184
1185 if (card->rtd[i].dai_link->ignore_suspend)
1186 continue;
1187
1188 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1189 cpu_dai->driver->resume(cpu_dai);
1190 if (platform->driver->resume && platform->suspended) {
1191 platform->driver->resume(cpu_dai);
1192 platform->suspended = 0;
1193 }
1194 }
1195
1196 if (card->resume_post)
1197 card->resume_post(pdev);
1198
1199 dev_dbg(card->dev, "resume work completed\n");
1200
1201 /* userspace can access us now we are back as we were before */
1202 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1203 }
1204
1205 /* powers up audio subsystem after a suspend */
1206 static int soc_resume(struct device *dev)
1207 {
1208 struct platform_device *pdev = to_platform_device(dev);
1209 struct snd_soc_card *card = platform_get_drvdata(pdev);
1210 int i;
1211
1212 /* AC97 devices might have other drivers hanging off them so
1213 * need to resume immediately. Other drivers don't have that
1214 * problem and may take a substantial amount of time to resume
1215 * due to I/O costs and anti-pop so handle them out of line.
1216 */
1217 for (i = 0; i < card->num_rtd; i++) {
1218 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1219 if (cpu_dai->driver->ac97_control) {
1220 dev_dbg(dev, "Resuming AC97 immediately\n");
1221 soc_resume_deferred(&card->deferred_resume_work);
1222 } else {
1223 dev_dbg(dev, "Scheduling resume work\n");
1224 if (!schedule_work(&card->deferred_resume_work))
1225 dev_err(dev, "resume work item may be lost\n");
1226 }
1227 }
1228
1229 return 0;
1230 }
1231 #else
1232 #define soc_suspend NULL
1233 #define soc_resume NULL
1234 #endif
1235
1236 static struct snd_soc_dai_ops null_dai_ops = {
1237 };
1238
1239 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1240 {
1241 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1242 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1243 struct snd_soc_codec *codec;
1244 struct snd_soc_platform *platform;
1245 struct snd_soc_dai *codec_dai, *cpu_dai;
1246
1247 if (rtd->complete)
1248 return 1;
1249 dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1250
1251 /* do we already have the CPU DAI for this link ? */
1252 if (rtd->cpu_dai) {
1253 goto find_codec;
1254 }
1255 /* no, then find CPU DAI from registered DAIs*/
1256 list_for_each_entry(cpu_dai, &dai_list, list) {
1257 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1258
1259 if (!try_module_get(cpu_dai->dev->driver->owner))
1260 return -ENODEV;
1261
1262 rtd->cpu_dai = cpu_dai;
1263 goto find_codec;
1264 }
1265 }
1266 dev_dbg(card->dev, "CPU DAI %s not registered\n",
1267 dai_link->cpu_dai_name);
1268
1269 find_codec:
1270 /* do we already have the CODEC for this link ? */
1271 if (rtd->codec) {
1272 goto find_platform;
1273 }
1274
1275 /* no, then find CODEC from registered CODECs*/
1276 list_for_each_entry(codec, &codec_list, list) {
1277 if (!strcmp(codec->name, dai_link->codec_name)) {
1278 rtd->codec = codec;
1279
1280 if (!try_module_get(codec->dev->driver->owner))
1281 return -ENODEV;
1282
1283 /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1284 list_for_each_entry(codec_dai, &dai_list, list) {
1285 if (codec->dev == codec_dai->dev &&
1286 !strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1287 rtd->codec_dai = codec_dai;
1288 goto find_platform;
1289 }
1290 }
1291 dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1292 dai_link->codec_dai_name);
1293
1294 goto find_platform;
1295 }
1296 }
1297 dev_dbg(card->dev, "CODEC %s not registered\n",
1298 dai_link->codec_name);
1299
1300 find_platform:
1301 /* do we already have the CODEC DAI for this link ? */
1302 if (rtd->platform) {
1303 goto out;
1304 }
1305 /* no, then find CPU DAI from registered DAIs*/
1306 list_for_each_entry(platform, &platform_list, list) {
1307 if (!strcmp(platform->name, dai_link->platform_name)) {
1308
1309 if (!try_module_get(platform->dev->driver->owner))
1310 return -ENODEV;
1311
1312 rtd->platform = platform;
1313 goto out;
1314 }
1315 }
1316
1317 dev_dbg(card->dev, "platform %s not registered\n",
1318 dai_link->platform_name);
1319 return 0;
1320
1321 out:
1322 /* mark rtd as complete if we found all 4 of our client devices */
1323 if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1324 rtd->complete = 1;
1325 card->num_rtd++;
1326 }
1327 return 1;
1328 }
1329
1330 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1331 {
1332 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1333 struct snd_soc_codec *codec = rtd->codec;
1334 struct snd_soc_platform *platform = rtd->platform;
1335 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1336 int err;
1337
1338 /* unregister the rtd device */
1339 if (rtd->dev_registered) {
1340 device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1341 device_unregister(&rtd->dev);
1342 rtd->dev_registered = 0;
1343 }
1344
1345 /* remove the CODEC DAI */
1346 if (codec_dai && codec_dai->probed) {
1347 if (codec_dai->driver->remove) {
1348 err = codec_dai->driver->remove(codec_dai);
1349 if (err < 0)
1350 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1351 }
1352 codec_dai->probed = 0;
1353 list_del(&codec_dai->card_list);
1354 }
1355
1356 /* remove the platform */
1357 if (platform && platform->probed) {
1358 if (platform->driver->remove) {
1359 err = platform->driver->remove(platform);
1360 if (err < 0)
1361 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1362 }
1363 platform->probed = 0;
1364 list_del(&platform->card_list);
1365 module_put(platform->dev->driver->owner);
1366 }
1367
1368 /* remove the CODEC */
1369 if (codec && codec->probed) {
1370 if (codec->driver->remove) {
1371 err = codec->driver->remove(codec);
1372 if (err < 0)
1373 printk(KERN_ERR "asoc: failed to remove %s\n", codec->name);
1374 }
1375
1376 /* Make sure all DAPM widgets are freed */
1377 snd_soc_dapm_free(&codec->dapm);
1378
1379 soc_cleanup_codec_debugfs(codec);
1380 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1381 codec->probed = 0;
1382 list_del(&codec->card_list);
1383 module_put(codec->dev->driver->owner);
1384 }
1385
1386 /* remove the cpu_dai */
1387 if (cpu_dai && cpu_dai->probed) {
1388 if (cpu_dai->driver->remove) {
1389 err = cpu_dai->driver->remove(cpu_dai);
1390 if (err < 0)
1391 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1392 }
1393 cpu_dai->probed = 0;
1394 list_del(&cpu_dai->card_list);
1395 module_put(cpu_dai->dev->driver->owner);
1396 }
1397 }
1398
1399 static void soc_set_name_prefix(struct snd_soc_card *card,
1400 struct snd_soc_codec *codec)
1401 {
1402 int i;
1403
1404 if (card->prefix_map == NULL)
1405 return;
1406
1407 for (i = 0; i < card->num_prefixes; i++) {
1408 struct snd_soc_prefix_map *map = &card->prefix_map[i];
1409 if (map->dev_name && !strcmp(codec->name, map->dev_name)) {
1410 codec->name_prefix = map->name_prefix;
1411 break;
1412 }
1413 }
1414 }
1415
1416 static void rtd_release(struct device *dev) {}
1417
1418 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1419 {
1420 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1421 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1422 struct snd_soc_codec *codec = rtd->codec;
1423 struct snd_soc_platform *platform = rtd->platform;
1424 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1425 const char *temp;
1426 int ret;
1427
1428 dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1429
1430 /* config components */
1431 codec_dai->codec = codec;
1432 codec->card = card;
1433 cpu_dai->platform = platform;
1434 rtd->card = card;
1435 rtd->dev.parent = card->dev;
1436 codec_dai->card = card;
1437 cpu_dai->card = card;
1438
1439 /* set default power off timeout */
1440 rtd->pmdown_time = pmdown_time;
1441
1442 /* probe the cpu_dai */
1443 if (!cpu_dai->probed) {
1444 if (cpu_dai->driver->probe) {
1445 ret = cpu_dai->driver->probe(cpu_dai);
1446 if (ret < 0) {
1447 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1448 cpu_dai->name);
1449 return ret;
1450 }
1451 }
1452 cpu_dai->probed = 1;
1453 /* mark cpu_dai as probed and add to card cpu_dai list */
1454 list_add(&cpu_dai->card_list, &card->dai_dev_list);
1455 }
1456
1457 /* probe the CODEC */
1458 if (!codec->probed) {
1459 codec->dapm.card = card;
1460 soc_set_name_prefix(card, codec);
1461 if (codec->driver->probe) {
1462 ret = codec->driver->probe(codec);
1463 if (ret < 0) {
1464 printk(KERN_ERR "asoc: failed to probe CODEC %s\n",
1465 codec->name);
1466 return ret;
1467 }
1468 }
1469
1470 soc_init_codec_debugfs(codec);
1471
1472 /* mark codec as probed and add to card codec list */
1473 codec->probed = 1;
1474 list_add(&codec->card_list, &card->codec_dev_list);
1475 }
1476
1477 /* probe the platform */
1478 if (!platform->probed) {
1479 if (platform->driver->probe) {
1480 ret = platform->driver->probe(platform);
1481 if (ret < 0) {
1482 printk(KERN_ERR "asoc: failed to probe platform %s\n",
1483 platform->name);
1484 return ret;
1485 }
1486 }
1487 /* mark platform as probed and add to card platform list */
1488 platform->probed = 1;
1489 list_add(&platform->card_list, &card->platform_dev_list);
1490 }
1491
1492 /* probe the CODEC DAI */
1493 if (!codec_dai->probed) {
1494 if (codec_dai->driver->probe) {
1495 ret = codec_dai->driver->probe(codec_dai);
1496 if (ret < 0) {
1497 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1498 codec_dai->name);
1499 return ret;
1500 }
1501 }
1502
1503 /* mark cpu_dai as probed and add to card cpu_dai list */
1504 codec_dai->probed = 1;
1505 list_add(&codec_dai->card_list, &card->dai_dev_list);
1506 }
1507
1508 /* DAPM dai link stream work */
1509 INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1510
1511 /* now that all clients have probed, initialise the DAI link */
1512 if (dai_link->init) {
1513 /* machine controls, routes and widgets are not prefixed */
1514 temp = rtd->codec->name_prefix;
1515 rtd->codec->name_prefix = NULL;
1516 ret = dai_link->init(rtd);
1517 if (ret < 0) {
1518 printk(KERN_ERR "asoc: failed to init %s\n", dai_link->stream_name);
1519 return ret;
1520 }
1521 rtd->codec->name_prefix = temp;
1522 }
1523
1524 /* Make sure all DAPM widgets are instantiated */
1525 snd_soc_dapm_new_widgets(&codec->dapm);
1526 snd_soc_dapm_sync(&codec->dapm);
1527
1528 /* register the rtd device */
1529 rtd->dev.release = rtd_release;
1530 rtd->dev.init_name = dai_link->name;
1531 ret = device_register(&rtd->dev);
1532 if (ret < 0) {
1533 printk(KERN_ERR "asoc: failed to register DAI runtime device %d\n", ret);
1534 return ret;
1535 }
1536
1537 rtd->dev_registered = 1;
1538 ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1539 if (ret < 0)
1540 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1541
1542 /* add DAPM sysfs entries for this codec */
1543 ret = snd_soc_dapm_sys_add(&rtd->dev);
1544 if (ret < 0)
1545 printk(KERN_WARNING "asoc: failed to add codec dapm sysfs entries\n");
1546
1547 /* add codec sysfs entries */
1548 ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1549 if (ret < 0)
1550 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1551
1552 /* create the pcm */
1553 ret = soc_new_pcm(rtd, num);
1554 if (ret < 0) {
1555 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1556 return ret;
1557 }
1558
1559 /* add platform data for AC97 devices */
1560 if (rtd->codec_dai->driver->ac97_control)
1561 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1562
1563 return 0;
1564 }
1565
1566 #ifdef CONFIG_SND_SOC_AC97_BUS
1567 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1568 {
1569 int ret;
1570
1571 /* Only instantiate AC97 if not already done by the adaptor
1572 * for the generic AC97 subsystem.
1573 */
1574 if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1575 /*
1576 * It is possible that the AC97 device is already registered to
1577 * the device subsystem. This happens when the device is created
1578 * via snd_ac97_mixer(). Currently only SoC codec that does so
1579 * is the generic AC97 glue but others migh emerge.
1580 *
1581 * In those cases we don't try to register the device again.
1582 */
1583 if (!rtd->codec->ac97_created)
1584 return 0;
1585
1586 ret = soc_ac97_dev_register(rtd->codec);
1587 if (ret < 0) {
1588 printk(KERN_ERR "asoc: AC97 device register failed\n");
1589 return ret;
1590 }
1591
1592 rtd->codec->ac97_registered = 1;
1593 }
1594 return 0;
1595 }
1596
1597 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1598 {
1599 if (codec->ac97_registered) {
1600 soc_ac97_dev_unregister(codec);
1601 codec->ac97_registered = 0;
1602 }
1603 }
1604 #endif
1605
1606 static int soc_probe_aux_dev(struct snd_soc_card *card, int num)
1607 {
1608 struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1609 struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1610 struct snd_soc_codec *codec;
1611 const char *temp;
1612 int ret = -ENODEV;
1613
1614 /* find CODEC from registered CODECs*/
1615 list_for_each_entry(codec, &codec_list, list) {
1616 if (!strcmp(codec->name, aux_dev->codec_name)) {
1617 if (codec->probed) {
1618 dev_err(codec->dev,
1619 "asoc: codec already probed");
1620 ret = -EBUSY;
1621 goto out;
1622 }
1623 goto found;
1624 }
1625 }
1626 /* codec not found */
1627 dev_err(card->dev, "asoc: codec %s not found", aux_dev->codec_name);
1628 goto out;
1629
1630 found:
1631 if (!try_module_get(codec->dev->driver->owner))
1632 return -ENODEV;
1633
1634 codec->card = card;
1635 codec->dapm.card = card;
1636
1637 soc_set_name_prefix(card, codec);
1638 if (codec->driver->probe) {
1639 ret = codec->driver->probe(codec);
1640 if (ret < 0) {
1641 dev_err(codec->dev, "asoc: failed to probe CODEC");
1642 return ret;
1643 }
1644 }
1645
1646 soc_init_codec_debugfs(codec);
1647
1648 /* mark codec as probed and add to card codec list */
1649 codec->probed = 1;
1650 list_add(&codec->card_list, &card->codec_dev_list);
1651
1652 /* now that all clients have probed, initialise the DAI link */
1653 if (aux_dev->init) {
1654 /* machine controls, routes and widgets are not prefixed */
1655 temp = codec->name_prefix;
1656 codec->name_prefix = NULL;
1657 ret = aux_dev->init(&codec->dapm);
1658 if (ret < 0) {
1659 dev_err(codec->dev,
1660 "asoc: failed to init %s\n", aux_dev->name);
1661 return ret;
1662 }
1663 codec->name_prefix = temp;
1664 }
1665
1666 /* Make sure all DAPM widgets are instantiated */
1667 snd_soc_dapm_new_widgets(&codec->dapm);
1668 snd_soc_dapm_sync(&codec->dapm);
1669
1670 /* register the rtd device */
1671 rtd->codec = codec;
1672 rtd->card = card;
1673 rtd->dev.parent = card->dev;
1674 rtd->dev.release = rtd_release;
1675 rtd->dev.init_name = aux_dev->name;
1676 ret = device_register(&rtd->dev);
1677 if (ret < 0) {
1678 dev_err(codec->dev,
1679 "asoc: failed to register aux runtime device %d\n",
1680 ret);
1681 return ret;
1682 }
1683 rtd->dev_registered = 1;
1684
1685 /* add DAPM sysfs entries for this codec */
1686 ret = snd_soc_dapm_sys_add(&rtd->dev);
1687 if (ret < 0)
1688 dev_err(codec->dev,
1689 "asoc: failed to add codec dapm sysfs entries\n");
1690
1691 /* add codec sysfs entries */
1692 ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1693 if (ret < 0)
1694 dev_err(codec->dev, "asoc: failed to add codec sysfs files\n");
1695
1696 out:
1697 return ret;
1698 }
1699
1700 static void soc_remove_aux_dev(struct snd_soc_card *card, int num)
1701 {
1702 struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1703 struct snd_soc_codec *codec = rtd->codec;
1704 int err;
1705
1706 /* unregister the rtd device */
1707 if (rtd->dev_registered) {
1708 device_unregister(&rtd->dev);
1709 rtd->dev_registered = 0;
1710 }
1711
1712 /* remove the CODEC */
1713 if (codec && codec->probed) {
1714 if (codec->driver->remove) {
1715 err = codec->driver->remove(codec);
1716 if (err < 0)
1717 dev_err(codec->dev,
1718 "asoc: failed to remove %s\n",
1719 codec->name);
1720 }
1721
1722 /* Make sure all DAPM widgets are freed */
1723 snd_soc_dapm_free(&codec->dapm);
1724
1725 soc_cleanup_codec_debugfs(codec);
1726 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1727 codec->probed = 0;
1728 list_del(&codec->card_list);
1729 module_put(codec->dev->driver->owner);
1730 }
1731 }
1732
1733 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1734 {
1735 struct platform_device *pdev = to_platform_device(card->dev);
1736 int ret, i;
1737
1738 mutex_lock(&card->mutex);
1739
1740 if (card->instantiated) {
1741 mutex_unlock(&card->mutex);
1742 return;
1743 }
1744
1745 /* bind DAIs */
1746 for (i = 0; i < card->num_links; i++)
1747 soc_bind_dai_link(card, i);
1748
1749 /* bind completed ? */
1750 if (card->num_rtd != card->num_links) {
1751 mutex_unlock(&card->mutex);
1752 return;
1753 }
1754
1755 /* card bind complete so register a sound card */
1756 ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1757 card->owner, 0, &card->snd_card);
1758 if (ret < 0) {
1759 printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1760 card->name);
1761 mutex_unlock(&card->mutex);
1762 return;
1763 }
1764 card->snd_card->dev = card->dev;
1765
1766 #ifdef CONFIG_PM
1767 /* deferred resume work */
1768 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1769 #endif
1770
1771 /* initialise the sound card only once */
1772 if (card->probe) {
1773 ret = card->probe(pdev);
1774 if (ret < 0)
1775 goto card_probe_error;
1776 }
1777
1778 for (i = 0; i < card->num_links; i++) {
1779 ret = soc_probe_dai_link(card, i);
1780 if (ret < 0) {
1781 pr_err("asoc: failed to instantiate card %s: %d\n",
1782 card->name, ret);
1783 goto probe_dai_err;
1784 }
1785 }
1786
1787 for (i = 0; i < card->num_aux_devs; i++) {
1788 ret = soc_probe_aux_dev(card, i);
1789 if (ret < 0) {
1790 pr_err("asoc: failed to add auxiliary devices %s: %d\n",
1791 card->name, ret);
1792 goto probe_aux_dev_err;
1793 }
1794 }
1795
1796 snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1797 "%s", card->name);
1798 snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1799 "%s", card->name);
1800
1801 ret = snd_card_register(card->snd_card);
1802 if (ret < 0) {
1803 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1804 goto probe_dai_err;
1805 }
1806
1807 #ifdef CONFIG_SND_SOC_AC97_BUS
1808 /* register any AC97 codecs */
1809 for (i = 0; i < card->num_rtd; i++) {
1810 ret = soc_register_ac97_dai_link(&card->rtd[i]);
1811 if (ret < 0) {
1812 printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1813 goto probe_dai_err;
1814 }
1815 }
1816 #endif
1817
1818 card->instantiated = 1;
1819 mutex_unlock(&card->mutex);
1820 return;
1821
1822 probe_aux_dev_err:
1823 for (i = 0; i < card->num_aux_devs; i++)
1824 soc_remove_aux_dev(card, i);
1825
1826 probe_dai_err:
1827 for (i = 0; i < card->num_links; i++)
1828 soc_remove_dai_link(card, i);
1829
1830 card_probe_error:
1831 if (card->remove)
1832 card->remove(pdev);
1833
1834 snd_card_free(card->snd_card);
1835
1836 mutex_unlock(&card->mutex);
1837 }
1838
1839 /*
1840 * Attempt to initialise any uninitialised cards. Must be called with
1841 * client_mutex.
1842 */
1843 static void snd_soc_instantiate_cards(void)
1844 {
1845 struct snd_soc_card *card;
1846 list_for_each_entry(card, &card_list, list)
1847 snd_soc_instantiate_card(card);
1848 }
1849
1850 /* probes a new socdev */
1851 static int soc_probe(struct platform_device *pdev)
1852 {
1853 struct snd_soc_card *card = platform_get_drvdata(pdev);
1854 int ret = 0;
1855
1856 /* Bodge while we unpick instantiation */
1857 card->dev = &pdev->dev;
1858 INIT_LIST_HEAD(&card->dai_dev_list);
1859 INIT_LIST_HEAD(&card->codec_dev_list);
1860 INIT_LIST_HEAD(&card->platform_dev_list);
1861
1862 soc_init_card_debugfs(card);
1863
1864 ret = snd_soc_register_card(card);
1865 if (ret != 0) {
1866 dev_err(&pdev->dev, "Failed to register card\n");
1867 return ret;
1868 }
1869
1870 return 0;
1871 }
1872
1873 /* removes a socdev */
1874 static int soc_remove(struct platform_device *pdev)
1875 {
1876 struct snd_soc_card *card = platform_get_drvdata(pdev);
1877 int i;
1878
1879 if (card->instantiated) {
1880
1881 /* make sure any delayed work runs */
1882 for (i = 0; i < card->num_rtd; i++) {
1883 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1884 run_delayed_work(&rtd->delayed_work);
1885 }
1886
1887 /* remove auxiliary devices */
1888 for (i = 0; i < card->num_aux_devs; i++)
1889 soc_remove_aux_dev(card, i);
1890
1891 /* remove and free each DAI */
1892 for (i = 0; i < card->num_rtd; i++)
1893 soc_remove_dai_link(card, i);
1894
1895 soc_cleanup_card_debugfs(card);
1896
1897 /* remove the card */
1898 if (card->remove)
1899 card->remove(pdev);
1900
1901 kfree(card->rtd);
1902 snd_card_free(card->snd_card);
1903 }
1904 snd_soc_unregister_card(card);
1905 return 0;
1906 }
1907
1908 static int soc_poweroff(struct device *dev)
1909 {
1910 struct platform_device *pdev = to_platform_device(dev);
1911 struct snd_soc_card *card = platform_get_drvdata(pdev);
1912 int i;
1913
1914 if (!card->instantiated)
1915 return 0;
1916
1917 /* Flush out pmdown_time work - we actually do want to run it
1918 * now, we're shutting down so no imminent restart. */
1919 for (i = 0; i < card->num_rtd; i++) {
1920 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1921 run_delayed_work(&rtd->delayed_work);
1922 }
1923
1924 snd_soc_dapm_shutdown(card);
1925
1926 return 0;
1927 }
1928
1929 static const struct dev_pm_ops soc_pm_ops = {
1930 .suspend = soc_suspend,
1931 .resume = soc_resume,
1932 .poweroff = soc_poweroff,
1933 };
1934
1935 /* ASoC platform driver */
1936 static struct platform_driver soc_driver = {
1937 .driver = {
1938 .name = "soc-audio",
1939 .owner = THIS_MODULE,
1940 .pm = &soc_pm_ops,
1941 },
1942 .probe = soc_probe,
1943 .remove = soc_remove,
1944 };
1945
1946 /* create a new pcm */
1947 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
1948 {
1949 struct snd_soc_codec *codec = rtd->codec;
1950 struct snd_soc_platform *platform = rtd->platform;
1951 struct snd_soc_dai *codec_dai = rtd->codec_dai;
1952 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1953 struct snd_pcm *pcm;
1954 char new_name[64];
1955 int ret = 0, playback = 0, capture = 0;
1956
1957 /* check client and interface hw capabilities */
1958 snprintf(new_name, sizeof(new_name), "%s %s-%d",
1959 rtd->dai_link->stream_name, codec_dai->name, num);
1960
1961 if (codec_dai->driver->playback.channels_min)
1962 playback = 1;
1963 if (codec_dai->driver->capture.channels_min)
1964 capture = 1;
1965
1966 dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
1967 ret = snd_pcm_new(rtd->card->snd_card, new_name,
1968 num, playback, capture, &pcm);
1969 if (ret < 0) {
1970 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
1971 return ret;
1972 }
1973
1974 rtd->pcm = pcm;
1975 pcm->private_data = rtd;
1976 soc_pcm_ops.mmap = platform->driver->ops->mmap;
1977 soc_pcm_ops.pointer = platform->driver->ops->pointer;
1978 soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
1979 soc_pcm_ops.copy = platform->driver->ops->copy;
1980 soc_pcm_ops.silence = platform->driver->ops->silence;
1981 soc_pcm_ops.ack = platform->driver->ops->ack;
1982 soc_pcm_ops.page = platform->driver->ops->page;
1983
1984 if (playback)
1985 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1986
1987 if (capture)
1988 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1989
1990 ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm);
1991 if (ret < 0) {
1992 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1993 return ret;
1994 }
1995
1996 pcm->private_free = platform->driver->pcm_free;
1997 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1998 cpu_dai->name);
1999 return ret;
2000 }
2001
2002 /**
2003 * snd_soc_codec_volatile_register: Report if a register is volatile.
2004 *
2005 * @codec: CODEC to query.
2006 * @reg: Register to query.
2007 *
2008 * Boolean function indiciating if a CODEC register is volatile.
2009 */
2010 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
2011 {
2012 if (codec->driver->volatile_register)
2013 return codec->driver->volatile_register(reg);
2014 else
2015 return 0;
2016 }
2017 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
2018
2019 /**
2020 * snd_soc_new_ac97_codec - initailise AC97 device
2021 * @codec: audio codec
2022 * @ops: AC97 bus operations
2023 * @num: AC97 codec number
2024 *
2025 * Initialises AC97 codec resources for use by ad-hoc devices only.
2026 */
2027 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
2028 struct snd_ac97_bus_ops *ops, int num)
2029 {
2030 mutex_lock(&codec->mutex);
2031
2032 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
2033 if (codec->ac97 == NULL) {
2034 mutex_unlock(&codec->mutex);
2035 return -ENOMEM;
2036 }
2037
2038 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
2039 if (codec->ac97->bus == NULL) {
2040 kfree(codec->ac97);
2041 codec->ac97 = NULL;
2042 mutex_unlock(&codec->mutex);
2043 return -ENOMEM;
2044 }
2045
2046 codec->ac97->bus->ops = ops;
2047 codec->ac97->num = num;
2048
2049 /*
2050 * Mark the AC97 device to be created by us. This way we ensure that the
2051 * device will be registered with the device subsystem later on.
2052 */
2053 codec->ac97_created = 1;
2054
2055 mutex_unlock(&codec->mutex);
2056 return 0;
2057 }
2058 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
2059
2060 /**
2061 * snd_soc_free_ac97_codec - free AC97 codec device
2062 * @codec: audio codec
2063 *
2064 * Frees AC97 codec device resources.
2065 */
2066 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
2067 {
2068 mutex_lock(&codec->mutex);
2069 #ifdef CONFIG_SND_SOC_AC97_BUS
2070 soc_unregister_ac97_dai_link(codec);
2071 #endif
2072 kfree(codec->ac97->bus);
2073 kfree(codec->ac97);
2074 codec->ac97 = NULL;
2075 codec->ac97_created = 0;
2076 mutex_unlock(&codec->mutex);
2077 }
2078 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
2079
2080 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg)
2081 {
2082 unsigned int ret;
2083
2084 ret = codec->read(codec, reg);
2085 dev_dbg(codec->dev, "read %x => %x\n", reg, ret);
2086 trace_snd_soc_reg_read(codec, reg, ret);
2087
2088 return ret;
2089 }
2090 EXPORT_SYMBOL_GPL(snd_soc_read);
2091
2092 unsigned int snd_soc_write(struct snd_soc_codec *codec,
2093 unsigned int reg, unsigned int val)
2094 {
2095 dev_dbg(codec->dev, "write %x = %x\n", reg, val);
2096 trace_snd_soc_reg_write(codec, reg, val);
2097 return codec->write(codec, reg, val);
2098 }
2099 EXPORT_SYMBOL_GPL(snd_soc_write);
2100
2101 /**
2102 * snd_soc_update_bits - update codec register bits
2103 * @codec: audio codec
2104 * @reg: codec register
2105 * @mask: register mask
2106 * @value: new value
2107 *
2108 * Writes new register value.
2109 *
2110 * Returns 1 for change else 0.
2111 */
2112 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
2113 unsigned int mask, unsigned int value)
2114 {
2115 int change;
2116 unsigned int old, new;
2117
2118 old = snd_soc_read(codec, reg);
2119 new = (old & ~mask) | value;
2120 change = old != new;
2121 if (change)
2122 snd_soc_write(codec, reg, new);
2123
2124 return change;
2125 }
2126 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
2127
2128 /**
2129 * snd_soc_update_bits_locked - update codec register bits
2130 * @codec: audio codec
2131 * @reg: codec register
2132 * @mask: register mask
2133 * @value: new value
2134 *
2135 * Writes new register value, and takes the codec mutex.
2136 *
2137 * Returns 1 for change else 0.
2138 */
2139 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
2140 unsigned short reg, unsigned int mask,
2141 unsigned int value)
2142 {
2143 int change;
2144
2145 mutex_lock(&codec->mutex);
2146 change = snd_soc_update_bits(codec, reg, mask, value);
2147 mutex_unlock(&codec->mutex);
2148
2149 return change;
2150 }
2151 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
2152
2153 /**
2154 * snd_soc_test_bits - test register for change
2155 * @codec: audio codec
2156 * @reg: codec register
2157 * @mask: register mask
2158 * @value: new value
2159 *
2160 * Tests a register with a new value and checks if the new value is
2161 * different from the old value.
2162 *
2163 * Returns 1 for change else 0.
2164 */
2165 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
2166 unsigned int mask, unsigned int value)
2167 {
2168 int change;
2169 unsigned int old, new;
2170
2171 old = snd_soc_read(codec, reg);
2172 new = (old & ~mask) | value;
2173 change = old != new;
2174
2175 return change;
2176 }
2177 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
2178
2179 /**
2180 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
2181 * @substream: the pcm substream
2182 * @hw: the hardware parameters
2183 *
2184 * Sets the substream runtime hardware parameters.
2185 */
2186 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
2187 const struct snd_pcm_hardware *hw)
2188 {
2189 struct snd_pcm_runtime *runtime = substream->runtime;
2190 runtime->hw.info = hw->info;
2191 runtime->hw.formats = hw->formats;
2192 runtime->hw.period_bytes_min = hw->period_bytes_min;
2193 runtime->hw.period_bytes_max = hw->period_bytes_max;
2194 runtime->hw.periods_min = hw->periods_min;
2195 runtime->hw.periods_max = hw->periods_max;
2196 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
2197 runtime->hw.fifo_size = hw->fifo_size;
2198 return 0;
2199 }
2200 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
2201
2202 /**
2203 * snd_soc_cnew - create new control
2204 * @_template: control template
2205 * @data: control private data
2206 * @long_name: control long name
2207 *
2208 * Create a new mixer control from a template control.
2209 *
2210 * Returns 0 for success, else error.
2211 */
2212 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2213 void *data, char *long_name)
2214 {
2215 struct snd_kcontrol_new template;
2216
2217 memcpy(&template, _template, sizeof(template));
2218 if (long_name)
2219 template.name = long_name;
2220 template.index = 0;
2221
2222 return snd_ctl_new1(&template, data);
2223 }
2224 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2225
2226 /**
2227 * snd_soc_add_controls - add an array of controls to a codec.
2228 * Convienience function to add a list of controls. Many codecs were
2229 * duplicating this code.
2230 *
2231 * @codec: codec to add controls to
2232 * @controls: array of controls to add
2233 * @num_controls: number of elements in the array
2234 *
2235 * Return 0 for success, else error.
2236 */
2237 int snd_soc_add_controls(struct snd_soc_codec *codec,
2238 const struct snd_kcontrol_new *controls, int num_controls)
2239 {
2240 struct snd_card *card = codec->card->snd_card;
2241 char prefixed_name[44], *name;
2242 int err, i;
2243
2244 for (i = 0; i < num_controls; i++) {
2245 const struct snd_kcontrol_new *control = &controls[i];
2246 if (codec->name_prefix) {
2247 snprintf(prefixed_name, sizeof(prefixed_name), "%s %s",
2248 codec->name_prefix, control->name);
2249 name = prefixed_name;
2250 } else {
2251 name = control->name;
2252 }
2253 err = snd_ctl_add(card, snd_soc_cnew(control, codec, name));
2254 if (err < 0) {
2255 dev_err(codec->dev, "%s: Failed to add %s: %d\n",
2256 codec->name, name, err);
2257 return err;
2258 }
2259 }
2260
2261 return 0;
2262 }
2263 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
2264
2265 /**
2266 * snd_soc_info_enum_double - enumerated double mixer info callback
2267 * @kcontrol: mixer control
2268 * @uinfo: control element information
2269 *
2270 * Callback to provide information about a double enumerated
2271 * mixer control.
2272 *
2273 * Returns 0 for success.
2274 */
2275 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2276 struct snd_ctl_elem_info *uinfo)
2277 {
2278 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2279
2280 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2281 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2282 uinfo->value.enumerated.items = e->max;
2283
2284 if (uinfo->value.enumerated.item > e->max - 1)
2285 uinfo->value.enumerated.item = e->max - 1;
2286 strcpy(uinfo->value.enumerated.name,
2287 e->texts[uinfo->value.enumerated.item]);
2288 return 0;
2289 }
2290 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2291
2292 /**
2293 * snd_soc_get_enum_double - enumerated double mixer get callback
2294 * @kcontrol: mixer control
2295 * @ucontrol: control element information
2296 *
2297 * Callback to get the value of a double enumerated mixer.
2298 *
2299 * Returns 0 for success.
2300 */
2301 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2302 struct snd_ctl_elem_value *ucontrol)
2303 {
2304 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2305 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2306 unsigned int val, bitmask;
2307
2308 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2309 ;
2310 val = snd_soc_read(codec, e->reg);
2311 ucontrol->value.enumerated.item[0]
2312 = (val >> e->shift_l) & (bitmask - 1);
2313 if (e->shift_l != e->shift_r)
2314 ucontrol->value.enumerated.item[1] =
2315 (val >> e->shift_r) & (bitmask - 1);
2316
2317 return 0;
2318 }
2319 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2320
2321 /**
2322 * snd_soc_put_enum_double - enumerated double mixer put callback
2323 * @kcontrol: mixer control
2324 * @ucontrol: control element information
2325 *
2326 * Callback to set the value of a double enumerated mixer.
2327 *
2328 * Returns 0 for success.
2329 */
2330 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2331 struct snd_ctl_elem_value *ucontrol)
2332 {
2333 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2334 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2335 unsigned int val;
2336 unsigned int mask, bitmask;
2337
2338 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2339 ;
2340 if (ucontrol->value.enumerated.item[0] > e->max - 1)
2341 return -EINVAL;
2342 val = ucontrol->value.enumerated.item[0] << e->shift_l;
2343 mask = (bitmask - 1) << e->shift_l;
2344 if (e->shift_l != e->shift_r) {
2345 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2346 return -EINVAL;
2347 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2348 mask |= (bitmask - 1) << e->shift_r;
2349 }
2350
2351 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2352 }
2353 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2354
2355 /**
2356 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2357 * @kcontrol: mixer control
2358 * @ucontrol: control element information
2359 *
2360 * Callback to get the value of a double semi enumerated mixer.
2361 *
2362 * Semi enumerated mixer: the enumerated items are referred as values. Can be
2363 * used for handling bitfield coded enumeration for example.
2364 *
2365 * Returns 0 for success.
2366 */
2367 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2368 struct snd_ctl_elem_value *ucontrol)
2369 {
2370 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2371 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2372 unsigned int reg_val, val, mux;
2373
2374 reg_val = snd_soc_read(codec, e->reg);
2375 val = (reg_val >> e->shift_l) & e->mask;
2376 for (mux = 0; mux < e->max; mux++) {
2377 if (val == e->values[mux])
2378 break;
2379 }
2380 ucontrol->value.enumerated.item[0] = mux;
2381 if (e->shift_l != e->shift_r) {
2382 val = (reg_val >> e->shift_r) & e->mask;
2383 for (mux = 0; mux < e->max; mux++) {
2384 if (val == e->values[mux])
2385 break;
2386 }
2387 ucontrol->value.enumerated.item[1] = mux;
2388 }
2389
2390 return 0;
2391 }
2392 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2393
2394 /**
2395 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2396 * @kcontrol: mixer control
2397 * @ucontrol: control element information
2398 *
2399 * Callback to set the value of a double semi enumerated mixer.
2400 *
2401 * Semi enumerated mixer: the enumerated items are referred as values. Can be
2402 * used for handling bitfield coded enumeration for example.
2403 *
2404 * Returns 0 for success.
2405 */
2406 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2407 struct snd_ctl_elem_value *ucontrol)
2408 {
2409 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2410 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2411 unsigned int val;
2412 unsigned int mask;
2413
2414 if (ucontrol->value.enumerated.item[0] > e->max - 1)
2415 return -EINVAL;
2416 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2417 mask = e->mask << e->shift_l;
2418 if (e->shift_l != e->shift_r) {
2419 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2420 return -EINVAL;
2421 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2422 mask |= e->mask << e->shift_r;
2423 }
2424
2425 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2426 }
2427 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2428
2429 /**
2430 * snd_soc_info_enum_ext - external enumerated single mixer info callback
2431 * @kcontrol: mixer control
2432 * @uinfo: control element information
2433 *
2434 * Callback to provide information about an external enumerated
2435 * single mixer.
2436 *
2437 * Returns 0 for success.
2438 */
2439 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2440 struct snd_ctl_elem_info *uinfo)
2441 {
2442 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2443
2444 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2445 uinfo->count = 1;
2446 uinfo->value.enumerated.items = e->max;
2447
2448 if (uinfo->value.enumerated.item > e->max - 1)
2449 uinfo->value.enumerated.item = e->max - 1;
2450 strcpy(uinfo->value.enumerated.name,
2451 e->texts[uinfo->value.enumerated.item]);
2452 return 0;
2453 }
2454 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2455
2456 /**
2457 * snd_soc_info_volsw_ext - external single mixer info callback
2458 * @kcontrol: mixer control
2459 * @uinfo: control element information
2460 *
2461 * Callback to provide information about a single external mixer control.
2462 *
2463 * Returns 0 for success.
2464 */
2465 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2466 struct snd_ctl_elem_info *uinfo)
2467 {
2468 int max = kcontrol->private_value;
2469
2470 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2471 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2472 else
2473 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2474
2475 uinfo->count = 1;
2476 uinfo->value.integer.min = 0;
2477 uinfo->value.integer.max = max;
2478 return 0;
2479 }
2480 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2481
2482 /**
2483 * snd_soc_info_volsw - single mixer info callback
2484 * @kcontrol: mixer control
2485 * @uinfo: control element information
2486 *
2487 * Callback to provide information about a single mixer control.
2488 *
2489 * Returns 0 for success.
2490 */
2491 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2492 struct snd_ctl_elem_info *uinfo)
2493 {
2494 struct soc_mixer_control *mc =
2495 (struct soc_mixer_control *)kcontrol->private_value;
2496 int platform_max;
2497 unsigned int shift = mc->shift;
2498 unsigned int rshift = mc->rshift;
2499
2500 if (!mc->platform_max)
2501 mc->platform_max = mc->max;
2502 platform_max = mc->platform_max;
2503
2504 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2505 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2506 else
2507 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2508
2509 uinfo->count = shift == rshift ? 1 : 2;
2510 uinfo->value.integer.min = 0;
2511 uinfo->value.integer.max = platform_max;
2512 return 0;
2513 }
2514 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2515
2516 /**
2517 * snd_soc_get_volsw - single mixer get callback
2518 * @kcontrol: mixer control
2519 * @ucontrol: control element information
2520 *
2521 * Callback to get the value of a single mixer control.
2522 *
2523 * Returns 0 for success.
2524 */
2525 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2526 struct snd_ctl_elem_value *ucontrol)
2527 {
2528 struct soc_mixer_control *mc =
2529 (struct soc_mixer_control *)kcontrol->private_value;
2530 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2531 unsigned int reg = mc->reg;
2532 unsigned int shift = mc->shift;
2533 unsigned int rshift = mc->rshift;
2534 int max = mc->max;
2535 unsigned int mask = (1 << fls(max)) - 1;
2536 unsigned int invert = mc->invert;
2537
2538 ucontrol->value.integer.value[0] =
2539 (snd_soc_read(codec, reg) >> shift) & mask;
2540 if (shift != rshift)
2541 ucontrol->value.integer.value[1] =
2542 (snd_soc_read(codec, reg) >> rshift) & mask;
2543 if (invert) {
2544 ucontrol->value.integer.value[0] =
2545 max - ucontrol->value.integer.value[0];
2546 if (shift != rshift)
2547 ucontrol->value.integer.value[1] =
2548 max - ucontrol->value.integer.value[1];
2549 }
2550
2551 return 0;
2552 }
2553 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2554
2555 /**
2556 * snd_soc_put_volsw - single mixer put callback
2557 * @kcontrol: mixer control
2558 * @ucontrol: control element information
2559 *
2560 * Callback to set the value of a single mixer control.
2561 *
2562 * Returns 0 for success.
2563 */
2564 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2565 struct snd_ctl_elem_value *ucontrol)
2566 {
2567 struct soc_mixer_control *mc =
2568 (struct soc_mixer_control *)kcontrol->private_value;
2569 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2570 unsigned int reg = mc->reg;
2571 unsigned int shift = mc->shift;
2572 unsigned int rshift = mc->rshift;
2573 int max = mc->max;
2574 unsigned int mask = (1 << fls(max)) - 1;
2575 unsigned int invert = mc->invert;
2576 unsigned int val, val2, val_mask;
2577
2578 val = (ucontrol->value.integer.value[0] & mask);
2579 if (invert)
2580 val = max - val;
2581 val_mask = mask << shift;
2582 val = val << shift;
2583 if (shift != rshift) {
2584 val2 = (ucontrol->value.integer.value[1] & mask);
2585 if (invert)
2586 val2 = max - val2;
2587 val_mask |= mask << rshift;
2588 val |= val2 << rshift;
2589 }
2590 return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2591 }
2592 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2593
2594 /**
2595 * snd_soc_info_volsw_2r - double mixer info callback
2596 * @kcontrol: mixer control
2597 * @uinfo: control element information
2598 *
2599 * Callback to provide information about a double mixer control that
2600 * spans 2 codec registers.
2601 *
2602 * Returns 0 for success.
2603 */
2604 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2605 struct snd_ctl_elem_info *uinfo)
2606 {
2607 struct soc_mixer_control *mc =
2608 (struct soc_mixer_control *)kcontrol->private_value;
2609 int platform_max;
2610
2611 if (!mc->platform_max)
2612 mc->platform_max = mc->max;
2613 platform_max = mc->platform_max;
2614
2615 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2616 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2617 else
2618 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2619
2620 uinfo->count = 2;
2621 uinfo->value.integer.min = 0;
2622 uinfo->value.integer.max = platform_max;
2623 return 0;
2624 }
2625 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2626
2627 /**
2628 * snd_soc_get_volsw_2r - double mixer get callback
2629 * @kcontrol: mixer control
2630 * @ucontrol: control element information
2631 *
2632 * Callback to get the value of a double mixer control that spans 2 registers.
2633 *
2634 * Returns 0 for success.
2635 */
2636 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2637 struct snd_ctl_elem_value *ucontrol)
2638 {
2639 struct soc_mixer_control *mc =
2640 (struct soc_mixer_control *)kcontrol->private_value;
2641 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2642 unsigned int reg = mc->reg;
2643 unsigned int reg2 = mc->rreg;
2644 unsigned int shift = mc->shift;
2645 int max = mc->max;
2646 unsigned int mask = (1 << fls(max)) - 1;
2647 unsigned int invert = mc->invert;
2648
2649 ucontrol->value.integer.value[0] =
2650 (snd_soc_read(codec, reg) >> shift) & mask;
2651 ucontrol->value.integer.value[1] =
2652 (snd_soc_read(codec, reg2) >> shift) & mask;
2653 if (invert) {
2654 ucontrol->value.integer.value[0] =
2655 max - ucontrol->value.integer.value[0];
2656 ucontrol->value.integer.value[1] =
2657 max - ucontrol->value.integer.value[1];
2658 }
2659
2660 return 0;
2661 }
2662 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2663
2664 /**
2665 * snd_soc_put_volsw_2r - double mixer set callback
2666 * @kcontrol: mixer control
2667 * @ucontrol: control element information
2668 *
2669 * Callback to set the value of a double mixer control that spans 2 registers.
2670 *
2671 * Returns 0 for success.
2672 */
2673 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2674 struct snd_ctl_elem_value *ucontrol)
2675 {
2676 struct soc_mixer_control *mc =
2677 (struct soc_mixer_control *)kcontrol->private_value;
2678 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2679 unsigned int reg = mc->reg;
2680 unsigned int reg2 = mc->rreg;
2681 unsigned int shift = mc->shift;
2682 int max = mc->max;
2683 unsigned int mask = (1 << fls(max)) - 1;
2684 unsigned int invert = mc->invert;
2685 int err;
2686 unsigned int val, val2, val_mask;
2687
2688 val_mask = mask << shift;
2689 val = (ucontrol->value.integer.value[0] & mask);
2690 val2 = (ucontrol->value.integer.value[1] & mask);
2691
2692 if (invert) {
2693 val = max - val;
2694 val2 = max - val2;
2695 }
2696
2697 val = val << shift;
2698 val2 = val2 << shift;
2699
2700 err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2701 if (err < 0)
2702 return err;
2703
2704 err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2705 return err;
2706 }
2707 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2708
2709 /**
2710 * snd_soc_info_volsw_s8 - signed mixer info callback
2711 * @kcontrol: mixer control
2712 * @uinfo: control element information
2713 *
2714 * Callback to provide information about a signed mixer control.
2715 *
2716 * Returns 0 for success.
2717 */
2718 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2719 struct snd_ctl_elem_info *uinfo)
2720 {
2721 struct soc_mixer_control *mc =
2722 (struct soc_mixer_control *)kcontrol->private_value;
2723 int platform_max;
2724 int min = mc->min;
2725
2726 if (!mc->platform_max)
2727 mc->platform_max = mc->max;
2728 platform_max = mc->platform_max;
2729
2730 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2731 uinfo->count = 2;
2732 uinfo->value.integer.min = 0;
2733 uinfo->value.integer.max = platform_max - min;
2734 return 0;
2735 }
2736 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2737
2738 /**
2739 * snd_soc_get_volsw_s8 - signed mixer get callback
2740 * @kcontrol: mixer control
2741 * @ucontrol: control element information
2742 *
2743 * Callback to get the value of a signed mixer control.
2744 *
2745 * Returns 0 for success.
2746 */
2747 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2748 struct snd_ctl_elem_value *ucontrol)
2749 {
2750 struct soc_mixer_control *mc =
2751 (struct soc_mixer_control *)kcontrol->private_value;
2752 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2753 unsigned int reg = mc->reg;
2754 int min = mc->min;
2755 int val = snd_soc_read(codec, reg);
2756
2757 ucontrol->value.integer.value[0] =
2758 ((signed char)(val & 0xff))-min;
2759 ucontrol->value.integer.value[1] =
2760 ((signed char)((val >> 8) & 0xff))-min;
2761 return 0;
2762 }
2763 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2764
2765 /**
2766 * snd_soc_put_volsw_sgn - signed mixer put callback
2767 * @kcontrol: mixer control
2768 * @ucontrol: control element information
2769 *
2770 * Callback to set the value of a signed mixer control.
2771 *
2772 * Returns 0 for success.
2773 */
2774 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2775 struct snd_ctl_elem_value *ucontrol)
2776 {
2777 struct soc_mixer_control *mc =
2778 (struct soc_mixer_control *)kcontrol->private_value;
2779 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2780 unsigned int reg = mc->reg;
2781 int min = mc->min;
2782 unsigned int val;
2783
2784 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2785 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2786
2787 return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2788 }
2789 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2790
2791 /**
2792 * snd_soc_limit_volume - Set new limit to an existing volume control.
2793 *
2794 * @codec: where to look for the control
2795 * @name: Name of the control
2796 * @max: new maximum limit
2797 *
2798 * Return 0 for success, else error.
2799 */
2800 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2801 const char *name, int max)
2802 {
2803 struct snd_card *card = codec->card->snd_card;
2804 struct snd_kcontrol *kctl;
2805 struct soc_mixer_control *mc;
2806 int found = 0;
2807 int ret = -EINVAL;
2808
2809 /* Sanity check for name and max */
2810 if (unlikely(!name || max <= 0))
2811 return -EINVAL;
2812
2813 list_for_each_entry(kctl, &card->controls, list) {
2814 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2815 found = 1;
2816 break;
2817 }
2818 }
2819 if (found) {
2820 mc = (struct soc_mixer_control *)kctl->private_value;
2821 if (max <= mc->max) {
2822 mc->platform_max = max;
2823 ret = 0;
2824 }
2825 }
2826 return ret;
2827 }
2828 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2829
2830 /**
2831 * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
2832 * mixer info callback
2833 * @kcontrol: mixer control
2834 * @uinfo: control element information
2835 *
2836 * Returns 0 for success.
2837 */
2838 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2839 struct snd_ctl_elem_info *uinfo)
2840 {
2841 struct soc_mixer_control *mc =
2842 (struct soc_mixer_control *)kcontrol->private_value;
2843 int max = mc->max;
2844 int min = mc->min;
2845
2846 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2847 uinfo->count = 2;
2848 uinfo->value.integer.min = 0;
2849 uinfo->value.integer.max = max-min;
2850
2851 return 0;
2852 }
2853 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
2854
2855 /**
2856 * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
2857 * mixer get callback
2858 * @kcontrol: mixer control
2859 * @uinfo: control element information
2860 *
2861 * Returns 0 for success.
2862 */
2863 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2864 struct snd_ctl_elem_value *ucontrol)
2865 {
2866 struct soc_mixer_control *mc =
2867 (struct soc_mixer_control *)kcontrol->private_value;
2868 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2869 unsigned int mask = (1<<mc->shift)-1;
2870 int min = mc->min;
2871 int val = snd_soc_read(codec, mc->reg) & mask;
2872 int valr = snd_soc_read(codec, mc->rreg) & mask;
2873
2874 ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
2875 ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
2876 return 0;
2877 }
2878 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
2879
2880 /**
2881 * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
2882 * mixer put callback
2883 * @kcontrol: mixer control
2884 * @uinfo: control element information
2885 *
2886 * Returns 0 for success.
2887 */
2888 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2889 struct snd_ctl_elem_value *ucontrol)
2890 {
2891 struct soc_mixer_control *mc =
2892 (struct soc_mixer_control *)kcontrol->private_value;
2893 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2894 unsigned int mask = (1<<mc->shift)-1;
2895 int min = mc->min;
2896 int ret;
2897 unsigned int val, valr, oval, ovalr;
2898
2899 val = ((ucontrol->value.integer.value[0]+min) & 0xff);
2900 val &= mask;
2901 valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
2902 valr &= mask;
2903
2904 oval = snd_soc_read(codec, mc->reg) & mask;
2905 ovalr = snd_soc_read(codec, mc->rreg) & mask;
2906
2907 ret = 0;
2908 if (oval != val) {
2909 ret = snd_soc_write(codec, mc->reg, val);
2910 if (ret < 0)
2911 return ret;
2912 }
2913 if (ovalr != valr) {
2914 ret = snd_soc_write(codec, mc->rreg, valr);
2915 if (ret < 0)
2916 return ret;
2917 }
2918
2919 return 0;
2920 }
2921 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
2922
2923 /**
2924 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2925 * @dai: DAI
2926 * @clk_id: DAI specific clock ID
2927 * @freq: new clock frequency in Hz
2928 * @dir: new clock direction - input/output.
2929 *
2930 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2931 */
2932 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2933 unsigned int freq, int dir)
2934 {
2935 if (dai->driver && dai->driver->ops->set_sysclk)
2936 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
2937 else
2938 return -EINVAL;
2939 }
2940 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2941
2942 /**
2943 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2944 * @dai: DAI
2945 * @div_id: DAI specific clock divider ID
2946 * @div: new clock divisor.
2947 *
2948 * Configures the clock dividers. This is used to derive the best DAI bit and
2949 * frame clocks from the system or master clock. It's best to set the DAI bit
2950 * and frame clocks as low as possible to save system power.
2951 */
2952 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2953 int div_id, int div)
2954 {
2955 if (dai->driver && dai->driver->ops->set_clkdiv)
2956 return dai->driver->ops->set_clkdiv(dai, div_id, div);
2957 else
2958 return -EINVAL;
2959 }
2960 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2961
2962 /**
2963 * snd_soc_dai_set_pll - configure DAI PLL.
2964 * @dai: DAI
2965 * @pll_id: DAI specific PLL ID
2966 * @source: DAI specific source for the PLL
2967 * @freq_in: PLL input clock frequency in Hz
2968 * @freq_out: requested PLL output clock frequency in Hz
2969 *
2970 * Configures and enables PLL to generate output clock based on input clock.
2971 */
2972 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
2973 unsigned int freq_in, unsigned int freq_out)
2974 {
2975 if (dai->driver && dai->driver->ops->set_pll)
2976 return dai->driver->ops->set_pll(dai, pll_id, source,
2977 freq_in, freq_out);
2978 else
2979 return -EINVAL;
2980 }
2981 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2982
2983 /**
2984 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2985 * @dai: DAI
2986 * @fmt: SND_SOC_DAIFMT_ format value.
2987 *
2988 * Configures the DAI hardware format and clocking.
2989 */
2990 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2991 {
2992 if (dai->driver && dai->driver->ops->set_fmt)
2993 return dai->driver->ops->set_fmt(dai, fmt);
2994 else
2995 return -EINVAL;
2996 }
2997 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2998
2999 /**
3000 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
3001 * @dai: DAI
3002 * @tx_mask: bitmask representing active TX slots.
3003 * @rx_mask: bitmask representing active RX slots.
3004 * @slots: Number of slots in use.
3005 * @slot_width: Width in bits for each slot.
3006 *
3007 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
3008 * specific.
3009 */
3010 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
3011 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
3012 {
3013 if (dai->driver && dai->driver->ops->set_tdm_slot)
3014 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
3015 slots, slot_width);
3016 else
3017 return -EINVAL;
3018 }
3019 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
3020
3021 /**
3022 * snd_soc_dai_set_channel_map - configure DAI audio channel map
3023 * @dai: DAI
3024 * @tx_num: how many TX channels
3025 * @tx_slot: pointer to an array which imply the TX slot number channel
3026 * 0~num-1 uses
3027 * @rx_num: how many RX channels
3028 * @rx_slot: pointer to an array which imply the RX slot number channel
3029 * 0~num-1 uses
3030 *
3031 * configure the relationship between channel number and TDM slot number.
3032 */
3033 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
3034 unsigned int tx_num, unsigned int *tx_slot,
3035 unsigned int rx_num, unsigned int *rx_slot)
3036 {
3037 if (dai->driver && dai->driver->ops->set_channel_map)
3038 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
3039 rx_num, rx_slot);
3040 else
3041 return -EINVAL;
3042 }
3043 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
3044
3045 /**
3046 * snd_soc_dai_set_tristate - configure DAI system or master clock.
3047 * @dai: DAI
3048 * @tristate: tristate enable
3049 *
3050 * Tristates the DAI so that others can use it.
3051 */
3052 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
3053 {
3054 if (dai->driver && dai->driver->ops->set_tristate)
3055 return dai->driver->ops->set_tristate(dai, tristate);
3056 else
3057 return -EINVAL;
3058 }
3059 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
3060
3061 /**
3062 * snd_soc_dai_digital_mute - configure DAI system or master clock.
3063 * @dai: DAI
3064 * @mute: mute enable
3065 *
3066 * Mutes the DAI DAC.
3067 */
3068 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
3069 {
3070 if (dai->driver && dai->driver->ops->digital_mute)
3071 return dai->driver->ops->digital_mute(dai, mute);
3072 else
3073 return -EINVAL;
3074 }
3075 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
3076
3077 /**
3078 * snd_soc_register_card - Register a card with the ASoC core
3079 *
3080 * @card: Card to register
3081 *
3082 * Note that currently this is an internal only function: it will be
3083 * exposed to machine drivers after further backporting of ASoC v2
3084 * registration APIs.
3085 */
3086 static int snd_soc_register_card(struct snd_soc_card *card)
3087 {
3088 int i;
3089
3090 if (!card->name || !card->dev)
3091 return -EINVAL;
3092
3093 card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) *
3094 (card->num_links + card->num_aux_devs),
3095 GFP_KERNEL);
3096 if (card->rtd == NULL)
3097 return -ENOMEM;
3098 card->rtd_aux = &card->rtd[card->num_links];
3099
3100 for (i = 0; i < card->num_links; i++)
3101 card->rtd[i].dai_link = &card->dai_link[i];
3102
3103 INIT_LIST_HEAD(&card->list);
3104 card->instantiated = 0;
3105 mutex_init(&card->mutex);
3106
3107 mutex_lock(&client_mutex);
3108 list_add(&card->list, &card_list);
3109 snd_soc_instantiate_cards();
3110 mutex_unlock(&client_mutex);
3111
3112 dev_dbg(card->dev, "Registered card '%s'\n", card->name);
3113
3114 return 0;
3115 }
3116
3117 /**
3118 * snd_soc_unregister_card - Unregister a card with the ASoC core
3119 *
3120 * @card: Card to unregister
3121 *
3122 * Note that currently this is an internal only function: it will be
3123 * exposed to machine drivers after further backporting of ASoC v2
3124 * registration APIs.
3125 */
3126 static int snd_soc_unregister_card(struct snd_soc_card *card)
3127 {
3128 mutex_lock(&client_mutex);
3129 list_del(&card->list);
3130 mutex_unlock(&client_mutex);
3131 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
3132
3133 return 0;
3134 }
3135
3136 /*
3137 * Simplify DAI link configuration by removing ".-1" from device names
3138 * and sanitizing names.
3139 */
3140 static inline char *fmt_single_name(struct device *dev, int *id)
3141 {
3142 char *found, name[NAME_SIZE];
3143 int id1, id2;
3144
3145 if (dev_name(dev) == NULL)
3146 return NULL;
3147
3148 strncpy(name, dev_name(dev), NAME_SIZE);
3149
3150 /* are we a "%s.%d" name (platform and SPI components) */
3151 found = strstr(name, dev->driver->name);
3152 if (found) {
3153 /* get ID */
3154 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
3155
3156 /* discard ID from name if ID == -1 */
3157 if (*id == -1)
3158 found[strlen(dev->driver->name)] = '\0';
3159 }
3160
3161 } else {
3162 /* I2C component devices are named "bus-addr" */
3163 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
3164 char tmp[NAME_SIZE];
3165
3166 /* create unique ID number from I2C addr and bus */
3167 *id = ((id1 & 0xffff) << 16) + id2;
3168
3169 /* sanitize component name for DAI link creation */
3170 snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
3171 strncpy(name, tmp, NAME_SIZE);
3172 } else
3173 *id = 0;
3174 }
3175
3176 return kstrdup(name, GFP_KERNEL);
3177 }
3178
3179 /*
3180 * Simplify DAI link naming for single devices with multiple DAIs by removing
3181 * any ".-1" and using the DAI name (instead of device name).
3182 */
3183 static inline char *fmt_multiple_name(struct device *dev,
3184 struct snd_soc_dai_driver *dai_drv)
3185 {
3186 if (dai_drv->name == NULL) {
3187 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
3188 dev_name(dev));
3189 return NULL;
3190 }
3191
3192 return kstrdup(dai_drv->name, GFP_KERNEL);
3193 }
3194
3195 /**
3196 * snd_soc_register_dai - Register a DAI with the ASoC core
3197 *
3198 * @dai: DAI to register
3199 */
3200 int snd_soc_register_dai(struct device *dev,
3201 struct snd_soc_dai_driver *dai_drv)
3202 {
3203 struct snd_soc_dai *dai;
3204
3205 dev_dbg(dev, "dai register %s\n", dev_name(dev));
3206
3207 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3208 if (dai == NULL)
3209 return -ENOMEM;
3210
3211 /* create DAI component name */
3212 dai->name = fmt_single_name(dev, &dai->id);
3213 if (dai->name == NULL) {
3214 kfree(dai);
3215 return -ENOMEM;
3216 }
3217
3218 dai->dev = dev;
3219 dai->driver = dai_drv;
3220 if (!dai->driver->ops)
3221 dai->driver->ops = &null_dai_ops;
3222
3223 mutex_lock(&client_mutex);
3224 list_add(&dai->list, &dai_list);
3225 snd_soc_instantiate_cards();
3226 mutex_unlock(&client_mutex);
3227
3228 pr_debug("Registered DAI '%s'\n", dai->name);
3229
3230 return 0;
3231 }
3232 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
3233
3234 /**
3235 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
3236 *
3237 * @dai: DAI to unregister
3238 */
3239 void snd_soc_unregister_dai(struct device *dev)
3240 {
3241 struct snd_soc_dai *dai;
3242
3243 list_for_each_entry(dai, &dai_list, list) {
3244 if (dev == dai->dev)
3245 goto found;
3246 }
3247 return;
3248
3249 found:
3250 mutex_lock(&client_mutex);
3251 list_del(&dai->list);
3252 mutex_unlock(&client_mutex);
3253
3254 pr_debug("Unregistered DAI '%s'\n", dai->name);
3255 kfree(dai->name);
3256 kfree(dai);
3257 }
3258 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
3259
3260 /**
3261 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
3262 *
3263 * @dai: Array of DAIs to register
3264 * @count: Number of DAIs
3265 */
3266 int snd_soc_register_dais(struct device *dev,
3267 struct snd_soc_dai_driver *dai_drv, size_t count)
3268 {
3269 struct snd_soc_dai *dai;
3270 int i, ret = 0;
3271
3272 dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count);
3273
3274 for (i = 0; i < count; i++) {
3275
3276 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3277 if (dai == NULL) {
3278 ret = -ENOMEM;
3279 goto err;
3280 }
3281
3282 /* create DAI component name */
3283 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3284 if (dai->name == NULL) {
3285 kfree(dai);
3286 ret = -EINVAL;
3287 goto err;
3288 }
3289
3290 dai->dev = dev;
3291 dai->driver = &dai_drv[i];
3292 if (dai->driver->id)
3293 dai->id = dai->driver->id;
3294 else
3295 dai->id = i;
3296 if (!dai->driver->ops)
3297 dai->driver->ops = &null_dai_ops;
3298
3299 mutex_lock(&client_mutex);
3300 list_add(&dai->list, &dai_list);
3301 mutex_unlock(&client_mutex);
3302
3303 pr_debug("Registered DAI '%s'\n", dai->name);
3304 }
3305
3306 snd_soc_instantiate_cards();
3307 return 0;
3308
3309 err:
3310 for (i--; i >= 0; i--)
3311 snd_soc_unregister_dai(dev);
3312
3313 return ret;
3314 }
3315 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
3316
3317 /**
3318 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
3319 *
3320 * @dai: Array of DAIs to unregister
3321 * @count: Number of DAIs
3322 */
3323 void snd_soc_unregister_dais(struct device *dev, size_t count)
3324 {
3325 int i;
3326
3327 for (i = 0; i < count; i++)
3328 snd_soc_unregister_dai(dev);
3329 }
3330 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
3331
3332 /**
3333 * snd_soc_register_platform - Register a platform with the ASoC core
3334 *
3335 * @platform: platform to register
3336 */
3337 int snd_soc_register_platform(struct device *dev,
3338 struct snd_soc_platform_driver *platform_drv)
3339 {
3340 struct snd_soc_platform *platform;
3341
3342 dev_dbg(dev, "platform register %s\n", dev_name(dev));
3343
3344 platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
3345 if (platform == NULL)
3346 return -ENOMEM;
3347
3348 /* create platform component name */
3349 platform->name = fmt_single_name(dev, &platform->id);
3350 if (platform->name == NULL) {
3351 kfree(platform);
3352 return -ENOMEM;
3353 }
3354
3355 platform->dev = dev;
3356 platform->driver = platform_drv;
3357
3358 mutex_lock(&client_mutex);
3359 list_add(&platform->list, &platform_list);
3360 snd_soc_instantiate_cards();
3361 mutex_unlock(&client_mutex);
3362
3363 pr_debug("Registered platform '%s'\n", platform->name);
3364
3365 return 0;
3366 }
3367 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
3368
3369 /**
3370 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
3371 *
3372 * @platform: platform to unregister
3373 */
3374 void snd_soc_unregister_platform(struct device *dev)
3375 {
3376 struct snd_soc_platform *platform;
3377
3378 list_for_each_entry(platform, &platform_list, list) {
3379 if (dev == platform->dev)
3380 goto found;
3381 }
3382 return;
3383
3384 found:
3385 mutex_lock(&client_mutex);
3386 list_del(&platform->list);
3387 mutex_unlock(&client_mutex);
3388
3389 pr_debug("Unregistered platform '%s'\n", platform->name);
3390 kfree(platform->name);
3391 kfree(platform);
3392 }
3393 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
3394
3395 static u64 codec_format_map[] = {
3396 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
3397 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
3398 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
3399 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
3400 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
3401 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
3402 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3403 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3404 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
3405 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
3406 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
3407 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
3408 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
3409 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
3410 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
3411 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
3412 };
3413
3414 /* Fix up the DAI formats for endianness: codecs don't actually see
3415 * the endianness of the data but we're using the CPU format
3416 * definitions which do need to include endianness so we ensure that
3417 * codec DAIs always have both big and little endian variants set.
3418 */
3419 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
3420 {
3421 int i;
3422
3423 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
3424 if (stream->formats & codec_format_map[i])
3425 stream->formats |= codec_format_map[i];
3426 }
3427
3428 /**
3429 * snd_soc_register_codec - Register a codec with the ASoC core
3430 *
3431 * @codec: codec to register
3432 */
3433 int snd_soc_register_codec(struct device *dev,
3434 struct snd_soc_codec_driver *codec_drv,
3435 struct snd_soc_dai_driver *dai_drv, int num_dai)
3436 {
3437 struct snd_soc_codec *codec;
3438 int ret, i;
3439
3440 dev_dbg(dev, "codec register %s\n", dev_name(dev));
3441
3442 codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
3443 if (codec == NULL)
3444 return -ENOMEM;
3445
3446 /* create CODEC component name */
3447 codec->name = fmt_single_name(dev, &codec->id);
3448 if (codec->name == NULL) {
3449 kfree(codec);
3450 return -ENOMEM;
3451 }
3452
3453 if (codec_drv->compress_type)
3454 codec->compress_type = codec_drv->compress_type;
3455 else
3456 codec->compress_type = SND_SOC_FLAT_COMPRESSION;
3457
3458 INIT_LIST_HEAD(&codec->dapm.widgets);
3459 INIT_LIST_HEAD(&codec->dapm.paths);
3460 codec->write = codec_drv->write;
3461 codec->read = codec_drv->read;
3462 codec->dapm.bias_level = SND_SOC_BIAS_OFF;
3463 codec->dapm.dev = dev;
3464 codec->dapm.codec = codec;
3465 codec->dev = dev;
3466 codec->driver = codec_drv;
3467 codec->num_dai = num_dai;
3468 mutex_init(&codec->mutex);
3469
3470 /* allocate CODEC register cache */
3471 if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
3472 ret = snd_soc_cache_init(codec);
3473 if (ret < 0) {
3474 dev_err(codec->dev, "Failed to set cache compression type: %d\n",
3475 ret);
3476 goto error_cache;
3477 }
3478 }
3479
3480 for (i = 0; i < num_dai; i++) {
3481 fixup_codec_formats(&dai_drv[i].playback);
3482 fixup_codec_formats(&dai_drv[i].capture);
3483 }
3484
3485 /* register any DAIs */
3486 if (num_dai) {
3487 ret = snd_soc_register_dais(dev, dai_drv, num_dai);
3488 if (ret < 0)
3489 goto error_dais;
3490 }
3491
3492 mutex_lock(&client_mutex);
3493 list_add(&codec->list, &codec_list);
3494 snd_soc_instantiate_cards();
3495 mutex_unlock(&client_mutex);
3496
3497 pr_debug("Registered codec '%s'\n", codec->name);
3498 return 0;
3499
3500 error_dais:
3501 snd_soc_cache_exit(codec);
3502 error_cache:
3503 kfree(codec->name);
3504 kfree(codec);
3505 return ret;
3506 }
3507 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
3508
3509 /**
3510 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
3511 *
3512 * @codec: codec to unregister
3513 */
3514 void snd_soc_unregister_codec(struct device *dev)
3515 {
3516 struct snd_soc_codec *codec;
3517 int i;
3518
3519 list_for_each_entry(codec, &codec_list, list) {
3520 if (dev == codec->dev)
3521 goto found;
3522 }
3523 return;
3524
3525 found:
3526 if (codec->num_dai)
3527 for (i = 0; i < codec->num_dai; i++)
3528 snd_soc_unregister_dai(dev);
3529
3530 mutex_lock(&client_mutex);
3531 list_del(&codec->list);
3532 mutex_unlock(&client_mutex);
3533
3534 pr_debug("Unregistered codec '%s'\n", codec->name);
3535
3536 snd_soc_cache_exit(codec);
3537 kfree(codec->name);
3538 kfree(codec);
3539 }
3540 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
3541
3542 static int __init snd_soc_init(void)
3543 {
3544 #ifdef CONFIG_DEBUG_FS
3545 debugfs_root = debugfs_create_dir("asoc", NULL);
3546 if (IS_ERR(debugfs_root) || !debugfs_root) {
3547 printk(KERN_WARNING
3548 "ASoC: Failed to create debugfs directory\n");
3549 debugfs_root = NULL;
3550 }
3551
3552 if (!debugfs_create_file("codecs", 0444, debugfs_root, NULL,
3553 &codec_list_fops))
3554 pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
3555
3556 if (!debugfs_create_file("dais", 0444, debugfs_root, NULL,
3557 &dai_list_fops))
3558 pr_warn("ASoC: Failed to create DAI list debugfs file\n");
3559
3560 if (!debugfs_create_file("platforms", 0444, debugfs_root, NULL,
3561 &platform_list_fops))
3562 pr_warn("ASoC: Failed to create platform list debugfs file\n");
3563 #endif
3564
3565 return platform_driver_register(&soc_driver);
3566 }
3567 module_init(snd_soc_init);
3568
3569 static void __exit snd_soc_exit(void)
3570 {
3571 #ifdef CONFIG_DEBUG_FS
3572 debugfs_remove_recursive(debugfs_root);
3573 #endif
3574 platform_driver_unregister(&soc_driver);
3575 }
3576 module_exit(snd_soc_exit);
3577
3578 /* Module information */
3579 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
3580 MODULE_DESCRIPTION("ALSA SoC Core");
3581 MODULE_LICENSE("GPL");
3582 MODULE_ALIAS("platform:soc-audio");
This page took 0.110191 seconds and 5 git commands to generate.