USB: xhci: don't start a halted endpoint before its new dequeue is set
[deliverable/linux.git] / sound / soc / soc-core.c
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
6 * Copyright (C) 2010 Slimlogic Ltd.
7 * Copyright (C) 2010 Texas Instruments Inc.
8 *
9 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10 * with code, comments and ideas from :-
11 * Richard Purdie <richard@openedhand.com>
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 *
18 * TODO:
19 * o Add hw rules to enforce rates, etc.
20 * o More testing with other codecs/machines.
21 * o Add more codecs and platforms to ensure good API coverage.
22 * o Support TDM on PCM and I2S
23 */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/pinctrl/consumer.h>
34 #include <linux/ctype.h>
35 #include <linux/slab.h>
36 #include <linux/of.h>
37 #include <linux/gpio.h>
38 #include <linux/of_gpio.h>
39 #include <sound/ac97_codec.h>
40 #include <sound/core.h>
41 #include <sound/jack.h>
42 #include <sound/pcm.h>
43 #include <sound/pcm_params.h>
44 #include <sound/soc.h>
45 #include <sound/soc-dpcm.h>
46 #include <sound/initval.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/asoc.h>
50
51 #define NAME_SIZE 32
52
53 #ifdef CONFIG_DEBUG_FS
54 struct dentry *snd_soc_debugfs_root;
55 EXPORT_SYMBOL_GPL(snd_soc_debugfs_root);
56 #endif
57
58 static DEFINE_MUTEX(client_mutex);
59 static LIST_HEAD(platform_list);
60 static LIST_HEAD(codec_list);
61 static LIST_HEAD(component_list);
62
63 /*
64 * This is a timeout to do a DAPM powerdown after a stream is closed().
65 * It can be used to eliminate pops between different playback streams, e.g.
66 * between two audio tracks.
67 */
68 static int pmdown_time = 5000;
69 module_param(pmdown_time, int, 0);
70 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
71
72 struct snd_ac97_reset_cfg {
73 struct pinctrl *pctl;
74 struct pinctrl_state *pstate_reset;
75 struct pinctrl_state *pstate_warm_reset;
76 struct pinctrl_state *pstate_run;
77 int gpio_sdata;
78 int gpio_sync;
79 int gpio_reset;
80 };
81
82 /* returns the minimum number of bytes needed to represent
83 * a particular given value */
84 static int min_bytes_needed(unsigned long val)
85 {
86 int c = 0;
87 int i;
88
89 for (i = (sizeof val * 8) - 1; i >= 0; --i, ++c)
90 if (val & (1UL << i))
91 break;
92 c = (sizeof val * 8) - c;
93 if (!c || (c % 8))
94 c = (c + 8) / 8;
95 else
96 c /= 8;
97 return c;
98 }
99
100 /* fill buf which is 'len' bytes with a formatted
101 * string of the form 'reg: value\n' */
102 static int format_register_str(struct snd_soc_codec *codec,
103 unsigned int reg, char *buf, size_t len)
104 {
105 int wordsize = min_bytes_needed(codec->driver->reg_cache_size) * 2;
106 int regsize = codec->driver->reg_word_size * 2;
107 int ret;
108 char tmpbuf[len + 1];
109 char regbuf[regsize + 1];
110
111 /* since tmpbuf is allocated on the stack, warn the callers if they
112 * try to abuse this function */
113 WARN_ON(len > 63);
114
115 /* +2 for ': ' and + 1 for '\n' */
116 if (wordsize + regsize + 2 + 1 != len)
117 return -EINVAL;
118
119 ret = snd_soc_read(codec, reg);
120 if (ret < 0) {
121 memset(regbuf, 'X', regsize);
122 regbuf[regsize] = '\0';
123 } else {
124 snprintf(regbuf, regsize + 1, "%.*x", regsize, ret);
125 }
126
127 /* prepare the buffer */
128 snprintf(tmpbuf, len + 1, "%.*x: %s\n", wordsize, reg, regbuf);
129 /* copy it back to the caller without the '\0' */
130 memcpy(buf, tmpbuf, len);
131
132 return 0;
133 }
134
135 /* codec register dump */
136 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf,
137 size_t count, loff_t pos)
138 {
139 int i, step = 1;
140 int wordsize, regsize;
141 int len;
142 size_t total = 0;
143 loff_t p = 0;
144
145 wordsize = min_bytes_needed(codec->driver->reg_cache_size) * 2;
146 regsize = codec->driver->reg_word_size * 2;
147
148 len = wordsize + regsize + 2 + 1;
149
150 if (!codec->driver->reg_cache_size)
151 return 0;
152
153 if (codec->driver->reg_cache_step)
154 step = codec->driver->reg_cache_step;
155
156 for (i = 0; i < codec->driver->reg_cache_size; i += step) {
157 /* only support larger than PAGE_SIZE bytes debugfs
158 * entries for the default case */
159 if (p >= pos) {
160 if (total + len >= count - 1)
161 break;
162 format_register_str(codec, i, buf + total, len);
163 total += len;
164 }
165 p += len;
166 }
167
168 total = min(total, count - 1);
169
170 return total;
171 }
172
173 static ssize_t codec_reg_show(struct device *dev,
174 struct device_attribute *attr, char *buf)
175 {
176 struct snd_soc_pcm_runtime *rtd = dev_get_drvdata(dev);
177
178 return soc_codec_reg_show(rtd->codec, buf, PAGE_SIZE, 0);
179 }
180
181 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
182
183 static ssize_t pmdown_time_show(struct device *dev,
184 struct device_attribute *attr, char *buf)
185 {
186 struct snd_soc_pcm_runtime *rtd = dev_get_drvdata(dev);
187
188 return sprintf(buf, "%ld\n", rtd->pmdown_time);
189 }
190
191 static ssize_t pmdown_time_set(struct device *dev,
192 struct device_attribute *attr,
193 const char *buf, size_t count)
194 {
195 struct snd_soc_pcm_runtime *rtd = dev_get_drvdata(dev);
196 int ret;
197
198 ret = kstrtol(buf, 10, &rtd->pmdown_time);
199 if (ret)
200 return ret;
201
202 return count;
203 }
204
205 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
206
207 #ifdef CONFIG_DEBUG_FS
208 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
209 size_t count, loff_t *ppos)
210 {
211 ssize_t ret;
212 struct snd_soc_codec *codec = file->private_data;
213 char *buf;
214
215 if (*ppos < 0 || !count)
216 return -EINVAL;
217
218 buf = kmalloc(count, GFP_KERNEL);
219 if (!buf)
220 return -ENOMEM;
221
222 ret = soc_codec_reg_show(codec, buf, count, *ppos);
223 if (ret >= 0) {
224 if (copy_to_user(user_buf, buf, ret)) {
225 kfree(buf);
226 return -EFAULT;
227 }
228 *ppos += ret;
229 }
230
231 kfree(buf);
232 return ret;
233 }
234
235 static ssize_t codec_reg_write_file(struct file *file,
236 const char __user *user_buf, size_t count, loff_t *ppos)
237 {
238 char buf[32];
239 size_t buf_size;
240 char *start = buf;
241 unsigned long reg, value;
242 struct snd_soc_codec *codec = file->private_data;
243 int ret;
244
245 buf_size = min(count, (sizeof(buf)-1));
246 if (copy_from_user(buf, user_buf, buf_size))
247 return -EFAULT;
248 buf[buf_size] = 0;
249
250 while (*start == ' ')
251 start++;
252 reg = simple_strtoul(start, &start, 16);
253 while (*start == ' ')
254 start++;
255 ret = kstrtoul(start, 16, &value);
256 if (ret)
257 return ret;
258
259 /* Userspace has been fiddling around behind the kernel's back */
260 add_taint(TAINT_USER, LOCKDEP_NOW_UNRELIABLE);
261
262 snd_soc_write(codec, reg, value);
263 return buf_size;
264 }
265
266 static const struct file_operations codec_reg_fops = {
267 .open = simple_open,
268 .read = codec_reg_read_file,
269 .write = codec_reg_write_file,
270 .llseek = default_llseek,
271 };
272
273 static void soc_init_component_debugfs(struct snd_soc_component *component)
274 {
275 if (component->debugfs_prefix) {
276 char *name;
277
278 name = kasprintf(GFP_KERNEL, "%s:%s",
279 component->debugfs_prefix, component->name);
280 if (name) {
281 component->debugfs_root = debugfs_create_dir(name,
282 component->card->debugfs_card_root);
283 kfree(name);
284 }
285 } else {
286 component->debugfs_root = debugfs_create_dir(component->name,
287 component->card->debugfs_card_root);
288 }
289
290 if (!component->debugfs_root) {
291 dev_warn(component->dev,
292 "ASoC: Failed to create component debugfs directory\n");
293 return;
294 }
295
296 snd_soc_dapm_debugfs_init(snd_soc_component_get_dapm(component),
297 component->debugfs_root);
298
299 if (component->init_debugfs)
300 component->init_debugfs(component);
301 }
302
303 static void soc_cleanup_component_debugfs(struct snd_soc_component *component)
304 {
305 debugfs_remove_recursive(component->debugfs_root);
306 }
307
308 static void soc_init_codec_debugfs(struct snd_soc_component *component)
309 {
310 struct snd_soc_codec *codec = snd_soc_component_to_codec(component);
311
312 debugfs_create_bool("cache_sync", 0444, codec->component.debugfs_root,
313 &codec->cache_sync);
314
315 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
316 codec->component.debugfs_root,
317 codec, &codec_reg_fops);
318 if (!codec->debugfs_reg)
319 dev_warn(codec->dev,
320 "ASoC: Failed to create codec register debugfs file\n");
321 }
322
323 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
324 size_t count, loff_t *ppos)
325 {
326 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
327 ssize_t len, ret = 0;
328 struct snd_soc_codec *codec;
329
330 if (!buf)
331 return -ENOMEM;
332
333 list_for_each_entry(codec, &codec_list, list) {
334 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
335 codec->component.name);
336 if (len >= 0)
337 ret += len;
338 if (ret > PAGE_SIZE) {
339 ret = PAGE_SIZE;
340 break;
341 }
342 }
343
344 if (ret >= 0)
345 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
346
347 kfree(buf);
348
349 return ret;
350 }
351
352 static const struct file_operations codec_list_fops = {
353 .read = codec_list_read_file,
354 .llseek = default_llseek,/* read accesses f_pos */
355 };
356
357 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
358 size_t count, loff_t *ppos)
359 {
360 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
361 ssize_t len, ret = 0;
362 struct snd_soc_component *component;
363 struct snd_soc_dai *dai;
364
365 if (!buf)
366 return -ENOMEM;
367
368 list_for_each_entry(component, &component_list, list) {
369 list_for_each_entry(dai, &component->dai_list, list) {
370 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
371 dai->name);
372 if (len >= 0)
373 ret += len;
374 if (ret > PAGE_SIZE) {
375 ret = PAGE_SIZE;
376 break;
377 }
378 }
379 }
380
381 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
382
383 kfree(buf);
384
385 return ret;
386 }
387
388 static const struct file_operations dai_list_fops = {
389 .read = dai_list_read_file,
390 .llseek = default_llseek,/* read accesses f_pos */
391 };
392
393 static ssize_t platform_list_read_file(struct file *file,
394 char __user *user_buf,
395 size_t count, loff_t *ppos)
396 {
397 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
398 ssize_t len, ret = 0;
399 struct snd_soc_platform *platform;
400
401 if (!buf)
402 return -ENOMEM;
403
404 list_for_each_entry(platform, &platform_list, list) {
405 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
406 platform->component.name);
407 if (len >= 0)
408 ret += len;
409 if (ret > PAGE_SIZE) {
410 ret = PAGE_SIZE;
411 break;
412 }
413 }
414
415 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
416
417 kfree(buf);
418
419 return ret;
420 }
421
422 static const struct file_operations platform_list_fops = {
423 .read = platform_list_read_file,
424 .llseek = default_llseek,/* read accesses f_pos */
425 };
426
427 static void soc_init_card_debugfs(struct snd_soc_card *card)
428 {
429 card->debugfs_card_root = debugfs_create_dir(card->name,
430 snd_soc_debugfs_root);
431 if (!card->debugfs_card_root) {
432 dev_warn(card->dev,
433 "ASoC: Failed to create card debugfs directory\n");
434 return;
435 }
436
437 card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
438 card->debugfs_card_root,
439 &card->pop_time);
440 if (!card->debugfs_pop_time)
441 dev_warn(card->dev,
442 "ASoC: Failed to create pop time debugfs file\n");
443 }
444
445 static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
446 {
447 debugfs_remove_recursive(card->debugfs_card_root);
448 }
449
450 #else
451
452 #define soc_init_codec_debugfs NULL
453
454 static inline void soc_init_component_debugfs(
455 struct snd_soc_component *component)
456 {
457 }
458
459 static inline void soc_cleanup_component_debugfs(
460 struct snd_soc_component *component)
461 {
462 }
463
464 static inline void soc_init_card_debugfs(struct snd_soc_card *card)
465 {
466 }
467
468 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
469 {
470 }
471 #endif
472
473 struct snd_pcm_substream *snd_soc_get_dai_substream(struct snd_soc_card *card,
474 const char *dai_link, int stream)
475 {
476 int i;
477
478 for (i = 0; i < card->num_links; i++) {
479 if (card->rtd[i].dai_link->no_pcm &&
480 !strcmp(card->rtd[i].dai_link->name, dai_link))
481 return card->rtd[i].pcm->streams[stream].substream;
482 }
483 dev_dbg(card->dev, "ASoC: failed to find dai link %s\n", dai_link);
484 return NULL;
485 }
486 EXPORT_SYMBOL_GPL(snd_soc_get_dai_substream);
487
488 struct snd_soc_pcm_runtime *snd_soc_get_pcm_runtime(struct snd_soc_card *card,
489 const char *dai_link)
490 {
491 int i;
492
493 for (i = 0; i < card->num_links; i++) {
494 if (!strcmp(card->rtd[i].dai_link->name, dai_link))
495 return &card->rtd[i];
496 }
497 dev_dbg(card->dev, "ASoC: failed to find rtd %s\n", dai_link);
498 return NULL;
499 }
500 EXPORT_SYMBOL_GPL(snd_soc_get_pcm_runtime);
501
502 #ifdef CONFIG_SND_SOC_AC97_BUS
503 /* unregister ac97 codec */
504 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
505 {
506 if (codec->ac97->dev.bus)
507 device_unregister(&codec->ac97->dev);
508 return 0;
509 }
510
511 /* stop no dev release warning */
512 static void soc_ac97_device_release(struct device *dev){}
513
514 /* register ac97 codec to bus */
515 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
516 {
517 int err;
518
519 codec->ac97->dev.bus = &ac97_bus_type;
520 codec->ac97->dev.parent = codec->component.card->dev;
521 codec->ac97->dev.release = soc_ac97_device_release;
522
523 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
524 codec->component.card->snd_card->number, 0,
525 codec->component.name);
526 err = device_register(&codec->ac97->dev);
527 if (err < 0) {
528 dev_err(codec->dev, "ASoC: Can't register ac97 bus\n");
529 codec->ac97->dev.bus = NULL;
530 return err;
531 }
532 return 0;
533 }
534 #endif
535
536 static void codec2codec_close_delayed_work(struct work_struct *work)
537 {
538 /* Currently nothing to do for c2c links
539 * Since c2c links are internal nodes in the DAPM graph and
540 * don't interface with the outside world or application layer
541 * we don't have to do any special handling on close.
542 */
543 }
544
545 #ifdef CONFIG_PM_SLEEP
546 /* powers down audio subsystem for suspend */
547 int snd_soc_suspend(struct device *dev)
548 {
549 struct snd_soc_card *card = dev_get_drvdata(dev);
550 struct snd_soc_codec *codec;
551 int i, j;
552
553 /* If the card is not initialized yet there is nothing to do */
554 if (!card->instantiated)
555 return 0;
556
557 /* Due to the resume being scheduled into a workqueue we could
558 * suspend before that's finished - wait for it to complete.
559 */
560 snd_power_lock(card->snd_card);
561 snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
562 snd_power_unlock(card->snd_card);
563
564 /* we're going to block userspace touching us until resume completes */
565 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
566
567 /* mute any active DACs */
568 for (i = 0; i < card->num_rtd; i++) {
569
570 if (card->rtd[i].dai_link->ignore_suspend)
571 continue;
572
573 for (j = 0; j < card->rtd[i].num_codecs; j++) {
574 struct snd_soc_dai *dai = card->rtd[i].codec_dais[j];
575 struct snd_soc_dai_driver *drv = dai->driver;
576
577 if (drv->ops->digital_mute && dai->playback_active)
578 drv->ops->digital_mute(dai, 1);
579 }
580 }
581
582 /* suspend all pcms */
583 for (i = 0; i < card->num_rtd; i++) {
584 if (card->rtd[i].dai_link->ignore_suspend)
585 continue;
586
587 snd_pcm_suspend_all(card->rtd[i].pcm);
588 }
589
590 if (card->suspend_pre)
591 card->suspend_pre(card);
592
593 for (i = 0; i < card->num_rtd; i++) {
594 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
595 struct snd_soc_platform *platform = card->rtd[i].platform;
596
597 if (card->rtd[i].dai_link->ignore_suspend)
598 continue;
599
600 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
601 cpu_dai->driver->suspend(cpu_dai);
602 if (platform->driver->suspend && !platform->suspended) {
603 platform->driver->suspend(cpu_dai);
604 platform->suspended = 1;
605 }
606 }
607
608 /* close any waiting streams and save state */
609 for (i = 0; i < card->num_rtd; i++) {
610 struct snd_soc_dai **codec_dais = card->rtd[i].codec_dais;
611 flush_delayed_work(&card->rtd[i].delayed_work);
612 for (j = 0; j < card->rtd[i].num_codecs; j++) {
613 codec_dais[j]->codec->dapm.suspend_bias_level =
614 codec_dais[j]->codec->dapm.bias_level;
615 }
616 }
617
618 for (i = 0; i < card->num_rtd; i++) {
619
620 if (card->rtd[i].dai_link->ignore_suspend)
621 continue;
622
623 snd_soc_dapm_stream_event(&card->rtd[i],
624 SNDRV_PCM_STREAM_PLAYBACK,
625 SND_SOC_DAPM_STREAM_SUSPEND);
626
627 snd_soc_dapm_stream_event(&card->rtd[i],
628 SNDRV_PCM_STREAM_CAPTURE,
629 SND_SOC_DAPM_STREAM_SUSPEND);
630 }
631
632 /* Recheck all analogue paths too */
633 dapm_mark_io_dirty(&card->dapm);
634 snd_soc_dapm_sync(&card->dapm);
635
636 /* suspend all CODECs */
637 list_for_each_entry(codec, &card->codec_dev_list, card_list) {
638 /* If there are paths active then the CODEC will be held with
639 * bias _ON and should not be suspended. */
640 if (!codec->suspended) {
641 switch (codec->dapm.bias_level) {
642 case SND_SOC_BIAS_STANDBY:
643 /*
644 * If the CODEC is capable of idle
645 * bias off then being in STANDBY
646 * means it's doing something,
647 * otherwise fall through.
648 */
649 if (codec->dapm.idle_bias_off) {
650 dev_dbg(codec->dev,
651 "ASoC: idle_bias_off CODEC on over suspend\n");
652 break;
653 }
654
655 case SND_SOC_BIAS_OFF:
656 if (codec->driver->suspend)
657 codec->driver->suspend(codec);
658 codec->suspended = 1;
659 codec->cache_sync = 1;
660 if (codec->component.regmap)
661 regcache_mark_dirty(codec->component.regmap);
662 /* deactivate pins to sleep state */
663 pinctrl_pm_select_sleep_state(codec->dev);
664 break;
665 default:
666 dev_dbg(codec->dev,
667 "ASoC: CODEC is on over suspend\n");
668 break;
669 }
670 }
671 }
672
673 for (i = 0; i < card->num_rtd; i++) {
674 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
675
676 if (card->rtd[i].dai_link->ignore_suspend)
677 continue;
678
679 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
680 cpu_dai->driver->suspend(cpu_dai);
681
682 /* deactivate pins to sleep state */
683 pinctrl_pm_select_sleep_state(cpu_dai->dev);
684 }
685
686 if (card->suspend_post)
687 card->suspend_post(card);
688
689 return 0;
690 }
691 EXPORT_SYMBOL_GPL(snd_soc_suspend);
692
693 /* deferred resume work, so resume can complete before we finished
694 * setting our codec back up, which can be very slow on I2C
695 */
696 static void soc_resume_deferred(struct work_struct *work)
697 {
698 struct snd_soc_card *card =
699 container_of(work, struct snd_soc_card, deferred_resume_work);
700 struct snd_soc_codec *codec;
701 int i, j;
702
703 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
704 * so userspace apps are blocked from touching us
705 */
706
707 dev_dbg(card->dev, "ASoC: starting resume work\n");
708
709 /* Bring us up into D2 so that DAPM starts enabling things */
710 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
711
712 if (card->resume_pre)
713 card->resume_pre(card);
714
715 /* resume AC97 DAIs */
716 for (i = 0; i < card->num_rtd; i++) {
717 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
718
719 if (card->rtd[i].dai_link->ignore_suspend)
720 continue;
721
722 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
723 cpu_dai->driver->resume(cpu_dai);
724 }
725
726 list_for_each_entry(codec, &card->codec_dev_list, card_list) {
727 /* If the CODEC was idle over suspend then it will have been
728 * left with bias OFF or STANDBY and suspended so we must now
729 * resume. Otherwise the suspend was suppressed.
730 */
731 if (codec->suspended) {
732 switch (codec->dapm.bias_level) {
733 case SND_SOC_BIAS_STANDBY:
734 case SND_SOC_BIAS_OFF:
735 if (codec->driver->resume)
736 codec->driver->resume(codec);
737 codec->suspended = 0;
738 break;
739 default:
740 dev_dbg(codec->dev,
741 "ASoC: CODEC was on over suspend\n");
742 break;
743 }
744 }
745 }
746
747 for (i = 0; i < card->num_rtd; i++) {
748
749 if (card->rtd[i].dai_link->ignore_suspend)
750 continue;
751
752 snd_soc_dapm_stream_event(&card->rtd[i],
753 SNDRV_PCM_STREAM_PLAYBACK,
754 SND_SOC_DAPM_STREAM_RESUME);
755
756 snd_soc_dapm_stream_event(&card->rtd[i],
757 SNDRV_PCM_STREAM_CAPTURE,
758 SND_SOC_DAPM_STREAM_RESUME);
759 }
760
761 /* unmute any active DACs */
762 for (i = 0; i < card->num_rtd; i++) {
763
764 if (card->rtd[i].dai_link->ignore_suspend)
765 continue;
766
767 for (j = 0; j < card->rtd[i].num_codecs; j++) {
768 struct snd_soc_dai *dai = card->rtd[i].codec_dais[j];
769 struct snd_soc_dai_driver *drv = dai->driver;
770
771 if (drv->ops->digital_mute && dai->playback_active)
772 drv->ops->digital_mute(dai, 0);
773 }
774 }
775
776 for (i = 0; i < card->num_rtd; i++) {
777 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
778 struct snd_soc_platform *platform = card->rtd[i].platform;
779
780 if (card->rtd[i].dai_link->ignore_suspend)
781 continue;
782
783 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
784 cpu_dai->driver->resume(cpu_dai);
785 if (platform->driver->resume && platform->suspended) {
786 platform->driver->resume(cpu_dai);
787 platform->suspended = 0;
788 }
789 }
790
791 if (card->resume_post)
792 card->resume_post(card);
793
794 dev_dbg(card->dev, "ASoC: resume work completed\n");
795
796 /* userspace can access us now we are back as we were before */
797 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
798
799 /* Recheck all analogue paths too */
800 dapm_mark_io_dirty(&card->dapm);
801 snd_soc_dapm_sync(&card->dapm);
802 }
803
804 /* powers up audio subsystem after a suspend */
805 int snd_soc_resume(struct device *dev)
806 {
807 struct snd_soc_card *card = dev_get_drvdata(dev);
808 int i, ac97_control = 0;
809
810 /* If the card is not initialized yet there is nothing to do */
811 if (!card->instantiated)
812 return 0;
813
814 /* activate pins from sleep state */
815 for (i = 0; i < card->num_rtd; i++) {
816 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
817 struct snd_soc_dai **codec_dais = rtd->codec_dais;
818 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
819 int j;
820
821 if (cpu_dai->active)
822 pinctrl_pm_select_default_state(cpu_dai->dev);
823
824 for (j = 0; j < rtd->num_codecs; j++) {
825 struct snd_soc_dai *codec_dai = codec_dais[j];
826 if (codec_dai->active)
827 pinctrl_pm_select_default_state(codec_dai->dev);
828 }
829 }
830
831 /* AC97 devices might have other drivers hanging off them so
832 * need to resume immediately. Other drivers don't have that
833 * problem and may take a substantial amount of time to resume
834 * due to I/O costs and anti-pop so handle them out of line.
835 */
836 for (i = 0; i < card->num_rtd; i++) {
837 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
838 ac97_control |= cpu_dai->driver->ac97_control;
839 }
840 if (ac97_control) {
841 dev_dbg(dev, "ASoC: Resuming AC97 immediately\n");
842 soc_resume_deferred(&card->deferred_resume_work);
843 } else {
844 dev_dbg(dev, "ASoC: Scheduling resume work\n");
845 if (!schedule_work(&card->deferred_resume_work))
846 dev_err(dev, "ASoC: resume work item may be lost\n");
847 }
848
849 return 0;
850 }
851 EXPORT_SYMBOL_GPL(snd_soc_resume);
852 #else
853 #define snd_soc_suspend NULL
854 #define snd_soc_resume NULL
855 #endif
856
857 static const struct snd_soc_dai_ops null_dai_ops = {
858 };
859
860 static struct snd_soc_component *soc_find_component(
861 const struct device_node *of_node, const char *name)
862 {
863 struct snd_soc_component *component;
864
865 list_for_each_entry(component, &component_list, list) {
866 if (of_node) {
867 if (component->dev->of_node == of_node)
868 return component;
869 } else if (strcmp(component->name, name) == 0) {
870 return component;
871 }
872 }
873
874 return NULL;
875 }
876
877 static struct snd_soc_dai *snd_soc_find_dai(
878 const struct snd_soc_dai_link_component *dlc)
879 {
880 struct snd_soc_component *component;
881 struct snd_soc_dai *dai;
882
883 /* Find CPU DAI from registered DAIs*/
884 list_for_each_entry(component, &component_list, list) {
885 if (dlc->of_node && component->dev->of_node != dlc->of_node)
886 continue;
887 if (dlc->name && strcmp(dev_name(component->dev), dlc->name))
888 continue;
889 list_for_each_entry(dai, &component->dai_list, list) {
890 if (dlc->dai_name && strcmp(dai->name, dlc->dai_name))
891 continue;
892
893 return dai;
894 }
895 }
896
897 return NULL;
898 }
899
900 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
901 {
902 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
903 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
904 struct snd_soc_dai_link_component *codecs = dai_link->codecs;
905 struct snd_soc_dai_link_component cpu_dai_component;
906 struct snd_soc_dai **codec_dais = rtd->codec_dais;
907 struct snd_soc_platform *platform;
908 const char *platform_name;
909 int i;
910
911 dev_dbg(card->dev, "ASoC: binding %s at idx %d\n", dai_link->name, num);
912
913 cpu_dai_component.name = dai_link->cpu_name;
914 cpu_dai_component.of_node = dai_link->cpu_of_node;
915 cpu_dai_component.dai_name = dai_link->cpu_dai_name;
916 rtd->cpu_dai = snd_soc_find_dai(&cpu_dai_component);
917 if (!rtd->cpu_dai) {
918 dev_err(card->dev, "ASoC: CPU DAI %s not registered\n",
919 dai_link->cpu_dai_name);
920 return -EPROBE_DEFER;
921 }
922
923 rtd->num_codecs = dai_link->num_codecs;
924
925 /* Find CODEC from registered CODECs */
926 for (i = 0; i < rtd->num_codecs; i++) {
927 codec_dais[i] = snd_soc_find_dai(&codecs[i]);
928 if (!codec_dais[i]) {
929 dev_err(card->dev, "ASoC: CODEC DAI %s not registered\n",
930 codecs[i].dai_name);
931 return -EPROBE_DEFER;
932 }
933 }
934
935 /* Single codec links expect codec and codec_dai in runtime data */
936 rtd->codec_dai = codec_dais[0];
937 rtd->codec = rtd->codec_dai->codec;
938
939 /* if there's no platform we match on the empty platform */
940 platform_name = dai_link->platform_name;
941 if (!platform_name && !dai_link->platform_of_node)
942 platform_name = "snd-soc-dummy";
943
944 /* find one from the set of registered platforms */
945 list_for_each_entry(platform, &platform_list, list) {
946 if (dai_link->platform_of_node) {
947 if (platform->dev->of_node !=
948 dai_link->platform_of_node)
949 continue;
950 } else {
951 if (strcmp(platform->component.name, platform_name))
952 continue;
953 }
954
955 rtd->platform = platform;
956 }
957 if (!rtd->platform) {
958 dev_err(card->dev, "ASoC: platform %s not registered\n",
959 dai_link->platform_name);
960 return -EPROBE_DEFER;
961 }
962
963 card->num_rtd++;
964
965 return 0;
966 }
967
968 static void soc_remove_component(struct snd_soc_component *component)
969 {
970 if (!component->probed)
971 return;
972
973 /* This is a HACK and will be removed soon */
974 if (component->codec)
975 list_del(&component->codec->card_list);
976
977 if (component->remove)
978 component->remove(component);
979
980 snd_soc_dapm_free(snd_soc_component_get_dapm(component));
981
982 soc_cleanup_component_debugfs(component);
983 component->probed = 0;
984 module_put(component->dev->driver->owner);
985 }
986
987 static void soc_remove_dai(struct snd_soc_dai *dai, int order)
988 {
989 int err;
990
991 if (dai && dai->probed &&
992 dai->driver->remove_order == order) {
993 if (dai->driver->remove) {
994 err = dai->driver->remove(dai);
995 if (err < 0)
996 dev_err(dai->dev,
997 "ASoC: failed to remove %s: %d\n",
998 dai->name, err);
999 }
1000 dai->probed = 0;
1001 }
1002 }
1003
1004 static void soc_remove_link_dais(struct snd_soc_card *card, int num, int order)
1005 {
1006 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1007 int i;
1008
1009 /* unregister the rtd device */
1010 if (rtd->dev_registered) {
1011 device_remove_file(rtd->dev, &dev_attr_pmdown_time);
1012 device_remove_file(rtd->dev, &dev_attr_codec_reg);
1013 device_unregister(rtd->dev);
1014 rtd->dev_registered = 0;
1015 }
1016
1017 /* remove the CODEC DAI */
1018 for (i = 0; i < rtd->num_codecs; i++)
1019 soc_remove_dai(rtd->codec_dais[i], order);
1020
1021 soc_remove_dai(rtd->cpu_dai, order);
1022 }
1023
1024 static void soc_remove_link_components(struct snd_soc_card *card, int num,
1025 int order)
1026 {
1027 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1028 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1029 struct snd_soc_platform *platform = rtd->platform;
1030 struct snd_soc_component *component;
1031 int i;
1032
1033 /* remove the platform */
1034 if (platform && platform->component.driver->remove_order == order)
1035 soc_remove_component(&platform->component);
1036
1037 /* remove the CODEC-side CODEC */
1038 for (i = 0; i < rtd->num_codecs; i++) {
1039 component = rtd->codec_dais[i]->component;
1040 if (component->driver->remove_order == order)
1041 soc_remove_component(component);
1042 }
1043
1044 /* remove any CPU-side CODEC */
1045 if (cpu_dai) {
1046 if (cpu_dai->component->driver->remove_order == order)
1047 soc_remove_component(cpu_dai->component);
1048 }
1049 }
1050
1051 static void soc_remove_dai_links(struct snd_soc_card *card)
1052 {
1053 int dai, order;
1054
1055 for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
1056 order++) {
1057 for (dai = 0; dai < card->num_rtd; dai++)
1058 soc_remove_link_dais(card, dai, order);
1059 }
1060
1061 for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
1062 order++) {
1063 for (dai = 0; dai < card->num_rtd; dai++)
1064 soc_remove_link_components(card, dai, order);
1065 }
1066
1067 card->num_rtd = 0;
1068 }
1069
1070 static void soc_set_name_prefix(struct snd_soc_card *card,
1071 struct snd_soc_component *component)
1072 {
1073 int i;
1074
1075 if (card->codec_conf == NULL)
1076 return;
1077
1078 for (i = 0; i < card->num_configs; i++) {
1079 struct snd_soc_codec_conf *map = &card->codec_conf[i];
1080 if (map->of_node && component->dev->of_node != map->of_node)
1081 continue;
1082 if (map->dev_name && strcmp(component->name, map->dev_name))
1083 continue;
1084 component->name_prefix = map->name_prefix;
1085 break;
1086 }
1087 }
1088
1089 static int soc_probe_component(struct snd_soc_card *card,
1090 struct snd_soc_component *component)
1091 {
1092 struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component);
1093 struct snd_soc_dai *dai;
1094 int ret;
1095
1096 if (component->probed)
1097 return 0;
1098
1099 component->card = card;
1100 dapm->card = card;
1101 soc_set_name_prefix(card, component);
1102
1103 if (!try_module_get(component->dev->driver->owner))
1104 return -ENODEV;
1105
1106 soc_init_component_debugfs(component);
1107
1108 if (component->dapm_widgets) {
1109 ret = snd_soc_dapm_new_controls(dapm, component->dapm_widgets,
1110 component->num_dapm_widgets);
1111
1112 if (ret != 0) {
1113 dev_err(component->dev,
1114 "Failed to create new controls %d\n", ret);
1115 goto err_probe;
1116 }
1117 }
1118
1119 list_for_each_entry(dai, &component->dai_list, list) {
1120 ret = snd_soc_dapm_new_dai_widgets(dapm, dai);
1121 if (ret != 0) {
1122 dev_err(component->dev,
1123 "Failed to create DAI widgets %d\n", ret);
1124 goto err_probe;
1125 }
1126 }
1127
1128 if (component->probe) {
1129 ret = component->probe(component);
1130 if (ret < 0) {
1131 dev_err(component->dev,
1132 "ASoC: failed to probe component %d\n", ret);
1133 goto err_probe;
1134 }
1135
1136 WARN(dapm->idle_bias_off &&
1137 dapm->bias_level != SND_SOC_BIAS_OFF,
1138 "codec %s can not start from non-off bias with idle_bias_off==1\n",
1139 component->name);
1140 }
1141
1142 if (component->controls)
1143 snd_soc_add_component_controls(component, component->controls,
1144 component->num_controls);
1145 if (component->dapm_routes)
1146 snd_soc_dapm_add_routes(dapm, component->dapm_routes,
1147 component->num_dapm_routes);
1148
1149 component->probed = 1;
1150 list_add(&dapm->list, &card->dapm_list);
1151
1152 /* This is a HACK and will be removed soon */
1153 if (component->codec)
1154 list_add(&component->codec->card_list, &card->codec_dev_list);
1155
1156 return 0;
1157
1158 err_probe:
1159 soc_cleanup_component_debugfs(component);
1160 module_put(component->dev->driver->owner);
1161
1162 return ret;
1163 }
1164
1165 static void rtd_release(struct device *dev)
1166 {
1167 kfree(dev);
1168 }
1169
1170 static int soc_post_component_init(struct snd_soc_pcm_runtime *rtd,
1171 const char *name)
1172 {
1173 int ret = 0;
1174
1175 /* register the rtd device */
1176 rtd->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
1177 if (!rtd->dev)
1178 return -ENOMEM;
1179 device_initialize(rtd->dev);
1180 rtd->dev->parent = rtd->card->dev;
1181 rtd->dev->release = rtd_release;
1182 dev_set_name(rtd->dev, "%s", name);
1183 dev_set_drvdata(rtd->dev, rtd);
1184 mutex_init(&rtd->pcm_mutex);
1185 INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_PLAYBACK].be_clients);
1186 INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_CAPTURE].be_clients);
1187 INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_PLAYBACK].fe_clients);
1188 INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_CAPTURE].fe_clients);
1189 ret = device_add(rtd->dev);
1190 if (ret < 0) {
1191 /* calling put_device() here to free the rtd->dev */
1192 put_device(rtd->dev);
1193 dev_err(rtd->card->dev,
1194 "ASoC: failed to register runtime device: %d\n", ret);
1195 return ret;
1196 }
1197 rtd->dev_registered = 1;
1198
1199 if (rtd->codec) {
1200 /* add DAPM sysfs entries for this codec */
1201 ret = snd_soc_dapm_sys_add(rtd->dev);
1202 if (ret < 0)
1203 dev_err(rtd->dev,
1204 "ASoC: failed to add codec dapm sysfs entries: %d\n",
1205 ret);
1206
1207 /* add codec sysfs entries */
1208 ret = device_create_file(rtd->dev, &dev_attr_codec_reg);
1209 if (ret < 0)
1210 dev_err(rtd->dev,
1211 "ASoC: failed to add codec sysfs files: %d\n",
1212 ret);
1213 }
1214
1215 return 0;
1216 }
1217
1218 static int soc_probe_link_components(struct snd_soc_card *card, int num,
1219 int order)
1220 {
1221 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1222 struct snd_soc_platform *platform = rtd->platform;
1223 struct snd_soc_component *component;
1224 int i, ret;
1225
1226 /* probe the CPU-side component, if it is a CODEC */
1227 component = rtd->cpu_dai->component;
1228 if (component->driver->probe_order == order) {
1229 ret = soc_probe_component(card, component);
1230 if (ret < 0)
1231 return ret;
1232 }
1233
1234 /* probe the CODEC-side components */
1235 for (i = 0; i < rtd->num_codecs; i++) {
1236 component = rtd->codec_dais[i]->component;
1237 if (component->driver->probe_order == order) {
1238 ret = soc_probe_component(card, component);
1239 if (ret < 0)
1240 return ret;
1241 }
1242 }
1243
1244 /* probe the platform */
1245 if (platform->component.driver->probe_order == order) {
1246 ret = soc_probe_component(card, &platform->component);
1247 if (ret < 0)
1248 return ret;
1249 }
1250
1251 return 0;
1252 }
1253
1254 static int soc_probe_codec_dai(struct snd_soc_card *card,
1255 struct snd_soc_dai *codec_dai,
1256 int order)
1257 {
1258 int ret;
1259
1260 if (!codec_dai->probed && codec_dai->driver->probe_order == order) {
1261 if (codec_dai->driver->probe) {
1262 ret = codec_dai->driver->probe(codec_dai);
1263 if (ret < 0) {
1264 dev_err(codec_dai->dev,
1265 "ASoC: failed to probe CODEC DAI %s: %d\n",
1266 codec_dai->name, ret);
1267 return ret;
1268 }
1269 }
1270
1271 /* mark codec_dai as probed and add to card dai list */
1272 codec_dai->probed = 1;
1273 }
1274
1275 return 0;
1276 }
1277
1278 static int soc_link_dai_widgets(struct snd_soc_card *card,
1279 struct snd_soc_dai_link *dai_link,
1280 struct snd_soc_pcm_runtime *rtd)
1281 {
1282 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1283 struct snd_soc_dai *codec_dai = rtd->codec_dai;
1284 struct snd_soc_dapm_widget *play_w, *capture_w;
1285 int ret;
1286
1287 if (rtd->num_codecs > 1)
1288 dev_warn(card->dev, "ASoC: Multiple codecs not supported yet\n");
1289
1290 /* link the DAI widgets */
1291 play_w = codec_dai->playback_widget;
1292 capture_w = cpu_dai->capture_widget;
1293 if (play_w && capture_w) {
1294 ret = snd_soc_dapm_new_pcm(card, dai_link->params,
1295 capture_w, play_w);
1296 if (ret != 0) {
1297 dev_err(card->dev, "ASoC: Can't link %s to %s: %d\n",
1298 play_w->name, capture_w->name, ret);
1299 return ret;
1300 }
1301 }
1302
1303 play_w = cpu_dai->playback_widget;
1304 capture_w = codec_dai->capture_widget;
1305 if (play_w && capture_w) {
1306 ret = snd_soc_dapm_new_pcm(card, dai_link->params,
1307 capture_w, play_w);
1308 if (ret != 0) {
1309 dev_err(card->dev, "ASoC: Can't link %s to %s: %d\n",
1310 play_w->name, capture_w->name, ret);
1311 return ret;
1312 }
1313 }
1314
1315 return 0;
1316 }
1317
1318 static int soc_probe_link_dais(struct snd_soc_card *card, int num, int order)
1319 {
1320 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1321 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1322 struct snd_soc_platform *platform = rtd->platform;
1323 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1324 int i, ret;
1325
1326 dev_dbg(card->dev, "ASoC: probe %s dai link %d late %d\n",
1327 card->name, num, order);
1328
1329 /* config components */
1330 cpu_dai->platform = platform;
1331 cpu_dai->card = card;
1332 for (i = 0; i < rtd->num_codecs; i++)
1333 rtd->codec_dais[i]->card = card;
1334
1335 /* set default power off timeout */
1336 rtd->pmdown_time = pmdown_time;
1337
1338 /* probe the cpu_dai */
1339 if (!cpu_dai->probed &&
1340 cpu_dai->driver->probe_order == order) {
1341 if (cpu_dai->driver->probe) {
1342 ret = cpu_dai->driver->probe(cpu_dai);
1343 if (ret < 0) {
1344 dev_err(cpu_dai->dev,
1345 "ASoC: failed to probe CPU DAI %s: %d\n",
1346 cpu_dai->name, ret);
1347 return ret;
1348 }
1349 }
1350 cpu_dai->probed = 1;
1351 }
1352
1353 /* probe the CODEC DAI */
1354 for (i = 0; i < rtd->num_codecs; i++) {
1355 ret = soc_probe_codec_dai(card, rtd->codec_dais[i], order);
1356 if (ret)
1357 return ret;
1358 }
1359
1360 /* complete DAI probe during last probe */
1361 if (order != SND_SOC_COMP_ORDER_LAST)
1362 return 0;
1363
1364 /* do machine specific initialization */
1365 if (dai_link->init) {
1366 ret = dai_link->init(rtd);
1367 if (ret < 0) {
1368 dev_err(card->dev, "ASoC: failed to init %s: %d\n",
1369 dai_link->name, ret);
1370 return ret;
1371 }
1372 }
1373
1374 ret = soc_post_component_init(rtd, dai_link->name);
1375 if (ret)
1376 return ret;
1377
1378 #ifdef CONFIG_DEBUG_FS
1379 /* add DPCM sysfs entries */
1380 if (dai_link->dynamic) {
1381 ret = soc_dpcm_debugfs_add(rtd);
1382 if (ret < 0) {
1383 dev_err(rtd->dev,
1384 "ASoC: failed to add dpcm sysfs entries: %d\n",
1385 ret);
1386 return ret;
1387 }
1388 }
1389 #endif
1390
1391 ret = device_create_file(rtd->dev, &dev_attr_pmdown_time);
1392 if (ret < 0)
1393 dev_warn(rtd->dev, "ASoC: failed to add pmdown_time sysfs: %d\n",
1394 ret);
1395
1396 if (cpu_dai->driver->compress_dai) {
1397 /*create compress_device"*/
1398 ret = soc_new_compress(rtd, num);
1399 if (ret < 0) {
1400 dev_err(card->dev, "ASoC: can't create compress %s\n",
1401 dai_link->stream_name);
1402 return ret;
1403 }
1404 } else {
1405
1406 if (!dai_link->params) {
1407 /* create the pcm */
1408 ret = soc_new_pcm(rtd, num);
1409 if (ret < 0) {
1410 dev_err(card->dev, "ASoC: can't create pcm %s :%d\n",
1411 dai_link->stream_name, ret);
1412 return ret;
1413 }
1414 } else {
1415 INIT_DELAYED_WORK(&rtd->delayed_work,
1416 codec2codec_close_delayed_work);
1417
1418 /* link the DAI widgets */
1419 ret = soc_link_dai_widgets(card, dai_link, rtd);
1420 if (ret)
1421 return ret;
1422 }
1423 }
1424
1425 /* add platform data for AC97 devices */
1426 for (i = 0; i < rtd->num_codecs; i++) {
1427 if (rtd->codec_dais[i]->driver->ac97_control)
1428 snd_ac97_dev_add_pdata(rtd->codec_dais[i]->codec->ac97,
1429 rtd->cpu_dai->ac97_pdata);
1430 }
1431
1432 return 0;
1433 }
1434
1435 #ifdef CONFIG_SND_SOC_AC97_BUS
1436 static int soc_register_ac97_codec(struct snd_soc_codec *codec,
1437 struct snd_soc_dai *codec_dai)
1438 {
1439 int ret;
1440
1441 /* Only instantiate AC97 if not already done by the adaptor
1442 * for the generic AC97 subsystem.
1443 */
1444 if (codec_dai->driver->ac97_control && !codec->ac97_registered) {
1445 /*
1446 * It is possible that the AC97 device is already registered to
1447 * the device subsystem. This happens when the device is created
1448 * via snd_ac97_mixer(). Currently only SoC codec that does so
1449 * is the generic AC97 glue but others migh emerge.
1450 *
1451 * In those cases we don't try to register the device again.
1452 */
1453 if (!codec->ac97_created)
1454 return 0;
1455
1456 ret = soc_ac97_dev_register(codec);
1457 if (ret < 0) {
1458 dev_err(codec->dev,
1459 "ASoC: AC97 device register failed: %d\n", ret);
1460 return ret;
1461 }
1462
1463 codec->ac97_registered = 1;
1464 }
1465 return 0;
1466 }
1467
1468 static void soc_unregister_ac97_codec(struct snd_soc_codec *codec)
1469 {
1470 if (codec->ac97_registered) {
1471 soc_ac97_dev_unregister(codec);
1472 codec->ac97_registered = 0;
1473 }
1474 }
1475
1476 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1477 {
1478 int i, ret;
1479
1480 for (i = 0; i < rtd->num_codecs; i++) {
1481 struct snd_soc_dai *codec_dai = rtd->codec_dais[i];
1482
1483 ret = soc_register_ac97_codec(codec_dai->codec, codec_dai);
1484 if (ret) {
1485 while (--i >= 0)
1486 soc_unregister_ac97_codec(codec_dai->codec);
1487 return ret;
1488 }
1489 }
1490
1491 return 0;
1492 }
1493
1494 static void soc_unregister_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1495 {
1496 int i;
1497
1498 for (i = 0; i < rtd->num_codecs; i++)
1499 soc_unregister_ac97_codec(rtd->codec_dais[i]->codec);
1500 }
1501 #endif
1502
1503 static int soc_bind_aux_dev(struct snd_soc_card *card, int num)
1504 {
1505 struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1506 struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1507 const char *name = aux_dev->codec_name;
1508
1509 rtd->component = soc_find_component(aux_dev->codec_of_node, name);
1510 if (!rtd->component) {
1511 if (aux_dev->codec_of_node)
1512 name = of_node_full_name(aux_dev->codec_of_node);
1513
1514 dev_err(card->dev, "ASoC: %s not registered\n", name);
1515 return -EPROBE_DEFER;
1516 }
1517
1518 /*
1519 * Some places still reference rtd->codec, so we have to keep that
1520 * initialized if the component is a CODEC. Once all those references
1521 * have been removed, this code can be removed as well.
1522 */
1523 rtd->codec = rtd->component->codec;
1524
1525 return 0;
1526 }
1527
1528 static int soc_probe_aux_dev(struct snd_soc_card *card, int num)
1529 {
1530 struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1531 struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1532 int ret;
1533
1534 ret = soc_probe_component(card, rtd->component);
1535 if (ret < 0)
1536 return ret;
1537
1538 /* do machine specific initialization */
1539 if (aux_dev->init) {
1540 ret = aux_dev->init(rtd->component);
1541 if (ret < 0) {
1542 dev_err(card->dev, "ASoC: failed to init %s: %d\n",
1543 aux_dev->name, ret);
1544 return ret;
1545 }
1546 }
1547
1548 return soc_post_component_init(rtd, aux_dev->name);
1549 }
1550
1551 static void soc_remove_aux_dev(struct snd_soc_card *card, int num)
1552 {
1553 struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1554 struct snd_soc_component *component = rtd->component;
1555
1556 /* unregister the rtd device */
1557 if (rtd->dev_registered) {
1558 device_remove_file(rtd->dev, &dev_attr_codec_reg);
1559 device_unregister(rtd->dev);
1560 rtd->dev_registered = 0;
1561 }
1562
1563 if (component && component->probed)
1564 soc_remove_component(component);
1565 }
1566
1567 static int snd_soc_init_codec_cache(struct snd_soc_codec *codec)
1568 {
1569 int ret;
1570
1571 if (codec->cache_init)
1572 return 0;
1573
1574 ret = snd_soc_cache_init(codec);
1575 if (ret < 0) {
1576 dev_err(codec->dev,
1577 "ASoC: Failed to set cache compression type: %d\n",
1578 ret);
1579 return ret;
1580 }
1581 codec->cache_init = 1;
1582 return 0;
1583 }
1584
1585 static int snd_soc_instantiate_card(struct snd_soc_card *card)
1586 {
1587 struct snd_soc_codec *codec;
1588 struct snd_soc_dai_link *dai_link;
1589 int ret, i, order, dai_fmt;
1590
1591 mutex_lock_nested(&card->mutex, SND_SOC_CARD_CLASS_INIT);
1592
1593 /* bind DAIs */
1594 for (i = 0; i < card->num_links; i++) {
1595 ret = soc_bind_dai_link(card, i);
1596 if (ret != 0)
1597 goto base_error;
1598 }
1599
1600 /* bind aux_devs too */
1601 for (i = 0; i < card->num_aux_devs; i++) {
1602 ret = soc_bind_aux_dev(card, i);
1603 if (ret != 0)
1604 goto base_error;
1605 }
1606
1607 /* initialize the register cache for each available codec */
1608 list_for_each_entry(codec, &codec_list, list) {
1609 if (codec->cache_init)
1610 continue;
1611 ret = snd_soc_init_codec_cache(codec);
1612 if (ret < 0)
1613 goto base_error;
1614 }
1615
1616 /* card bind complete so register a sound card */
1617 ret = snd_card_new(card->dev, SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1618 card->owner, 0, &card->snd_card);
1619 if (ret < 0) {
1620 dev_err(card->dev,
1621 "ASoC: can't create sound card for card %s: %d\n",
1622 card->name, ret);
1623 goto base_error;
1624 }
1625
1626 card->dapm.bias_level = SND_SOC_BIAS_OFF;
1627 card->dapm.dev = card->dev;
1628 card->dapm.card = card;
1629 list_add(&card->dapm.list, &card->dapm_list);
1630
1631 #ifdef CONFIG_DEBUG_FS
1632 snd_soc_dapm_debugfs_init(&card->dapm, card->debugfs_card_root);
1633 #endif
1634
1635 #ifdef CONFIG_PM_SLEEP
1636 /* deferred resume work */
1637 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1638 #endif
1639
1640 if (card->dapm_widgets)
1641 snd_soc_dapm_new_controls(&card->dapm, card->dapm_widgets,
1642 card->num_dapm_widgets);
1643
1644 /* initialise the sound card only once */
1645 if (card->probe) {
1646 ret = card->probe(card);
1647 if (ret < 0)
1648 goto card_probe_error;
1649 }
1650
1651 /* probe all components used by DAI links on this card */
1652 for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
1653 order++) {
1654 for (i = 0; i < card->num_links; i++) {
1655 ret = soc_probe_link_components(card, i, order);
1656 if (ret < 0) {
1657 dev_err(card->dev,
1658 "ASoC: failed to instantiate card %d\n",
1659 ret);
1660 goto probe_dai_err;
1661 }
1662 }
1663 }
1664
1665 /* probe all DAI links on this card */
1666 for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
1667 order++) {
1668 for (i = 0; i < card->num_links; i++) {
1669 ret = soc_probe_link_dais(card, i, order);
1670 if (ret < 0) {
1671 dev_err(card->dev,
1672 "ASoC: failed to instantiate card %d\n",
1673 ret);
1674 goto probe_dai_err;
1675 }
1676 }
1677 }
1678
1679 for (i = 0; i < card->num_aux_devs; i++) {
1680 ret = soc_probe_aux_dev(card, i);
1681 if (ret < 0) {
1682 dev_err(card->dev,
1683 "ASoC: failed to add auxiliary devices %d\n",
1684 ret);
1685 goto probe_aux_dev_err;
1686 }
1687 }
1688
1689 snd_soc_dapm_link_dai_widgets(card);
1690 snd_soc_dapm_connect_dai_link_widgets(card);
1691
1692 if (card->controls)
1693 snd_soc_add_card_controls(card, card->controls, card->num_controls);
1694
1695 if (card->dapm_routes)
1696 snd_soc_dapm_add_routes(&card->dapm, card->dapm_routes,
1697 card->num_dapm_routes);
1698
1699 for (i = 0; i < card->num_links; i++) {
1700 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1701 dai_link = &card->dai_link[i];
1702 dai_fmt = dai_link->dai_fmt;
1703
1704 if (dai_fmt) {
1705 struct snd_soc_dai **codec_dais = rtd->codec_dais;
1706 int j;
1707
1708 for (j = 0; j < rtd->num_codecs; j++) {
1709 struct snd_soc_dai *codec_dai = codec_dais[j];
1710
1711 ret = snd_soc_dai_set_fmt(codec_dai, dai_fmt);
1712 if (ret != 0 && ret != -ENOTSUPP)
1713 dev_warn(codec_dai->dev,
1714 "ASoC: Failed to set DAI format: %d\n",
1715 ret);
1716 }
1717 }
1718
1719 /* If this is a regular CPU link there will be a platform */
1720 if (dai_fmt &&
1721 (dai_link->platform_name || dai_link->platform_of_node)) {
1722 ret = snd_soc_dai_set_fmt(card->rtd[i].cpu_dai,
1723 dai_fmt);
1724 if (ret != 0 && ret != -ENOTSUPP)
1725 dev_warn(card->rtd[i].cpu_dai->dev,
1726 "ASoC: Failed to set DAI format: %d\n",
1727 ret);
1728 } else if (dai_fmt) {
1729 /* Flip the polarity for the "CPU" end */
1730 dai_fmt &= ~SND_SOC_DAIFMT_MASTER_MASK;
1731 switch (dai_link->dai_fmt &
1732 SND_SOC_DAIFMT_MASTER_MASK) {
1733 case SND_SOC_DAIFMT_CBM_CFM:
1734 dai_fmt |= SND_SOC_DAIFMT_CBS_CFS;
1735 break;
1736 case SND_SOC_DAIFMT_CBM_CFS:
1737 dai_fmt |= SND_SOC_DAIFMT_CBS_CFM;
1738 break;
1739 case SND_SOC_DAIFMT_CBS_CFM:
1740 dai_fmt |= SND_SOC_DAIFMT_CBM_CFS;
1741 break;
1742 case SND_SOC_DAIFMT_CBS_CFS:
1743 dai_fmt |= SND_SOC_DAIFMT_CBM_CFM;
1744 break;
1745 }
1746
1747 ret = snd_soc_dai_set_fmt(card->rtd[i].cpu_dai,
1748 dai_fmt);
1749 if (ret != 0 && ret != -ENOTSUPP)
1750 dev_warn(card->rtd[i].cpu_dai->dev,
1751 "ASoC: Failed to set DAI format: %d\n",
1752 ret);
1753 }
1754 }
1755
1756 snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1757 "%s", card->name);
1758 snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1759 "%s", card->long_name ? card->long_name : card->name);
1760 snprintf(card->snd_card->driver, sizeof(card->snd_card->driver),
1761 "%s", card->driver_name ? card->driver_name : card->name);
1762 for (i = 0; i < ARRAY_SIZE(card->snd_card->driver); i++) {
1763 switch (card->snd_card->driver[i]) {
1764 case '_':
1765 case '-':
1766 case '\0':
1767 break;
1768 default:
1769 if (!isalnum(card->snd_card->driver[i]))
1770 card->snd_card->driver[i] = '_';
1771 break;
1772 }
1773 }
1774
1775 if (card->late_probe) {
1776 ret = card->late_probe(card);
1777 if (ret < 0) {
1778 dev_err(card->dev, "ASoC: %s late_probe() failed: %d\n",
1779 card->name, ret);
1780 goto probe_aux_dev_err;
1781 }
1782 }
1783
1784 if (card->fully_routed)
1785 snd_soc_dapm_auto_nc_pins(card);
1786
1787 snd_soc_dapm_new_widgets(card);
1788
1789 ret = snd_card_register(card->snd_card);
1790 if (ret < 0) {
1791 dev_err(card->dev, "ASoC: failed to register soundcard %d\n",
1792 ret);
1793 goto probe_aux_dev_err;
1794 }
1795
1796 #ifdef CONFIG_SND_SOC_AC97_BUS
1797 /* register any AC97 codecs */
1798 for (i = 0; i < card->num_rtd; i++) {
1799 ret = soc_register_ac97_dai_link(&card->rtd[i]);
1800 if (ret < 0) {
1801 dev_err(card->dev,
1802 "ASoC: failed to register AC97: %d\n", ret);
1803 while (--i >= 0)
1804 soc_unregister_ac97_dai_link(&card->rtd[i]);
1805 goto probe_aux_dev_err;
1806 }
1807 }
1808 #endif
1809
1810 card->instantiated = 1;
1811 snd_soc_dapm_sync(&card->dapm);
1812 mutex_unlock(&card->mutex);
1813
1814 return 0;
1815
1816 probe_aux_dev_err:
1817 for (i = 0; i < card->num_aux_devs; i++)
1818 soc_remove_aux_dev(card, i);
1819
1820 probe_dai_err:
1821 soc_remove_dai_links(card);
1822
1823 card_probe_error:
1824 if (card->remove)
1825 card->remove(card);
1826
1827 snd_card_free(card->snd_card);
1828
1829 base_error:
1830 mutex_unlock(&card->mutex);
1831
1832 return ret;
1833 }
1834
1835 /* probes a new socdev */
1836 static int soc_probe(struct platform_device *pdev)
1837 {
1838 struct snd_soc_card *card = platform_get_drvdata(pdev);
1839
1840 /*
1841 * no card, so machine driver should be registering card
1842 * we should not be here in that case so ret error
1843 */
1844 if (!card)
1845 return -EINVAL;
1846
1847 dev_warn(&pdev->dev,
1848 "ASoC: machine %s should use snd_soc_register_card()\n",
1849 card->name);
1850
1851 /* Bodge while we unpick instantiation */
1852 card->dev = &pdev->dev;
1853
1854 return snd_soc_register_card(card);
1855 }
1856
1857 static int soc_cleanup_card_resources(struct snd_soc_card *card)
1858 {
1859 int i;
1860
1861 /* make sure any delayed work runs */
1862 for (i = 0; i < card->num_rtd; i++) {
1863 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1864 flush_delayed_work(&rtd->delayed_work);
1865 }
1866
1867 /* remove auxiliary devices */
1868 for (i = 0; i < card->num_aux_devs; i++)
1869 soc_remove_aux_dev(card, i);
1870
1871 /* remove and free each DAI */
1872 soc_remove_dai_links(card);
1873
1874 soc_cleanup_card_debugfs(card);
1875
1876 /* remove the card */
1877 if (card->remove)
1878 card->remove(card);
1879
1880 snd_soc_dapm_free(&card->dapm);
1881
1882 snd_card_free(card->snd_card);
1883 return 0;
1884
1885 }
1886
1887 /* removes a socdev */
1888 static int soc_remove(struct platform_device *pdev)
1889 {
1890 struct snd_soc_card *card = platform_get_drvdata(pdev);
1891
1892 snd_soc_unregister_card(card);
1893 return 0;
1894 }
1895
1896 int snd_soc_poweroff(struct device *dev)
1897 {
1898 struct snd_soc_card *card = dev_get_drvdata(dev);
1899 int i;
1900
1901 if (!card->instantiated)
1902 return 0;
1903
1904 /* Flush out pmdown_time work - we actually do want to run it
1905 * now, we're shutting down so no imminent restart. */
1906 for (i = 0; i < card->num_rtd; i++) {
1907 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1908 flush_delayed_work(&rtd->delayed_work);
1909 }
1910
1911 snd_soc_dapm_shutdown(card);
1912
1913 /* deactivate pins to sleep state */
1914 for (i = 0; i < card->num_rtd; i++) {
1915 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1916 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1917 int j;
1918
1919 pinctrl_pm_select_sleep_state(cpu_dai->dev);
1920 for (j = 0; j < rtd->num_codecs; j++) {
1921 struct snd_soc_dai *codec_dai = rtd->codec_dais[j];
1922 pinctrl_pm_select_sleep_state(codec_dai->dev);
1923 }
1924 }
1925
1926 return 0;
1927 }
1928 EXPORT_SYMBOL_GPL(snd_soc_poweroff);
1929
1930 const struct dev_pm_ops snd_soc_pm_ops = {
1931 .suspend = snd_soc_suspend,
1932 .resume = snd_soc_resume,
1933 .freeze = snd_soc_suspend,
1934 .thaw = snd_soc_resume,
1935 .poweroff = snd_soc_poweroff,
1936 .restore = snd_soc_resume,
1937 };
1938 EXPORT_SYMBOL_GPL(snd_soc_pm_ops);
1939
1940 /* ASoC platform driver */
1941 static struct platform_driver soc_driver = {
1942 .driver = {
1943 .name = "soc-audio",
1944 .owner = THIS_MODULE,
1945 .pm = &snd_soc_pm_ops,
1946 },
1947 .probe = soc_probe,
1948 .remove = soc_remove,
1949 };
1950
1951 /**
1952 * snd_soc_new_ac97_codec - initailise AC97 device
1953 * @codec: audio codec
1954 * @ops: AC97 bus operations
1955 * @num: AC97 codec number
1956 *
1957 * Initialises AC97 codec resources for use by ad-hoc devices only.
1958 */
1959 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1960 struct snd_ac97_bus_ops *ops, int num)
1961 {
1962 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1963 if (codec->ac97 == NULL)
1964 return -ENOMEM;
1965
1966 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1967 if (codec->ac97->bus == NULL) {
1968 kfree(codec->ac97);
1969 codec->ac97 = NULL;
1970 return -ENOMEM;
1971 }
1972
1973 codec->ac97->bus->ops = ops;
1974 codec->ac97->num = num;
1975
1976 /*
1977 * Mark the AC97 device to be created by us. This way we ensure that the
1978 * device will be registered with the device subsystem later on.
1979 */
1980 codec->ac97_created = 1;
1981
1982 return 0;
1983 }
1984 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1985
1986 static struct snd_ac97_reset_cfg snd_ac97_rst_cfg;
1987
1988 static void snd_soc_ac97_warm_reset(struct snd_ac97 *ac97)
1989 {
1990 struct pinctrl *pctl = snd_ac97_rst_cfg.pctl;
1991
1992 pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_warm_reset);
1993
1994 gpio_direction_output(snd_ac97_rst_cfg.gpio_sync, 1);
1995
1996 udelay(10);
1997
1998 gpio_direction_output(snd_ac97_rst_cfg.gpio_sync, 0);
1999
2000 pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_run);
2001 msleep(2);
2002 }
2003
2004 static void snd_soc_ac97_reset(struct snd_ac97 *ac97)
2005 {
2006 struct pinctrl *pctl = snd_ac97_rst_cfg.pctl;
2007
2008 pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_reset);
2009
2010 gpio_direction_output(snd_ac97_rst_cfg.gpio_sync, 0);
2011 gpio_direction_output(snd_ac97_rst_cfg.gpio_sdata, 0);
2012 gpio_direction_output(snd_ac97_rst_cfg.gpio_reset, 0);
2013
2014 udelay(10);
2015
2016 gpio_direction_output(snd_ac97_rst_cfg.gpio_reset, 1);
2017
2018 pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_run);
2019 msleep(2);
2020 }
2021
2022 static int snd_soc_ac97_parse_pinctl(struct device *dev,
2023 struct snd_ac97_reset_cfg *cfg)
2024 {
2025 struct pinctrl *p;
2026 struct pinctrl_state *state;
2027 int gpio;
2028 int ret;
2029
2030 p = devm_pinctrl_get(dev);
2031 if (IS_ERR(p)) {
2032 dev_err(dev, "Failed to get pinctrl\n");
2033 return PTR_ERR(p);
2034 }
2035 cfg->pctl = p;
2036
2037 state = pinctrl_lookup_state(p, "ac97-reset");
2038 if (IS_ERR(state)) {
2039 dev_err(dev, "Can't find pinctrl state ac97-reset\n");
2040 return PTR_ERR(state);
2041 }
2042 cfg->pstate_reset = state;
2043
2044 state = pinctrl_lookup_state(p, "ac97-warm-reset");
2045 if (IS_ERR(state)) {
2046 dev_err(dev, "Can't find pinctrl state ac97-warm-reset\n");
2047 return PTR_ERR(state);
2048 }
2049 cfg->pstate_warm_reset = state;
2050
2051 state = pinctrl_lookup_state(p, "ac97-running");
2052 if (IS_ERR(state)) {
2053 dev_err(dev, "Can't find pinctrl state ac97-running\n");
2054 return PTR_ERR(state);
2055 }
2056 cfg->pstate_run = state;
2057
2058 gpio = of_get_named_gpio(dev->of_node, "ac97-gpios", 0);
2059 if (gpio < 0) {
2060 dev_err(dev, "Can't find ac97-sync gpio\n");
2061 return gpio;
2062 }
2063 ret = devm_gpio_request(dev, gpio, "AC97 link sync");
2064 if (ret) {
2065 dev_err(dev, "Failed requesting ac97-sync gpio\n");
2066 return ret;
2067 }
2068 cfg->gpio_sync = gpio;
2069
2070 gpio = of_get_named_gpio(dev->of_node, "ac97-gpios", 1);
2071 if (gpio < 0) {
2072 dev_err(dev, "Can't find ac97-sdata gpio %d\n", gpio);
2073 return gpio;
2074 }
2075 ret = devm_gpio_request(dev, gpio, "AC97 link sdata");
2076 if (ret) {
2077 dev_err(dev, "Failed requesting ac97-sdata gpio\n");
2078 return ret;
2079 }
2080 cfg->gpio_sdata = gpio;
2081
2082 gpio = of_get_named_gpio(dev->of_node, "ac97-gpios", 2);
2083 if (gpio < 0) {
2084 dev_err(dev, "Can't find ac97-reset gpio\n");
2085 return gpio;
2086 }
2087 ret = devm_gpio_request(dev, gpio, "AC97 link reset");
2088 if (ret) {
2089 dev_err(dev, "Failed requesting ac97-reset gpio\n");
2090 return ret;
2091 }
2092 cfg->gpio_reset = gpio;
2093
2094 return 0;
2095 }
2096
2097 struct snd_ac97_bus_ops *soc_ac97_ops;
2098 EXPORT_SYMBOL_GPL(soc_ac97_ops);
2099
2100 int snd_soc_set_ac97_ops(struct snd_ac97_bus_ops *ops)
2101 {
2102 if (ops == soc_ac97_ops)
2103 return 0;
2104
2105 if (soc_ac97_ops && ops)
2106 return -EBUSY;
2107
2108 soc_ac97_ops = ops;
2109
2110 return 0;
2111 }
2112 EXPORT_SYMBOL_GPL(snd_soc_set_ac97_ops);
2113
2114 /**
2115 * snd_soc_set_ac97_ops_of_reset - Set ac97 ops with generic ac97 reset functions
2116 *
2117 * This function sets the reset and warm_reset properties of ops and parses
2118 * the device node of pdev to get pinctrl states and gpio numbers to use.
2119 */
2120 int snd_soc_set_ac97_ops_of_reset(struct snd_ac97_bus_ops *ops,
2121 struct platform_device *pdev)
2122 {
2123 struct device *dev = &pdev->dev;
2124 struct snd_ac97_reset_cfg cfg;
2125 int ret;
2126
2127 ret = snd_soc_ac97_parse_pinctl(dev, &cfg);
2128 if (ret)
2129 return ret;
2130
2131 ret = snd_soc_set_ac97_ops(ops);
2132 if (ret)
2133 return ret;
2134
2135 ops->warm_reset = snd_soc_ac97_warm_reset;
2136 ops->reset = snd_soc_ac97_reset;
2137
2138 snd_ac97_rst_cfg = cfg;
2139 return 0;
2140 }
2141 EXPORT_SYMBOL_GPL(snd_soc_set_ac97_ops_of_reset);
2142
2143 /**
2144 * snd_soc_free_ac97_codec - free AC97 codec device
2145 * @codec: audio codec
2146 *
2147 * Frees AC97 codec device resources.
2148 */
2149 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
2150 {
2151 #ifdef CONFIG_SND_SOC_AC97_BUS
2152 soc_unregister_ac97_codec(codec);
2153 #endif
2154 kfree(codec->ac97->bus);
2155 kfree(codec->ac97);
2156 codec->ac97 = NULL;
2157 codec->ac97_created = 0;
2158 }
2159 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
2160
2161 /**
2162 * snd_soc_cnew - create new control
2163 * @_template: control template
2164 * @data: control private data
2165 * @long_name: control long name
2166 * @prefix: control name prefix
2167 *
2168 * Create a new mixer control from a template control.
2169 *
2170 * Returns 0 for success, else error.
2171 */
2172 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2173 void *data, const char *long_name,
2174 const char *prefix)
2175 {
2176 struct snd_kcontrol_new template;
2177 struct snd_kcontrol *kcontrol;
2178 char *name = NULL;
2179
2180 memcpy(&template, _template, sizeof(template));
2181 template.index = 0;
2182
2183 if (!long_name)
2184 long_name = template.name;
2185
2186 if (prefix) {
2187 name = kasprintf(GFP_KERNEL, "%s %s", prefix, long_name);
2188 if (!name)
2189 return NULL;
2190
2191 template.name = name;
2192 } else {
2193 template.name = long_name;
2194 }
2195
2196 kcontrol = snd_ctl_new1(&template, data);
2197
2198 kfree(name);
2199
2200 return kcontrol;
2201 }
2202 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2203
2204 static int snd_soc_add_controls(struct snd_card *card, struct device *dev,
2205 const struct snd_kcontrol_new *controls, int num_controls,
2206 const char *prefix, void *data)
2207 {
2208 int err, i;
2209
2210 for (i = 0; i < num_controls; i++) {
2211 const struct snd_kcontrol_new *control = &controls[i];
2212 err = snd_ctl_add(card, snd_soc_cnew(control, data,
2213 control->name, prefix));
2214 if (err < 0) {
2215 dev_err(dev, "ASoC: Failed to add %s: %d\n",
2216 control->name, err);
2217 return err;
2218 }
2219 }
2220
2221 return 0;
2222 }
2223
2224 struct snd_kcontrol *snd_soc_card_get_kcontrol(struct snd_soc_card *soc_card,
2225 const char *name)
2226 {
2227 struct snd_card *card = soc_card->snd_card;
2228 struct snd_kcontrol *kctl;
2229
2230 if (unlikely(!name))
2231 return NULL;
2232
2233 list_for_each_entry(kctl, &card->controls, list)
2234 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name)))
2235 return kctl;
2236 return NULL;
2237 }
2238 EXPORT_SYMBOL_GPL(snd_soc_card_get_kcontrol);
2239
2240 /**
2241 * snd_soc_add_component_controls - Add an array of controls to a component.
2242 *
2243 * @component: Component to add controls to
2244 * @controls: Array of controls to add
2245 * @num_controls: Number of elements in the array
2246 *
2247 * Return: 0 for success, else error.
2248 */
2249 int snd_soc_add_component_controls(struct snd_soc_component *component,
2250 const struct snd_kcontrol_new *controls, unsigned int num_controls)
2251 {
2252 struct snd_card *card = component->card->snd_card;
2253
2254 return snd_soc_add_controls(card, component->dev, controls,
2255 num_controls, component->name_prefix, component);
2256 }
2257 EXPORT_SYMBOL_GPL(snd_soc_add_component_controls);
2258
2259 /**
2260 * snd_soc_add_codec_controls - add an array of controls to a codec.
2261 * Convenience function to add a list of controls. Many codecs were
2262 * duplicating this code.
2263 *
2264 * @codec: codec to add controls to
2265 * @controls: array of controls to add
2266 * @num_controls: number of elements in the array
2267 *
2268 * Return 0 for success, else error.
2269 */
2270 int snd_soc_add_codec_controls(struct snd_soc_codec *codec,
2271 const struct snd_kcontrol_new *controls, unsigned int num_controls)
2272 {
2273 return snd_soc_add_component_controls(&codec->component, controls,
2274 num_controls);
2275 }
2276 EXPORT_SYMBOL_GPL(snd_soc_add_codec_controls);
2277
2278 /**
2279 * snd_soc_add_platform_controls - add an array of controls to a platform.
2280 * Convenience function to add a list of controls.
2281 *
2282 * @platform: platform to add controls to
2283 * @controls: array of controls to add
2284 * @num_controls: number of elements in the array
2285 *
2286 * Return 0 for success, else error.
2287 */
2288 int snd_soc_add_platform_controls(struct snd_soc_platform *platform,
2289 const struct snd_kcontrol_new *controls, unsigned int num_controls)
2290 {
2291 return snd_soc_add_component_controls(&platform->component, controls,
2292 num_controls);
2293 }
2294 EXPORT_SYMBOL_GPL(snd_soc_add_platform_controls);
2295
2296 /**
2297 * snd_soc_add_card_controls - add an array of controls to a SoC card.
2298 * Convenience function to add a list of controls.
2299 *
2300 * @soc_card: SoC card to add controls to
2301 * @controls: array of controls to add
2302 * @num_controls: number of elements in the array
2303 *
2304 * Return 0 for success, else error.
2305 */
2306 int snd_soc_add_card_controls(struct snd_soc_card *soc_card,
2307 const struct snd_kcontrol_new *controls, int num_controls)
2308 {
2309 struct snd_card *card = soc_card->snd_card;
2310
2311 return snd_soc_add_controls(card, soc_card->dev, controls, num_controls,
2312 NULL, soc_card);
2313 }
2314 EXPORT_SYMBOL_GPL(snd_soc_add_card_controls);
2315
2316 /**
2317 * snd_soc_add_dai_controls - add an array of controls to a DAI.
2318 * Convienience function to add a list of controls.
2319 *
2320 * @dai: DAI to add controls to
2321 * @controls: array of controls to add
2322 * @num_controls: number of elements in the array
2323 *
2324 * Return 0 for success, else error.
2325 */
2326 int snd_soc_add_dai_controls(struct snd_soc_dai *dai,
2327 const struct snd_kcontrol_new *controls, int num_controls)
2328 {
2329 struct snd_card *card = dai->card->snd_card;
2330
2331 return snd_soc_add_controls(card, dai->dev, controls, num_controls,
2332 NULL, dai);
2333 }
2334 EXPORT_SYMBOL_GPL(snd_soc_add_dai_controls);
2335
2336 /**
2337 * snd_soc_info_enum_double - enumerated double mixer info callback
2338 * @kcontrol: mixer control
2339 * @uinfo: control element information
2340 *
2341 * Callback to provide information about a double enumerated
2342 * mixer control.
2343 *
2344 * Returns 0 for success.
2345 */
2346 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2347 struct snd_ctl_elem_info *uinfo)
2348 {
2349 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2350
2351 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2352 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2353 uinfo->value.enumerated.items = e->items;
2354
2355 if (uinfo->value.enumerated.item >= e->items)
2356 uinfo->value.enumerated.item = e->items - 1;
2357 strlcpy(uinfo->value.enumerated.name,
2358 e->texts[uinfo->value.enumerated.item],
2359 sizeof(uinfo->value.enumerated.name));
2360 return 0;
2361 }
2362 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2363
2364 /**
2365 * snd_soc_get_enum_double - enumerated double mixer get callback
2366 * @kcontrol: mixer control
2367 * @ucontrol: control element information
2368 *
2369 * Callback to get the value of a double enumerated mixer.
2370 *
2371 * Returns 0 for success.
2372 */
2373 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2374 struct snd_ctl_elem_value *ucontrol)
2375 {
2376 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2377 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2378 unsigned int val, item;
2379 unsigned int reg_val;
2380 int ret;
2381
2382 ret = snd_soc_component_read(component, e->reg, &reg_val);
2383 if (ret)
2384 return ret;
2385 val = (reg_val >> e->shift_l) & e->mask;
2386 item = snd_soc_enum_val_to_item(e, val);
2387 ucontrol->value.enumerated.item[0] = item;
2388 if (e->shift_l != e->shift_r) {
2389 val = (reg_val >> e->shift_l) & e->mask;
2390 item = snd_soc_enum_val_to_item(e, val);
2391 ucontrol->value.enumerated.item[1] = item;
2392 }
2393
2394 return 0;
2395 }
2396 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2397
2398 /**
2399 * snd_soc_put_enum_double - enumerated double mixer put callback
2400 * @kcontrol: mixer control
2401 * @ucontrol: control element information
2402 *
2403 * Callback to set the value of a double enumerated mixer.
2404 *
2405 * Returns 0 for success.
2406 */
2407 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2408 struct snd_ctl_elem_value *ucontrol)
2409 {
2410 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2411 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2412 unsigned int *item = ucontrol->value.enumerated.item;
2413 unsigned int val;
2414 unsigned int mask;
2415
2416 if (item[0] >= e->items)
2417 return -EINVAL;
2418 val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
2419 mask = e->mask << e->shift_l;
2420 if (e->shift_l != e->shift_r) {
2421 if (item[1] >= e->items)
2422 return -EINVAL;
2423 val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
2424 mask |= e->mask << e->shift_r;
2425 }
2426
2427 return snd_soc_component_update_bits(component, e->reg, mask, val);
2428 }
2429 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2430
2431 /**
2432 * snd_soc_read_signed - Read a codec register and interprete as signed value
2433 * @component: component
2434 * @reg: Register to read
2435 * @mask: Mask to use after shifting the register value
2436 * @shift: Right shift of register value
2437 * @sign_bit: Bit that describes if a number is negative or not.
2438 * @signed_val: Pointer to where the read value should be stored
2439 *
2440 * This functions reads a codec register. The register value is shifted right
2441 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
2442 * the given registervalue into a signed integer if sign_bit is non-zero.
2443 *
2444 * Returns 0 on sucess, otherwise an error value
2445 */
2446 static int snd_soc_read_signed(struct snd_soc_component *component,
2447 unsigned int reg, unsigned int mask, unsigned int shift,
2448 unsigned int sign_bit, int *signed_val)
2449 {
2450 int ret;
2451 unsigned int val;
2452
2453 ret = snd_soc_component_read(component, reg, &val);
2454 if (ret < 0)
2455 return ret;
2456
2457 val = (val >> shift) & mask;
2458
2459 if (!sign_bit) {
2460 *signed_val = val;
2461 return 0;
2462 }
2463
2464 /* non-negative number */
2465 if (!(val & BIT(sign_bit))) {
2466 *signed_val = val;
2467 return 0;
2468 }
2469
2470 ret = val;
2471
2472 /*
2473 * The register most probably does not contain a full-sized int.
2474 * Instead we have an arbitrary number of bits in a signed
2475 * representation which has to be translated into a full-sized int.
2476 * This is done by filling up all bits above the sign-bit.
2477 */
2478 ret |= ~((int)(BIT(sign_bit) - 1));
2479
2480 *signed_val = ret;
2481
2482 return 0;
2483 }
2484
2485 /**
2486 * snd_soc_info_volsw - single mixer info callback
2487 * @kcontrol: mixer control
2488 * @uinfo: control element information
2489 *
2490 * Callback to provide information about a single mixer control, or a double
2491 * mixer control that spans 2 registers.
2492 *
2493 * Returns 0 for success.
2494 */
2495 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2496 struct snd_ctl_elem_info *uinfo)
2497 {
2498 struct soc_mixer_control *mc =
2499 (struct soc_mixer_control *)kcontrol->private_value;
2500 int platform_max;
2501
2502 if (!mc->platform_max)
2503 mc->platform_max = mc->max;
2504 platform_max = mc->platform_max;
2505
2506 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2507 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2508 else
2509 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2510
2511 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
2512 uinfo->value.integer.min = 0;
2513 uinfo->value.integer.max = platform_max - mc->min;
2514 return 0;
2515 }
2516 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2517
2518 /**
2519 * snd_soc_get_volsw - single mixer get callback
2520 * @kcontrol: mixer control
2521 * @ucontrol: control element information
2522 *
2523 * Callback to get the value of a single mixer control, or a double mixer
2524 * control that spans 2 registers.
2525 *
2526 * Returns 0 for success.
2527 */
2528 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2529 struct snd_ctl_elem_value *ucontrol)
2530 {
2531 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2532 struct soc_mixer_control *mc =
2533 (struct soc_mixer_control *)kcontrol->private_value;
2534 unsigned int reg = mc->reg;
2535 unsigned int reg2 = mc->rreg;
2536 unsigned int shift = mc->shift;
2537 unsigned int rshift = mc->rshift;
2538 int max = mc->max;
2539 int min = mc->min;
2540 int sign_bit = mc->sign_bit;
2541 unsigned int mask = (1 << fls(max)) - 1;
2542 unsigned int invert = mc->invert;
2543 int val;
2544 int ret;
2545
2546 if (sign_bit)
2547 mask = BIT(sign_bit + 1) - 1;
2548
2549 ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
2550 if (ret)
2551 return ret;
2552
2553 ucontrol->value.integer.value[0] = val - min;
2554 if (invert)
2555 ucontrol->value.integer.value[0] =
2556 max - ucontrol->value.integer.value[0];
2557
2558 if (snd_soc_volsw_is_stereo(mc)) {
2559 if (reg == reg2)
2560 ret = snd_soc_read_signed(component, reg, mask, rshift,
2561 sign_bit, &val);
2562 else
2563 ret = snd_soc_read_signed(component, reg2, mask, shift,
2564 sign_bit, &val);
2565 if (ret)
2566 return ret;
2567
2568 ucontrol->value.integer.value[1] = val - min;
2569 if (invert)
2570 ucontrol->value.integer.value[1] =
2571 max - ucontrol->value.integer.value[1];
2572 }
2573
2574 return 0;
2575 }
2576 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2577
2578 /**
2579 * snd_soc_put_volsw - single mixer put callback
2580 * @kcontrol: mixer control
2581 * @ucontrol: control element information
2582 *
2583 * Callback to set the value of a single mixer control, or a double mixer
2584 * control that spans 2 registers.
2585 *
2586 * Returns 0 for success.
2587 */
2588 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2589 struct snd_ctl_elem_value *ucontrol)
2590 {
2591 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2592 struct soc_mixer_control *mc =
2593 (struct soc_mixer_control *)kcontrol->private_value;
2594 unsigned int reg = mc->reg;
2595 unsigned int reg2 = mc->rreg;
2596 unsigned int shift = mc->shift;
2597 unsigned int rshift = mc->rshift;
2598 int max = mc->max;
2599 int min = mc->min;
2600 unsigned int sign_bit = mc->sign_bit;
2601 unsigned int mask = (1 << fls(max)) - 1;
2602 unsigned int invert = mc->invert;
2603 int err;
2604 bool type_2r = false;
2605 unsigned int val2 = 0;
2606 unsigned int val, val_mask;
2607
2608 if (sign_bit)
2609 mask = BIT(sign_bit + 1) - 1;
2610
2611 val = ((ucontrol->value.integer.value[0] + min) & mask);
2612 if (invert)
2613 val = max - val;
2614 val_mask = mask << shift;
2615 val = val << shift;
2616 if (snd_soc_volsw_is_stereo(mc)) {
2617 val2 = ((ucontrol->value.integer.value[1] + min) & mask);
2618 if (invert)
2619 val2 = max - val2;
2620 if (reg == reg2) {
2621 val_mask |= mask << rshift;
2622 val |= val2 << rshift;
2623 } else {
2624 val2 = val2 << shift;
2625 type_2r = true;
2626 }
2627 }
2628 err = snd_soc_component_update_bits(component, reg, val_mask, val);
2629 if (err < 0)
2630 return err;
2631
2632 if (type_2r)
2633 err = snd_soc_component_update_bits(component, reg2, val_mask,
2634 val2);
2635
2636 return err;
2637 }
2638 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2639
2640 /**
2641 * snd_soc_get_volsw_sx - single mixer get callback
2642 * @kcontrol: mixer control
2643 * @ucontrol: control element information
2644 *
2645 * Callback to get the value of a single mixer control, or a double mixer
2646 * control that spans 2 registers.
2647 *
2648 * Returns 0 for success.
2649 */
2650 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
2651 struct snd_ctl_elem_value *ucontrol)
2652 {
2653 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2654 struct soc_mixer_control *mc =
2655 (struct soc_mixer_control *)kcontrol->private_value;
2656 unsigned int reg = mc->reg;
2657 unsigned int reg2 = mc->rreg;
2658 unsigned int shift = mc->shift;
2659 unsigned int rshift = mc->rshift;
2660 int max = mc->max;
2661 int min = mc->min;
2662 int mask = (1 << (fls(min + max) - 1)) - 1;
2663 unsigned int val;
2664 int ret;
2665
2666 ret = snd_soc_component_read(component, reg, &val);
2667 if (ret < 0)
2668 return ret;
2669
2670 ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
2671
2672 if (snd_soc_volsw_is_stereo(mc)) {
2673 ret = snd_soc_component_read(component, reg2, &val);
2674 if (ret < 0)
2675 return ret;
2676
2677 val = ((val >> rshift) - min) & mask;
2678 ucontrol->value.integer.value[1] = val;
2679 }
2680
2681 return 0;
2682 }
2683 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
2684
2685 /**
2686 * snd_soc_put_volsw_sx - double mixer set callback
2687 * @kcontrol: mixer control
2688 * @uinfo: control element information
2689 *
2690 * Callback to set the value of a double mixer control that spans 2 registers.
2691 *
2692 * Returns 0 for success.
2693 */
2694 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
2695 struct snd_ctl_elem_value *ucontrol)
2696 {
2697 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2698 struct soc_mixer_control *mc =
2699 (struct soc_mixer_control *)kcontrol->private_value;
2700
2701 unsigned int reg = mc->reg;
2702 unsigned int reg2 = mc->rreg;
2703 unsigned int shift = mc->shift;
2704 unsigned int rshift = mc->rshift;
2705 int max = mc->max;
2706 int min = mc->min;
2707 int mask = (1 << (fls(min + max) - 1)) - 1;
2708 int err = 0;
2709 unsigned int val, val_mask, val2 = 0;
2710
2711 val_mask = mask << shift;
2712 val = (ucontrol->value.integer.value[0] + min) & mask;
2713 val = val << shift;
2714
2715 err = snd_soc_component_update_bits(component, reg, val_mask, val);
2716 if (err < 0)
2717 return err;
2718
2719 if (snd_soc_volsw_is_stereo(mc)) {
2720 val_mask = mask << rshift;
2721 val2 = (ucontrol->value.integer.value[1] + min) & mask;
2722 val2 = val2 << rshift;
2723
2724 err = snd_soc_component_update_bits(component, reg2, val_mask,
2725 val2);
2726 }
2727 return err;
2728 }
2729 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
2730
2731 /**
2732 * snd_soc_info_volsw_s8 - signed mixer info callback
2733 * @kcontrol: mixer control
2734 * @uinfo: control element information
2735 *
2736 * Callback to provide information about a signed mixer control.
2737 *
2738 * Returns 0 for success.
2739 */
2740 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2741 struct snd_ctl_elem_info *uinfo)
2742 {
2743 struct soc_mixer_control *mc =
2744 (struct soc_mixer_control *)kcontrol->private_value;
2745 int platform_max;
2746 int min = mc->min;
2747
2748 if (!mc->platform_max)
2749 mc->platform_max = mc->max;
2750 platform_max = mc->platform_max;
2751
2752 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2753 uinfo->count = 2;
2754 uinfo->value.integer.min = 0;
2755 uinfo->value.integer.max = platform_max - min;
2756 return 0;
2757 }
2758 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2759
2760 /**
2761 * snd_soc_get_volsw_s8 - signed mixer get callback
2762 * @kcontrol: mixer control
2763 * @ucontrol: control element information
2764 *
2765 * Callback to get the value of a signed mixer control.
2766 *
2767 * Returns 0 for success.
2768 */
2769 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2770 struct snd_ctl_elem_value *ucontrol)
2771 {
2772 struct soc_mixer_control *mc =
2773 (struct soc_mixer_control *)kcontrol->private_value;
2774 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2775 unsigned int reg = mc->reg;
2776 unsigned int val;
2777 int min = mc->min;
2778 int ret;
2779
2780 ret = snd_soc_component_read(component, reg, &val);
2781 if (ret)
2782 return ret;
2783
2784 ucontrol->value.integer.value[0] =
2785 ((signed char)(val & 0xff))-min;
2786 ucontrol->value.integer.value[1] =
2787 ((signed char)((val >> 8) & 0xff))-min;
2788 return 0;
2789 }
2790 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2791
2792 /**
2793 * snd_soc_put_volsw_sgn - signed mixer put callback
2794 * @kcontrol: mixer control
2795 * @ucontrol: control element information
2796 *
2797 * Callback to set the value of a signed mixer control.
2798 *
2799 * Returns 0 for success.
2800 */
2801 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2802 struct snd_ctl_elem_value *ucontrol)
2803 {
2804 struct soc_mixer_control *mc =
2805 (struct soc_mixer_control *)kcontrol->private_value;
2806 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2807 unsigned int reg = mc->reg;
2808 int min = mc->min;
2809 unsigned int val;
2810
2811 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2812 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2813
2814 return snd_soc_component_update_bits(component, reg, 0xffff, val);
2815 }
2816 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2817
2818 /**
2819 * snd_soc_info_volsw_range - single mixer info callback with range.
2820 * @kcontrol: mixer control
2821 * @uinfo: control element information
2822 *
2823 * Callback to provide information, within a range, about a single
2824 * mixer control.
2825 *
2826 * returns 0 for success.
2827 */
2828 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
2829 struct snd_ctl_elem_info *uinfo)
2830 {
2831 struct soc_mixer_control *mc =
2832 (struct soc_mixer_control *)kcontrol->private_value;
2833 int platform_max;
2834 int min = mc->min;
2835
2836 if (!mc->platform_max)
2837 mc->platform_max = mc->max;
2838 platform_max = mc->platform_max;
2839
2840 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2841 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
2842 uinfo->value.integer.min = 0;
2843 uinfo->value.integer.max = platform_max - min;
2844
2845 return 0;
2846 }
2847 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
2848
2849 /**
2850 * snd_soc_put_volsw_range - single mixer put value callback with range.
2851 * @kcontrol: mixer control
2852 * @ucontrol: control element information
2853 *
2854 * Callback to set the value, within a range, for a single mixer control.
2855 *
2856 * Returns 0 for success.
2857 */
2858 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
2859 struct snd_ctl_elem_value *ucontrol)
2860 {
2861 struct soc_mixer_control *mc =
2862 (struct soc_mixer_control *)kcontrol->private_value;
2863 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2864 unsigned int reg = mc->reg;
2865 unsigned int rreg = mc->rreg;
2866 unsigned int shift = mc->shift;
2867 int min = mc->min;
2868 int max = mc->max;
2869 unsigned int mask = (1 << fls(max)) - 1;
2870 unsigned int invert = mc->invert;
2871 unsigned int val, val_mask;
2872 int ret;
2873
2874 if (invert)
2875 val = (max - ucontrol->value.integer.value[0]) & mask;
2876 else
2877 val = ((ucontrol->value.integer.value[0] + min) & mask);
2878 val_mask = mask << shift;
2879 val = val << shift;
2880
2881 ret = snd_soc_component_update_bits(component, reg, val_mask, val);
2882 if (ret < 0)
2883 return ret;
2884
2885 if (snd_soc_volsw_is_stereo(mc)) {
2886 if (invert)
2887 val = (max - ucontrol->value.integer.value[1]) & mask;
2888 else
2889 val = ((ucontrol->value.integer.value[1] + min) & mask);
2890 val_mask = mask << shift;
2891 val = val << shift;
2892
2893 ret = snd_soc_component_update_bits(component, rreg, val_mask,
2894 val);
2895 }
2896
2897 return ret;
2898 }
2899 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
2900
2901 /**
2902 * snd_soc_get_volsw_range - single mixer get callback with range
2903 * @kcontrol: mixer control
2904 * @ucontrol: control element information
2905 *
2906 * Callback to get the value, within a range, of a single mixer control.
2907 *
2908 * Returns 0 for success.
2909 */
2910 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
2911 struct snd_ctl_elem_value *ucontrol)
2912 {
2913 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2914 struct soc_mixer_control *mc =
2915 (struct soc_mixer_control *)kcontrol->private_value;
2916 unsigned int reg = mc->reg;
2917 unsigned int rreg = mc->rreg;
2918 unsigned int shift = mc->shift;
2919 int min = mc->min;
2920 int max = mc->max;
2921 unsigned int mask = (1 << fls(max)) - 1;
2922 unsigned int invert = mc->invert;
2923 unsigned int val;
2924 int ret;
2925
2926 ret = snd_soc_component_read(component, reg, &val);
2927 if (ret)
2928 return ret;
2929
2930 ucontrol->value.integer.value[0] = (val >> shift) & mask;
2931 if (invert)
2932 ucontrol->value.integer.value[0] =
2933 max - ucontrol->value.integer.value[0];
2934 else
2935 ucontrol->value.integer.value[0] =
2936 ucontrol->value.integer.value[0] - min;
2937
2938 if (snd_soc_volsw_is_stereo(mc)) {
2939 ret = snd_soc_component_read(component, rreg, &val);
2940 if (ret)
2941 return ret;
2942
2943 ucontrol->value.integer.value[1] = (val >> shift) & mask;
2944 if (invert)
2945 ucontrol->value.integer.value[1] =
2946 max - ucontrol->value.integer.value[1];
2947 else
2948 ucontrol->value.integer.value[1] =
2949 ucontrol->value.integer.value[1] - min;
2950 }
2951
2952 return 0;
2953 }
2954 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
2955
2956 /**
2957 * snd_soc_limit_volume - Set new limit to an existing volume control.
2958 *
2959 * @codec: where to look for the control
2960 * @name: Name of the control
2961 * @max: new maximum limit
2962 *
2963 * Return 0 for success, else error.
2964 */
2965 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2966 const char *name, int max)
2967 {
2968 struct snd_card *card = codec->component.card->snd_card;
2969 struct snd_kcontrol *kctl;
2970 struct soc_mixer_control *mc;
2971 int found = 0;
2972 int ret = -EINVAL;
2973
2974 /* Sanity check for name and max */
2975 if (unlikely(!name || max <= 0))
2976 return -EINVAL;
2977
2978 list_for_each_entry(kctl, &card->controls, list) {
2979 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2980 found = 1;
2981 break;
2982 }
2983 }
2984 if (found) {
2985 mc = (struct soc_mixer_control *)kctl->private_value;
2986 if (max <= mc->max) {
2987 mc->platform_max = max;
2988 ret = 0;
2989 }
2990 }
2991 return ret;
2992 }
2993 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2994
2995 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
2996 struct snd_ctl_elem_info *uinfo)
2997 {
2998 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2999 struct soc_bytes *params = (void *)kcontrol->private_value;
3000
3001 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
3002 uinfo->count = params->num_regs * component->val_bytes;
3003
3004 return 0;
3005 }
3006 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
3007
3008 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
3009 struct snd_ctl_elem_value *ucontrol)
3010 {
3011 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3012 struct soc_bytes *params = (void *)kcontrol->private_value;
3013 int ret;
3014
3015 if (component->regmap)
3016 ret = regmap_raw_read(component->regmap, params->base,
3017 ucontrol->value.bytes.data,
3018 params->num_regs * component->val_bytes);
3019 else
3020 ret = -EINVAL;
3021
3022 /* Hide any masked bytes to ensure consistent data reporting */
3023 if (ret == 0 && params->mask) {
3024 switch (component->val_bytes) {
3025 case 1:
3026 ucontrol->value.bytes.data[0] &= ~params->mask;
3027 break;
3028 case 2:
3029 ((u16 *)(&ucontrol->value.bytes.data))[0]
3030 &= cpu_to_be16(~params->mask);
3031 break;
3032 case 4:
3033 ((u32 *)(&ucontrol->value.bytes.data))[0]
3034 &= cpu_to_be32(~params->mask);
3035 break;
3036 default:
3037 return -EINVAL;
3038 }
3039 }
3040
3041 return ret;
3042 }
3043 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
3044
3045 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
3046 struct snd_ctl_elem_value *ucontrol)
3047 {
3048 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3049 struct soc_bytes *params = (void *)kcontrol->private_value;
3050 int ret, len;
3051 unsigned int val, mask;
3052 void *data;
3053
3054 if (!component->regmap || !params->num_regs)
3055 return -EINVAL;
3056
3057 len = params->num_regs * component->val_bytes;
3058
3059 data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
3060 if (!data)
3061 return -ENOMEM;
3062
3063 /*
3064 * If we've got a mask then we need to preserve the register
3065 * bits. We shouldn't modify the incoming data so take a
3066 * copy.
3067 */
3068 if (params->mask) {
3069 ret = regmap_read(component->regmap, params->base, &val);
3070 if (ret != 0)
3071 goto out;
3072
3073 val &= params->mask;
3074
3075 switch (component->val_bytes) {
3076 case 1:
3077 ((u8 *)data)[0] &= ~params->mask;
3078 ((u8 *)data)[0] |= val;
3079 break;
3080 case 2:
3081 mask = ~params->mask;
3082 ret = regmap_parse_val(component->regmap,
3083 &mask, &mask);
3084 if (ret != 0)
3085 goto out;
3086
3087 ((u16 *)data)[0] &= mask;
3088
3089 ret = regmap_parse_val(component->regmap,
3090 &val, &val);
3091 if (ret != 0)
3092 goto out;
3093
3094 ((u16 *)data)[0] |= val;
3095 break;
3096 case 4:
3097 mask = ~params->mask;
3098 ret = regmap_parse_val(component->regmap,
3099 &mask, &mask);
3100 if (ret != 0)
3101 goto out;
3102
3103 ((u32 *)data)[0] &= mask;
3104
3105 ret = regmap_parse_val(component->regmap,
3106 &val, &val);
3107 if (ret != 0)
3108 goto out;
3109
3110 ((u32 *)data)[0] |= val;
3111 break;
3112 default:
3113 ret = -EINVAL;
3114 goto out;
3115 }
3116 }
3117
3118 ret = regmap_raw_write(component->regmap, params->base,
3119 data, len);
3120
3121 out:
3122 kfree(data);
3123
3124 return ret;
3125 }
3126 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
3127
3128 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
3129 struct snd_ctl_elem_info *ucontrol)
3130 {
3131 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
3132
3133 ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
3134 ucontrol->count = params->max;
3135
3136 return 0;
3137 }
3138 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
3139
3140 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
3141 unsigned int size, unsigned int __user *tlv)
3142 {
3143 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
3144 unsigned int count = size < params->max ? size : params->max;
3145 int ret = -ENXIO;
3146
3147 switch (op_flag) {
3148 case SNDRV_CTL_TLV_OP_READ:
3149 if (params->get)
3150 ret = params->get(tlv, count);
3151 break;
3152 case SNDRV_CTL_TLV_OP_WRITE:
3153 if (params->put)
3154 ret = params->put(tlv, count);
3155 break;
3156 }
3157 return ret;
3158 }
3159 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
3160
3161 /**
3162 * snd_soc_info_xr_sx - signed multi register info callback
3163 * @kcontrol: mreg control
3164 * @uinfo: control element information
3165 *
3166 * Callback to provide information of a control that can
3167 * span multiple codec registers which together
3168 * forms a single signed value in a MSB/LSB manner.
3169 *
3170 * Returns 0 for success.
3171 */
3172 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
3173 struct snd_ctl_elem_info *uinfo)
3174 {
3175 struct soc_mreg_control *mc =
3176 (struct soc_mreg_control *)kcontrol->private_value;
3177 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3178 uinfo->count = 1;
3179 uinfo->value.integer.min = mc->min;
3180 uinfo->value.integer.max = mc->max;
3181
3182 return 0;
3183 }
3184 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
3185
3186 /**
3187 * snd_soc_get_xr_sx - signed multi register get callback
3188 * @kcontrol: mreg control
3189 * @ucontrol: control element information
3190 *
3191 * Callback to get the value of a control that can span
3192 * multiple codec registers which together forms a single
3193 * signed value in a MSB/LSB manner. The control supports
3194 * specifying total no of bits used to allow for bitfields
3195 * across the multiple codec registers.
3196 *
3197 * Returns 0 for success.
3198 */
3199 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
3200 struct snd_ctl_elem_value *ucontrol)
3201 {
3202 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3203 struct soc_mreg_control *mc =
3204 (struct soc_mreg_control *)kcontrol->private_value;
3205 unsigned int regbase = mc->regbase;
3206 unsigned int regcount = mc->regcount;
3207 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
3208 unsigned int regwmask = (1<<regwshift)-1;
3209 unsigned int invert = mc->invert;
3210 unsigned long mask = (1UL<<mc->nbits)-1;
3211 long min = mc->min;
3212 long max = mc->max;
3213 long val = 0;
3214 unsigned int regval;
3215 unsigned int i;
3216 int ret;
3217
3218 for (i = 0; i < regcount; i++) {
3219 ret = snd_soc_component_read(component, regbase+i, &regval);
3220 if (ret)
3221 return ret;
3222 val |= (regval & regwmask) << (regwshift*(regcount-i-1));
3223 }
3224 val &= mask;
3225 if (min < 0 && val > max)
3226 val |= ~mask;
3227 if (invert)
3228 val = max - val;
3229 ucontrol->value.integer.value[0] = val;
3230
3231 return 0;
3232 }
3233 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
3234
3235 /**
3236 * snd_soc_put_xr_sx - signed multi register get callback
3237 * @kcontrol: mreg control
3238 * @ucontrol: control element information
3239 *
3240 * Callback to set the value of a control that can span
3241 * multiple codec registers which together forms a single
3242 * signed value in a MSB/LSB manner. The control supports
3243 * specifying total no of bits used to allow for bitfields
3244 * across the multiple codec registers.
3245 *
3246 * Returns 0 for success.
3247 */
3248 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
3249 struct snd_ctl_elem_value *ucontrol)
3250 {
3251 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3252 struct soc_mreg_control *mc =
3253 (struct soc_mreg_control *)kcontrol->private_value;
3254 unsigned int regbase = mc->regbase;
3255 unsigned int regcount = mc->regcount;
3256 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
3257 unsigned int regwmask = (1<<regwshift)-1;
3258 unsigned int invert = mc->invert;
3259 unsigned long mask = (1UL<<mc->nbits)-1;
3260 long max = mc->max;
3261 long val = ucontrol->value.integer.value[0];
3262 unsigned int i, regval, regmask;
3263 int err;
3264
3265 if (invert)
3266 val = max - val;
3267 val &= mask;
3268 for (i = 0; i < regcount; i++) {
3269 regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
3270 regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
3271 err = snd_soc_component_update_bits(component, regbase+i,
3272 regmask, regval);
3273 if (err < 0)
3274 return err;
3275 }
3276
3277 return 0;
3278 }
3279 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
3280
3281 /**
3282 * snd_soc_get_strobe - strobe get callback
3283 * @kcontrol: mixer control
3284 * @ucontrol: control element information
3285 *
3286 * Callback get the value of a strobe mixer control.
3287 *
3288 * Returns 0 for success.
3289 */
3290 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
3291 struct snd_ctl_elem_value *ucontrol)
3292 {
3293 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3294 struct soc_mixer_control *mc =
3295 (struct soc_mixer_control *)kcontrol->private_value;
3296 unsigned int reg = mc->reg;
3297 unsigned int shift = mc->shift;
3298 unsigned int mask = 1 << shift;
3299 unsigned int invert = mc->invert != 0;
3300 unsigned int val;
3301 int ret;
3302
3303 ret = snd_soc_component_read(component, reg, &val);
3304 if (ret)
3305 return ret;
3306
3307 val &= mask;
3308
3309 if (shift != 0 && val != 0)
3310 val = val >> shift;
3311 ucontrol->value.enumerated.item[0] = val ^ invert;
3312
3313 return 0;
3314 }
3315 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
3316
3317 /**
3318 * snd_soc_put_strobe - strobe put callback
3319 * @kcontrol: mixer control
3320 * @ucontrol: control element information
3321 *
3322 * Callback strobe a register bit to high then low (or the inverse)
3323 * in one pass of a single mixer enum control.
3324 *
3325 * Returns 1 for success.
3326 */
3327 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
3328 struct snd_ctl_elem_value *ucontrol)
3329 {
3330 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3331 struct soc_mixer_control *mc =
3332 (struct soc_mixer_control *)kcontrol->private_value;
3333 unsigned int reg = mc->reg;
3334 unsigned int shift = mc->shift;
3335 unsigned int mask = 1 << shift;
3336 unsigned int invert = mc->invert != 0;
3337 unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
3338 unsigned int val1 = (strobe ^ invert) ? mask : 0;
3339 unsigned int val2 = (strobe ^ invert) ? 0 : mask;
3340 int err;
3341
3342 err = snd_soc_component_update_bits(component, reg, mask, val1);
3343 if (err < 0)
3344 return err;
3345
3346 return snd_soc_component_update_bits(component, reg, mask, val2);
3347 }
3348 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
3349
3350 /**
3351 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
3352 * @dai: DAI
3353 * @clk_id: DAI specific clock ID
3354 * @freq: new clock frequency in Hz
3355 * @dir: new clock direction - input/output.
3356 *
3357 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
3358 */
3359 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
3360 unsigned int freq, int dir)
3361 {
3362 if (dai->driver && dai->driver->ops->set_sysclk)
3363 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
3364 else if (dai->codec && dai->codec->driver->set_sysclk)
3365 return dai->codec->driver->set_sysclk(dai->codec, clk_id, 0,
3366 freq, dir);
3367 else
3368 return -ENOTSUPP;
3369 }
3370 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
3371
3372 /**
3373 * snd_soc_codec_set_sysclk - configure CODEC system or master clock.
3374 * @codec: CODEC
3375 * @clk_id: DAI specific clock ID
3376 * @source: Source for the clock
3377 * @freq: new clock frequency in Hz
3378 * @dir: new clock direction - input/output.
3379 *
3380 * Configures the CODEC master (MCLK) or system (SYSCLK) clocking.
3381 */
3382 int snd_soc_codec_set_sysclk(struct snd_soc_codec *codec, int clk_id,
3383 int source, unsigned int freq, int dir)
3384 {
3385 if (codec->driver->set_sysclk)
3386 return codec->driver->set_sysclk(codec, clk_id, source,
3387 freq, dir);
3388 else
3389 return -ENOTSUPP;
3390 }
3391 EXPORT_SYMBOL_GPL(snd_soc_codec_set_sysclk);
3392
3393 /**
3394 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
3395 * @dai: DAI
3396 * @div_id: DAI specific clock divider ID
3397 * @div: new clock divisor.
3398 *
3399 * Configures the clock dividers. This is used to derive the best DAI bit and
3400 * frame clocks from the system or master clock. It's best to set the DAI bit
3401 * and frame clocks as low as possible to save system power.
3402 */
3403 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
3404 int div_id, int div)
3405 {
3406 if (dai->driver && dai->driver->ops->set_clkdiv)
3407 return dai->driver->ops->set_clkdiv(dai, div_id, div);
3408 else
3409 return -EINVAL;
3410 }
3411 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
3412
3413 /**
3414 * snd_soc_dai_set_pll - configure DAI PLL.
3415 * @dai: DAI
3416 * @pll_id: DAI specific PLL ID
3417 * @source: DAI specific source for the PLL
3418 * @freq_in: PLL input clock frequency in Hz
3419 * @freq_out: requested PLL output clock frequency in Hz
3420 *
3421 * Configures and enables PLL to generate output clock based on input clock.
3422 */
3423 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
3424 unsigned int freq_in, unsigned int freq_out)
3425 {
3426 if (dai->driver && dai->driver->ops->set_pll)
3427 return dai->driver->ops->set_pll(dai, pll_id, source,
3428 freq_in, freq_out);
3429 else if (dai->codec && dai->codec->driver->set_pll)
3430 return dai->codec->driver->set_pll(dai->codec, pll_id, source,
3431 freq_in, freq_out);
3432 else
3433 return -EINVAL;
3434 }
3435 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
3436
3437 /*
3438 * snd_soc_codec_set_pll - configure codec PLL.
3439 * @codec: CODEC
3440 * @pll_id: DAI specific PLL ID
3441 * @source: DAI specific source for the PLL
3442 * @freq_in: PLL input clock frequency in Hz
3443 * @freq_out: requested PLL output clock frequency in Hz
3444 *
3445 * Configures and enables PLL to generate output clock based on input clock.
3446 */
3447 int snd_soc_codec_set_pll(struct snd_soc_codec *codec, int pll_id, int source,
3448 unsigned int freq_in, unsigned int freq_out)
3449 {
3450 if (codec->driver->set_pll)
3451 return codec->driver->set_pll(codec, pll_id, source,
3452 freq_in, freq_out);
3453 else
3454 return -EINVAL;
3455 }
3456 EXPORT_SYMBOL_GPL(snd_soc_codec_set_pll);
3457
3458 /**
3459 * snd_soc_dai_set_bclk_ratio - configure BCLK to sample rate ratio.
3460 * @dai: DAI
3461 * @ratio Ratio of BCLK to Sample rate.
3462 *
3463 * Configures the DAI for a preset BCLK to sample rate ratio.
3464 */
3465 int snd_soc_dai_set_bclk_ratio(struct snd_soc_dai *dai, unsigned int ratio)
3466 {
3467 if (dai->driver && dai->driver->ops->set_bclk_ratio)
3468 return dai->driver->ops->set_bclk_ratio(dai, ratio);
3469 else
3470 return -EINVAL;
3471 }
3472 EXPORT_SYMBOL_GPL(snd_soc_dai_set_bclk_ratio);
3473
3474 /**
3475 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
3476 * @dai: DAI
3477 * @fmt: SND_SOC_DAIFMT_ format value.
3478 *
3479 * Configures the DAI hardware format and clocking.
3480 */
3481 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
3482 {
3483 if (dai->driver == NULL)
3484 return -EINVAL;
3485 if (dai->driver->ops->set_fmt == NULL)
3486 return -ENOTSUPP;
3487 return dai->driver->ops->set_fmt(dai, fmt);
3488 }
3489 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
3490
3491 /**
3492 * snd_soc_xlate_tdm_slot - generate tx/rx slot mask.
3493 * @slots: Number of slots in use.
3494 * @tx_mask: bitmask representing active TX slots.
3495 * @rx_mask: bitmask representing active RX slots.
3496 *
3497 * Generates the TDM tx and rx slot default masks for DAI.
3498 */
3499 static int snd_soc_xlate_tdm_slot_mask(unsigned int slots,
3500 unsigned int *tx_mask,
3501 unsigned int *rx_mask)
3502 {
3503 if (*tx_mask || *rx_mask)
3504 return 0;
3505
3506 if (!slots)
3507 return -EINVAL;
3508
3509 *tx_mask = (1 << slots) - 1;
3510 *rx_mask = (1 << slots) - 1;
3511
3512 return 0;
3513 }
3514
3515 /**
3516 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
3517 * @dai: DAI
3518 * @tx_mask: bitmask representing active TX slots.
3519 * @rx_mask: bitmask representing active RX slots.
3520 * @slots: Number of slots in use.
3521 * @slot_width: Width in bits for each slot.
3522 *
3523 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
3524 * specific.
3525 */
3526 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
3527 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
3528 {
3529 if (dai->driver && dai->driver->ops->xlate_tdm_slot_mask)
3530 dai->driver->ops->xlate_tdm_slot_mask(slots,
3531 &tx_mask, &rx_mask);
3532 else
3533 snd_soc_xlate_tdm_slot_mask(slots, &tx_mask, &rx_mask);
3534
3535 dai->tx_mask = tx_mask;
3536 dai->rx_mask = rx_mask;
3537
3538 if (dai->driver && dai->driver->ops->set_tdm_slot)
3539 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
3540 slots, slot_width);
3541 else
3542 return -ENOTSUPP;
3543 }
3544 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
3545
3546 /**
3547 * snd_soc_dai_set_channel_map - configure DAI audio channel map
3548 * @dai: DAI
3549 * @tx_num: how many TX channels
3550 * @tx_slot: pointer to an array which imply the TX slot number channel
3551 * 0~num-1 uses
3552 * @rx_num: how many RX channels
3553 * @rx_slot: pointer to an array which imply the RX slot number channel
3554 * 0~num-1 uses
3555 *
3556 * configure the relationship between channel number and TDM slot number.
3557 */
3558 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
3559 unsigned int tx_num, unsigned int *tx_slot,
3560 unsigned int rx_num, unsigned int *rx_slot)
3561 {
3562 if (dai->driver && dai->driver->ops->set_channel_map)
3563 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
3564 rx_num, rx_slot);
3565 else
3566 return -EINVAL;
3567 }
3568 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
3569
3570 /**
3571 * snd_soc_dai_set_tristate - configure DAI system or master clock.
3572 * @dai: DAI
3573 * @tristate: tristate enable
3574 *
3575 * Tristates the DAI so that others can use it.
3576 */
3577 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
3578 {
3579 if (dai->driver && dai->driver->ops->set_tristate)
3580 return dai->driver->ops->set_tristate(dai, tristate);
3581 else
3582 return -EINVAL;
3583 }
3584 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
3585
3586 /**
3587 * snd_soc_dai_digital_mute - configure DAI system or master clock.
3588 * @dai: DAI
3589 * @mute: mute enable
3590 * @direction: stream to mute
3591 *
3592 * Mutes the DAI DAC.
3593 */
3594 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute,
3595 int direction)
3596 {
3597 if (!dai->driver)
3598 return -ENOTSUPP;
3599
3600 if (dai->driver->ops->mute_stream)
3601 return dai->driver->ops->mute_stream(dai, mute, direction);
3602 else if (direction == SNDRV_PCM_STREAM_PLAYBACK &&
3603 dai->driver->ops->digital_mute)
3604 return dai->driver->ops->digital_mute(dai, mute);
3605 else
3606 return -ENOTSUPP;
3607 }
3608 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
3609
3610 static int snd_soc_init_multicodec(struct snd_soc_card *card,
3611 struct snd_soc_dai_link *dai_link)
3612 {
3613 /* Legacy codec/codec_dai link is a single entry in multicodec */
3614 if (dai_link->codec_name || dai_link->codec_of_node ||
3615 dai_link->codec_dai_name) {
3616 dai_link->num_codecs = 1;
3617
3618 dai_link->codecs = devm_kzalloc(card->dev,
3619 sizeof(struct snd_soc_dai_link_component),
3620 GFP_KERNEL);
3621 if (!dai_link->codecs)
3622 return -ENOMEM;
3623
3624 dai_link->codecs[0].name = dai_link->codec_name;
3625 dai_link->codecs[0].of_node = dai_link->codec_of_node;
3626 dai_link->codecs[0].dai_name = dai_link->codec_dai_name;
3627 }
3628
3629 if (!dai_link->codecs) {
3630 dev_err(card->dev, "ASoC: DAI link has no CODECs\n");
3631 return -EINVAL;
3632 }
3633
3634 return 0;
3635 }
3636
3637 /**
3638 * snd_soc_register_card - Register a card with the ASoC core
3639 *
3640 * @card: Card to register
3641 *
3642 */
3643 int snd_soc_register_card(struct snd_soc_card *card)
3644 {
3645 int i, j, ret;
3646
3647 if (!card->name || !card->dev)
3648 return -EINVAL;
3649
3650 for (i = 0; i < card->num_links; i++) {
3651 struct snd_soc_dai_link *link = &card->dai_link[i];
3652
3653 ret = snd_soc_init_multicodec(card, link);
3654 if (ret) {
3655 dev_err(card->dev, "ASoC: failed to init multicodec\n");
3656 return ret;
3657 }
3658
3659 for (j = 0; j < link->num_codecs; j++) {
3660 /*
3661 * Codec must be specified by 1 of name or OF node,
3662 * not both or neither.
3663 */
3664 if (!!link->codecs[j].name ==
3665 !!link->codecs[j].of_node) {
3666 dev_err(card->dev, "ASoC: Neither/both codec name/of_node are set for %s\n",
3667 link->name);
3668 return -EINVAL;
3669 }
3670 /* Codec DAI name must be specified */
3671 if (!link->codecs[j].dai_name) {
3672 dev_err(card->dev, "ASoC: codec_dai_name not set for %s\n",
3673 link->name);
3674 return -EINVAL;
3675 }
3676 }
3677
3678 /*
3679 * Platform may be specified by either name or OF node, but
3680 * can be left unspecified, and a dummy platform will be used.
3681 */
3682 if (link->platform_name && link->platform_of_node) {
3683 dev_err(card->dev,
3684 "ASoC: Both platform name/of_node are set for %s\n",
3685 link->name);
3686 return -EINVAL;
3687 }
3688
3689 /*
3690 * CPU device may be specified by either name or OF node, but
3691 * can be left unspecified, and will be matched based on DAI
3692 * name alone..
3693 */
3694 if (link->cpu_name && link->cpu_of_node) {
3695 dev_err(card->dev,
3696 "ASoC: Neither/both cpu name/of_node are set for %s\n",
3697 link->name);
3698 return -EINVAL;
3699 }
3700 /*
3701 * At least one of CPU DAI name or CPU device name/node must be
3702 * specified
3703 */
3704 if (!link->cpu_dai_name &&
3705 !(link->cpu_name || link->cpu_of_node)) {
3706 dev_err(card->dev,
3707 "ASoC: Neither cpu_dai_name nor cpu_name/of_node are set for %s\n",
3708 link->name);
3709 return -EINVAL;
3710 }
3711 }
3712
3713 dev_set_drvdata(card->dev, card);
3714
3715 snd_soc_initialize_card_lists(card);
3716
3717 soc_init_card_debugfs(card);
3718
3719 card->rtd = devm_kzalloc(card->dev,
3720 sizeof(struct snd_soc_pcm_runtime) *
3721 (card->num_links + card->num_aux_devs),
3722 GFP_KERNEL);
3723 if (card->rtd == NULL)
3724 return -ENOMEM;
3725 card->num_rtd = 0;
3726 card->rtd_aux = &card->rtd[card->num_links];
3727
3728 for (i = 0; i < card->num_links; i++) {
3729 card->rtd[i].card = card;
3730 card->rtd[i].dai_link = &card->dai_link[i];
3731 card->rtd[i].codec_dais = devm_kzalloc(card->dev,
3732 sizeof(struct snd_soc_dai *) *
3733 (card->rtd[i].dai_link->num_codecs),
3734 GFP_KERNEL);
3735 if (card->rtd[i].codec_dais == NULL)
3736 return -ENOMEM;
3737 }
3738
3739 for (i = 0; i < card->num_aux_devs; i++)
3740 card->rtd_aux[i].card = card;
3741
3742 INIT_LIST_HEAD(&card->dapm_dirty);
3743 card->instantiated = 0;
3744 mutex_init(&card->mutex);
3745 mutex_init(&card->dapm_mutex);
3746
3747 ret = snd_soc_instantiate_card(card);
3748 if (ret != 0)
3749 soc_cleanup_card_debugfs(card);
3750
3751 /* deactivate pins to sleep state */
3752 for (i = 0; i < card->num_rtd; i++) {
3753 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
3754 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
3755 int j;
3756
3757 for (j = 0; j < rtd->num_codecs; j++) {
3758 struct snd_soc_dai *codec_dai = rtd->codec_dais[j];
3759 if (!codec_dai->active)
3760 pinctrl_pm_select_sleep_state(codec_dai->dev);
3761 }
3762
3763 if (!cpu_dai->active)
3764 pinctrl_pm_select_sleep_state(cpu_dai->dev);
3765 }
3766
3767 return ret;
3768 }
3769 EXPORT_SYMBOL_GPL(snd_soc_register_card);
3770
3771 /**
3772 * snd_soc_unregister_card - Unregister a card with the ASoC core
3773 *
3774 * @card: Card to unregister
3775 *
3776 */
3777 int snd_soc_unregister_card(struct snd_soc_card *card)
3778 {
3779 if (card->instantiated) {
3780 card->instantiated = false;
3781 snd_soc_dapm_shutdown(card);
3782 soc_cleanup_card_resources(card);
3783 }
3784 dev_dbg(card->dev, "ASoC: Unregistered card '%s'\n", card->name);
3785
3786 return 0;
3787 }
3788 EXPORT_SYMBOL_GPL(snd_soc_unregister_card);
3789
3790 /*
3791 * Simplify DAI link configuration by removing ".-1" from device names
3792 * and sanitizing names.
3793 */
3794 static char *fmt_single_name(struct device *dev, int *id)
3795 {
3796 char *found, name[NAME_SIZE];
3797 int id1, id2;
3798
3799 if (dev_name(dev) == NULL)
3800 return NULL;
3801
3802 strlcpy(name, dev_name(dev), NAME_SIZE);
3803
3804 /* are we a "%s.%d" name (platform and SPI components) */
3805 found = strstr(name, dev->driver->name);
3806 if (found) {
3807 /* get ID */
3808 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
3809
3810 /* discard ID from name if ID == -1 */
3811 if (*id == -1)
3812 found[strlen(dev->driver->name)] = '\0';
3813 }
3814
3815 } else {
3816 /* I2C component devices are named "bus-addr" */
3817 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
3818 char tmp[NAME_SIZE];
3819
3820 /* create unique ID number from I2C addr and bus */
3821 *id = ((id1 & 0xffff) << 16) + id2;
3822
3823 /* sanitize component name for DAI link creation */
3824 snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
3825 strlcpy(name, tmp, NAME_SIZE);
3826 } else
3827 *id = 0;
3828 }
3829
3830 return kstrdup(name, GFP_KERNEL);
3831 }
3832
3833 /*
3834 * Simplify DAI link naming for single devices with multiple DAIs by removing
3835 * any ".-1" and using the DAI name (instead of device name).
3836 */
3837 static inline char *fmt_multiple_name(struct device *dev,
3838 struct snd_soc_dai_driver *dai_drv)
3839 {
3840 if (dai_drv->name == NULL) {
3841 dev_err(dev,
3842 "ASoC: error - multiple DAI %s registered with no name\n",
3843 dev_name(dev));
3844 return NULL;
3845 }
3846
3847 return kstrdup(dai_drv->name, GFP_KERNEL);
3848 }
3849
3850 /**
3851 * snd_soc_unregister_dai - Unregister DAIs from the ASoC core
3852 *
3853 * @component: The component for which the DAIs should be unregistered
3854 */
3855 static void snd_soc_unregister_dais(struct snd_soc_component *component)
3856 {
3857 struct snd_soc_dai *dai, *_dai;
3858
3859 list_for_each_entry_safe(dai, _dai, &component->dai_list, list) {
3860 dev_dbg(component->dev, "ASoC: Unregistered DAI '%s'\n",
3861 dai->name);
3862 list_del(&dai->list);
3863 kfree(dai->name);
3864 kfree(dai);
3865 }
3866 }
3867
3868 /**
3869 * snd_soc_register_dais - Register a DAI with the ASoC core
3870 *
3871 * @component: The component the DAIs are registered for
3872 * @dai_drv: DAI driver to use for the DAIs
3873 * @count: Number of DAIs
3874 * @legacy_dai_naming: Use the legacy naming scheme and let the DAI inherit the
3875 * parent's name.
3876 */
3877 static int snd_soc_register_dais(struct snd_soc_component *component,
3878 struct snd_soc_dai_driver *dai_drv, size_t count,
3879 bool legacy_dai_naming)
3880 {
3881 struct device *dev = component->dev;
3882 struct snd_soc_dai *dai;
3883 unsigned int i;
3884 int ret;
3885
3886 dev_dbg(dev, "ASoC: dai register %s #%Zu\n", dev_name(dev), count);
3887
3888 component->dai_drv = dai_drv;
3889 component->num_dai = count;
3890
3891 for (i = 0; i < count; i++) {
3892
3893 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3894 if (dai == NULL) {
3895 ret = -ENOMEM;
3896 goto err;
3897 }
3898
3899 /*
3900 * Back in the old days when we still had component-less DAIs,
3901 * instead of having a static name, component-less DAIs would
3902 * inherit the name of the parent device so it is possible to
3903 * register multiple instances of the DAI. We still need to keep
3904 * the same naming style even though those DAIs are not
3905 * component-less anymore.
3906 */
3907 if (count == 1 && legacy_dai_naming) {
3908 dai->name = fmt_single_name(dev, &dai->id);
3909 } else {
3910 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3911 if (dai_drv[i].id)
3912 dai->id = dai_drv[i].id;
3913 else
3914 dai->id = i;
3915 }
3916 if (dai->name == NULL) {
3917 kfree(dai);
3918 ret = -ENOMEM;
3919 goto err;
3920 }
3921
3922 dai->component = component;
3923 dai->dev = dev;
3924 dai->driver = &dai_drv[i];
3925 if (!dai->driver->ops)
3926 dai->driver->ops = &null_dai_ops;
3927
3928 list_add(&dai->list, &component->dai_list);
3929
3930 dev_dbg(dev, "ASoC: Registered DAI '%s'\n", dai->name);
3931 }
3932
3933 return 0;
3934
3935 err:
3936 snd_soc_unregister_dais(component);
3937
3938 return ret;
3939 }
3940
3941 static void snd_soc_component_seq_notifier(struct snd_soc_dapm_context *dapm,
3942 enum snd_soc_dapm_type type, int subseq)
3943 {
3944 struct snd_soc_component *component = dapm->component;
3945
3946 component->driver->seq_notifier(component, type, subseq);
3947 }
3948
3949 static int snd_soc_component_stream_event(struct snd_soc_dapm_context *dapm,
3950 int event)
3951 {
3952 struct snd_soc_component *component = dapm->component;
3953
3954 return component->driver->stream_event(component, event);
3955 }
3956
3957 static int snd_soc_component_initialize(struct snd_soc_component *component,
3958 const struct snd_soc_component_driver *driver, struct device *dev)
3959 {
3960 struct snd_soc_dapm_context *dapm;
3961
3962 component->name = fmt_single_name(dev, &component->id);
3963 if (!component->name) {
3964 dev_err(dev, "ASoC: Failed to allocate name\n");
3965 return -ENOMEM;
3966 }
3967
3968 component->dev = dev;
3969 component->driver = driver;
3970 component->probe = component->driver->probe;
3971 component->remove = component->driver->remove;
3972
3973 if (!component->dapm_ptr)
3974 component->dapm_ptr = &component->dapm;
3975
3976 dapm = component->dapm_ptr;
3977 dapm->dev = dev;
3978 dapm->component = component;
3979 dapm->bias_level = SND_SOC_BIAS_OFF;
3980 dapm->idle_bias_off = true;
3981 if (driver->seq_notifier)
3982 dapm->seq_notifier = snd_soc_component_seq_notifier;
3983 if (driver->stream_event)
3984 dapm->stream_event = snd_soc_component_stream_event;
3985
3986 component->controls = driver->controls;
3987 component->num_controls = driver->num_controls;
3988 component->dapm_widgets = driver->dapm_widgets;
3989 component->num_dapm_widgets = driver->num_dapm_widgets;
3990 component->dapm_routes = driver->dapm_routes;
3991 component->num_dapm_routes = driver->num_dapm_routes;
3992
3993 INIT_LIST_HEAD(&component->dai_list);
3994 mutex_init(&component->io_mutex);
3995
3996 return 0;
3997 }
3998
3999 static void snd_soc_component_init_regmap(struct snd_soc_component *component)
4000 {
4001 if (!component->regmap)
4002 component->regmap = dev_get_regmap(component->dev, NULL);
4003 if (component->regmap) {
4004 int val_bytes = regmap_get_val_bytes(component->regmap);
4005 /* Errors are legitimate for non-integer byte multiples */
4006 if (val_bytes > 0)
4007 component->val_bytes = val_bytes;
4008 }
4009 }
4010
4011 static void snd_soc_component_add_unlocked(struct snd_soc_component *component)
4012 {
4013 if (!component->write && !component->read)
4014 snd_soc_component_init_regmap(component);
4015
4016 list_add(&component->list, &component_list);
4017 }
4018
4019 static void snd_soc_component_add(struct snd_soc_component *component)
4020 {
4021 mutex_lock(&client_mutex);
4022 snd_soc_component_add_unlocked(component);
4023 mutex_unlock(&client_mutex);
4024 }
4025
4026 static void snd_soc_component_cleanup(struct snd_soc_component *component)
4027 {
4028 snd_soc_unregister_dais(component);
4029 kfree(component->name);
4030 }
4031
4032 static void snd_soc_component_del_unlocked(struct snd_soc_component *component)
4033 {
4034 list_del(&component->list);
4035 }
4036
4037 static void snd_soc_component_del(struct snd_soc_component *component)
4038 {
4039 mutex_lock(&client_mutex);
4040 snd_soc_component_del_unlocked(component);
4041 mutex_unlock(&client_mutex);
4042 }
4043
4044 int snd_soc_register_component(struct device *dev,
4045 const struct snd_soc_component_driver *cmpnt_drv,
4046 struct snd_soc_dai_driver *dai_drv,
4047 int num_dai)
4048 {
4049 struct snd_soc_component *cmpnt;
4050 int ret;
4051
4052 cmpnt = kzalloc(sizeof(*cmpnt), GFP_KERNEL);
4053 if (!cmpnt) {
4054 dev_err(dev, "ASoC: Failed to allocate memory\n");
4055 return -ENOMEM;
4056 }
4057
4058 ret = snd_soc_component_initialize(cmpnt, cmpnt_drv, dev);
4059 if (ret)
4060 goto err_free;
4061
4062 cmpnt->ignore_pmdown_time = true;
4063 cmpnt->registered_as_component = true;
4064
4065 ret = snd_soc_register_dais(cmpnt, dai_drv, num_dai, true);
4066 if (ret < 0) {
4067 dev_err(dev, "ASoC: Failed to regster DAIs: %d\n", ret);
4068 goto err_cleanup;
4069 }
4070
4071 snd_soc_component_add(cmpnt);
4072
4073 return 0;
4074
4075 err_cleanup:
4076 snd_soc_component_cleanup(cmpnt);
4077 err_free:
4078 kfree(cmpnt);
4079 return ret;
4080 }
4081 EXPORT_SYMBOL_GPL(snd_soc_register_component);
4082
4083 /**
4084 * snd_soc_unregister_component - Unregister a component from the ASoC core
4085 *
4086 */
4087 void snd_soc_unregister_component(struct device *dev)
4088 {
4089 struct snd_soc_component *cmpnt;
4090
4091 list_for_each_entry(cmpnt, &component_list, list) {
4092 if (dev == cmpnt->dev && cmpnt->registered_as_component)
4093 goto found;
4094 }
4095 return;
4096
4097 found:
4098 snd_soc_component_del(cmpnt);
4099 snd_soc_component_cleanup(cmpnt);
4100 kfree(cmpnt);
4101 }
4102 EXPORT_SYMBOL_GPL(snd_soc_unregister_component);
4103
4104 static int snd_soc_platform_drv_probe(struct snd_soc_component *component)
4105 {
4106 struct snd_soc_platform *platform = snd_soc_component_to_platform(component);
4107
4108 return platform->driver->probe(platform);
4109 }
4110
4111 static void snd_soc_platform_drv_remove(struct snd_soc_component *component)
4112 {
4113 struct snd_soc_platform *platform = snd_soc_component_to_platform(component);
4114
4115 platform->driver->remove(platform);
4116 }
4117
4118 /**
4119 * snd_soc_add_platform - Add a platform to the ASoC core
4120 * @dev: The parent device for the platform
4121 * @platform: The platform to add
4122 * @platform_driver: The driver for the platform
4123 */
4124 int snd_soc_add_platform(struct device *dev, struct snd_soc_platform *platform,
4125 const struct snd_soc_platform_driver *platform_drv)
4126 {
4127 int ret;
4128
4129 ret = snd_soc_component_initialize(&platform->component,
4130 &platform_drv->component_driver, dev);
4131 if (ret)
4132 return ret;
4133
4134 platform->dev = dev;
4135 platform->driver = platform_drv;
4136
4137 if (platform_drv->probe)
4138 platform->component.probe = snd_soc_platform_drv_probe;
4139 if (platform_drv->remove)
4140 platform->component.remove = snd_soc_platform_drv_remove;
4141
4142 #ifdef CONFIG_DEBUG_FS
4143 platform->component.debugfs_prefix = "platform";
4144 #endif
4145
4146 mutex_lock(&client_mutex);
4147 snd_soc_component_add_unlocked(&platform->component);
4148 list_add(&platform->list, &platform_list);
4149 mutex_unlock(&client_mutex);
4150
4151 dev_dbg(dev, "ASoC: Registered platform '%s'\n",
4152 platform->component.name);
4153
4154 return 0;
4155 }
4156 EXPORT_SYMBOL_GPL(snd_soc_add_platform);
4157
4158 /**
4159 * snd_soc_register_platform - Register a platform with the ASoC core
4160 *
4161 * @platform: platform to register
4162 */
4163 int snd_soc_register_platform(struct device *dev,
4164 const struct snd_soc_platform_driver *platform_drv)
4165 {
4166 struct snd_soc_platform *platform;
4167 int ret;
4168
4169 dev_dbg(dev, "ASoC: platform register %s\n", dev_name(dev));
4170
4171 platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
4172 if (platform == NULL)
4173 return -ENOMEM;
4174
4175 ret = snd_soc_add_platform(dev, platform, platform_drv);
4176 if (ret)
4177 kfree(platform);
4178
4179 return ret;
4180 }
4181 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
4182
4183 /**
4184 * snd_soc_remove_platform - Remove a platform from the ASoC core
4185 * @platform: the platform to remove
4186 */
4187 void snd_soc_remove_platform(struct snd_soc_platform *platform)
4188 {
4189
4190 mutex_lock(&client_mutex);
4191 list_del(&platform->list);
4192 snd_soc_component_del_unlocked(&platform->component);
4193 mutex_unlock(&client_mutex);
4194
4195 dev_dbg(platform->dev, "ASoC: Unregistered platform '%s'\n",
4196 platform->component.name);
4197
4198 snd_soc_component_cleanup(&platform->component);
4199 }
4200 EXPORT_SYMBOL_GPL(snd_soc_remove_platform);
4201
4202 struct snd_soc_platform *snd_soc_lookup_platform(struct device *dev)
4203 {
4204 struct snd_soc_platform *platform;
4205
4206 list_for_each_entry(platform, &platform_list, list) {
4207 if (dev == platform->dev)
4208 return platform;
4209 }
4210
4211 return NULL;
4212 }
4213 EXPORT_SYMBOL_GPL(snd_soc_lookup_platform);
4214
4215 /**
4216 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
4217 *
4218 * @platform: platform to unregister
4219 */
4220 void snd_soc_unregister_platform(struct device *dev)
4221 {
4222 struct snd_soc_platform *platform;
4223
4224 platform = snd_soc_lookup_platform(dev);
4225 if (!platform)
4226 return;
4227
4228 snd_soc_remove_platform(platform);
4229 kfree(platform);
4230 }
4231 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
4232
4233 static u64 codec_format_map[] = {
4234 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
4235 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
4236 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
4237 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
4238 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
4239 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
4240 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
4241 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
4242 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
4243 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
4244 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
4245 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
4246 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
4247 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
4248 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
4249 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
4250 };
4251
4252 /* Fix up the DAI formats for endianness: codecs don't actually see
4253 * the endianness of the data but we're using the CPU format
4254 * definitions which do need to include endianness so we ensure that
4255 * codec DAIs always have both big and little endian variants set.
4256 */
4257 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
4258 {
4259 int i;
4260
4261 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
4262 if (stream->formats & codec_format_map[i])
4263 stream->formats |= codec_format_map[i];
4264 }
4265
4266 static int snd_soc_codec_drv_probe(struct snd_soc_component *component)
4267 {
4268 struct snd_soc_codec *codec = snd_soc_component_to_codec(component);
4269
4270 return codec->driver->probe(codec);
4271 }
4272
4273 static void snd_soc_codec_drv_remove(struct snd_soc_component *component)
4274 {
4275 struct snd_soc_codec *codec = snd_soc_component_to_codec(component);
4276
4277 codec->driver->remove(codec);
4278 }
4279
4280 static int snd_soc_codec_drv_write(struct snd_soc_component *component,
4281 unsigned int reg, unsigned int val)
4282 {
4283 struct snd_soc_codec *codec = snd_soc_component_to_codec(component);
4284
4285 return codec->driver->write(codec, reg, val);
4286 }
4287
4288 static int snd_soc_codec_drv_read(struct snd_soc_component *component,
4289 unsigned int reg, unsigned int *val)
4290 {
4291 struct snd_soc_codec *codec = snd_soc_component_to_codec(component);
4292
4293 *val = codec->driver->read(codec, reg);
4294
4295 return 0;
4296 }
4297
4298 static int snd_soc_codec_set_bias_level(struct snd_soc_dapm_context *dapm,
4299 enum snd_soc_bias_level level)
4300 {
4301 struct snd_soc_codec *codec = snd_soc_dapm_to_codec(dapm);
4302
4303 return codec->driver->set_bias_level(codec, level);
4304 }
4305
4306 /**
4307 * snd_soc_register_codec - Register a codec with the ASoC core
4308 *
4309 * @codec: codec to register
4310 */
4311 int snd_soc_register_codec(struct device *dev,
4312 const struct snd_soc_codec_driver *codec_drv,
4313 struct snd_soc_dai_driver *dai_drv,
4314 int num_dai)
4315 {
4316 struct snd_soc_codec *codec;
4317 struct snd_soc_dai *dai;
4318 int ret, i;
4319
4320 dev_dbg(dev, "codec register %s\n", dev_name(dev));
4321
4322 codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
4323 if (codec == NULL)
4324 return -ENOMEM;
4325
4326 codec->component.dapm_ptr = &codec->dapm;
4327 codec->component.codec = codec;
4328
4329 ret = snd_soc_component_initialize(&codec->component,
4330 &codec_drv->component_driver, dev);
4331 if (ret)
4332 goto err_free;
4333
4334 if (codec_drv->controls) {
4335 codec->component.controls = codec_drv->controls;
4336 codec->component.num_controls = codec_drv->num_controls;
4337 }
4338 if (codec_drv->dapm_widgets) {
4339 codec->component.dapm_widgets = codec_drv->dapm_widgets;
4340 codec->component.num_dapm_widgets = codec_drv->num_dapm_widgets;
4341 }
4342 if (codec_drv->dapm_routes) {
4343 codec->component.dapm_routes = codec_drv->dapm_routes;
4344 codec->component.num_dapm_routes = codec_drv->num_dapm_routes;
4345 }
4346
4347 if (codec_drv->probe)
4348 codec->component.probe = snd_soc_codec_drv_probe;
4349 if (codec_drv->remove)
4350 codec->component.remove = snd_soc_codec_drv_remove;
4351 if (codec_drv->write)
4352 codec->component.write = snd_soc_codec_drv_write;
4353 if (codec_drv->read)
4354 codec->component.read = snd_soc_codec_drv_read;
4355 codec->component.ignore_pmdown_time = codec_drv->ignore_pmdown_time;
4356 codec->dapm.idle_bias_off = codec_drv->idle_bias_off;
4357 codec->dapm.suspend_bias_off = codec_drv->suspend_bias_off;
4358 if (codec_drv->seq_notifier)
4359 codec->dapm.seq_notifier = codec_drv->seq_notifier;
4360 if (codec_drv->set_bias_level)
4361 codec->dapm.set_bias_level = snd_soc_codec_set_bias_level;
4362 codec->dev = dev;
4363 codec->driver = codec_drv;
4364 codec->component.val_bytes = codec_drv->reg_word_size;
4365 mutex_init(&codec->mutex);
4366
4367 #ifdef CONFIG_DEBUG_FS
4368 codec->component.init_debugfs = soc_init_codec_debugfs;
4369 codec->component.debugfs_prefix = "codec";
4370 #endif
4371
4372 if (codec_drv->get_regmap)
4373 codec->component.regmap = codec_drv->get_regmap(dev);
4374
4375 for (i = 0; i < num_dai; i++) {
4376 fixup_codec_formats(&dai_drv[i].playback);
4377 fixup_codec_formats(&dai_drv[i].capture);
4378 }
4379
4380 ret = snd_soc_register_dais(&codec->component, dai_drv, num_dai, false);
4381 if (ret < 0) {
4382 dev_err(dev, "ASoC: Failed to regster DAIs: %d\n", ret);
4383 goto err_cleanup;
4384 }
4385
4386 list_for_each_entry(dai, &codec->component.dai_list, list)
4387 dai->codec = codec;
4388
4389 mutex_lock(&client_mutex);
4390 snd_soc_component_add_unlocked(&codec->component);
4391 list_add(&codec->list, &codec_list);
4392 mutex_unlock(&client_mutex);
4393
4394 dev_dbg(codec->dev, "ASoC: Registered codec '%s'\n",
4395 codec->component.name);
4396 return 0;
4397
4398 err_cleanup:
4399 snd_soc_component_cleanup(&codec->component);
4400 err_free:
4401 kfree(codec);
4402 return ret;
4403 }
4404 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
4405
4406 /**
4407 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
4408 *
4409 * @codec: codec to unregister
4410 */
4411 void snd_soc_unregister_codec(struct device *dev)
4412 {
4413 struct snd_soc_codec *codec;
4414
4415 list_for_each_entry(codec, &codec_list, list) {
4416 if (dev == codec->dev)
4417 goto found;
4418 }
4419 return;
4420
4421 found:
4422
4423 mutex_lock(&client_mutex);
4424 list_del(&codec->list);
4425 snd_soc_component_del_unlocked(&codec->component);
4426 mutex_unlock(&client_mutex);
4427
4428 dev_dbg(codec->dev, "ASoC: Unregistered codec '%s'\n",
4429 codec->component.name);
4430
4431 snd_soc_component_cleanup(&codec->component);
4432 snd_soc_cache_exit(codec);
4433 kfree(codec);
4434 }
4435 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
4436
4437 /* Retrieve a card's name from device tree */
4438 int snd_soc_of_parse_card_name(struct snd_soc_card *card,
4439 const char *propname)
4440 {
4441 struct device_node *np;
4442 int ret;
4443
4444 if (!card->dev) {
4445 pr_err("card->dev is not set before calling %s\n", __func__);
4446 return -EINVAL;
4447 }
4448
4449 np = card->dev->of_node;
4450
4451 ret = of_property_read_string_index(np, propname, 0, &card->name);
4452 /*
4453 * EINVAL means the property does not exist. This is fine providing
4454 * card->name was previously set, which is checked later in
4455 * snd_soc_register_card.
4456 */
4457 if (ret < 0 && ret != -EINVAL) {
4458 dev_err(card->dev,
4459 "ASoC: Property '%s' could not be read: %d\n",
4460 propname, ret);
4461 return ret;
4462 }
4463
4464 return 0;
4465 }
4466 EXPORT_SYMBOL_GPL(snd_soc_of_parse_card_name);
4467
4468 static const struct snd_soc_dapm_widget simple_widgets[] = {
4469 SND_SOC_DAPM_MIC("Microphone", NULL),
4470 SND_SOC_DAPM_LINE("Line", NULL),
4471 SND_SOC_DAPM_HP("Headphone", NULL),
4472 SND_SOC_DAPM_SPK("Speaker", NULL),
4473 };
4474
4475 int snd_soc_of_parse_audio_simple_widgets(struct snd_soc_card *card,
4476 const char *propname)
4477 {
4478 struct device_node *np = card->dev->of_node;
4479 struct snd_soc_dapm_widget *widgets;
4480 const char *template, *wname;
4481 int i, j, num_widgets, ret;
4482
4483 num_widgets = of_property_count_strings(np, propname);
4484 if (num_widgets < 0) {
4485 dev_err(card->dev,
4486 "ASoC: Property '%s' does not exist\n", propname);
4487 return -EINVAL;
4488 }
4489 if (num_widgets & 1) {
4490 dev_err(card->dev,
4491 "ASoC: Property '%s' length is not even\n", propname);
4492 return -EINVAL;
4493 }
4494
4495 num_widgets /= 2;
4496 if (!num_widgets) {
4497 dev_err(card->dev, "ASoC: Property '%s's length is zero\n",
4498 propname);
4499 return -EINVAL;
4500 }
4501
4502 widgets = devm_kcalloc(card->dev, num_widgets, sizeof(*widgets),
4503 GFP_KERNEL);
4504 if (!widgets) {
4505 dev_err(card->dev,
4506 "ASoC: Could not allocate memory for widgets\n");
4507 return -ENOMEM;
4508 }
4509
4510 for (i = 0; i < num_widgets; i++) {
4511 ret = of_property_read_string_index(np, propname,
4512 2 * i, &template);
4513 if (ret) {
4514 dev_err(card->dev,
4515 "ASoC: Property '%s' index %d read error:%d\n",
4516 propname, 2 * i, ret);
4517 return -EINVAL;
4518 }
4519
4520 for (j = 0; j < ARRAY_SIZE(simple_widgets); j++) {
4521 if (!strncmp(template, simple_widgets[j].name,
4522 strlen(simple_widgets[j].name))) {
4523 widgets[i] = simple_widgets[j];
4524 break;
4525 }
4526 }
4527
4528 if (j >= ARRAY_SIZE(simple_widgets)) {
4529 dev_err(card->dev,
4530 "ASoC: DAPM widget '%s' is not supported\n",
4531 template);
4532 return -EINVAL;
4533 }
4534
4535 ret = of_property_read_string_index(np, propname,
4536 (2 * i) + 1,
4537 &wname);
4538 if (ret) {
4539 dev_err(card->dev,
4540 "ASoC: Property '%s' index %d read error:%d\n",
4541 propname, (2 * i) + 1, ret);
4542 return -EINVAL;
4543 }
4544
4545 widgets[i].name = wname;
4546 }
4547
4548 card->dapm_widgets = widgets;
4549 card->num_dapm_widgets = num_widgets;
4550
4551 return 0;
4552 }
4553 EXPORT_SYMBOL_GPL(snd_soc_of_parse_audio_simple_widgets);
4554
4555 int snd_soc_of_parse_tdm_slot(struct device_node *np,
4556 unsigned int *slots,
4557 unsigned int *slot_width)
4558 {
4559 u32 val;
4560 int ret;
4561
4562 if (of_property_read_bool(np, "dai-tdm-slot-num")) {
4563 ret = of_property_read_u32(np, "dai-tdm-slot-num", &val);
4564 if (ret)
4565 return ret;
4566
4567 if (slots)
4568 *slots = val;
4569 }
4570
4571 if (of_property_read_bool(np, "dai-tdm-slot-width")) {
4572 ret = of_property_read_u32(np, "dai-tdm-slot-width", &val);
4573 if (ret)
4574 return ret;
4575
4576 if (slot_width)
4577 *slot_width = val;
4578 }
4579
4580 return 0;
4581 }
4582 EXPORT_SYMBOL_GPL(snd_soc_of_parse_tdm_slot);
4583
4584 int snd_soc_of_parse_audio_routing(struct snd_soc_card *card,
4585 const char *propname)
4586 {
4587 struct device_node *np = card->dev->of_node;
4588 int num_routes;
4589 struct snd_soc_dapm_route *routes;
4590 int i, ret;
4591
4592 num_routes = of_property_count_strings(np, propname);
4593 if (num_routes < 0 || num_routes & 1) {
4594 dev_err(card->dev,
4595 "ASoC: Property '%s' does not exist or its length is not even\n",
4596 propname);
4597 return -EINVAL;
4598 }
4599 num_routes /= 2;
4600 if (!num_routes) {
4601 dev_err(card->dev, "ASoC: Property '%s's length is zero\n",
4602 propname);
4603 return -EINVAL;
4604 }
4605
4606 routes = devm_kzalloc(card->dev, num_routes * sizeof(*routes),
4607 GFP_KERNEL);
4608 if (!routes) {
4609 dev_err(card->dev,
4610 "ASoC: Could not allocate DAPM route table\n");
4611 return -EINVAL;
4612 }
4613
4614 for (i = 0; i < num_routes; i++) {
4615 ret = of_property_read_string_index(np, propname,
4616 2 * i, &routes[i].sink);
4617 if (ret) {
4618 dev_err(card->dev,
4619 "ASoC: Property '%s' index %d could not be read: %d\n",
4620 propname, 2 * i, ret);
4621 return -EINVAL;
4622 }
4623 ret = of_property_read_string_index(np, propname,
4624 (2 * i) + 1, &routes[i].source);
4625 if (ret) {
4626 dev_err(card->dev,
4627 "ASoC: Property '%s' index %d could not be read: %d\n",
4628 propname, (2 * i) + 1, ret);
4629 return -EINVAL;
4630 }
4631 }
4632
4633 card->num_dapm_routes = num_routes;
4634 card->dapm_routes = routes;
4635
4636 return 0;
4637 }
4638 EXPORT_SYMBOL_GPL(snd_soc_of_parse_audio_routing);
4639
4640 unsigned int snd_soc_of_parse_daifmt(struct device_node *np,
4641 const char *prefix,
4642 struct device_node **bitclkmaster,
4643 struct device_node **framemaster)
4644 {
4645 int ret, i;
4646 char prop[128];
4647 unsigned int format = 0;
4648 int bit, frame;
4649 const char *str;
4650 struct {
4651 char *name;
4652 unsigned int val;
4653 } of_fmt_table[] = {
4654 { "i2s", SND_SOC_DAIFMT_I2S },
4655 { "right_j", SND_SOC_DAIFMT_RIGHT_J },
4656 { "left_j", SND_SOC_DAIFMT_LEFT_J },
4657 { "dsp_a", SND_SOC_DAIFMT_DSP_A },
4658 { "dsp_b", SND_SOC_DAIFMT_DSP_B },
4659 { "ac97", SND_SOC_DAIFMT_AC97 },
4660 { "pdm", SND_SOC_DAIFMT_PDM},
4661 { "msb", SND_SOC_DAIFMT_MSB },
4662 { "lsb", SND_SOC_DAIFMT_LSB },
4663 };
4664
4665 if (!prefix)
4666 prefix = "";
4667
4668 /*
4669 * check "[prefix]format = xxx"
4670 * SND_SOC_DAIFMT_FORMAT_MASK area
4671 */
4672 snprintf(prop, sizeof(prop), "%sformat", prefix);
4673 ret = of_property_read_string(np, prop, &str);
4674 if (ret == 0) {
4675 for (i = 0; i < ARRAY_SIZE(of_fmt_table); i++) {
4676 if (strcmp(str, of_fmt_table[i].name) == 0) {
4677 format |= of_fmt_table[i].val;
4678 break;
4679 }
4680 }
4681 }
4682
4683 /*
4684 * check "[prefix]continuous-clock"
4685 * SND_SOC_DAIFMT_CLOCK_MASK area
4686 */
4687 snprintf(prop, sizeof(prop), "%scontinuous-clock", prefix);
4688 if (of_get_property(np, prop, NULL))
4689 format |= SND_SOC_DAIFMT_CONT;
4690 else
4691 format |= SND_SOC_DAIFMT_GATED;
4692
4693 /*
4694 * check "[prefix]bitclock-inversion"
4695 * check "[prefix]frame-inversion"
4696 * SND_SOC_DAIFMT_INV_MASK area
4697 */
4698 snprintf(prop, sizeof(prop), "%sbitclock-inversion", prefix);
4699 bit = !!of_get_property(np, prop, NULL);
4700
4701 snprintf(prop, sizeof(prop), "%sframe-inversion", prefix);
4702 frame = !!of_get_property(np, prop, NULL);
4703
4704 switch ((bit << 4) + frame) {
4705 case 0x11:
4706 format |= SND_SOC_DAIFMT_IB_IF;
4707 break;
4708 case 0x10:
4709 format |= SND_SOC_DAIFMT_IB_NF;
4710 break;
4711 case 0x01:
4712 format |= SND_SOC_DAIFMT_NB_IF;
4713 break;
4714 default:
4715 /* SND_SOC_DAIFMT_NB_NF is default */
4716 break;
4717 }
4718
4719 /*
4720 * check "[prefix]bitclock-master"
4721 * check "[prefix]frame-master"
4722 * SND_SOC_DAIFMT_MASTER_MASK area
4723 */
4724 snprintf(prop, sizeof(prop), "%sbitclock-master", prefix);
4725 bit = !!of_get_property(np, prop, NULL);
4726 if (bit && bitclkmaster)
4727 *bitclkmaster = of_parse_phandle(np, prop, 0);
4728
4729 snprintf(prop, sizeof(prop), "%sframe-master", prefix);
4730 frame = !!of_get_property(np, prop, NULL);
4731 if (frame && framemaster)
4732 *framemaster = of_parse_phandle(np, prop, 0);
4733
4734 switch ((bit << 4) + frame) {
4735 case 0x11:
4736 format |= SND_SOC_DAIFMT_CBM_CFM;
4737 break;
4738 case 0x10:
4739 format |= SND_SOC_DAIFMT_CBM_CFS;
4740 break;
4741 case 0x01:
4742 format |= SND_SOC_DAIFMT_CBS_CFM;
4743 break;
4744 default:
4745 format |= SND_SOC_DAIFMT_CBS_CFS;
4746 break;
4747 }
4748
4749 return format;
4750 }
4751 EXPORT_SYMBOL_GPL(snd_soc_of_parse_daifmt);
4752
4753 int snd_soc_of_get_dai_name(struct device_node *of_node,
4754 const char **dai_name)
4755 {
4756 struct snd_soc_component *pos;
4757 struct of_phandle_args args;
4758 int ret;
4759
4760 ret = of_parse_phandle_with_args(of_node, "sound-dai",
4761 "#sound-dai-cells", 0, &args);
4762 if (ret)
4763 return ret;
4764
4765 ret = -EPROBE_DEFER;
4766
4767 mutex_lock(&client_mutex);
4768 list_for_each_entry(pos, &component_list, list) {
4769 if (pos->dev->of_node != args.np)
4770 continue;
4771
4772 if (pos->driver->of_xlate_dai_name) {
4773 ret = pos->driver->of_xlate_dai_name(pos, &args, dai_name);
4774 } else {
4775 int id = -1;
4776
4777 switch (args.args_count) {
4778 case 0:
4779 id = 0; /* same as dai_drv[0] */
4780 break;
4781 case 1:
4782 id = args.args[0];
4783 break;
4784 default:
4785 /* not supported */
4786 break;
4787 }
4788
4789 if (id < 0 || id >= pos->num_dai) {
4790 ret = -EINVAL;
4791 continue;
4792 }
4793
4794 ret = 0;
4795
4796 *dai_name = pos->dai_drv[id].name;
4797 if (!*dai_name)
4798 *dai_name = pos->name;
4799 }
4800
4801 break;
4802 }
4803 mutex_unlock(&client_mutex);
4804
4805 of_node_put(args.np);
4806
4807 return ret;
4808 }
4809 EXPORT_SYMBOL_GPL(snd_soc_of_get_dai_name);
4810
4811 static int __init snd_soc_init(void)
4812 {
4813 #ifdef CONFIG_DEBUG_FS
4814 snd_soc_debugfs_root = debugfs_create_dir("asoc", NULL);
4815 if (IS_ERR(snd_soc_debugfs_root) || !snd_soc_debugfs_root) {
4816 pr_warn("ASoC: Failed to create debugfs directory\n");
4817 snd_soc_debugfs_root = NULL;
4818 }
4819
4820 if (!debugfs_create_file("codecs", 0444, snd_soc_debugfs_root, NULL,
4821 &codec_list_fops))
4822 pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
4823
4824 if (!debugfs_create_file("dais", 0444, snd_soc_debugfs_root, NULL,
4825 &dai_list_fops))
4826 pr_warn("ASoC: Failed to create DAI list debugfs file\n");
4827
4828 if (!debugfs_create_file("platforms", 0444, snd_soc_debugfs_root, NULL,
4829 &platform_list_fops))
4830 pr_warn("ASoC: Failed to create platform list debugfs file\n");
4831 #endif
4832
4833 snd_soc_util_init();
4834
4835 return platform_driver_register(&soc_driver);
4836 }
4837 module_init(snd_soc_init);
4838
4839 static void __exit snd_soc_exit(void)
4840 {
4841 snd_soc_util_exit();
4842
4843 #ifdef CONFIG_DEBUG_FS
4844 debugfs_remove_recursive(snd_soc_debugfs_root);
4845 #endif
4846 platform_driver_unregister(&soc_driver);
4847 }
4848 module_exit(snd_soc_exit);
4849
4850 /* Module information */
4851 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
4852 MODULE_DESCRIPTION("ALSA SoC Core");
4853 MODULE_LICENSE("GPL");
4854 MODULE_ALIAS("platform:soc-audio");
This page took 0.148295 seconds and 5 git commands to generate.