Merge branch 'for-2.6.29' into for-2.6.30
[deliverable/linux.git] / sound / soc / soc-core.c
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 * with code, comments and ideas from :-
9 * Richard Purdie <richard@openedhand.com>
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * TODO:
17 * o Add hw rules to enforce rates, etc.
18 * o More testing with other codecs/machines.
19 * o Add more codecs and platforms to ensure good API coverage.
20 * o Support TDM on PCM and I2S
21 */
22
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/pm.h>
28 #include <linux/bitops.h>
29 #include <linux/debugfs.h>
30 #include <linux/platform_device.h>
31 #include <sound/core.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/soc.h>
35 #include <sound/soc-dapm.h>
36 #include <sound/initval.h>
37
38 static DEFINE_MUTEX(pcm_mutex);
39 static DEFINE_MUTEX(io_mutex);
40 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
41
42 #ifdef CONFIG_DEBUG_FS
43 static struct dentry *debugfs_root;
44 #endif
45
46 static DEFINE_MUTEX(client_mutex);
47 static LIST_HEAD(card_list);
48 static LIST_HEAD(dai_list);
49 static LIST_HEAD(platform_list);
50 static LIST_HEAD(codec_list);
51
52 static int snd_soc_register_card(struct snd_soc_card *card);
53 static int snd_soc_unregister_card(struct snd_soc_card *card);
54
55 /*
56 * This is a timeout to do a DAPM powerdown after a stream is closed().
57 * It can be used to eliminate pops between different playback streams, e.g.
58 * between two audio tracks.
59 */
60 static int pmdown_time = 5000;
61 module_param(pmdown_time, int, 0);
62 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
63
64 /*
65 * This function forces any delayed work to be queued and run.
66 */
67 static int run_delayed_work(struct delayed_work *dwork)
68 {
69 int ret;
70
71 /* cancel any work waiting to be queued. */
72 ret = cancel_delayed_work(dwork);
73
74 /* if there was any work waiting then we run it now and
75 * wait for it's completion */
76 if (ret) {
77 schedule_delayed_work(dwork, 0);
78 flush_scheduled_work();
79 }
80 return ret;
81 }
82
83 #ifdef CONFIG_SND_SOC_AC97_BUS
84 /* unregister ac97 codec */
85 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
86 {
87 if (codec->ac97->dev.bus)
88 device_unregister(&codec->ac97->dev);
89 return 0;
90 }
91
92 /* stop no dev release warning */
93 static void soc_ac97_device_release(struct device *dev){}
94
95 /* register ac97 codec to bus */
96 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
97 {
98 int err;
99
100 codec->ac97->dev.bus = &ac97_bus_type;
101 codec->ac97->dev.parent = NULL;
102 codec->ac97->dev.release = soc_ac97_device_release;
103
104 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
105 codec->card->number, 0, codec->name);
106 err = device_register(&codec->ac97->dev);
107 if (err < 0) {
108 snd_printk(KERN_ERR "Can't register ac97 bus\n");
109 codec->ac97->dev.bus = NULL;
110 return err;
111 }
112 return 0;
113 }
114 #endif
115
116 /*
117 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
118 * then initialized and any private data can be allocated. This also calls
119 * startup for the cpu DAI, platform, machine and codec DAI.
120 */
121 static int soc_pcm_open(struct snd_pcm_substream *substream)
122 {
123 struct snd_soc_pcm_runtime *rtd = substream->private_data;
124 struct snd_soc_device *socdev = rtd->socdev;
125 struct snd_soc_card *card = socdev->card;
126 struct snd_pcm_runtime *runtime = substream->runtime;
127 struct snd_soc_dai_link *machine = rtd->dai;
128 struct snd_soc_platform *platform = card->platform;
129 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
130 struct snd_soc_dai *codec_dai = machine->codec_dai;
131 int ret = 0;
132
133 mutex_lock(&pcm_mutex);
134
135 /* startup the audio subsystem */
136 if (cpu_dai->ops.startup) {
137 ret = cpu_dai->ops.startup(substream, cpu_dai);
138 if (ret < 0) {
139 printk(KERN_ERR "asoc: can't open interface %s\n",
140 cpu_dai->name);
141 goto out;
142 }
143 }
144
145 if (platform->pcm_ops->open) {
146 ret = platform->pcm_ops->open(substream);
147 if (ret < 0) {
148 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
149 goto platform_err;
150 }
151 }
152
153 if (codec_dai->ops.startup) {
154 ret = codec_dai->ops.startup(substream, codec_dai);
155 if (ret < 0) {
156 printk(KERN_ERR "asoc: can't open codec %s\n",
157 codec_dai->name);
158 goto codec_dai_err;
159 }
160 }
161
162 if (machine->ops && machine->ops->startup) {
163 ret = machine->ops->startup(substream);
164 if (ret < 0) {
165 printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
166 goto machine_err;
167 }
168 }
169
170 /* Check that the codec and cpu DAI's are compatible */
171 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
172 runtime->hw.rate_min =
173 max(codec_dai->playback.rate_min,
174 cpu_dai->playback.rate_min);
175 runtime->hw.rate_max =
176 min(codec_dai->playback.rate_max,
177 cpu_dai->playback.rate_max);
178 runtime->hw.channels_min =
179 max(codec_dai->playback.channels_min,
180 cpu_dai->playback.channels_min);
181 runtime->hw.channels_max =
182 min(codec_dai->playback.channels_max,
183 cpu_dai->playback.channels_max);
184 runtime->hw.formats =
185 codec_dai->playback.formats & cpu_dai->playback.formats;
186 runtime->hw.rates =
187 codec_dai->playback.rates & cpu_dai->playback.rates;
188 } else {
189 runtime->hw.rate_min =
190 max(codec_dai->capture.rate_min,
191 cpu_dai->capture.rate_min);
192 runtime->hw.rate_max =
193 min(codec_dai->capture.rate_max,
194 cpu_dai->capture.rate_max);
195 runtime->hw.channels_min =
196 max(codec_dai->capture.channels_min,
197 cpu_dai->capture.channels_min);
198 runtime->hw.channels_max =
199 min(codec_dai->capture.channels_max,
200 cpu_dai->capture.channels_max);
201 runtime->hw.formats =
202 codec_dai->capture.formats & cpu_dai->capture.formats;
203 runtime->hw.rates =
204 codec_dai->capture.rates & cpu_dai->capture.rates;
205 }
206
207 snd_pcm_limit_hw_rates(runtime);
208 if (!runtime->hw.rates) {
209 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
210 codec_dai->name, cpu_dai->name);
211 goto machine_err;
212 }
213 if (!runtime->hw.formats) {
214 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
215 codec_dai->name, cpu_dai->name);
216 goto machine_err;
217 }
218 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
219 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
220 codec_dai->name, cpu_dai->name);
221 goto machine_err;
222 }
223
224 pr_debug("asoc: %s <-> %s info:\n", codec_dai->name, cpu_dai->name);
225 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
226 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
227 runtime->hw.channels_max);
228 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
229 runtime->hw.rate_max);
230
231 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
232 cpu_dai->playback.active = codec_dai->playback.active = 1;
233 else
234 cpu_dai->capture.active = codec_dai->capture.active = 1;
235 cpu_dai->active = codec_dai->active = 1;
236 cpu_dai->runtime = runtime;
237 card->codec->active++;
238 mutex_unlock(&pcm_mutex);
239 return 0;
240
241 machine_err:
242 if (machine->ops && machine->ops->shutdown)
243 machine->ops->shutdown(substream);
244
245 codec_dai_err:
246 if (platform->pcm_ops->close)
247 platform->pcm_ops->close(substream);
248
249 platform_err:
250 if (cpu_dai->ops.shutdown)
251 cpu_dai->ops.shutdown(substream, cpu_dai);
252 out:
253 mutex_unlock(&pcm_mutex);
254 return ret;
255 }
256
257 /*
258 * Power down the audio subsystem pmdown_time msecs after close is called.
259 * This is to ensure there are no pops or clicks in between any music tracks
260 * due to DAPM power cycling.
261 */
262 static void close_delayed_work(struct work_struct *work)
263 {
264 struct snd_soc_card *card = container_of(work, struct snd_soc_card,
265 delayed_work.work);
266 struct snd_soc_device *socdev = card->socdev;
267 struct snd_soc_codec *codec = card->codec;
268 struct snd_soc_dai *codec_dai;
269 int i;
270
271 mutex_lock(&pcm_mutex);
272 for (i = 0; i < codec->num_dai; i++) {
273 codec_dai = &codec->dai[i];
274
275 pr_debug("pop wq checking: %s status: %s waiting: %s\n",
276 codec_dai->playback.stream_name,
277 codec_dai->playback.active ? "active" : "inactive",
278 codec_dai->pop_wait ? "yes" : "no");
279
280 /* are we waiting on this codec DAI stream */
281 if (codec_dai->pop_wait == 1) {
282
283 /* Reduce power if no longer active */
284 if (codec->active == 0) {
285 pr_debug("pop wq D1 %s %s\n", codec->name,
286 codec_dai->playback.stream_name);
287 snd_soc_dapm_set_bias_level(socdev,
288 SND_SOC_BIAS_PREPARE);
289 }
290
291 codec_dai->pop_wait = 0;
292 snd_soc_dapm_stream_event(codec,
293 codec_dai->playback.stream_name,
294 SND_SOC_DAPM_STREAM_STOP);
295
296 /* Fall into standby if no longer active */
297 if (codec->active == 0) {
298 pr_debug("pop wq D3 %s %s\n", codec->name,
299 codec_dai->playback.stream_name);
300 snd_soc_dapm_set_bias_level(socdev,
301 SND_SOC_BIAS_STANDBY);
302 }
303 }
304 }
305 mutex_unlock(&pcm_mutex);
306 }
307
308 /*
309 * Called by ALSA when a PCM substream is closed. Private data can be
310 * freed here. The cpu DAI, codec DAI, machine and platform are also
311 * shutdown.
312 */
313 static int soc_codec_close(struct snd_pcm_substream *substream)
314 {
315 struct snd_soc_pcm_runtime *rtd = substream->private_data;
316 struct snd_soc_device *socdev = rtd->socdev;
317 struct snd_soc_card *card = socdev->card;
318 struct snd_soc_dai_link *machine = rtd->dai;
319 struct snd_soc_platform *platform = card->platform;
320 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
321 struct snd_soc_dai *codec_dai = machine->codec_dai;
322 struct snd_soc_codec *codec = card->codec;
323
324 mutex_lock(&pcm_mutex);
325
326 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
327 cpu_dai->playback.active = codec_dai->playback.active = 0;
328 else
329 cpu_dai->capture.active = codec_dai->capture.active = 0;
330
331 if (codec_dai->playback.active == 0 &&
332 codec_dai->capture.active == 0) {
333 cpu_dai->active = codec_dai->active = 0;
334 }
335 codec->active--;
336
337 /* Muting the DAC suppresses artifacts caused during digital
338 * shutdown, for example from stopping clocks.
339 */
340 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
341 snd_soc_dai_digital_mute(codec_dai, 1);
342
343 if (cpu_dai->ops.shutdown)
344 cpu_dai->ops.shutdown(substream, cpu_dai);
345
346 if (codec_dai->ops.shutdown)
347 codec_dai->ops.shutdown(substream, codec_dai);
348
349 if (machine->ops && machine->ops->shutdown)
350 machine->ops->shutdown(substream);
351
352 if (platform->pcm_ops->close)
353 platform->pcm_ops->close(substream);
354 cpu_dai->runtime = NULL;
355
356 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
357 /* start delayed pop wq here for playback streams */
358 codec_dai->pop_wait = 1;
359 schedule_delayed_work(&card->delayed_work,
360 msecs_to_jiffies(pmdown_time));
361 } else {
362 /* capture streams can be powered down now */
363 snd_soc_dapm_stream_event(codec,
364 codec_dai->capture.stream_name,
365 SND_SOC_DAPM_STREAM_STOP);
366
367 if (codec->active == 0 && codec_dai->pop_wait == 0)
368 snd_soc_dapm_set_bias_level(socdev,
369 SND_SOC_BIAS_STANDBY);
370 }
371
372 mutex_unlock(&pcm_mutex);
373 return 0;
374 }
375
376 /*
377 * Called by ALSA when the PCM substream is prepared, can set format, sample
378 * rate, etc. This function is non atomic and can be called multiple times,
379 * it can refer to the runtime info.
380 */
381 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
382 {
383 struct snd_soc_pcm_runtime *rtd = substream->private_data;
384 struct snd_soc_device *socdev = rtd->socdev;
385 struct snd_soc_card *card = socdev->card;
386 struct snd_soc_dai_link *machine = rtd->dai;
387 struct snd_soc_platform *platform = card->platform;
388 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
389 struct snd_soc_dai *codec_dai = machine->codec_dai;
390 struct snd_soc_codec *codec = card->codec;
391 int ret = 0;
392
393 mutex_lock(&pcm_mutex);
394
395 if (machine->ops && machine->ops->prepare) {
396 ret = machine->ops->prepare(substream);
397 if (ret < 0) {
398 printk(KERN_ERR "asoc: machine prepare error\n");
399 goto out;
400 }
401 }
402
403 if (platform->pcm_ops->prepare) {
404 ret = platform->pcm_ops->prepare(substream);
405 if (ret < 0) {
406 printk(KERN_ERR "asoc: platform prepare error\n");
407 goto out;
408 }
409 }
410
411 if (codec_dai->ops.prepare) {
412 ret = codec_dai->ops.prepare(substream, codec_dai);
413 if (ret < 0) {
414 printk(KERN_ERR "asoc: codec DAI prepare error\n");
415 goto out;
416 }
417 }
418
419 if (cpu_dai->ops.prepare) {
420 ret = cpu_dai->ops.prepare(substream, cpu_dai);
421 if (ret < 0) {
422 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
423 goto out;
424 }
425 }
426
427 /* cancel any delayed stream shutdown that is pending */
428 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
429 codec_dai->pop_wait) {
430 codec_dai->pop_wait = 0;
431 cancel_delayed_work(&card->delayed_work);
432 }
433
434 /* do we need to power up codec */
435 if (codec->bias_level != SND_SOC_BIAS_ON) {
436 snd_soc_dapm_set_bias_level(socdev,
437 SND_SOC_BIAS_PREPARE);
438
439 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
440 snd_soc_dapm_stream_event(codec,
441 codec_dai->playback.stream_name,
442 SND_SOC_DAPM_STREAM_START);
443 else
444 snd_soc_dapm_stream_event(codec,
445 codec_dai->capture.stream_name,
446 SND_SOC_DAPM_STREAM_START);
447
448 snd_soc_dapm_set_bias_level(socdev, SND_SOC_BIAS_ON);
449 snd_soc_dai_digital_mute(codec_dai, 0);
450
451 } else {
452 /* codec already powered - power on widgets */
453 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
454 snd_soc_dapm_stream_event(codec,
455 codec_dai->playback.stream_name,
456 SND_SOC_DAPM_STREAM_START);
457 else
458 snd_soc_dapm_stream_event(codec,
459 codec_dai->capture.stream_name,
460 SND_SOC_DAPM_STREAM_START);
461
462 snd_soc_dai_digital_mute(codec_dai, 0);
463 }
464
465 out:
466 mutex_unlock(&pcm_mutex);
467 return ret;
468 }
469
470 /*
471 * Called by ALSA when the hardware params are set by application. This
472 * function can also be called multiple times and can allocate buffers
473 * (using snd_pcm_lib_* ). It's non-atomic.
474 */
475 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
476 struct snd_pcm_hw_params *params)
477 {
478 struct snd_soc_pcm_runtime *rtd = substream->private_data;
479 struct snd_soc_device *socdev = rtd->socdev;
480 struct snd_soc_dai_link *machine = rtd->dai;
481 struct snd_soc_card *card = socdev->card;
482 struct snd_soc_platform *platform = card->platform;
483 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
484 struct snd_soc_dai *codec_dai = machine->codec_dai;
485 int ret = 0;
486
487 mutex_lock(&pcm_mutex);
488
489 if (machine->ops && machine->ops->hw_params) {
490 ret = machine->ops->hw_params(substream, params);
491 if (ret < 0) {
492 printk(KERN_ERR "asoc: machine hw_params failed\n");
493 goto out;
494 }
495 }
496
497 if (codec_dai->ops.hw_params) {
498 ret = codec_dai->ops.hw_params(substream, params, codec_dai);
499 if (ret < 0) {
500 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
501 codec_dai->name);
502 goto codec_err;
503 }
504 }
505
506 if (cpu_dai->ops.hw_params) {
507 ret = cpu_dai->ops.hw_params(substream, params, cpu_dai);
508 if (ret < 0) {
509 printk(KERN_ERR "asoc: interface %s hw params failed\n",
510 cpu_dai->name);
511 goto interface_err;
512 }
513 }
514
515 if (platform->pcm_ops->hw_params) {
516 ret = platform->pcm_ops->hw_params(substream, params);
517 if (ret < 0) {
518 printk(KERN_ERR "asoc: platform %s hw params failed\n",
519 platform->name);
520 goto platform_err;
521 }
522 }
523
524 out:
525 mutex_unlock(&pcm_mutex);
526 return ret;
527
528 platform_err:
529 if (cpu_dai->ops.hw_free)
530 cpu_dai->ops.hw_free(substream, cpu_dai);
531
532 interface_err:
533 if (codec_dai->ops.hw_free)
534 codec_dai->ops.hw_free(substream, codec_dai);
535
536 codec_err:
537 if (machine->ops && machine->ops->hw_free)
538 machine->ops->hw_free(substream);
539
540 mutex_unlock(&pcm_mutex);
541 return ret;
542 }
543
544 /*
545 * Free's resources allocated by hw_params, can be called multiple times
546 */
547 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
548 {
549 struct snd_soc_pcm_runtime *rtd = substream->private_data;
550 struct snd_soc_device *socdev = rtd->socdev;
551 struct snd_soc_dai_link *machine = rtd->dai;
552 struct snd_soc_card *card = socdev->card;
553 struct snd_soc_platform *platform = card->platform;
554 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
555 struct snd_soc_dai *codec_dai = machine->codec_dai;
556 struct snd_soc_codec *codec = card->codec;
557
558 mutex_lock(&pcm_mutex);
559
560 /* apply codec digital mute */
561 if (!codec->active)
562 snd_soc_dai_digital_mute(codec_dai, 1);
563
564 /* free any machine hw params */
565 if (machine->ops && machine->ops->hw_free)
566 machine->ops->hw_free(substream);
567
568 /* free any DMA resources */
569 if (platform->pcm_ops->hw_free)
570 platform->pcm_ops->hw_free(substream);
571
572 /* now free hw params for the DAI's */
573 if (codec_dai->ops.hw_free)
574 codec_dai->ops.hw_free(substream, codec_dai);
575
576 if (cpu_dai->ops.hw_free)
577 cpu_dai->ops.hw_free(substream, cpu_dai);
578
579 mutex_unlock(&pcm_mutex);
580 return 0;
581 }
582
583 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
584 {
585 struct snd_soc_pcm_runtime *rtd = substream->private_data;
586 struct snd_soc_device *socdev = rtd->socdev;
587 struct snd_soc_card *card= socdev->card;
588 struct snd_soc_dai_link *machine = rtd->dai;
589 struct snd_soc_platform *platform = card->platform;
590 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
591 struct snd_soc_dai *codec_dai = machine->codec_dai;
592 int ret;
593
594 if (codec_dai->ops.trigger) {
595 ret = codec_dai->ops.trigger(substream, cmd, codec_dai);
596 if (ret < 0)
597 return ret;
598 }
599
600 if (platform->pcm_ops->trigger) {
601 ret = platform->pcm_ops->trigger(substream, cmd);
602 if (ret < 0)
603 return ret;
604 }
605
606 if (cpu_dai->ops.trigger) {
607 ret = cpu_dai->ops.trigger(substream, cmd, cpu_dai);
608 if (ret < 0)
609 return ret;
610 }
611 return 0;
612 }
613
614 /* ASoC PCM operations */
615 static struct snd_pcm_ops soc_pcm_ops = {
616 .open = soc_pcm_open,
617 .close = soc_codec_close,
618 .hw_params = soc_pcm_hw_params,
619 .hw_free = soc_pcm_hw_free,
620 .prepare = soc_pcm_prepare,
621 .trigger = soc_pcm_trigger,
622 };
623
624 #ifdef CONFIG_PM
625 /* powers down audio subsystem for suspend */
626 static int soc_suspend(struct platform_device *pdev, pm_message_t state)
627 {
628 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
629 struct snd_soc_card *card = socdev->card;
630 struct snd_soc_platform *platform = card->platform;
631 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
632 struct snd_soc_codec *codec = card->codec;
633 int i;
634
635 /* Due to the resume being scheduled into a workqueue we could
636 * suspend before that's finished - wait for it to complete.
637 */
638 snd_power_lock(codec->card);
639 snd_power_wait(codec->card, SNDRV_CTL_POWER_D0);
640 snd_power_unlock(codec->card);
641
642 /* we're going to block userspace touching us until resume completes */
643 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D3hot);
644
645 /* mute any active DAC's */
646 for (i = 0; i < card->num_links; i++) {
647 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
648 if (dai->ops.digital_mute && dai->playback.active)
649 dai->ops.digital_mute(dai, 1);
650 }
651
652 /* suspend all pcms */
653 for (i = 0; i < card->num_links; i++)
654 snd_pcm_suspend_all(card->dai_link[i].pcm);
655
656 if (card->suspend_pre)
657 card->suspend_pre(pdev, state);
658
659 for (i = 0; i < card->num_links; i++) {
660 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
661 if (cpu_dai->suspend && !cpu_dai->ac97_control)
662 cpu_dai->suspend(cpu_dai);
663 if (platform->suspend)
664 platform->suspend(cpu_dai);
665 }
666
667 /* close any waiting streams and save state */
668 run_delayed_work(&card->delayed_work);
669 codec->suspend_bias_level = codec->bias_level;
670
671 for (i = 0; i < codec->num_dai; i++) {
672 char *stream = codec->dai[i].playback.stream_name;
673 if (stream != NULL)
674 snd_soc_dapm_stream_event(codec, stream,
675 SND_SOC_DAPM_STREAM_SUSPEND);
676 stream = codec->dai[i].capture.stream_name;
677 if (stream != NULL)
678 snd_soc_dapm_stream_event(codec, stream,
679 SND_SOC_DAPM_STREAM_SUSPEND);
680 }
681
682 if (codec_dev->suspend)
683 codec_dev->suspend(pdev, state);
684
685 for (i = 0; i < card->num_links; i++) {
686 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
687 if (cpu_dai->suspend && cpu_dai->ac97_control)
688 cpu_dai->suspend(cpu_dai);
689 }
690
691 if (card->suspend_post)
692 card->suspend_post(pdev, state);
693
694 return 0;
695 }
696
697 /* deferred resume work, so resume can complete before we finished
698 * setting our codec back up, which can be very slow on I2C
699 */
700 static void soc_resume_deferred(struct work_struct *work)
701 {
702 struct snd_soc_card *card = container_of(work,
703 struct snd_soc_card,
704 deferred_resume_work);
705 struct snd_soc_device *socdev = card->socdev;
706 struct snd_soc_platform *platform = card->platform;
707 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
708 struct snd_soc_codec *codec = card->codec;
709 struct platform_device *pdev = to_platform_device(socdev->dev);
710 int i;
711
712 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
713 * so userspace apps are blocked from touching us
714 */
715
716 dev_dbg(socdev->dev, "starting resume work\n");
717
718 if (card->resume_pre)
719 card->resume_pre(pdev);
720
721 for (i = 0; i < card->num_links; i++) {
722 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
723 if (cpu_dai->resume && cpu_dai->ac97_control)
724 cpu_dai->resume(cpu_dai);
725 }
726
727 if (codec_dev->resume)
728 codec_dev->resume(pdev);
729
730 for (i = 0; i < codec->num_dai; i++) {
731 char *stream = codec->dai[i].playback.stream_name;
732 if (stream != NULL)
733 snd_soc_dapm_stream_event(codec, stream,
734 SND_SOC_DAPM_STREAM_RESUME);
735 stream = codec->dai[i].capture.stream_name;
736 if (stream != NULL)
737 snd_soc_dapm_stream_event(codec, stream,
738 SND_SOC_DAPM_STREAM_RESUME);
739 }
740
741 /* unmute any active DACs */
742 for (i = 0; i < card->num_links; i++) {
743 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
744 if (dai->ops.digital_mute && dai->playback.active)
745 dai->ops.digital_mute(dai, 0);
746 }
747
748 for (i = 0; i < card->num_links; i++) {
749 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
750 if (cpu_dai->resume && !cpu_dai->ac97_control)
751 cpu_dai->resume(cpu_dai);
752 if (platform->resume)
753 platform->resume(cpu_dai);
754 }
755
756 if (card->resume_post)
757 card->resume_post(pdev);
758
759 dev_dbg(socdev->dev, "resume work completed\n");
760
761 /* userspace can access us now we are back as we were before */
762 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D0);
763 }
764
765 /* powers up audio subsystem after a suspend */
766 static int soc_resume(struct platform_device *pdev)
767 {
768 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
769 struct snd_soc_card *card = socdev->card;
770
771 dev_dbg(socdev->dev, "scheduling resume work\n");
772
773 if (!schedule_work(&card->deferred_resume_work))
774 dev_err(socdev->dev, "resume work item may be lost\n");
775
776 return 0;
777 }
778
779 #else
780 #define soc_suspend NULL
781 #define soc_resume NULL
782 #endif
783
784 static void snd_soc_instantiate_card(struct snd_soc_card *card)
785 {
786 struct platform_device *pdev = container_of(card->dev,
787 struct platform_device,
788 dev);
789 struct snd_soc_codec_device *codec_dev = card->socdev->codec_dev;
790 struct snd_soc_platform *platform;
791 struct snd_soc_dai *dai;
792 int i, found, ret, ac97;
793
794 if (card->instantiated)
795 return;
796
797 found = 0;
798 list_for_each_entry(platform, &platform_list, list)
799 if (card->platform == platform) {
800 found = 1;
801 break;
802 }
803 if (!found) {
804 dev_dbg(card->dev, "Platform %s not registered\n",
805 card->platform->name);
806 return;
807 }
808
809 ac97 = 0;
810 for (i = 0; i < card->num_links; i++) {
811 found = 0;
812 list_for_each_entry(dai, &dai_list, list)
813 if (card->dai_link[i].cpu_dai == dai) {
814 found = 1;
815 break;
816 }
817 if (!found) {
818 dev_dbg(card->dev, "DAI %s not registered\n",
819 card->dai_link[i].cpu_dai->name);
820 return;
821 }
822
823 if (card->dai_link[i].cpu_dai->ac97_control)
824 ac97 = 1;
825 }
826
827 /* If we have AC97 in the system then don't wait for the
828 * codec. This will need revisiting if we have to handle
829 * systems with mixed AC97 and non-AC97 parts. Only check for
830 * DAIs currently; we can't do this per link since some AC97
831 * codecs have non-AC97 DAIs.
832 */
833 if (!ac97)
834 for (i = 0; i < card->num_links; i++) {
835 found = 0;
836 list_for_each_entry(dai, &dai_list, list)
837 if (card->dai_link[i].codec_dai == dai) {
838 found = 1;
839 break;
840 }
841 if (!found) {
842 dev_dbg(card->dev, "DAI %s not registered\n",
843 card->dai_link[i].codec_dai->name);
844 return;
845 }
846 }
847
848 /* Note that we do not current check for codec components */
849
850 dev_dbg(card->dev, "All components present, instantiating\n");
851
852 /* Found everything, bring it up */
853 if (card->probe) {
854 ret = card->probe(pdev);
855 if (ret < 0)
856 return;
857 }
858
859 for (i = 0; i < card->num_links; i++) {
860 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
861 if (cpu_dai->probe) {
862 ret = cpu_dai->probe(pdev, cpu_dai);
863 if (ret < 0)
864 goto cpu_dai_err;
865 }
866 }
867
868 if (codec_dev->probe) {
869 ret = codec_dev->probe(pdev);
870 if (ret < 0)
871 goto cpu_dai_err;
872 }
873
874 if (platform->probe) {
875 ret = platform->probe(pdev);
876 if (ret < 0)
877 goto platform_err;
878 }
879
880 /* DAPM stream work */
881 INIT_DELAYED_WORK(&card->delayed_work, close_delayed_work);
882 #ifdef CONFIG_PM
883 /* deferred resume work */
884 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
885 #endif
886
887 card->instantiated = 1;
888
889 return;
890
891 platform_err:
892 if (codec_dev->remove)
893 codec_dev->remove(pdev);
894
895 cpu_dai_err:
896 for (i--; i >= 0; i--) {
897 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
898 if (cpu_dai->remove)
899 cpu_dai->remove(pdev, cpu_dai);
900 }
901
902 if (card->remove)
903 card->remove(pdev);
904 }
905
906 /*
907 * Attempt to initialise any uninitalised cards. Must be called with
908 * client_mutex.
909 */
910 static void snd_soc_instantiate_cards(void)
911 {
912 struct snd_soc_card *card;
913 list_for_each_entry(card, &card_list, list)
914 snd_soc_instantiate_card(card);
915 }
916
917 /* probes a new socdev */
918 static int soc_probe(struct platform_device *pdev)
919 {
920 int ret = 0;
921 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
922 struct snd_soc_card *card = socdev->card;
923
924 /* Bodge while we push things out of socdev */
925 card->socdev = socdev;
926
927 /* Bodge while we unpick instantiation */
928 card->dev = &pdev->dev;
929 ret = snd_soc_register_card(card);
930 if (ret != 0) {
931 dev_err(&pdev->dev, "Failed to register card\n");
932 return ret;
933 }
934
935 return 0;
936 }
937
938 /* removes a socdev */
939 static int soc_remove(struct platform_device *pdev)
940 {
941 int i;
942 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
943 struct snd_soc_card *card = socdev->card;
944 struct snd_soc_platform *platform = card->platform;
945 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
946
947 run_delayed_work(&card->delayed_work);
948
949 if (platform->remove)
950 platform->remove(pdev);
951
952 if (codec_dev->remove)
953 codec_dev->remove(pdev);
954
955 for (i = 0; i < card->num_links; i++) {
956 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
957 if (cpu_dai->remove)
958 cpu_dai->remove(pdev, cpu_dai);
959 }
960
961 if (card->remove)
962 card->remove(pdev);
963
964 snd_soc_unregister_card(card);
965
966 return 0;
967 }
968
969 /* ASoC platform driver */
970 static struct platform_driver soc_driver = {
971 .driver = {
972 .name = "soc-audio",
973 .owner = THIS_MODULE,
974 },
975 .probe = soc_probe,
976 .remove = soc_remove,
977 .suspend = soc_suspend,
978 .resume = soc_resume,
979 };
980
981 /* create a new pcm */
982 static int soc_new_pcm(struct snd_soc_device *socdev,
983 struct snd_soc_dai_link *dai_link, int num)
984 {
985 struct snd_soc_card *card = socdev->card;
986 struct snd_soc_codec *codec = card->codec;
987 struct snd_soc_platform *platform = card->platform;
988 struct snd_soc_dai *codec_dai = dai_link->codec_dai;
989 struct snd_soc_dai *cpu_dai = dai_link->cpu_dai;
990 struct snd_soc_pcm_runtime *rtd;
991 struct snd_pcm *pcm;
992 char new_name[64];
993 int ret = 0, playback = 0, capture = 0;
994
995 rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
996 if (rtd == NULL)
997 return -ENOMEM;
998
999 rtd->dai = dai_link;
1000 rtd->socdev = socdev;
1001 codec_dai->codec = card->codec;
1002
1003 /* check client and interface hw capabilities */
1004 sprintf(new_name, "%s %s-%d", dai_link->stream_name, codec_dai->name,
1005 num);
1006
1007 if (codec_dai->playback.channels_min)
1008 playback = 1;
1009 if (codec_dai->capture.channels_min)
1010 capture = 1;
1011
1012 ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
1013 capture, &pcm);
1014 if (ret < 0) {
1015 printk(KERN_ERR "asoc: can't create pcm for codec %s\n",
1016 codec->name);
1017 kfree(rtd);
1018 return ret;
1019 }
1020
1021 dai_link->pcm = pcm;
1022 pcm->private_data = rtd;
1023 soc_pcm_ops.mmap = platform->pcm_ops->mmap;
1024 soc_pcm_ops.pointer = platform->pcm_ops->pointer;
1025 soc_pcm_ops.ioctl = platform->pcm_ops->ioctl;
1026 soc_pcm_ops.copy = platform->pcm_ops->copy;
1027 soc_pcm_ops.silence = platform->pcm_ops->silence;
1028 soc_pcm_ops.ack = platform->pcm_ops->ack;
1029 soc_pcm_ops.page = platform->pcm_ops->page;
1030
1031 if (playback)
1032 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1033
1034 if (capture)
1035 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1036
1037 ret = platform->pcm_new(codec->card, codec_dai, pcm);
1038 if (ret < 0) {
1039 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1040 kfree(rtd);
1041 return ret;
1042 }
1043
1044 pcm->private_free = platform->pcm_free;
1045 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1046 cpu_dai->name);
1047 return ret;
1048 }
1049
1050 /* codec register dump */
1051 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
1052 {
1053 int i, step = 1, count = 0;
1054
1055 if (!codec->reg_cache_size)
1056 return 0;
1057
1058 if (codec->reg_cache_step)
1059 step = codec->reg_cache_step;
1060
1061 count += sprintf(buf, "%s registers\n", codec->name);
1062 for (i = 0; i < codec->reg_cache_size; i += step) {
1063 count += sprintf(buf + count, "%2x: ", i);
1064 if (count >= PAGE_SIZE - 1)
1065 break;
1066
1067 if (codec->display_register)
1068 count += codec->display_register(codec, buf + count,
1069 PAGE_SIZE - count, i);
1070 else
1071 count += snprintf(buf + count, PAGE_SIZE - count,
1072 "%4x", codec->read(codec, i));
1073
1074 if (count >= PAGE_SIZE - 1)
1075 break;
1076
1077 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
1078 if (count >= PAGE_SIZE - 1)
1079 break;
1080 }
1081
1082 /* Truncate count; min() would cause a warning */
1083 if (count >= PAGE_SIZE)
1084 count = PAGE_SIZE - 1;
1085
1086 return count;
1087 }
1088 static ssize_t codec_reg_show(struct device *dev,
1089 struct device_attribute *attr, char *buf)
1090 {
1091 struct snd_soc_device *devdata = dev_get_drvdata(dev);
1092 return soc_codec_reg_show(devdata->card->codec, buf);
1093 }
1094
1095 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
1096
1097 #ifdef CONFIG_DEBUG_FS
1098 static int codec_reg_open_file(struct inode *inode, struct file *file)
1099 {
1100 file->private_data = inode->i_private;
1101 return 0;
1102 }
1103
1104 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
1105 size_t count, loff_t *ppos)
1106 {
1107 ssize_t ret;
1108 struct snd_soc_codec *codec = file->private_data;
1109 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1110 if (!buf)
1111 return -ENOMEM;
1112 ret = soc_codec_reg_show(codec, buf);
1113 if (ret >= 0)
1114 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1115 kfree(buf);
1116 return ret;
1117 }
1118
1119 static ssize_t codec_reg_write_file(struct file *file,
1120 const char __user *user_buf, size_t count, loff_t *ppos)
1121 {
1122 char buf[32];
1123 int buf_size;
1124 char *start = buf;
1125 unsigned long reg, value;
1126 int step = 1;
1127 struct snd_soc_codec *codec = file->private_data;
1128
1129 buf_size = min(count, (sizeof(buf)-1));
1130 if (copy_from_user(buf, user_buf, buf_size))
1131 return -EFAULT;
1132 buf[buf_size] = 0;
1133
1134 if (codec->reg_cache_step)
1135 step = codec->reg_cache_step;
1136
1137 while (*start == ' ')
1138 start++;
1139 reg = simple_strtoul(start, &start, 16);
1140 if ((reg >= codec->reg_cache_size) || (reg % step))
1141 return -EINVAL;
1142 while (*start == ' ')
1143 start++;
1144 if (strict_strtoul(start, 16, &value))
1145 return -EINVAL;
1146 codec->write(codec, reg, value);
1147 return buf_size;
1148 }
1149
1150 static const struct file_operations codec_reg_fops = {
1151 .open = codec_reg_open_file,
1152 .read = codec_reg_read_file,
1153 .write = codec_reg_write_file,
1154 };
1155
1156 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
1157 {
1158 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
1159 debugfs_root, codec,
1160 &codec_reg_fops);
1161 if (!codec->debugfs_reg)
1162 printk(KERN_WARNING
1163 "ASoC: Failed to create codec register debugfs file\n");
1164
1165 codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0744,
1166 debugfs_root,
1167 &codec->pop_time);
1168 if (!codec->debugfs_pop_time)
1169 printk(KERN_WARNING
1170 "Failed to create pop time debugfs file\n");
1171 }
1172
1173 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
1174 {
1175 debugfs_remove(codec->debugfs_pop_time);
1176 debugfs_remove(codec->debugfs_reg);
1177 }
1178
1179 #else
1180
1181 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
1182 {
1183 }
1184
1185 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
1186 {
1187 }
1188 #endif
1189
1190 /**
1191 * snd_soc_new_ac97_codec - initailise AC97 device
1192 * @codec: audio codec
1193 * @ops: AC97 bus operations
1194 * @num: AC97 codec number
1195 *
1196 * Initialises AC97 codec resources for use by ad-hoc devices only.
1197 */
1198 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1199 struct snd_ac97_bus_ops *ops, int num)
1200 {
1201 mutex_lock(&codec->mutex);
1202
1203 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1204 if (codec->ac97 == NULL) {
1205 mutex_unlock(&codec->mutex);
1206 return -ENOMEM;
1207 }
1208
1209 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1210 if (codec->ac97->bus == NULL) {
1211 kfree(codec->ac97);
1212 codec->ac97 = NULL;
1213 mutex_unlock(&codec->mutex);
1214 return -ENOMEM;
1215 }
1216
1217 codec->ac97->bus->ops = ops;
1218 codec->ac97->num = num;
1219 mutex_unlock(&codec->mutex);
1220 return 0;
1221 }
1222 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1223
1224 /**
1225 * snd_soc_free_ac97_codec - free AC97 codec device
1226 * @codec: audio codec
1227 *
1228 * Frees AC97 codec device resources.
1229 */
1230 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1231 {
1232 mutex_lock(&codec->mutex);
1233 kfree(codec->ac97->bus);
1234 kfree(codec->ac97);
1235 codec->ac97 = NULL;
1236 mutex_unlock(&codec->mutex);
1237 }
1238 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1239
1240 /**
1241 * snd_soc_update_bits - update codec register bits
1242 * @codec: audio codec
1243 * @reg: codec register
1244 * @mask: register mask
1245 * @value: new value
1246 *
1247 * Writes new register value.
1248 *
1249 * Returns 1 for change else 0.
1250 */
1251 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1252 unsigned short mask, unsigned short value)
1253 {
1254 int change;
1255 unsigned short old, new;
1256
1257 mutex_lock(&io_mutex);
1258 old = snd_soc_read(codec, reg);
1259 new = (old & ~mask) | value;
1260 change = old != new;
1261 if (change)
1262 snd_soc_write(codec, reg, new);
1263
1264 mutex_unlock(&io_mutex);
1265 return change;
1266 }
1267 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1268
1269 /**
1270 * snd_soc_test_bits - test register for change
1271 * @codec: audio codec
1272 * @reg: codec register
1273 * @mask: register mask
1274 * @value: new value
1275 *
1276 * Tests a register with a new value and checks if the new value is
1277 * different from the old value.
1278 *
1279 * Returns 1 for change else 0.
1280 */
1281 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1282 unsigned short mask, unsigned short value)
1283 {
1284 int change;
1285 unsigned short old, new;
1286
1287 mutex_lock(&io_mutex);
1288 old = snd_soc_read(codec, reg);
1289 new = (old & ~mask) | value;
1290 change = old != new;
1291 mutex_unlock(&io_mutex);
1292
1293 return change;
1294 }
1295 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1296
1297 /**
1298 * snd_soc_new_pcms - create new sound card and pcms
1299 * @socdev: the SoC audio device
1300 * @idx: ALSA card index
1301 * @xid: card identification
1302 *
1303 * Create a new sound card based upon the codec and interface pcms.
1304 *
1305 * Returns 0 for success, else error.
1306 */
1307 int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
1308 {
1309 struct snd_soc_card *card = socdev->card;
1310 struct snd_soc_codec *codec = card->codec;
1311 int ret, i;
1312
1313 mutex_lock(&codec->mutex);
1314
1315 /* register a sound card */
1316 ret = snd_card_create(idx, xid, codec->owner, 0, &codec->card);
1317 if (ret < 0) {
1318 printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
1319 codec->name);
1320 mutex_unlock(&codec->mutex);
1321 return ret;
1322 }
1323
1324 codec->card->dev = socdev->dev;
1325 codec->card->private_data = codec;
1326 strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
1327
1328 /* create the pcms */
1329 for (i = 0; i < card->num_links; i++) {
1330 ret = soc_new_pcm(socdev, &card->dai_link[i], i);
1331 if (ret < 0) {
1332 printk(KERN_ERR "asoc: can't create pcm %s\n",
1333 card->dai_link[i].stream_name);
1334 mutex_unlock(&codec->mutex);
1335 return ret;
1336 }
1337 }
1338
1339 mutex_unlock(&codec->mutex);
1340 return ret;
1341 }
1342 EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
1343
1344 /**
1345 * snd_soc_init_card - register sound card
1346 * @socdev: the SoC audio device
1347 *
1348 * Register a SoC sound card. Also registers an AC97 device if the
1349 * codec is AC97 for ad hoc devices.
1350 *
1351 * Returns 0 for success, else error.
1352 */
1353 int snd_soc_init_card(struct snd_soc_device *socdev)
1354 {
1355 struct snd_soc_card *card = socdev->card;
1356 struct snd_soc_codec *codec = card->codec;
1357 int ret = 0, i, ac97 = 0, err = 0;
1358
1359 for (i = 0; i < card->num_links; i++) {
1360 if (card->dai_link[i].init) {
1361 err = card->dai_link[i].init(codec);
1362 if (err < 0) {
1363 printk(KERN_ERR "asoc: failed to init %s\n",
1364 card->dai_link[i].stream_name);
1365 continue;
1366 }
1367 }
1368 if (card->dai_link[i].codec_dai->ac97_control)
1369 ac97 = 1;
1370 }
1371 snprintf(codec->card->shortname, sizeof(codec->card->shortname),
1372 "%s", card->name);
1373 snprintf(codec->card->longname, sizeof(codec->card->longname),
1374 "%s (%s)", card->name, codec->name);
1375
1376 ret = snd_card_register(codec->card);
1377 if (ret < 0) {
1378 printk(KERN_ERR "asoc: failed to register soundcard for %s\n",
1379 codec->name);
1380 goto out;
1381 }
1382
1383 mutex_lock(&codec->mutex);
1384 #ifdef CONFIG_SND_SOC_AC97_BUS
1385 if (ac97) {
1386 ret = soc_ac97_dev_register(codec);
1387 if (ret < 0) {
1388 printk(KERN_ERR "asoc: AC97 device register failed\n");
1389 snd_card_free(codec->card);
1390 mutex_unlock(&codec->mutex);
1391 goto out;
1392 }
1393 }
1394 #endif
1395
1396 err = snd_soc_dapm_sys_add(socdev->dev);
1397 if (err < 0)
1398 printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
1399
1400 err = device_create_file(socdev->dev, &dev_attr_codec_reg);
1401 if (err < 0)
1402 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1403
1404 soc_init_codec_debugfs(codec);
1405 mutex_unlock(&codec->mutex);
1406
1407 out:
1408 return ret;
1409 }
1410 EXPORT_SYMBOL_GPL(snd_soc_init_card);
1411
1412 /**
1413 * snd_soc_free_pcms - free sound card and pcms
1414 * @socdev: the SoC audio device
1415 *
1416 * Frees sound card and pcms associated with the socdev.
1417 * Also unregister the codec if it is an AC97 device.
1418 */
1419 void snd_soc_free_pcms(struct snd_soc_device *socdev)
1420 {
1421 struct snd_soc_codec *codec = socdev->card->codec;
1422 #ifdef CONFIG_SND_SOC_AC97_BUS
1423 struct snd_soc_dai *codec_dai;
1424 int i;
1425 #endif
1426
1427 mutex_lock(&codec->mutex);
1428 soc_cleanup_codec_debugfs(codec);
1429 #ifdef CONFIG_SND_SOC_AC97_BUS
1430 for (i = 0; i < codec->num_dai; i++) {
1431 codec_dai = &codec->dai[i];
1432 if (codec_dai->ac97_control && codec->ac97) {
1433 soc_ac97_dev_unregister(codec);
1434 goto free_card;
1435 }
1436 }
1437 free_card:
1438 #endif
1439
1440 if (codec->card)
1441 snd_card_free(codec->card);
1442 device_remove_file(socdev->dev, &dev_attr_codec_reg);
1443 mutex_unlock(&codec->mutex);
1444 }
1445 EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
1446
1447 /**
1448 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1449 * @substream: the pcm substream
1450 * @hw: the hardware parameters
1451 *
1452 * Sets the substream runtime hardware parameters.
1453 */
1454 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1455 const struct snd_pcm_hardware *hw)
1456 {
1457 struct snd_pcm_runtime *runtime = substream->runtime;
1458 runtime->hw.info = hw->info;
1459 runtime->hw.formats = hw->formats;
1460 runtime->hw.period_bytes_min = hw->period_bytes_min;
1461 runtime->hw.period_bytes_max = hw->period_bytes_max;
1462 runtime->hw.periods_min = hw->periods_min;
1463 runtime->hw.periods_max = hw->periods_max;
1464 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1465 runtime->hw.fifo_size = hw->fifo_size;
1466 return 0;
1467 }
1468 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1469
1470 /**
1471 * snd_soc_cnew - create new control
1472 * @_template: control template
1473 * @data: control private data
1474 * @long_name: control long name
1475 *
1476 * Create a new mixer control from a template control.
1477 *
1478 * Returns 0 for success, else error.
1479 */
1480 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1481 void *data, char *long_name)
1482 {
1483 struct snd_kcontrol_new template;
1484
1485 memcpy(&template, _template, sizeof(template));
1486 if (long_name)
1487 template.name = long_name;
1488 template.index = 0;
1489
1490 return snd_ctl_new1(&template, data);
1491 }
1492 EXPORT_SYMBOL_GPL(snd_soc_cnew);
1493
1494 /**
1495 * snd_soc_add_controls - add an array of controls to a codec.
1496 * Convienience function to add a list of controls. Many codecs were
1497 * duplicating this code.
1498 *
1499 * @codec: codec to add controls to
1500 * @controls: array of controls to add
1501 * @num_controls: number of elements in the array
1502 *
1503 * Return 0 for success, else error.
1504 */
1505 int snd_soc_add_controls(struct snd_soc_codec *codec,
1506 const struct snd_kcontrol_new *controls, int num_controls)
1507 {
1508 struct snd_card *card = codec->card;
1509 int err, i;
1510
1511 for (i = 0; i < num_controls; i++) {
1512 const struct snd_kcontrol_new *control = &controls[i];
1513 err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
1514 if (err < 0) {
1515 dev_err(codec->dev, "%s: Failed to add %s\n",
1516 codec->name, control->name);
1517 return err;
1518 }
1519 }
1520
1521 return 0;
1522 }
1523 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
1524
1525 /**
1526 * snd_soc_info_enum_double - enumerated double mixer info callback
1527 * @kcontrol: mixer control
1528 * @uinfo: control element information
1529 *
1530 * Callback to provide information about a double enumerated
1531 * mixer control.
1532 *
1533 * Returns 0 for success.
1534 */
1535 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1536 struct snd_ctl_elem_info *uinfo)
1537 {
1538 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1539
1540 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1541 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1542 uinfo->value.enumerated.items = e->max;
1543
1544 if (uinfo->value.enumerated.item > e->max - 1)
1545 uinfo->value.enumerated.item = e->max - 1;
1546 strcpy(uinfo->value.enumerated.name,
1547 e->texts[uinfo->value.enumerated.item]);
1548 return 0;
1549 }
1550 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1551
1552 /**
1553 * snd_soc_get_enum_double - enumerated double mixer get callback
1554 * @kcontrol: mixer control
1555 * @ucontrol: control element information
1556 *
1557 * Callback to get the value of a double enumerated mixer.
1558 *
1559 * Returns 0 for success.
1560 */
1561 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1562 struct snd_ctl_elem_value *ucontrol)
1563 {
1564 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1565 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1566 unsigned short val, bitmask;
1567
1568 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1569 ;
1570 val = snd_soc_read(codec, e->reg);
1571 ucontrol->value.enumerated.item[0]
1572 = (val >> e->shift_l) & (bitmask - 1);
1573 if (e->shift_l != e->shift_r)
1574 ucontrol->value.enumerated.item[1] =
1575 (val >> e->shift_r) & (bitmask - 1);
1576
1577 return 0;
1578 }
1579 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1580
1581 /**
1582 * snd_soc_put_enum_double - enumerated double mixer put callback
1583 * @kcontrol: mixer control
1584 * @ucontrol: control element information
1585 *
1586 * Callback to set the value of a double enumerated mixer.
1587 *
1588 * Returns 0 for success.
1589 */
1590 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1591 struct snd_ctl_elem_value *ucontrol)
1592 {
1593 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1594 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1595 unsigned short val;
1596 unsigned short mask, bitmask;
1597
1598 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1599 ;
1600 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1601 return -EINVAL;
1602 val = ucontrol->value.enumerated.item[0] << e->shift_l;
1603 mask = (bitmask - 1) << e->shift_l;
1604 if (e->shift_l != e->shift_r) {
1605 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1606 return -EINVAL;
1607 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1608 mask |= (bitmask - 1) << e->shift_r;
1609 }
1610
1611 return snd_soc_update_bits(codec, e->reg, mask, val);
1612 }
1613 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
1614
1615 /**
1616 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
1617 * @kcontrol: mixer control
1618 * @ucontrol: control element information
1619 *
1620 * Callback to get the value of a double semi enumerated mixer.
1621 *
1622 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1623 * used for handling bitfield coded enumeration for example.
1624 *
1625 * Returns 0 for success.
1626 */
1627 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
1628 struct snd_ctl_elem_value *ucontrol)
1629 {
1630 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1631 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1632 unsigned short reg_val, val, mux;
1633
1634 reg_val = snd_soc_read(codec, e->reg);
1635 val = (reg_val >> e->shift_l) & e->mask;
1636 for (mux = 0; mux < e->max; mux++) {
1637 if (val == e->values[mux])
1638 break;
1639 }
1640 ucontrol->value.enumerated.item[0] = mux;
1641 if (e->shift_l != e->shift_r) {
1642 val = (reg_val >> e->shift_r) & e->mask;
1643 for (mux = 0; mux < e->max; mux++) {
1644 if (val == e->values[mux])
1645 break;
1646 }
1647 ucontrol->value.enumerated.item[1] = mux;
1648 }
1649
1650 return 0;
1651 }
1652 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
1653
1654 /**
1655 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
1656 * @kcontrol: mixer control
1657 * @ucontrol: control element information
1658 *
1659 * Callback to set the value of a double semi enumerated mixer.
1660 *
1661 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1662 * used for handling bitfield coded enumeration for example.
1663 *
1664 * Returns 0 for success.
1665 */
1666 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
1667 struct snd_ctl_elem_value *ucontrol)
1668 {
1669 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1670 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1671 unsigned short val;
1672 unsigned short mask;
1673
1674 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1675 return -EINVAL;
1676 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
1677 mask = e->mask << e->shift_l;
1678 if (e->shift_l != e->shift_r) {
1679 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1680 return -EINVAL;
1681 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
1682 mask |= e->mask << e->shift_r;
1683 }
1684
1685 return snd_soc_update_bits(codec, e->reg, mask, val);
1686 }
1687 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
1688
1689 /**
1690 * snd_soc_info_enum_ext - external enumerated single mixer info callback
1691 * @kcontrol: mixer control
1692 * @uinfo: control element information
1693 *
1694 * Callback to provide information about an external enumerated
1695 * single mixer.
1696 *
1697 * Returns 0 for success.
1698 */
1699 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
1700 struct snd_ctl_elem_info *uinfo)
1701 {
1702 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1703
1704 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1705 uinfo->count = 1;
1706 uinfo->value.enumerated.items = e->max;
1707
1708 if (uinfo->value.enumerated.item > e->max - 1)
1709 uinfo->value.enumerated.item = e->max - 1;
1710 strcpy(uinfo->value.enumerated.name,
1711 e->texts[uinfo->value.enumerated.item]);
1712 return 0;
1713 }
1714 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
1715
1716 /**
1717 * snd_soc_info_volsw_ext - external single mixer info callback
1718 * @kcontrol: mixer control
1719 * @uinfo: control element information
1720 *
1721 * Callback to provide information about a single external mixer control.
1722 *
1723 * Returns 0 for success.
1724 */
1725 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
1726 struct snd_ctl_elem_info *uinfo)
1727 {
1728 int max = kcontrol->private_value;
1729
1730 if (max == 1)
1731 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1732 else
1733 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1734
1735 uinfo->count = 1;
1736 uinfo->value.integer.min = 0;
1737 uinfo->value.integer.max = max;
1738 return 0;
1739 }
1740 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
1741
1742 /**
1743 * snd_soc_info_volsw - single mixer info callback
1744 * @kcontrol: mixer control
1745 * @uinfo: control element information
1746 *
1747 * Callback to provide information about a single mixer control.
1748 *
1749 * Returns 0 for success.
1750 */
1751 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
1752 struct snd_ctl_elem_info *uinfo)
1753 {
1754 struct soc_mixer_control *mc =
1755 (struct soc_mixer_control *)kcontrol->private_value;
1756 int max = mc->max;
1757 unsigned int shift = mc->shift;
1758 unsigned int rshift = mc->rshift;
1759
1760 if (max == 1)
1761 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1762 else
1763 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1764
1765 uinfo->count = shift == rshift ? 1 : 2;
1766 uinfo->value.integer.min = 0;
1767 uinfo->value.integer.max = max;
1768 return 0;
1769 }
1770 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
1771
1772 /**
1773 * snd_soc_get_volsw - single mixer get callback
1774 * @kcontrol: mixer control
1775 * @ucontrol: control element information
1776 *
1777 * Callback to get the value of a single mixer control.
1778 *
1779 * Returns 0 for success.
1780 */
1781 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
1782 struct snd_ctl_elem_value *ucontrol)
1783 {
1784 struct soc_mixer_control *mc =
1785 (struct soc_mixer_control *)kcontrol->private_value;
1786 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1787 unsigned int reg = mc->reg;
1788 unsigned int shift = mc->shift;
1789 unsigned int rshift = mc->rshift;
1790 int max = mc->max;
1791 unsigned int mask = (1 << fls(max)) - 1;
1792 unsigned int invert = mc->invert;
1793
1794 ucontrol->value.integer.value[0] =
1795 (snd_soc_read(codec, reg) >> shift) & mask;
1796 if (shift != rshift)
1797 ucontrol->value.integer.value[1] =
1798 (snd_soc_read(codec, reg) >> rshift) & mask;
1799 if (invert) {
1800 ucontrol->value.integer.value[0] =
1801 max - ucontrol->value.integer.value[0];
1802 if (shift != rshift)
1803 ucontrol->value.integer.value[1] =
1804 max - ucontrol->value.integer.value[1];
1805 }
1806
1807 return 0;
1808 }
1809 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
1810
1811 /**
1812 * snd_soc_put_volsw - single mixer put callback
1813 * @kcontrol: mixer control
1814 * @ucontrol: control element information
1815 *
1816 * Callback to set the value of a single mixer control.
1817 *
1818 * Returns 0 for success.
1819 */
1820 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
1821 struct snd_ctl_elem_value *ucontrol)
1822 {
1823 struct soc_mixer_control *mc =
1824 (struct soc_mixer_control *)kcontrol->private_value;
1825 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1826 unsigned int reg = mc->reg;
1827 unsigned int shift = mc->shift;
1828 unsigned int rshift = mc->rshift;
1829 int max = mc->max;
1830 unsigned int mask = (1 << fls(max)) - 1;
1831 unsigned int invert = mc->invert;
1832 unsigned short val, val2, val_mask;
1833
1834 val = (ucontrol->value.integer.value[0] & mask);
1835 if (invert)
1836 val = max - val;
1837 val_mask = mask << shift;
1838 val = val << shift;
1839 if (shift != rshift) {
1840 val2 = (ucontrol->value.integer.value[1] & mask);
1841 if (invert)
1842 val2 = max - val2;
1843 val_mask |= mask << rshift;
1844 val |= val2 << rshift;
1845 }
1846 return snd_soc_update_bits(codec, reg, val_mask, val);
1847 }
1848 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
1849
1850 /**
1851 * snd_soc_info_volsw_2r - double mixer info callback
1852 * @kcontrol: mixer control
1853 * @uinfo: control element information
1854 *
1855 * Callback to provide information about a double mixer control that
1856 * spans 2 codec registers.
1857 *
1858 * Returns 0 for success.
1859 */
1860 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
1861 struct snd_ctl_elem_info *uinfo)
1862 {
1863 struct soc_mixer_control *mc =
1864 (struct soc_mixer_control *)kcontrol->private_value;
1865 int max = mc->max;
1866
1867 if (max == 1)
1868 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1869 else
1870 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1871
1872 uinfo->count = 2;
1873 uinfo->value.integer.min = 0;
1874 uinfo->value.integer.max = max;
1875 return 0;
1876 }
1877 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
1878
1879 /**
1880 * snd_soc_get_volsw_2r - double mixer get callback
1881 * @kcontrol: mixer control
1882 * @ucontrol: control element information
1883 *
1884 * Callback to get the value of a double mixer control that spans 2 registers.
1885 *
1886 * Returns 0 for success.
1887 */
1888 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
1889 struct snd_ctl_elem_value *ucontrol)
1890 {
1891 struct soc_mixer_control *mc =
1892 (struct soc_mixer_control *)kcontrol->private_value;
1893 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1894 unsigned int reg = mc->reg;
1895 unsigned int reg2 = mc->rreg;
1896 unsigned int shift = mc->shift;
1897 int max = mc->max;
1898 unsigned int mask = (1<<fls(max))-1;
1899 unsigned int invert = mc->invert;
1900
1901 ucontrol->value.integer.value[0] =
1902 (snd_soc_read(codec, reg) >> shift) & mask;
1903 ucontrol->value.integer.value[1] =
1904 (snd_soc_read(codec, reg2) >> shift) & mask;
1905 if (invert) {
1906 ucontrol->value.integer.value[0] =
1907 max - ucontrol->value.integer.value[0];
1908 ucontrol->value.integer.value[1] =
1909 max - ucontrol->value.integer.value[1];
1910 }
1911
1912 return 0;
1913 }
1914 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
1915
1916 /**
1917 * snd_soc_put_volsw_2r - double mixer set callback
1918 * @kcontrol: mixer control
1919 * @ucontrol: control element information
1920 *
1921 * Callback to set the value of a double mixer control that spans 2 registers.
1922 *
1923 * Returns 0 for success.
1924 */
1925 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
1926 struct snd_ctl_elem_value *ucontrol)
1927 {
1928 struct soc_mixer_control *mc =
1929 (struct soc_mixer_control *)kcontrol->private_value;
1930 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1931 unsigned int reg = mc->reg;
1932 unsigned int reg2 = mc->rreg;
1933 unsigned int shift = mc->shift;
1934 int max = mc->max;
1935 unsigned int mask = (1 << fls(max)) - 1;
1936 unsigned int invert = mc->invert;
1937 int err;
1938 unsigned short val, val2, val_mask;
1939
1940 val_mask = mask << shift;
1941 val = (ucontrol->value.integer.value[0] & mask);
1942 val2 = (ucontrol->value.integer.value[1] & mask);
1943
1944 if (invert) {
1945 val = max - val;
1946 val2 = max - val2;
1947 }
1948
1949 val = val << shift;
1950 val2 = val2 << shift;
1951
1952 err = snd_soc_update_bits(codec, reg, val_mask, val);
1953 if (err < 0)
1954 return err;
1955
1956 err = snd_soc_update_bits(codec, reg2, val_mask, val2);
1957 return err;
1958 }
1959 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
1960
1961 /**
1962 * snd_soc_info_volsw_s8 - signed mixer info callback
1963 * @kcontrol: mixer control
1964 * @uinfo: control element information
1965 *
1966 * Callback to provide information about a signed mixer control.
1967 *
1968 * Returns 0 for success.
1969 */
1970 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
1971 struct snd_ctl_elem_info *uinfo)
1972 {
1973 struct soc_mixer_control *mc =
1974 (struct soc_mixer_control *)kcontrol->private_value;
1975 int max = mc->max;
1976 int min = mc->min;
1977
1978 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1979 uinfo->count = 2;
1980 uinfo->value.integer.min = 0;
1981 uinfo->value.integer.max = max-min;
1982 return 0;
1983 }
1984 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
1985
1986 /**
1987 * snd_soc_get_volsw_s8 - signed mixer get callback
1988 * @kcontrol: mixer control
1989 * @ucontrol: control element information
1990 *
1991 * Callback to get the value of a signed mixer control.
1992 *
1993 * Returns 0 for success.
1994 */
1995 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
1996 struct snd_ctl_elem_value *ucontrol)
1997 {
1998 struct soc_mixer_control *mc =
1999 (struct soc_mixer_control *)kcontrol->private_value;
2000 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2001 unsigned int reg = mc->reg;
2002 int min = mc->min;
2003 int val = snd_soc_read(codec, reg);
2004
2005 ucontrol->value.integer.value[0] =
2006 ((signed char)(val & 0xff))-min;
2007 ucontrol->value.integer.value[1] =
2008 ((signed char)((val >> 8) & 0xff))-min;
2009 return 0;
2010 }
2011 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2012
2013 /**
2014 * snd_soc_put_volsw_sgn - signed mixer put callback
2015 * @kcontrol: mixer control
2016 * @ucontrol: control element information
2017 *
2018 * Callback to set the value of a signed mixer control.
2019 *
2020 * Returns 0 for success.
2021 */
2022 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2023 struct snd_ctl_elem_value *ucontrol)
2024 {
2025 struct soc_mixer_control *mc =
2026 (struct soc_mixer_control *)kcontrol->private_value;
2027 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2028 unsigned int reg = mc->reg;
2029 int min = mc->min;
2030 unsigned short val;
2031
2032 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2033 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2034
2035 return snd_soc_update_bits(codec, reg, 0xffff, val);
2036 }
2037 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2038
2039 /**
2040 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2041 * @dai: DAI
2042 * @clk_id: DAI specific clock ID
2043 * @freq: new clock frequency in Hz
2044 * @dir: new clock direction - input/output.
2045 *
2046 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2047 */
2048 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2049 unsigned int freq, int dir)
2050 {
2051 if (dai->ops.set_sysclk)
2052 return dai->ops.set_sysclk(dai, clk_id, freq, dir);
2053 else
2054 return -EINVAL;
2055 }
2056 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2057
2058 /**
2059 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2060 * @dai: DAI
2061 * @div_id: DAI specific clock divider ID
2062 * @div: new clock divisor.
2063 *
2064 * Configures the clock dividers. This is used to derive the best DAI bit and
2065 * frame clocks from the system or master clock. It's best to set the DAI bit
2066 * and frame clocks as low as possible to save system power.
2067 */
2068 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2069 int div_id, int div)
2070 {
2071 if (dai->ops.set_clkdiv)
2072 return dai->ops.set_clkdiv(dai, div_id, div);
2073 else
2074 return -EINVAL;
2075 }
2076 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2077
2078 /**
2079 * snd_soc_dai_set_pll - configure DAI PLL.
2080 * @dai: DAI
2081 * @pll_id: DAI specific PLL ID
2082 * @freq_in: PLL input clock frequency in Hz
2083 * @freq_out: requested PLL output clock frequency in Hz
2084 *
2085 * Configures and enables PLL to generate output clock based on input clock.
2086 */
2087 int snd_soc_dai_set_pll(struct snd_soc_dai *dai,
2088 int pll_id, unsigned int freq_in, unsigned int freq_out)
2089 {
2090 if (dai->ops.set_pll)
2091 return dai->ops.set_pll(dai, pll_id, freq_in, freq_out);
2092 else
2093 return -EINVAL;
2094 }
2095 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2096
2097 /**
2098 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2099 * @dai: DAI
2100 * @fmt: SND_SOC_DAIFMT_ format value.
2101 *
2102 * Configures the DAI hardware format and clocking.
2103 */
2104 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2105 {
2106 if (dai->ops.set_fmt)
2107 return dai->ops.set_fmt(dai, fmt);
2108 else
2109 return -EINVAL;
2110 }
2111 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2112
2113 /**
2114 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2115 * @dai: DAI
2116 * @mask: DAI specific mask representing used slots.
2117 * @slots: Number of slots in use.
2118 *
2119 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2120 * specific.
2121 */
2122 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2123 unsigned int mask, int slots)
2124 {
2125 if (dai->ops.set_sysclk)
2126 return dai->ops.set_tdm_slot(dai, mask, slots);
2127 else
2128 return -EINVAL;
2129 }
2130 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2131
2132 /**
2133 * snd_soc_dai_set_tristate - configure DAI system or master clock.
2134 * @dai: DAI
2135 * @tristate: tristate enable
2136 *
2137 * Tristates the DAI so that others can use it.
2138 */
2139 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2140 {
2141 if (dai->ops.set_sysclk)
2142 return dai->ops.set_tristate(dai, tristate);
2143 else
2144 return -EINVAL;
2145 }
2146 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2147
2148 /**
2149 * snd_soc_dai_digital_mute - configure DAI system or master clock.
2150 * @dai: DAI
2151 * @mute: mute enable
2152 *
2153 * Mutes the DAI DAC.
2154 */
2155 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2156 {
2157 if (dai->ops.digital_mute)
2158 return dai->ops.digital_mute(dai, mute);
2159 else
2160 return -EINVAL;
2161 }
2162 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2163
2164 /**
2165 * snd_soc_register_card - Register a card with the ASoC core
2166 *
2167 * @card: Card to register
2168 *
2169 * Note that currently this is an internal only function: it will be
2170 * exposed to machine drivers after further backporting of ASoC v2
2171 * registration APIs.
2172 */
2173 static int snd_soc_register_card(struct snd_soc_card *card)
2174 {
2175 if (!card->name || !card->dev)
2176 return -EINVAL;
2177
2178 INIT_LIST_HEAD(&card->list);
2179 card->instantiated = 0;
2180
2181 mutex_lock(&client_mutex);
2182 list_add(&card->list, &card_list);
2183 snd_soc_instantiate_cards();
2184 mutex_unlock(&client_mutex);
2185
2186 dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2187
2188 return 0;
2189 }
2190
2191 /**
2192 * snd_soc_unregister_card - Unregister a card with the ASoC core
2193 *
2194 * @card: Card to unregister
2195 *
2196 * Note that currently this is an internal only function: it will be
2197 * exposed to machine drivers after further backporting of ASoC v2
2198 * registration APIs.
2199 */
2200 static int snd_soc_unregister_card(struct snd_soc_card *card)
2201 {
2202 mutex_lock(&client_mutex);
2203 list_del(&card->list);
2204 mutex_unlock(&client_mutex);
2205
2206 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2207
2208 return 0;
2209 }
2210
2211 /**
2212 * snd_soc_register_dai - Register a DAI with the ASoC core
2213 *
2214 * @dai: DAI to register
2215 */
2216 int snd_soc_register_dai(struct snd_soc_dai *dai)
2217 {
2218 if (!dai->name)
2219 return -EINVAL;
2220
2221 /* The device should become mandatory over time */
2222 if (!dai->dev)
2223 printk(KERN_WARNING "No device for DAI %s\n", dai->name);
2224
2225 INIT_LIST_HEAD(&dai->list);
2226
2227 mutex_lock(&client_mutex);
2228 list_add(&dai->list, &dai_list);
2229 snd_soc_instantiate_cards();
2230 mutex_unlock(&client_mutex);
2231
2232 pr_debug("Registered DAI '%s'\n", dai->name);
2233
2234 return 0;
2235 }
2236 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
2237
2238 /**
2239 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
2240 *
2241 * @dai: DAI to unregister
2242 */
2243 void snd_soc_unregister_dai(struct snd_soc_dai *dai)
2244 {
2245 mutex_lock(&client_mutex);
2246 list_del(&dai->list);
2247 mutex_unlock(&client_mutex);
2248
2249 pr_debug("Unregistered DAI '%s'\n", dai->name);
2250 }
2251 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
2252
2253 /**
2254 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
2255 *
2256 * @dai: Array of DAIs to register
2257 * @count: Number of DAIs
2258 */
2259 int snd_soc_register_dais(struct snd_soc_dai *dai, size_t count)
2260 {
2261 int i, ret;
2262
2263 for (i = 0; i < count; i++) {
2264 ret = snd_soc_register_dai(&dai[i]);
2265 if (ret != 0)
2266 goto err;
2267 }
2268
2269 return 0;
2270
2271 err:
2272 for (i--; i >= 0; i--)
2273 snd_soc_unregister_dai(&dai[i]);
2274
2275 return ret;
2276 }
2277 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
2278
2279 /**
2280 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
2281 *
2282 * @dai: Array of DAIs to unregister
2283 * @count: Number of DAIs
2284 */
2285 void snd_soc_unregister_dais(struct snd_soc_dai *dai, size_t count)
2286 {
2287 int i;
2288
2289 for (i = 0; i < count; i++)
2290 snd_soc_unregister_dai(&dai[i]);
2291 }
2292 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
2293
2294 /**
2295 * snd_soc_register_platform - Register a platform with the ASoC core
2296 *
2297 * @platform: platform to register
2298 */
2299 int snd_soc_register_platform(struct snd_soc_platform *platform)
2300 {
2301 if (!platform->name)
2302 return -EINVAL;
2303
2304 INIT_LIST_HEAD(&platform->list);
2305
2306 mutex_lock(&client_mutex);
2307 list_add(&platform->list, &platform_list);
2308 snd_soc_instantiate_cards();
2309 mutex_unlock(&client_mutex);
2310
2311 pr_debug("Registered platform '%s'\n", platform->name);
2312
2313 return 0;
2314 }
2315 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
2316
2317 /**
2318 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
2319 *
2320 * @platform: platform to unregister
2321 */
2322 void snd_soc_unregister_platform(struct snd_soc_platform *platform)
2323 {
2324 mutex_lock(&client_mutex);
2325 list_del(&platform->list);
2326 mutex_unlock(&client_mutex);
2327
2328 pr_debug("Unregistered platform '%s'\n", platform->name);
2329 }
2330 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
2331
2332 /**
2333 * snd_soc_register_codec - Register a codec with the ASoC core
2334 *
2335 * @codec: codec to register
2336 */
2337 int snd_soc_register_codec(struct snd_soc_codec *codec)
2338 {
2339 if (!codec->name)
2340 return -EINVAL;
2341
2342 /* The device should become mandatory over time */
2343 if (!codec->dev)
2344 printk(KERN_WARNING "No device for codec %s\n", codec->name);
2345
2346 INIT_LIST_HEAD(&codec->list);
2347
2348 mutex_lock(&client_mutex);
2349 list_add(&codec->list, &codec_list);
2350 snd_soc_instantiate_cards();
2351 mutex_unlock(&client_mutex);
2352
2353 pr_debug("Registered codec '%s'\n", codec->name);
2354
2355 return 0;
2356 }
2357 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
2358
2359 /**
2360 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
2361 *
2362 * @codec: codec to unregister
2363 */
2364 void snd_soc_unregister_codec(struct snd_soc_codec *codec)
2365 {
2366 mutex_lock(&client_mutex);
2367 list_del(&codec->list);
2368 mutex_unlock(&client_mutex);
2369
2370 pr_debug("Unregistered codec '%s'\n", codec->name);
2371 }
2372 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
2373
2374 static int __init snd_soc_init(void)
2375 {
2376 #ifdef CONFIG_DEBUG_FS
2377 debugfs_root = debugfs_create_dir("asoc", NULL);
2378 if (IS_ERR(debugfs_root) || !debugfs_root) {
2379 printk(KERN_WARNING
2380 "ASoC: Failed to create debugfs directory\n");
2381 debugfs_root = NULL;
2382 }
2383 #endif
2384
2385 return platform_driver_register(&soc_driver);
2386 }
2387
2388 static void __exit snd_soc_exit(void)
2389 {
2390 #ifdef CONFIG_DEBUG_FS
2391 debugfs_remove_recursive(debugfs_root);
2392 #endif
2393 platform_driver_unregister(&soc_driver);
2394 }
2395
2396 module_init(snd_soc_init);
2397 module_exit(snd_soc_exit);
2398
2399 /* Module information */
2400 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
2401 MODULE_DESCRIPTION("ALSA SoC Core");
2402 MODULE_LICENSE("GPL");
2403 MODULE_ALIAS("platform:soc-audio");
This page took 0.154879 seconds and 5 git commands to generate.