Merge branch 'topic/multi-component' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / sound / soc / soc-core.c
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
6 * Copyright (C) 2010 Slimlogic Ltd.
7 * Copyright (C) 2010 Texas Instruments Inc.
8 *
9 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10 * with code, comments and ideas from :-
11 * Richard Purdie <richard@openedhand.com>
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 *
18 * TODO:
19 * o Add hw rules to enforce rates, etc.
20 * o More testing with other codecs/machines.
21 * o Add more codecs and platforms to ensure good API coverage.
22 * o Support TDM on PCM and I2S
23 */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h>
35 #include <sound/core.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/soc.h>
39 #include <sound/soc-dapm.h>
40 #include <sound/initval.h>
41
42 #define NAME_SIZE 32
43
44 static DEFINE_MUTEX(pcm_mutex);
45 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
46
47 #ifdef CONFIG_DEBUG_FS
48 static struct dentry *debugfs_root;
49 #endif
50
51 static DEFINE_MUTEX(client_mutex);
52 static LIST_HEAD(card_list);
53 static LIST_HEAD(dai_list);
54 static LIST_HEAD(platform_list);
55 static LIST_HEAD(codec_list);
56
57 static int snd_soc_register_card(struct snd_soc_card *card);
58 static int snd_soc_unregister_card(struct snd_soc_card *card);
59 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
60
61 /*
62 * This is a timeout to do a DAPM powerdown after a stream is closed().
63 * It can be used to eliminate pops between different playback streams, e.g.
64 * between two audio tracks.
65 */
66 static int pmdown_time = 5000;
67 module_param(pmdown_time, int, 0);
68 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
69
70 /*
71 * This function forces any delayed work to be queued and run.
72 */
73 static int run_delayed_work(struct delayed_work *dwork)
74 {
75 int ret;
76
77 /* cancel any work waiting to be queued. */
78 ret = cancel_delayed_work(dwork);
79
80 /* if there was any work waiting then we run it now and
81 * wait for it's completion */
82 if (ret) {
83 schedule_delayed_work(dwork, 0);
84 flush_scheduled_work();
85 }
86 return ret;
87 }
88
89 /* codec register dump */
90 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
91 {
92 int ret, i, step = 1, count = 0;
93
94 if (!codec->driver->reg_cache_size)
95 return 0;
96
97 if (codec->driver->reg_cache_step)
98 step = codec->driver->reg_cache_step;
99
100 count += sprintf(buf, "%s registers\n", codec->name);
101 for (i = 0; i < codec->driver->reg_cache_size; i += step) {
102 if (codec->driver->readable_register && !codec->driver->readable_register(i))
103 continue;
104
105 count += sprintf(buf + count, "%2x: ", i);
106 if (count >= PAGE_SIZE - 1)
107 break;
108
109 if (codec->driver->display_register) {
110 count += codec->driver->display_register(codec, buf + count,
111 PAGE_SIZE - count, i);
112 } else {
113 /* If the read fails it's almost certainly due to
114 * the register being volatile and the device being
115 * powered off.
116 */
117 ret = codec->driver->read(codec, i);
118 if (ret >= 0)
119 count += snprintf(buf + count,
120 PAGE_SIZE - count,
121 "%4x", ret);
122 else
123 count += snprintf(buf + count,
124 PAGE_SIZE - count,
125 "<no data: %d>", ret);
126 }
127
128 if (count >= PAGE_SIZE - 1)
129 break;
130
131 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
132 if (count >= PAGE_SIZE - 1)
133 break;
134 }
135
136 /* Truncate count; min() would cause a warning */
137 if (count >= PAGE_SIZE)
138 count = PAGE_SIZE - 1;
139
140 return count;
141 }
142 static ssize_t codec_reg_show(struct device *dev,
143 struct device_attribute *attr, char *buf)
144 {
145 struct snd_soc_pcm_runtime *rtd =
146 container_of(dev, struct snd_soc_pcm_runtime, dev);
147
148 return soc_codec_reg_show(rtd->codec, buf);
149 }
150
151 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
152
153 static ssize_t pmdown_time_show(struct device *dev,
154 struct device_attribute *attr, char *buf)
155 {
156 struct snd_soc_pcm_runtime *rtd =
157 container_of(dev, struct snd_soc_pcm_runtime, dev);
158
159 return sprintf(buf, "%ld\n", rtd->pmdown_time);
160 }
161
162 static ssize_t pmdown_time_set(struct device *dev,
163 struct device_attribute *attr,
164 const char *buf, size_t count)
165 {
166 struct snd_soc_pcm_runtime *rtd =
167 container_of(dev, struct snd_soc_pcm_runtime, dev);
168
169 strict_strtol(buf, 10, &rtd->pmdown_time);
170
171 return count;
172 }
173
174 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
175
176 #ifdef CONFIG_DEBUG_FS
177 static int codec_reg_open_file(struct inode *inode, struct file *file)
178 {
179 file->private_data = inode->i_private;
180 return 0;
181 }
182
183 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
184 size_t count, loff_t *ppos)
185 {
186 ssize_t ret;
187 struct snd_soc_codec *codec = file->private_data;
188 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
189 if (!buf)
190 return -ENOMEM;
191 ret = soc_codec_reg_show(codec, buf);
192 if (ret >= 0)
193 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
194 kfree(buf);
195 return ret;
196 }
197
198 static ssize_t codec_reg_write_file(struct file *file,
199 const char __user *user_buf, size_t count, loff_t *ppos)
200 {
201 char buf[32];
202 int buf_size;
203 char *start = buf;
204 unsigned long reg, value;
205 int step = 1;
206 struct snd_soc_codec *codec = file->private_data;
207
208 buf_size = min(count, (sizeof(buf)-1));
209 if (copy_from_user(buf, user_buf, buf_size))
210 return -EFAULT;
211 buf[buf_size] = 0;
212
213 if (codec->driver->reg_cache_step)
214 step = codec->driver->reg_cache_step;
215
216 while (*start == ' ')
217 start++;
218 reg = simple_strtoul(start, &start, 16);
219 if ((reg >= codec->driver->reg_cache_size) || (reg % step))
220 return -EINVAL;
221 while (*start == ' ')
222 start++;
223 if (strict_strtoul(start, 16, &value))
224 return -EINVAL;
225 codec->driver->write(codec, reg, value);
226 return buf_size;
227 }
228
229 static const struct file_operations codec_reg_fops = {
230 .open = codec_reg_open_file,
231 .read = codec_reg_read_file,
232 .write = codec_reg_write_file,
233 };
234
235 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
236 {
237 char codec_root[128];
238
239 if (codec->dev)
240 snprintf(codec_root, sizeof(codec_root),
241 "%s.%s", codec->name, dev_name(codec->dev));
242 else
243 snprintf(codec_root, sizeof(codec_root),
244 "%s", codec->name);
245
246 codec->debugfs_codec_root = debugfs_create_dir(codec_root,
247 debugfs_root);
248 if (!codec->debugfs_codec_root) {
249 printk(KERN_WARNING
250 "ASoC: Failed to create codec debugfs directory\n");
251 return;
252 }
253
254 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
255 codec->debugfs_codec_root,
256 codec, &codec_reg_fops);
257 if (!codec->debugfs_reg)
258 printk(KERN_WARNING
259 "ASoC: Failed to create codec register debugfs file\n");
260
261 codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0744,
262 codec->debugfs_codec_root,
263 &codec->pop_time);
264 if (!codec->debugfs_pop_time)
265 printk(KERN_WARNING
266 "Failed to create pop time debugfs file\n");
267
268 codec->debugfs_dapm = debugfs_create_dir("dapm",
269 codec->debugfs_codec_root);
270 if (!codec->debugfs_dapm)
271 printk(KERN_WARNING
272 "Failed to create DAPM debugfs directory\n");
273
274 snd_soc_dapm_debugfs_init(codec);
275 }
276
277 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
278 {
279 debugfs_remove_recursive(codec->debugfs_codec_root);
280 }
281
282 #else
283
284 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
285 {
286 }
287
288 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
289 {
290 }
291 #endif
292
293 #ifdef CONFIG_SND_SOC_AC97_BUS
294 /* unregister ac97 codec */
295 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
296 {
297 if (codec->ac97->dev.bus)
298 device_unregister(&codec->ac97->dev);
299 return 0;
300 }
301
302 /* stop no dev release warning */
303 static void soc_ac97_device_release(struct device *dev){}
304
305 /* register ac97 codec to bus */
306 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
307 {
308 int err;
309
310 codec->ac97->dev.bus = &ac97_bus_type;
311 codec->ac97->dev.parent = codec->card->dev;
312 codec->ac97->dev.release = soc_ac97_device_release;
313
314 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
315 codec->card->snd_card->number, 0, codec->name);
316 err = device_register(&codec->ac97->dev);
317 if (err < 0) {
318 snd_printk(KERN_ERR "Can't register ac97 bus\n");
319 codec->ac97->dev.bus = NULL;
320 return err;
321 }
322 return 0;
323 }
324 #endif
325
326 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
327 {
328 struct snd_soc_pcm_runtime *rtd = substream->private_data;
329 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
330 struct snd_soc_dai *codec_dai = rtd->codec_dai;
331 int ret;
332
333 if (codec_dai->driver->symmetric_rates || cpu_dai->driver->symmetric_rates ||
334 rtd->dai_link->symmetric_rates) {
335 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n",
336 rtd->rate);
337
338 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
339 SNDRV_PCM_HW_PARAM_RATE,
340 rtd->rate,
341 rtd->rate);
342 if (ret < 0) {
343 dev_err(&rtd->dev,
344 "Unable to apply rate symmetry constraint: %d\n", ret);
345 return ret;
346 }
347 }
348
349 return 0;
350 }
351
352 /*
353 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
354 * then initialized and any private data can be allocated. This also calls
355 * startup for the cpu DAI, platform, machine and codec DAI.
356 */
357 static int soc_pcm_open(struct snd_pcm_substream *substream)
358 {
359 struct snd_soc_pcm_runtime *rtd = substream->private_data;
360 struct snd_pcm_runtime *runtime = substream->runtime;
361 struct snd_soc_platform *platform = rtd->platform;
362 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
363 struct snd_soc_dai *codec_dai = rtd->codec_dai;
364 struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
365 struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
366 int ret = 0;
367
368 mutex_lock(&pcm_mutex);
369
370 /* startup the audio subsystem */
371 if (cpu_dai->driver->ops->startup) {
372 ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
373 if (ret < 0) {
374 printk(KERN_ERR "asoc: can't open interface %s\n",
375 cpu_dai->name);
376 goto out;
377 }
378 }
379
380 if (platform->driver->ops->open) {
381 ret = platform->driver->ops->open(substream);
382 if (ret < 0) {
383 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
384 goto platform_err;
385 }
386 }
387
388 if (codec_dai->driver->ops->startup) {
389 ret = codec_dai->driver->ops->startup(substream, codec_dai);
390 if (ret < 0) {
391 printk(KERN_ERR "asoc: can't open codec %s\n",
392 codec_dai->name);
393 goto codec_dai_err;
394 }
395 }
396
397 if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
398 ret = rtd->dai_link->ops->startup(substream);
399 if (ret < 0) {
400 printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
401 goto machine_err;
402 }
403 }
404
405 /* Check that the codec and cpu DAI's are compatible */
406 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
407 runtime->hw.rate_min =
408 max(codec_dai_drv->playback.rate_min,
409 cpu_dai_drv->playback.rate_min);
410 runtime->hw.rate_max =
411 min(codec_dai_drv->playback.rate_max,
412 cpu_dai_drv->playback.rate_max);
413 runtime->hw.channels_min =
414 max(codec_dai_drv->playback.channels_min,
415 cpu_dai_drv->playback.channels_min);
416 runtime->hw.channels_max =
417 min(codec_dai_drv->playback.channels_max,
418 cpu_dai_drv->playback.channels_max);
419 runtime->hw.formats =
420 codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
421 runtime->hw.rates =
422 codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
423 if (codec_dai_drv->playback.rates
424 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
425 runtime->hw.rates |= cpu_dai_drv->playback.rates;
426 if (cpu_dai_drv->playback.rates
427 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
428 runtime->hw.rates |= codec_dai_drv->playback.rates;
429 } else {
430 runtime->hw.rate_min =
431 max(codec_dai_drv->capture.rate_min,
432 cpu_dai_drv->capture.rate_min);
433 runtime->hw.rate_max =
434 min(codec_dai_drv->capture.rate_max,
435 cpu_dai_drv->capture.rate_max);
436 runtime->hw.channels_min =
437 max(codec_dai_drv->capture.channels_min,
438 cpu_dai_drv->capture.channels_min);
439 runtime->hw.channels_max =
440 min(codec_dai_drv->capture.channels_max,
441 cpu_dai_drv->capture.channels_max);
442 runtime->hw.formats =
443 codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
444 runtime->hw.rates =
445 codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
446 if (codec_dai_drv->capture.rates
447 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
448 runtime->hw.rates |= cpu_dai_drv->capture.rates;
449 if (cpu_dai_drv->capture.rates
450 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
451 runtime->hw.rates |= codec_dai_drv->capture.rates;
452 }
453
454 snd_pcm_limit_hw_rates(runtime);
455 if (!runtime->hw.rates) {
456 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
457 codec_dai->name, cpu_dai->name);
458 goto config_err;
459 }
460 if (!runtime->hw.formats) {
461 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
462 codec_dai->name, cpu_dai->name);
463 goto config_err;
464 }
465 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
466 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
467 codec_dai->name, cpu_dai->name);
468 goto config_err;
469 }
470
471 /* Symmetry only applies if we've already got an active stream. */
472 if (cpu_dai->active || codec_dai->active) {
473 ret = soc_pcm_apply_symmetry(substream);
474 if (ret != 0)
475 goto config_err;
476 }
477
478 pr_debug("asoc: %s <-> %s info:\n",
479 codec_dai->name, cpu_dai->name);
480 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
481 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
482 runtime->hw.channels_max);
483 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
484 runtime->hw.rate_max);
485
486 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
487 cpu_dai->playback_active++;
488 codec_dai->playback_active++;
489 } else {
490 cpu_dai->capture_active++;
491 codec_dai->capture_active++;
492 }
493 cpu_dai->active++;
494 codec_dai->active++;
495 rtd->codec->active++;
496 mutex_unlock(&pcm_mutex);
497 return 0;
498
499 config_err:
500 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
501 rtd->dai_link->ops->shutdown(substream);
502
503 machine_err:
504 if (codec_dai->driver->ops->shutdown)
505 codec_dai->driver->ops->shutdown(substream, codec_dai);
506
507 codec_dai_err:
508 if (platform->driver->ops->close)
509 platform->driver->ops->close(substream);
510
511 platform_err:
512 if (cpu_dai->driver->ops->shutdown)
513 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
514 out:
515 mutex_unlock(&pcm_mutex);
516 return ret;
517 }
518
519 /*
520 * Power down the audio subsystem pmdown_time msecs after close is called.
521 * This is to ensure there are no pops or clicks in between any music tracks
522 * due to DAPM power cycling.
523 */
524 static void close_delayed_work(struct work_struct *work)
525 {
526 struct snd_soc_pcm_runtime *rtd =
527 container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
528 struct snd_soc_dai *codec_dai = rtd->codec_dai;
529
530 mutex_lock(&pcm_mutex);
531
532 pr_debug("pop wq checking: %s status: %s waiting: %s\n",
533 codec_dai->driver->playback.stream_name,
534 codec_dai->playback_active ? "active" : "inactive",
535 codec_dai->pop_wait ? "yes" : "no");
536
537 /* are we waiting on this codec DAI stream */
538 if (codec_dai->pop_wait == 1) {
539 codec_dai->pop_wait = 0;
540 snd_soc_dapm_stream_event(rtd,
541 codec_dai->driver->playback.stream_name,
542 SND_SOC_DAPM_STREAM_STOP);
543 }
544
545 mutex_unlock(&pcm_mutex);
546 }
547
548 /*
549 * Called by ALSA when a PCM substream is closed. Private data can be
550 * freed here. The cpu DAI, codec DAI, machine and platform are also
551 * shutdown.
552 */
553 static int soc_codec_close(struct snd_pcm_substream *substream)
554 {
555 struct snd_soc_pcm_runtime *rtd = substream->private_data;
556 struct snd_soc_platform *platform = rtd->platform;
557 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
558 struct snd_soc_dai *codec_dai = rtd->codec_dai;
559 struct snd_soc_codec *codec = rtd->codec;
560
561 mutex_lock(&pcm_mutex);
562
563 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
564 cpu_dai->playback_active--;
565 codec_dai->playback_active--;
566 } else {
567 cpu_dai->capture_active--;
568 codec_dai->capture_active--;
569 }
570
571 cpu_dai->active--;
572 codec_dai->active--;
573 codec->active--;
574
575 /* Muting the DAC suppresses artifacts caused during digital
576 * shutdown, for example from stopping clocks.
577 */
578 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
579 snd_soc_dai_digital_mute(codec_dai, 1);
580
581 if (cpu_dai->driver->ops->shutdown)
582 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
583
584 if (codec_dai->driver->ops->shutdown)
585 codec_dai->driver->ops->shutdown(substream, codec_dai);
586
587 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
588 rtd->dai_link->ops->shutdown(substream);
589
590 if (platform->driver->ops->close)
591 platform->driver->ops->close(substream);
592 cpu_dai->runtime = NULL;
593
594 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
595 /* start delayed pop wq here for playback streams */
596 codec_dai->pop_wait = 1;
597 schedule_delayed_work(&rtd->delayed_work,
598 msecs_to_jiffies(rtd->pmdown_time));
599 } else {
600 /* capture streams can be powered down now */
601 snd_soc_dapm_stream_event(rtd,
602 codec_dai->driver->capture.stream_name,
603 SND_SOC_DAPM_STREAM_STOP);
604 }
605
606 mutex_unlock(&pcm_mutex);
607 return 0;
608 }
609
610 /*
611 * Called by ALSA when the PCM substream is prepared, can set format, sample
612 * rate, etc. This function is non atomic and can be called multiple times,
613 * it can refer to the runtime info.
614 */
615 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
616 {
617 struct snd_soc_pcm_runtime *rtd = substream->private_data;
618 struct snd_soc_platform *platform = rtd->platform;
619 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
620 struct snd_soc_dai *codec_dai = rtd->codec_dai;
621 int ret = 0;
622
623 mutex_lock(&pcm_mutex);
624
625 if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
626 ret = rtd->dai_link->ops->prepare(substream);
627 if (ret < 0) {
628 printk(KERN_ERR "asoc: machine prepare error\n");
629 goto out;
630 }
631 }
632
633 if (platform->driver->ops->prepare) {
634 ret = platform->driver->ops->prepare(substream);
635 if (ret < 0) {
636 printk(KERN_ERR "asoc: platform prepare error\n");
637 goto out;
638 }
639 }
640
641 if (codec_dai->driver->ops->prepare) {
642 ret = codec_dai->driver->ops->prepare(substream, codec_dai);
643 if (ret < 0) {
644 printk(KERN_ERR "asoc: codec DAI prepare error\n");
645 goto out;
646 }
647 }
648
649 if (cpu_dai->driver->ops->prepare) {
650 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
651 if (ret < 0) {
652 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
653 goto out;
654 }
655 }
656
657 /* cancel any delayed stream shutdown that is pending */
658 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
659 codec_dai->pop_wait) {
660 codec_dai->pop_wait = 0;
661 cancel_delayed_work(&rtd->delayed_work);
662 }
663
664 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
665 snd_soc_dapm_stream_event(rtd,
666 codec_dai->driver->playback.stream_name,
667 SND_SOC_DAPM_STREAM_START);
668 else
669 snd_soc_dapm_stream_event(rtd,
670 codec_dai->driver->capture.stream_name,
671 SND_SOC_DAPM_STREAM_START);
672
673 snd_soc_dai_digital_mute(codec_dai, 0);
674
675 out:
676 mutex_unlock(&pcm_mutex);
677 return ret;
678 }
679
680 /*
681 * Called by ALSA when the hardware params are set by application. This
682 * function can also be called multiple times and can allocate buffers
683 * (using snd_pcm_lib_* ). It's non-atomic.
684 */
685 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
686 struct snd_pcm_hw_params *params)
687 {
688 struct snd_soc_pcm_runtime *rtd = substream->private_data;
689 struct snd_soc_platform *platform = rtd->platform;
690 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
691 struct snd_soc_dai *codec_dai = rtd->codec_dai;
692 int ret = 0;
693
694 mutex_lock(&pcm_mutex);
695
696 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
697 ret = rtd->dai_link->ops->hw_params(substream, params);
698 if (ret < 0) {
699 printk(KERN_ERR "asoc: machine hw_params failed\n");
700 goto out;
701 }
702 }
703
704 if (codec_dai->driver->ops->hw_params) {
705 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
706 if (ret < 0) {
707 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
708 codec_dai->name);
709 goto codec_err;
710 }
711 }
712
713 if (cpu_dai->driver->ops->hw_params) {
714 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
715 if (ret < 0) {
716 printk(KERN_ERR "asoc: interface %s hw params failed\n",
717 cpu_dai->name);
718 goto interface_err;
719 }
720 }
721
722 if (platform->driver->ops->hw_params) {
723 ret = platform->driver->ops->hw_params(substream, params);
724 if (ret < 0) {
725 printk(KERN_ERR "asoc: platform %s hw params failed\n",
726 platform->name);
727 goto platform_err;
728 }
729 }
730
731 rtd->rate = params_rate(params);
732
733 out:
734 mutex_unlock(&pcm_mutex);
735 return ret;
736
737 platform_err:
738 if (cpu_dai->driver->ops->hw_free)
739 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
740
741 interface_err:
742 if (codec_dai->driver->ops->hw_free)
743 codec_dai->driver->ops->hw_free(substream, codec_dai);
744
745 codec_err:
746 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
747 rtd->dai_link->ops->hw_free(substream);
748
749 mutex_unlock(&pcm_mutex);
750 return ret;
751 }
752
753 /*
754 * Free's resources allocated by hw_params, can be called multiple times
755 */
756 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
757 {
758 struct snd_soc_pcm_runtime *rtd = substream->private_data;
759 struct snd_soc_platform *platform = rtd->platform;
760 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
761 struct snd_soc_dai *codec_dai = rtd->codec_dai;
762 struct snd_soc_codec *codec = rtd->codec;
763
764 mutex_lock(&pcm_mutex);
765
766 /* apply codec digital mute */
767 if (!codec->active)
768 snd_soc_dai_digital_mute(codec_dai, 1);
769
770 /* free any machine hw params */
771 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
772 rtd->dai_link->ops->hw_free(substream);
773
774 /* free any DMA resources */
775 if (platform->driver->ops->hw_free)
776 platform->driver->ops->hw_free(substream);
777
778 /* now free hw params for the DAI's */
779 if (codec_dai->driver->ops->hw_free)
780 codec_dai->driver->ops->hw_free(substream, codec_dai);
781
782 if (cpu_dai->driver->ops->hw_free)
783 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
784
785 mutex_unlock(&pcm_mutex);
786 return 0;
787 }
788
789 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
790 {
791 struct snd_soc_pcm_runtime *rtd = substream->private_data;
792 struct snd_soc_platform *platform = rtd->platform;
793 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
794 struct snd_soc_dai *codec_dai = rtd->codec_dai;
795 int ret;
796
797 if (codec_dai->driver->ops->trigger) {
798 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
799 if (ret < 0)
800 return ret;
801 }
802
803 if (platform->driver->ops->trigger) {
804 ret = platform->driver->ops->trigger(substream, cmd);
805 if (ret < 0)
806 return ret;
807 }
808
809 if (cpu_dai->driver->ops->trigger) {
810 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
811 if (ret < 0)
812 return ret;
813 }
814 return 0;
815 }
816
817 /*
818 * soc level wrapper for pointer callback
819 * If cpu_dai, codec_dai, platform driver has the delay callback, than
820 * the runtime->delay will be updated accordingly.
821 */
822 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
823 {
824 struct snd_soc_pcm_runtime *rtd = substream->private_data;
825 struct snd_soc_platform *platform = rtd->platform;
826 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
827 struct snd_soc_dai *codec_dai = rtd->codec_dai;
828 struct snd_pcm_runtime *runtime = substream->runtime;
829 snd_pcm_uframes_t offset = 0;
830 snd_pcm_sframes_t delay = 0;
831
832 if (platform->driver->ops->pointer)
833 offset = platform->driver->ops->pointer(substream);
834
835 if (cpu_dai->driver->ops->delay)
836 delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
837
838 if (codec_dai->driver->ops->delay)
839 delay += codec_dai->driver->ops->delay(substream, codec_dai);
840
841 if (platform->driver->delay)
842 delay += platform->driver->delay(substream, codec_dai);
843
844 runtime->delay = delay;
845
846 return offset;
847 }
848
849 /* ASoC PCM operations */
850 static struct snd_pcm_ops soc_pcm_ops = {
851 .open = soc_pcm_open,
852 .close = soc_codec_close,
853 .hw_params = soc_pcm_hw_params,
854 .hw_free = soc_pcm_hw_free,
855 .prepare = soc_pcm_prepare,
856 .trigger = soc_pcm_trigger,
857 .pointer = soc_pcm_pointer,
858 };
859
860 #ifdef CONFIG_PM
861 /* powers down audio subsystem for suspend */
862 static int soc_suspend(struct device *dev)
863 {
864 struct platform_device *pdev = to_platform_device(dev);
865 struct snd_soc_card *card = platform_get_drvdata(pdev);
866 int i;
867
868 /* If the initialization of this soc device failed, there is no codec
869 * associated with it. Just bail out in this case.
870 */
871 if (list_empty(&card->codec_dev_list))
872 return 0;
873
874 /* Due to the resume being scheduled into a workqueue we could
875 * suspend before that's finished - wait for it to complete.
876 */
877 snd_power_lock(card->snd_card);
878 snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
879 snd_power_unlock(card->snd_card);
880
881 /* we're going to block userspace touching us until resume completes */
882 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
883
884 /* mute any active DAC's */
885 for (i = 0; i < card->num_rtd; i++) {
886 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
887 struct snd_soc_dai_driver *drv = dai->driver;
888
889 if (card->rtd[i].dai_link->ignore_suspend)
890 continue;
891
892 if (drv->ops->digital_mute && dai->playback_active)
893 drv->ops->digital_mute(dai, 1);
894 }
895
896 /* suspend all pcms */
897 for (i = 0; i < card->num_rtd; i++) {
898 if (card->rtd[i].dai_link->ignore_suspend)
899 continue;
900
901 snd_pcm_suspend_all(card->rtd[i].pcm);
902 }
903
904 if (card->suspend_pre)
905 card->suspend_pre(pdev, PMSG_SUSPEND);
906
907 for (i = 0; i < card->num_rtd; i++) {
908 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
909 struct snd_soc_platform *platform = card->rtd[i].platform;
910
911 if (card->rtd[i].dai_link->ignore_suspend)
912 continue;
913
914 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
915 cpu_dai->driver->suspend(cpu_dai);
916 if (platform->driver->suspend && !platform->suspended) {
917 platform->driver->suspend(cpu_dai);
918 platform->suspended = 1;
919 }
920 }
921
922 /* close any waiting streams and save state */
923 for (i = 0; i < card->num_rtd; i++) {
924 run_delayed_work(&card->rtd[i].delayed_work);
925 card->rtd[i].codec->suspend_bias_level = card->rtd[i].codec->bias_level;
926 }
927
928 for (i = 0; i < card->num_rtd; i++) {
929 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
930
931 if (card->rtd[i].dai_link->ignore_suspend)
932 continue;
933
934 if (driver->playback.stream_name != NULL)
935 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
936 SND_SOC_DAPM_STREAM_SUSPEND);
937
938 if (driver->capture.stream_name != NULL)
939 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
940 SND_SOC_DAPM_STREAM_SUSPEND);
941 }
942
943 /* suspend all CODECs */
944 for (i = 0; i < card->num_rtd; i++) {
945 struct snd_soc_codec *codec = card->rtd[i].codec;
946 /* If there are paths active then the CODEC will be held with
947 * bias _ON and should not be suspended. */
948 if (!codec->suspended && codec->driver->suspend) {
949 switch (codec->bias_level) {
950 case SND_SOC_BIAS_STANDBY:
951 case SND_SOC_BIAS_OFF:
952 codec->driver->suspend(codec, PMSG_SUSPEND);
953 codec->suspended = 1;
954 break;
955 default:
956 dev_dbg(codec->dev, "CODEC is on over suspend\n");
957 break;
958 }
959 }
960 }
961
962 for (i = 0; i < card->num_rtd; i++) {
963 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
964
965 if (card->rtd[i].dai_link->ignore_suspend)
966 continue;
967
968 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
969 cpu_dai->driver->suspend(cpu_dai);
970 }
971
972 if (card->suspend_post)
973 card->suspend_post(pdev, PMSG_SUSPEND);
974
975 return 0;
976 }
977
978 /* deferred resume work, so resume can complete before we finished
979 * setting our codec back up, which can be very slow on I2C
980 */
981 static void soc_resume_deferred(struct work_struct *work)
982 {
983 struct snd_soc_card *card =
984 container_of(work, struct snd_soc_card, deferred_resume_work);
985 struct platform_device *pdev = to_platform_device(card->dev);
986 int i;
987
988 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
989 * so userspace apps are blocked from touching us
990 */
991
992 dev_dbg(card->dev, "starting resume work\n");
993
994 /* Bring us up into D2 so that DAPM starts enabling things */
995 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
996
997 if (card->resume_pre)
998 card->resume_pre(pdev);
999
1000 /* resume AC97 DAIs */
1001 for (i = 0; i < card->num_rtd; i++) {
1002 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1003
1004 if (card->rtd[i].dai_link->ignore_suspend)
1005 continue;
1006
1007 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
1008 cpu_dai->driver->resume(cpu_dai);
1009 }
1010
1011 for (i = 0; i < card->num_rtd; i++) {
1012 struct snd_soc_codec *codec = card->rtd[i].codec;
1013 /* If the CODEC was idle over suspend then it will have been
1014 * left with bias OFF or STANDBY and suspended so we must now
1015 * resume. Otherwise the suspend was suppressed.
1016 */
1017 if (codec->driver->resume && codec->suspended) {
1018 switch (codec->bias_level) {
1019 case SND_SOC_BIAS_STANDBY:
1020 case SND_SOC_BIAS_OFF:
1021 codec->driver->resume(codec);
1022 codec->suspended = 0;
1023 break;
1024 default:
1025 dev_dbg(codec->dev, "CODEC was on over suspend\n");
1026 break;
1027 }
1028 }
1029 }
1030
1031 for (i = 0; i < card->num_rtd; i++) {
1032 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1033
1034 if (card->rtd[i].dai_link->ignore_suspend)
1035 continue;
1036
1037 if (driver->playback.stream_name != NULL)
1038 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1039 SND_SOC_DAPM_STREAM_RESUME);
1040
1041 if (driver->capture.stream_name != NULL)
1042 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1043 SND_SOC_DAPM_STREAM_RESUME);
1044 }
1045
1046 /* unmute any active DACs */
1047 for (i = 0; i < card->num_rtd; i++) {
1048 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1049 struct snd_soc_dai_driver *drv = dai->driver;
1050
1051 if (card->rtd[i].dai_link->ignore_suspend)
1052 continue;
1053
1054 if (drv->ops->digital_mute && dai->playback_active)
1055 drv->ops->digital_mute(dai, 0);
1056 }
1057
1058 for (i = 0; i < card->num_rtd; i++) {
1059 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1060 struct snd_soc_platform *platform = card->rtd[i].platform;
1061
1062 if (card->rtd[i].dai_link->ignore_suspend)
1063 continue;
1064
1065 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1066 cpu_dai->driver->resume(cpu_dai);
1067 if (platform->driver->resume && platform->suspended) {
1068 platform->driver->resume(cpu_dai);
1069 platform->suspended = 0;
1070 }
1071 }
1072
1073 if (card->resume_post)
1074 card->resume_post(pdev);
1075
1076 dev_dbg(card->dev, "resume work completed\n");
1077
1078 /* userspace can access us now we are back as we were before */
1079 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1080 }
1081
1082 /* powers up audio subsystem after a suspend */
1083 static int soc_resume(struct device *dev)
1084 {
1085 struct platform_device *pdev = to_platform_device(dev);
1086 struct snd_soc_card *card = platform_get_drvdata(pdev);
1087 int i;
1088
1089 /* AC97 devices might have other drivers hanging off them so
1090 * need to resume immediately. Other drivers don't have that
1091 * problem and may take a substantial amount of time to resume
1092 * due to I/O costs and anti-pop so handle them out of line.
1093 */
1094 for (i = 0; i < card->num_rtd; i++) {
1095 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1096 if (cpu_dai->driver->ac97_control) {
1097 dev_dbg(dev, "Resuming AC97 immediately\n");
1098 soc_resume_deferred(&card->deferred_resume_work);
1099 } else {
1100 dev_dbg(dev, "Scheduling resume work\n");
1101 if (!schedule_work(&card->deferred_resume_work))
1102 dev_err(dev, "resume work item may be lost\n");
1103 }
1104 }
1105
1106 return 0;
1107 }
1108 #else
1109 #define soc_suspend NULL
1110 #define soc_resume NULL
1111 #endif
1112
1113 static struct snd_soc_dai_ops null_dai_ops = {
1114 };
1115
1116 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1117 {
1118 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1119 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1120 struct snd_soc_codec *codec;
1121 struct snd_soc_platform *platform;
1122 struct snd_soc_dai *codec_dai, *cpu_dai;
1123
1124 if (rtd->complete)
1125 return 1;
1126 dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1127
1128 /* do we already have the CPU DAI for this link ? */
1129 if (rtd->cpu_dai) {
1130 goto find_codec;
1131 }
1132 /* no, then find CPU DAI from registered DAIs*/
1133 list_for_each_entry(cpu_dai, &dai_list, list) {
1134 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1135
1136 if (!try_module_get(cpu_dai->dev->driver->owner))
1137 return -ENODEV;
1138
1139 rtd->cpu_dai = cpu_dai;
1140 goto find_codec;
1141 }
1142 }
1143 dev_dbg(card->dev, "CPU DAI %s not registered\n",
1144 dai_link->cpu_dai_name);
1145
1146 find_codec:
1147 /* do we already have the CODEC for this link ? */
1148 if (rtd->codec) {
1149 goto find_platform;
1150 }
1151
1152 /* no, then find CODEC from registered CODECs*/
1153 list_for_each_entry(codec, &codec_list, list) {
1154 if (!strcmp(codec->name, dai_link->codec_name)) {
1155 rtd->codec = codec;
1156
1157 if (!try_module_get(codec->dev->driver->owner))
1158 return -ENODEV;
1159
1160 /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1161 list_for_each_entry(codec_dai, &dai_list, list) {
1162 if (codec->dev == codec_dai->dev &&
1163 !strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1164 rtd->codec_dai = codec_dai;
1165 goto find_platform;
1166 }
1167 }
1168 dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1169 dai_link->codec_dai_name);
1170
1171 goto find_platform;
1172 }
1173 }
1174 dev_dbg(card->dev, "CODEC %s not registered\n",
1175 dai_link->codec_name);
1176
1177 find_platform:
1178 /* do we already have the CODEC DAI for this link ? */
1179 if (rtd->platform) {
1180 goto out;
1181 }
1182 /* no, then find CPU DAI from registered DAIs*/
1183 list_for_each_entry(platform, &platform_list, list) {
1184 if (!strcmp(platform->name, dai_link->platform_name)) {
1185
1186 if (!try_module_get(platform->dev->driver->owner))
1187 return -ENODEV;
1188
1189 rtd->platform = platform;
1190 goto out;
1191 }
1192 }
1193
1194 dev_dbg(card->dev, "platform %s not registered\n",
1195 dai_link->platform_name);
1196 return 0;
1197
1198 out:
1199 /* mark rtd as complete if we found all 4 of our client devices */
1200 if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1201 rtd->complete = 1;
1202 card->num_rtd++;
1203 }
1204 return 1;
1205 }
1206
1207 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1208 {
1209 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1210 struct snd_soc_codec *codec = rtd->codec;
1211 struct snd_soc_platform *platform = rtd->platform;
1212 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1213 int err;
1214
1215 /* unregister the rtd device */
1216 if (rtd->dev_registered) {
1217 device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1218 device_unregister(&rtd->dev);
1219 rtd->dev_registered = 0;
1220 }
1221
1222 /* remove the CODEC DAI */
1223 if (codec_dai && codec_dai->probed) {
1224 if (codec_dai->driver->remove) {
1225 err = codec_dai->driver->remove(codec_dai);
1226 if (err < 0)
1227 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1228 }
1229 codec_dai->probed = 0;
1230 list_del(&codec_dai->card_list);
1231 }
1232
1233 /* remove the platform */
1234 if (platform && platform->probed) {
1235 if (platform->driver->remove) {
1236 err = platform->driver->remove(platform);
1237 if (err < 0)
1238 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1239 }
1240 platform->probed = 0;
1241 list_del(&platform->card_list);
1242 module_put(platform->dev->driver->owner);
1243 }
1244
1245 /* remove the CODEC */
1246 if (codec && codec->probed) {
1247 if (codec->driver->remove) {
1248 err = codec->driver->remove(codec);
1249 if (err < 0)
1250 printk(KERN_ERR "asoc: failed to remove %s\n", codec->name);
1251 }
1252
1253 /* Make sure all DAPM widgets are freed */
1254 snd_soc_dapm_free(codec);
1255
1256 soc_cleanup_codec_debugfs(codec);
1257 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1258 codec->probed = 0;
1259 list_del(&codec->card_list);
1260 module_put(codec->dev->driver->owner);
1261 }
1262
1263 /* remove the cpu_dai */
1264 if (cpu_dai && cpu_dai->probed) {
1265 if (cpu_dai->driver->remove) {
1266 err = cpu_dai->driver->remove(cpu_dai);
1267 if (err < 0)
1268 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1269 }
1270 cpu_dai->probed = 0;
1271 list_del(&cpu_dai->card_list);
1272 module_put(cpu_dai->dev->driver->owner);
1273 }
1274 }
1275
1276 static void rtd_release(struct device *dev) {}
1277
1278 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1279 {
1280 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1281 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1282 struct snd_soc_codec *codec = rtd->codec;
1283 struct snd_soc_platform *platform = rtd->platform;
1284 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1285 int ret;
1286
1287 dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1288
1289 /* config components */
1290 codec_dai->codec = codec;
1291 codec->card = card;
1292 cpu_dai->platform = platform;
1293 rtd->card = card;
1294 rtd->dev.parent = card->dev;
1295 codec_dai->card = card;
1296 cpu_dai->card = card;
1297
1298 /* set default power off timeout */
1299 rtd->pmdown_time = pmdown_time;
1300
1301 /* probe the cpu_dai */
1302 if (!cpu_dai->probed) {
1303 if (cpu_dai->driver->probe) {
1304 ret = cpu_dai->driver->probe(cpu_dai);
1305 if (ret < 0) {
1306 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1307 cpu_dai->name);
1308 return ret;
1309 }
1310 }
1311 cpu_dai->probed = 1;
1312 /* mark cpu_dai as probed and add to card cpu_dai list */
1313 list_add(&cpu_dai->card_list, &card->dai_dev_list);
1314 }
1315
1316 /* probe the CODEC */
1317 if (!codec->probed) {
1318 if (codec->driver->probe) {
1319 ret = codec->driver->probe(codec);
1320 if (ret < 0) {
1321 printk(KERN_ERR "asoc: failed to probe CODEC %s\n",
1322 codec->name);
1323 return ret;
1324 }
1325 }
1326 /* mark codec as probed and add to card codec list */
1327 codec->probed = 1;
1328 list_add(&codec->card_list, &card->codec_dev_list);
1329 }
1330
1331 /* probe the platform */
1332 if (!platform->probed) {
1333 if (platform->driver->probe) {
1334 ret = platform->driver->probe(platform);
1335 if (ret < 0) {
1336 printk(KERN_ERR "asoc: failed to probe platform %s\n",
1337 platform->name);
1338 return ret;
1339 }
1340 }
1341 /* mark platform as probed and add to card platform list */
1342 platform->probed = 1;
1343 list_add(&platform->card_list, &card->platform_dev_list);
1344 }
1345
1346 /* probe the CODEC DAI */
1347 if (!codec_dai->probed) {
1348 if (codec_dai->driver->probe) {
1349 ret = codec_dai->driver->probe(codec_dai);
1350 if (ret < 0) {
1351 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1352 codec_dai->name);
1353 return ret;
1354 }
1355 }
1356
1357 /* mark cpu_dai as probed and add to card cpu_dai list */
1358 codec_dai->probed = 1;
1359 list_add(&codec_dai->card_list, &card->dai_dev_list);
1360 }
1361
1362 /* DAPM dai link stream work */
1363 INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1364
1365 /* now that all clients have probed, initialise the DAI link */
1366 if (dai_link->init) {
1367 ret = dai_link->init(rtd);
1368 if (ret < 0) {
1369 printk(KERN_ERR "asoc: failed to init %s\n", dai_link->stream_name);
1370 return ret;
1371 }
1372 }
1373
1374 /* Make sure all DAPM widgets are instantiated */
1375 snd_soc_dapm_new_widgets(codec);
1376 snd_soc_dapm_sync(codec);
1377
1378 /* register the rtd device */
1379 rtd->dev.init_name = rtd->dai_link->stream_name;
1380 rtd->dev.release = rtd_release;
1381 rtd->dev.init_name = dai_link->name;
1382 ret = device_register(&rtd->dev);
1383 if (ret < 0) {
1384 printk(KERN_ERR "asoc: failed to register DAI runtime device %d\n", ret);
1385 return ret;
1386 }
1387
1388 rtd->dev_registered = 1;
1389 ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1390 if (ret < 0)
1391 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1392
1393 /* add DAPM sysfs entries for this codec */
1394 ret = snd_soc_dapm_sys_add(&rtd->dev);
1395 if (ret < 0)
1396 printk(KERN_WARNING "asoc: failed to add codec dapm sysfs entries\n");
1397
1398 /* add codec sysfs entries */
1399 ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1400 if (ret < 0)
1401 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1402
1403 soc_init_codec_debugfs(codec);
1404
1405 /* create the pcm */
1406 ret = soc_new_pcm(rtd, num);
1407 if (ret < 0) {
1408 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1409 return ret;
1410 }
1411
1412 /* add platform data for AC97 devices */
1413 if (rtd->codec_dai->driver->ac97_control)
1414 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1415
1416 return 0;
1417 }
1418
1419 #ifdef CONFIG_SND_SOC_AC97_BUS
1420 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1421 {
1422 int ret;
1423
1424 /* Only instantiate AC97 if not already done by the adaptor
1425 * for the generic AC97 subsystem.
1426 */
1427 if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1428
1429 ret = soc_ac97_dev_register(rtd->codec);
1430 if (ret < 0) {
1431 printk(KERN_ERR "asoc: AC97 device register failed\n");
1432 return ret;
1433 }
1434
1435 rtd->codec->ac97_registered = 1;
1436 }
1437 return 0;
1438 }
1439
1440 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1441 {
1442 if (codec->ac97_registered) {
1443 soc_ac97_dev_unregister(codec);
1444 codec->ac97_registered = 0;
1445 }
1446 }
1447 #endif
1448
1449 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1450 {
1451 struct platform_device *pdev = to_platform_device(card->dev);
1452 int ret, i;
1453
1454 mutex_lock(&card->mutex);
1455
1456 if (card->instantiated) {
1457 mutex_unlock(&card->mutex);
1458 return;
1459 }
1460
1461 /* bind DAIs */
1462 for (i = 0; i < card->num_links; i++)
1463 soc_bind_dai_link(card, i);
1464
1465 /* bind completed ? */
1466 if (card->num_rtd != card->num_links) {
1467 mutex_unlock(&card->mutex);
1468 return;
1469 }
1470
1471 /* card bind complete so register a sound card */
1472 ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1473 card->owner, 0, &card->snd_card);
1474 if (ret < 0) {
1475 printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1476 card->name);
1477 mutex_unlock(&card->mutex);
1478 return;
1479 }
1480 card->snd_card->dev = card->dev;
1481
1482 #ifdef CONFIG_PM
1483 /* deferred resume work */
1484 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1485 #endif
1486
1487 /* initialise the sound card only once */
1488 if (card->probe) {
1489 ret = card->probe(pdev);
1490 if (ret < 0)
1491 goto card_probe_error;
1492 }
1493
1494 for (i = 0; i < card->num_links; i++) {
1495 ret = soc_probe_dai_link(card, i);
1496 if (ret < 0) {
1497 printk(KERN_ERR "asoc: failed to instanciate card %s\n", card->name);
1498 goto probe_dai_err;
1499 }
1500 }
1501
1502 snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1503 "%s", card->name);
1504 snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1505 "%s", card->name);
1506
1507 ret = snd_card_register(card->snd_card);
1508 if (ret < 0) {
1509 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1510 goto probe_dai_err;
1511 }
1512
1513 #ifdef CONFIG_SND_SOC_AC97_BUS
1514 /* register any AC97 codecs */
1515 for (i = 0; i < card->num_rtd; i++) {
1516 ret = soc_register_ac97_dai_link(&card->rtd[i]);
1517 if (ret < 0) {
1518 printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1519 goto probe_dai_err;
1520 }
1521 }
1522 #endif
1523
1524 card->instantiated = 1;
1525 mutex_unlock(&card->mutex);
1526 return;
1527
1528 probe_dai_err:
1529 for (i = 0; i < card->num_links; i++)
1530 soc_remove_dai_link(card, i);
1531
1532 card_probe_error:
1533 if (card->remove)
1534 card->remove(pdev);
1535
1536 snd_card_free(card->snd_card);
1537
1538 mutex_unlock(&card->mutex);
1539 }
1540
1541 /*
1542 * Attempt to initialise any uninitalised cards. Must be called with
1543 * client_mutex.
1544 */
1545 static void snd_soc_instantiate_cards(void)
1546 {
1547 struct snd_soc_card *card;
1548 list_for_each_entry(card, &card_list, list)
1549 snd_soc_instantiate_card(card);
1550 }
1551
1552 /* probes a new socdev */
1553 static int soc_probe(struct platform_device *pdev)
1554 {
1555 struct snd_soc_card *card = platform_get_drvdata(pdev);
1556 int ret = 0;
1557
1558 /* Bodge while we unpick instantiation */
1559 card->dev = &pdev->dev;
1560 INIT_LIST_HEAD(&card->dai_dev_list);
1561 INIT_LIST_HEAD(&card->codec_dev_list);
1562 INIT_LIST_HEAD(&card->platform_dev_list);
1563
1564 ret = snd_soc_register_card(card);
1565 if (ret != 0) {
1566 dev_err(&pdev->dev, "Failed to register card\n");
1567 return ret;
1568 }
1569
1570 return 0;
1571 }
1572
1573 /* removes a socdev */
1574 static int soc_remove(struct platform_device *pdev)
1575 {
1576 struct snd_soc_card *card = platform_get_drvdata(pdev);
1577 int i;
1578
1579 if (card->instantiated) {
1580
1581 /* make sure any delayed work runs */
1582 for (i = 0; i < card->num_rtd; i++) {
1583 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1584 run_delayed_work(&rtd->delayed_work);
1585 }
1586
1587 /* remove and free each DAI */
1588 for (i = 0; i < card->num_rtd; i++)
1589 soc_remove_dai_link(card, i);
1590
1591 /* remove the card */
1592 if (card->remove)
1593 card->remove(pdev);
1594
1595 kfree(card->rtd);
1596 snd_card_free(card->snd_card);
1597 }
1598 snd_soc_unregister_card(card);
1599 return 0;
1600 }
1601
1602 static int soc_poweroff(struct device *dev)
1603 {
1604 struct platform_device *pdev = to_platform_device(dev);
1605 struct snd_soc_card *card = platform_get_drvdata(pdev);
1606 int i;
1607
1608 if (!card->instantiated)
1609 return 0;
1610
1611 /* Flush out pmdown_time work - we actually do want to run it
1612 * now, we're shutting down so no imminent restart. */
1613 for (i = 0; i < card->num_rtd; i++) {
1614 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1615 run_delayed_work(&rtd->delayed_work);
1616 }
1617
1618 snd_soc_dapm_shutdown(card);
1619
1620 return 0;
1621 }
1622
1623 static const struct dev_pm_ops soc_pm_ops = {
1624 .suspend = soc_suspend,
1625 .resume = soc_resume,
1626 .poweroff = soc_poweroff,
1627 };
1628
1629 /* ASoC platform driver */
1630 static struct platform_driver soc_driver = {
1631 .driver = {
1632 .name = "soc-audio",
1633 .owner = THIS_MODULE,
1634 .pm = &soc_pm_ops,
1635 },
1636 .probe = soc_probe,
1637 .remove = soc_remove,
1638 };
1639
1640 /* create a new pcm */
1641 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
1642 {
1643 struct snd_soc_codec *codec = rtd->codec;
1644 struct snd_soc_platform *platform = rtd->platform;
1645 struct snd_soc_dai *codec_dai = rtd->codec_dai;
1646 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1647 struct snd_pcm *pcm;
1648 char new_name[64];
1649 int ret = 0, playback = 0, capture = 0;
1650
1651 /* check client and interface hw capabilities */
1652 snprintf(new_name, sizeof(new_name), "%s %s-%d",
1653 rtd->dai_link->stream_name, codec_dai->name, num);
1654
1655 if (codec_dai->driver->playback.channels_min)
1656 playback = 1;
1657 if (codec_dai->driver->capture.channels_min)
1658 capture = 1;
1659
1660 dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
1661 ret = snd_pcm_new(rtd->card->snd_card, new_name,
1662 num, playback, capture, &pcm);
1663 if (ret < 0) {
1664 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
1665 return ret;
1666 }
1667
1668 rtd->pcm = pcm;
1669 pcm->private_data = rtd;
1670 soc_pcm_ops.mmap = platform->driver->ops->mmap;
1671 soc_pcm_ops.pointer = platform->driver->ops->pointer;
1672 soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
1673 soc_pcm_ops.copy = platform->driver->ops->copy;
1674 soc_pcm_ops.silence = platform->driver->ops->silence;
1675 soc_pcm_ops.ack = platform->driver->ops->ack;
1676 soc_pcm_ops.page = platform->driver->ops->page;
1677
1678 if (playback)
1679 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1680
1681 if (capture)
1682 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1683
1684 ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm);
1685 if (ret < 0) {
1686 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1687 return ret;
1688 }
1689
1690 pcm->private_free = platform->driver->pcm_free;
1691 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1692 cpu_dai->name);
1693 return ret;
1694 }
1695
1696 /**
1697 * snd_soc_codec_volatile_register: Report if a register is volatile.
1698 *
1699 * @codec: CODEC to query.
1700 * @reg: Register to query.
1701 *
1702 * Boolean function indiciating if a CODEC register is volatile.
1703 */
1704 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
1705 {
1706 if (codec->driver->volatile_register)
1707 return codec->driver->volatile_register(reg);
1708 else
1709 return 0;
1710 }
1711 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
1712
1713 /**
1714 * snd_soc_new_ac97_codec - initailise AC97 device
1715 * @codec: audio codec
1716 * @ops: AC97 bus operations
1717 * @num: AC97 codec number
1718 *
1719 * Initialises AC97 codec resources for use by ad-hoc devices only.
1720 */
1721 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1722 struct snd_ac97_bus_ops *ops, int num)
1723 {
1724 mutex_lock(&codec->mutex);
1725
1726 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1727 if (codec->ac97 == NULL) {
1728 mutex_unlock(&codec->mutex);
1729 return -ENOMEM;
1730 }
1731
1732 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1733 if (codec->ac97->bus == NULL) {
1734 kfree(codec->ac97);
1735 codec->ac97 = NULL;
1736 mutex_unlock(&codec->mutex);
1737 return -ENOMEM;
1738 }
1739
1740 codec->ac97->bus->ops = ops;
1741 codec->ac97->num = num;
1742 mutex_unlock(&codec->mutex);
1743 return 0;
1744 }
1745 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1746
1747 /**
1748 * snd_soc_free_ac97_codec - free AC97 codec device
1749 * @codec: audio codec
1750 *
1751 * Frees AC97 codec device resources.
1752 */
1753 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1754 {
1755 mutex_lock(&codec->mutex);
1756 #ifdef CONFIG_SND_SOC_AC97_BUS
1757 soc_unregister_ac97_dai_link(codec);
1758 #endif
1759 kfree(codec->ac97->bus);
1760 kfree(codec->ac97);
1761 codec->ac97 = NULL;
1762 mutex_unlock(&codec->mutex);
1763 }
1764 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1765
1766 /**
1767 * snd_soc_update_bits - update codec register bits
1768 * @codec: audio codec
1769 * @reg: codec register
1770 * @mask: register mask
1771 * @value: new value
1772 *
1773 * Writes new register value.
1774 *
1775 * Returns 1 for change else 0.
1776 */
1777 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1778 unsigned int mask, unsigned int value)
1779 {
1780 int change;
1781 unsigned int old, new;
1782
1783 old = snd_soc_read(codec, reg);
1784 new = (old & ~mask) | value;
1785 change = old != new;
1786 if (change)
1787 snd_soc_write(codec, reg, new);
1788
1789 return change;
1790 }
1791 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1792
1793 /**
1794 * snd_soc_update_bits_locked - update codec register bits
1795 * @codec: audio codec
1796 * @reg: codec register
1797 * @mask: register mask
1798 * @value: new value
1799 *
1800 * Writes new register value, and takes the codec mutex.
1801 *
1802 * Returns 1 for change else 0.
1803 */
1804 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
1805 unsigned short reg, unsigned int mask,
1806 unsigned int value)
1807 {
1808 int change;
1809
1810 mutex_lock(&codec->mutex);
1811 change = snd_soc_update_bits(codec, reg, mask, value);
1812 mutex_unlock(&codec->mutex);
1813
1814 return change;
1815 }
1816 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
1817
1818 /**
1819 * snd_soc_test_bits - test register for change
1820 * @codec: audio codec
1821 * @reg: codec register
1822 * @mask: register mask
1823 * @value: new value
1824 *
1825 * Tests a register with a new value and checks if the new value is
1826 * different from the old value.
1827 *
1828 * Returns 1 for change else 0.
1829 */
1830 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1831 unsigned int mask, unsigned int value)
1832 {
1833 int change;
1834 unsigned int old, new;
1835
1836 old = snd_soc_read(codec, reg);
1837 new = (old & ~mask) | value;
1838 change = old != new;
1839
1840 return change;
1841 }
1842 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1843
1844 /**
1845 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1846 * @substream: the pcm substream
1847 * @hw: the hardware parameters
1848 *
1849 * Sets the substream runtime hardware parameters.
1850 */
1851 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1852 const struct snd_pcm_hardware *hw)
1853 {
1854 struct snd_pcm_runtime *runtime = substream->runtime;
1855 runtime->hw.info = hw->info;
1856 runtime->hw.formats = hw->formats;
1857 runtime->hw.period_bytes_min = hw->period_bytes_min;
1858 runtime->hw.period_bytes_max = hw->period_bytes_max;
1859 runtime->hw.periods_min = hw->periods_min;
1860 runtime->hw.periods_max = hw->periods_max;
1861 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1862 runtime->hw.fifo_size = hw->fifo_size;
1863 return 0;
1864 }
1865 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1866
1867 /**
1868 * snd_soc_cnew - create new control
1869 * @_template: control template
1870 * @data: control private data
1871 * @long_name: control long name
1872 *
1873 * Create a new mixer control from a template control.
1874 *
1875 * Returns 0 for success, else error.
1876 */
1877 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1878 void *data, char *long_name)
1879 {
1880 struct snd_kcontrol_new template;
1881
1882 memcpy(&template, _template, sizeof(template));
1883 if (long_name)
1884 template.name = long_name;
1885 template.index = 0;
1886
1887 return snd_ctl_new1(&template, data);
1888 }
1889 EXPORT_SYMBOL_GPL(snd_soc_cnew);
1890
1891 /**
1892 * snd_soc_add_controls - add an array of controls to a codec.
1893 * Convienience function to add a list of controls. Many codecs were
1894 * duplicating this code.
1895 *
1896 * @codec: codec to add controls to
1897 * @controls: array of controls to add
1898 * @num_controls: number of elements in the array
1899 *
1900 * Return 0 for success, else error.
1901 */
1902 int snd_soc_add_controls(struct snd_soc_codec *codec,
1903 const struct snd_kcontrol_new *controls, int num_controls)
1904 {
1905 struct snd_card *card = codec->card->snd_card;
1906 int err, i;
1907
1908 for (i = 0; i < num_controls; i++) {
1909 const struct snd_kcontrol_new *control = &controls[i];
1910 err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
1911 if (err < 0) {
1912 dev_err(codec->dev, "%s: Failed to add %s\n",
1913 codec->name, control->name);
1914 return err;
1915 }
1916 }
1917
1918 return 0;
1919 }
1920 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
1921
1922 /**
1923 * snd_soc_info_enum_double - enumerated double mixer info callback
1924 * @kcontrol: mixer control
1925 * @uinfo: control element information
1926 *
1927 * Callback to provide information about a double enumerated
1928 * mixer control.
1929 *
1930 * Returns 0 for success.
1931 */
1932 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1933 struct snd_ctl_elem_info *uinfo)
1934 {
1935 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1936
1937 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1938 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1939 uinfo->value.enumerated.items = e->max;
1940
1941 if (uinfo->value.enumerated.item > e->max - 1)
1942 uinfo->value.enumerated.item = e->max - 1;
1943 strcpy(uinfo->value.enumerated.name,
1944 e->texts[uinfo->value.enumerated.item]);
1945 return 0;
1946 }
1947 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1948
1949 /**
1950 * snd_soc_get_enum_double - enumerated double mixer get callback
1951 * @kcontrol: mixer control
1952 * @ucontrol: control element information
1953 *
1954 * Callback to get the value of a double enumerated mixer.
1955 *
1956 * Returns 0 for success.
1957 */
1958 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1959 struct snd_ctl_elem_value *ucontrol)
1960 {
1961 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1962 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1963 unsigned int val, bitmask;
1964
1965 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1966 ;
1967 val = snd_soc_read(codec, e->reg);
1968 ucontrol->value.enumerated.item[0]
1969 = (val >> e->shift_l) & (bitmask - 1);
1970 if (e->shift_l != e->shift_r)
1971 ucontrol->value.enumerated.item[1] =
1972 (val >> e->shift_r) & (bitmask - 1);
1973
1974 return 0;
1975 }
1976 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1977
1978 /**
1979 * snd_soc_put_enum_double - enumerated double mixer put callback
1980 * @kcontrol: mixer control
1981 * @ucontrol: control element information
1982 *
1983 * Callback to set the value of a double enumerated mixer.
1984 *
1985 * Returns 0 for success.
1986 */
1987 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1988 struct snd_ctl_elem_value *ucontrol)
1989 {
1990 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1991 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1992 unsigned int val;
1993 unsigned int mask, bitmask;
1994
1995 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1996 ;
1997 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1998 return -EINVAL;
1999 val = ucontrol->value.enumerated.item[0] << e->shift_l;
2000 mask = (bitmask - 1) << e->shift_l;
2001 if (e->shift_l != e->shift_r) {
2002 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2003 return -EINVAL;
2004 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2005 mask |= (bitmask - 1) << e->shift_r;
2006 }
2007
2008 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2009 }
2010 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2011
2012 /**
2013 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2014 * @kcontrol: mixer control
2015 * @ucontrol: control element information
2016 *
2017 * Callback to get the value of a double semi enumerated mixer.
2018 *
2019 * Semi enumerated mixer: the enumerated items are referred as values. Can be
2020 * used for handling bitfield coded enumeration for example.
2021 *
2022 * Returns 0 for success.
2023 */
2024 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2025 struct snd_ctl_elem_value *ucontrol)
2026 {
2027 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2028 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2029 unsigned int reg_val, val, mux;
2030
2031 reg_val = snd_soc_read(codec, e->reg);
2032 val = (reg_val >> e->shift_l) & e->mask;
2033 for (mux = 0; mux < e->max; mux++) {
2034 if (val == e->values[mux])
2035 break;
2036 }
2037 ucontrol->value.enumerated.item[0] = mux;
2038 if (e->shift_l != e->shift_r) {
2039 val = (reg_val >> e->shift_r) & e->mask;
2040 for (mux = 0; mux < e->max; mux++) {
2041 if (val == e->values[mux])
2042 break;
2043 }
2044 ucontrol->value.enumerated.item[1] = mux;
2045 }
2046
2047 return 0;
2048 }
2049 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2050
2051 /**
2052 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2053 * @kcontrol: mixer control
2054 * @ucontrol: control element information
2055 *
2056 * Callback to set the value of a double semi enumerated mixer.
2057 *
2058 * Semi enumerated mixer: the enumerated items are referred as values. Can be
2059 * used for handling bitfield coded enumeration for example.
2060 *
2061 * Returns 0 for success.
2062 */
2063 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2064 struct snd_ctl_elem_value *ucontrol)
2065 {
2066 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2067 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2068 unsigned int val;
2069 unsigned int mask;
2070
2071 if (ucontrol->value.enumerated.item[0] > e->max - 1)
2072 return -EINVAL;
2073 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2074 mask = e->mask << e->shift_l;
2075 if (e->shift_l != e->shift_r) {
2076 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2077 return -EINVAL;
2078 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2079 mask |= e->mask << e->shift_r;
2080 }
2081
2082 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2083 }
2084 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2085
2086 /**
2087 * snd_soc_info_enum_ext - external enumerated single mixer info callback
2088 * @kcontrol: mixer control
2089 * @uinfo: control element information
2090 *
2091 * Callback to provide information about an external enumerated
2092 * single mixer.
2093 *
2094 * Returns 0 for success.
2095 */
2096 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2097 struct snd_ctl_elem_info *uinfo)
2098 {
2099 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2100
2101 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2102 uinfo->count = 1;
2103 uinfo->value.enumerated.items = e->max;
2104
2105 if (uinfo->value.enumerated.item > e->max - 1)
2106 uinfo->value.enumerated.item = e->max - 1;
2107 strcpy(uinfo->value.enumerated.name,
2108 e->texts[uinfo->value.enumerated.item]);
2109 return 0;
2110 }
2111 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2112
2113 /**
2114 * snd_soc_info_volsw_ext - external single mixer info callback
2115 * @kcontrol: mixer control
2116 * @uinfo: control element information
2117 *
2118 * Callback to provide information about a single external mixer control.
2119 *
2120 * Returns 0 for success.
2121 */
2122 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2123 struct snd_ctl_elem_info *uinfo)
2124 {
2125 int max = kcontrol->private_value;
2126
2127 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2128 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2129 else
2130 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2131
2132 uinfo->count = 1;
2133 uinfo->value.integer.min = 0;
2134 uinfo->value.integer.max = max;
2135 return 0;
2136 }
2137 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2138
2139 /**
2140 * snd_soc_info_volsw - single mixer info callback
2141 * @kcontrol: mixer control
2142 * @uinfo: control element information
2143 *
2144 * Callback to provide information about a single mixer control.
2145 *
2146 * Returns 0 for success.
2147 */
2148 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2149 struct snd_ctl_elem_info *uinfo)
2150 {
2151 struct soc_mixer_control *mc =
2152 (struct soc_mixer_control *)kcontrol->private_value;
2153 int platform_max;
2154 unsigned int shift = mc->shift;
2155 unsigned int rshift = mc->rshift;
2156
2157 if (!mc->platform_max)
2158 mc->platform_max = mc->max;
2159 platform_max = mc->platform_max;
2160
2161 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2162 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2163 else
2164 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2165
2166 uinfo->count = shift == rshift ? 1 : 2;
2167 uinfo->value.integer.min = 0;
2168 uinfo->value.integer.max = platform_max;
2169 return 0;
2170 }
2171 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2172
2173 /**
2174 * snd_soc_get_volsw - single mixer get callback
2175 * @kcontrol: mixer control
2176 * @ucontrol: control element information
2177 *
2178 * Callback to get the value of a single mixer control.
2179 *
2180 * Returns 0 for success.
2181 */
2182 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2183 struct snd_ctl_elem_value *ucontrol)
2184 {
2185 struct soc_mixer_control *mc =
2186 (struct soc_mixer_control *)kcontrol->private_value;
2187 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2188 unsigned int reg = mc->reg;
2189 unsigned int shift = mc->shift;
2190 unsigned int rshift = mc->rshift;
2191 int max = mc->max;
2192 unsigned int mask = (1 << fls(max)) - 1;
2193 unsigned int invert = mc->invert;
2194
2195 ucontrol->value.integer.value[0] =
2196 (snd_soc_read(codec, reg) >> shift) & mask;
2197 if (shift != rshift)
2198 ucontrol->value.integer.value[1] =
2199 (snd_soc_read(codec, reg) >> rshift) & mask;
2200 if (invert) {
2201 ucontrol->value.integer.value[0] =
2202 max - ucontrol->value.integer.value[0];
2203 if (shift != rshift)
2204 ucontrol->value.integer.value[1] =
2205 max - ucontrol->value.integer.value[1];
2206 }
2207
2208 return 0;
2209 }
2210 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2211
2212 /**
2213 * snd_soc_put_volsw - single mixer put callback
2214 * @kcontrol: mixer control
2215 * @ucontrol: control element information
2216 *
2217 * Callback to set the value of a single mixer control.
2218 *
2219 * Returns 0 for success.
2220 */
2221 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2222 struct snd_ctl_elem_value *ucontrol)
2223 {
2224 struct soc_mixer_control *mc =
2225 (struct soc_mixer_control *)kcontrol->private_value;
2226 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2227 unsigned int reg = mc->reg;
2228 unsigned int shift = mc->shift;
2229 unsigned int rshift = mc->rshift;
2230 int max = mc->max;
2231 unsigned int mask = (1 << fls(max)) - 1;
2232 unsigned int invert = mc->invert;
2233 unsigned int val, val2, val_mask;
2234
2235 val = (ucontrol->value.integer.value[0] & mask);
2236 if (invert)
2237 val = max - val;
2238 val_mask = mask << shift;
2239 val = val << shift;
2240 if (shift != rshift) {
2241 val2 = (ucontrol->value.integer.value[1] & mask);
2242 if (invert)
2243 val2 = max - val2;
2244 val_mask |= mask << rshift;
2245 val |= val2 << rshift;
2246 }
2247 return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2248 }
2249 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2250
2251 /**
2252 * snd_soc_info_volsw_2r - double mixer info callback
2253 * @kcontrol: mixer control
2254 * @uinfo: control element information
2255 *
2256 * Callback to provide information about a double mixer control that
2257 * spans 2 codec registers.
2258 *
2259 * Returns 0 for success.
2260 */
2261 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2262 struct snd_ctl_elem_info *uinfo)
2263 {
2264 struct soc_mixer_control *mc =
2265 (struct soc_mixer_control *)kcontrol->private_value;
2266 int platform_max;
2267
2268 if (!mc->platform_max)
2269 mc->platform_max = mc->max;
2270 platform_max = mc->platform_max;
2271
2272 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2273 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2274 else
2275 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2276
2277 uinfo->count = 2;
2278 uinfo->value.integer.min = 0;
2279 uinfo->value.integer.max = platform_max;
2280 return 0;
2281 }
2282 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2283
2284 /**
2285 * snd_soc_get_volsw_2r - double mixer get callback
2286 * @kcontrol: mixer control
2287 * @ucontrol: control element information
2288 *
2289 * Callback to get the value of a double mixer control that spans 2 registers.
2290 *
2291 * Returns 0 for success.
2292 */
2293 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2294 struct snd_ctl_elem_value *ucontrol)
2295 {
2296 struct soc_mixer_control *mc =
2297 (struct soc_mixer_control *)kcontrol->private_value;
2298 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2299 unsigned int reg = mc->reg;
2300 unsigned int reg2 = mc->rreg;
2301 unsigned int shift = mc->shift;
2302 int max = mc->max;
2303 unsigned int mask = (1 << fls(max)) - 1;
2304 unsigned int invert = mc->invert;
2305
2306 ucontrol->value.integer.value[0] =
2307 (snd_soc_read(codec, reg) >> shift) & mask;
2308 ucontrol->value.integer.value[1] =
2309 (snd_soc_read(codec, reg2) >> shift) & mask;
2310 if (invert) {
2311 ucontrol->value.integer.value[0] =
2312 max - ucontrol->value.integer.value[0];
2313 ucontrol->value.integer.value[1] =
2314 max - ucontrol->value.integer.value[1];
2315 }
2316
2317 return 0;
2318 }
2319 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2320
2321 /**
2322 * snd_soc_put_volsw_2r - double mixer set callback
2323 * @kcontrol: mixer control
2324 * @ucontrol: control element information
2325 *
2326 * Callback to set the value of a double mixer control that spans 2 registers.
2327 *
2328 * Returns 0 for success.
2329 */
2330 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2331 struct snd_ctl_elem_value *ucontrol)
2332 {
2333 struct soc_mixer_control *mc =
2334 (struct soc_mixer_control *)kcontrol->private_value;
2335 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2336 unsigned int reg = mc->reg;
2337 unsigned int reg2 = mc->rreg;
2338 unsigned int shift = mc->shift;
2339 int max = mc->max;
2340 unsigned int mask = (1 << fls(max)) - 1;
2341 unsigned int invert = mc->invert;
2342 int err;
2343 unsigned int val, val2, val_mask;
2344
2345 val_mask = mask << shift;
2346 val = (ucontrol->value.integer.value[0] & mask);
2347 val2 = (ucontrol->value.integer.value[1] & mask);
2348
2349 if (invert) {
2350 val = max - val;
2351 val2 = max - val2;
2352 }
2353
2354 val = val << shift;
2355 val2 = val2 << shift;
2356
2357 err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2358 if (err < 0)
2359 return err;
2360
2361 err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2362 return err;
2363 }
2364 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2365
2366 /**
2367 * snd_soc_info_volsw_s8 - signed mixer info callback
2368 * @kcontrol: mixer control
2369 * @uinfo: control element information
2370 *
2371 * Callback to provide information about a signed mixer control.
2372 *
2373 * Returns 0 for success.
2374 */
2375 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2376 struct snd_ctl_elem_info *uinfo)
2377 {
2378 struct soc_mixer_control *mc =
2379 (struct soc_mixer_control *)kcontrol->private_value;
2380 int platform_max;
2381 int min = mc->min;
2382
2383 if (!mc->platform_max)
2384 mc->platform_max = mc->max;
2385 platform_max = mc->platform_max;
2386
2387 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2388 uinfo->count = 2;
2389 uinfo->value.integer.min = 0;
2390 uinfo->value.integer.max = platform_max - min;
2391 return 0;
2392 }
2393 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2394
2395 /**
2396 * snd_soc_get_volsw_s8 - signed mixer get callback
2397 * @kcontrol: mixer control
2398 * @ucontrol: control element information
2399 *
2400 * Callback to get the value of a signed mixer control.
2401 *
2402 * Returns 0 for success.
2403 */
2404 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2405 struct snd_ctl_elem_value *ucontrol)
2406 {
2407 struct soc_mixer_control *mc =
2408 (struct soc_mixer_control *)kcontrol->private_value;
2409 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2410 unsigned int reg = mc->reg;
2411 int min = mc->min;
2412 int val = snd_soc_read(codec, reg);
2413
2414 ucontrol->value.integer.value[0] =
2415 ((signed char)(val & 0xff))-min;
2416 ucontrol->value.integer.value[1] =
2417 ((signed char)((val >> 8) & 0xff))-min;
2418 return 0;
2419 }
2420 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2421
2422 /**
2423 * snd_soc_put_volsw_sgn - signed mixer put callback
2424 * @kcontrol: mixer control
2425 * @ucontrol: control element information
2426 *
2427 * Callback to set the value of a signed mixer control.
2428 *
2429 * Returns 0 for success.
2430 */
2431 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2432 struct snd_ctl_elem_value *ucontrol)
2433 {
2434 struct soc_mixer_control *mc =
2435 (struct soc_mixer_control *)kcontrol->private_value;
2436 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2437 unsigned int reg = mc->reg;
2438 int min = mc->min;
2439 unsigned int val;
2440
2441 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2442 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2443
2444 return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2445 }
2446 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2447
2448 /**
2449 * snd_soc_limit_volume - Set new limit to an existing volume control.
2450 *
2451 * @codec: where to look for the control
2452 * @name: Name of the control
2453 * @max: new maximum limit
2454 *
2455 * Return 0 for success, else error.
2456 */
2457 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2458 const char *name, int max)
2459 {
2460 struct snd_card *card = codec->card->snd_card;
2461 struct snd_kcontrol *kctl;
2462 struct soc_mixer_control *mc;
2463 int found = 0;
2464 int ret = -EINVAL;
2465
2466 /* Sanity check for name and max */
2467 if (unlikely(!name || max <= 0))
2468 return -EINVAL;
2469
2470 list_for_each_entry(kctl, &card->controls, list) {
2471 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2472 found = 1;
2473 break;
2474 }
2475 }
2476 if (found) {
2477 mc = (struct soc_mixer_control *)kctl->private_value;
2478 if (max <= mc->max) {
2479 mc->platform_max = max;
2480 ret = 0;
2481 }
2482 }
2483 return ret;
2484 }
2485 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2486
2487 /**
2488 * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
2489 * mixer info callback
2490 * @kcontrol: mixer control
2491 * @uinfo: control element information
2492 *
2493 * Returns 0 for success.
2494 */
2495 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2496 struct snd_ctl_elem_info *uinfo)
2497 {
2498 struct soc_mixer_control *mc =
2499 (struct soc_mixer_control *)kcontrol->private_value;
2500 int max = mc->max;
2501 int min = mc->min;
2502
2503 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2504 uinfo->count = 2;
2505 uinfo->value.integer.min = 0;
2506 uinfo->value.integer.max = max-min;
2507
2508 return 0;
2509 }
2510 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
2511
2512 /**
2513 * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
2514 * mixer get callback
2515 * @kcontrol: mixer control
2516 * @uinfo: control element information
2517 *
2518 * Returns 0 for success.
2519 */
2520 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2521 struct snd_ctl_elem_value *ucontrol)
2522 {
2523 struct soc_mixer_control *mc =
2524 (struct soc_mixer_control *)kcontrol->private_value;
2525 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2526 unsigned int mask = (1<<mc->shift)-1;
2527 int min = mc->min;
2528 int val = snd_soc_read(codec, mc->reg) & mask;
2529 int valr = snd_soc_read(codec, mc->rreg) & mask;
2530
2531 ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
2532 ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
2533 return 0;
2534 }
2535 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
2536
2537 /**
2538 * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
2539 * mixer put callback
2540 * @kcontrol: mixer control
2541 * @uinfo: control element information
2542 *
2543 * Returns 0 for success.
2544 */
2545 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2546 struct snd_ctl_elem_value *ucontrol)
2547 {
2548 struct soc_mixer_control *mc =
2549 (struct soc_mixer_control *)kcontrol->private_value;
2550 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2551 unsigned int mask = (1<<mc->shift)-1;
2552 int min = mc->min;
2553 int ret;
2554 unsigned int val, valr, oval, ovalr;
2555
2556 val = ((ucontrol->value.integer.value[0]+min) & 0xff);
2557 val &= mask;
2558 valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
2559 valr &= mask;
2560
2561 oval = snd_soc_read(codec, mc->reg) & mask;
2562 ovalr = snd_soc_read(codec, mc->rreg) & mask;
2563
2564 ret = 0;
2565 if (oval != val) {
2566 ret = snd_soc_write(codec, mc->reg, val);
2567 if (ret < 0)
2568 return ret;
2569 }
2570 if (ovalr != valr) {
2571 ret = snd_soc_write(codec, mc->rreg, valr);
2572 if (ret < 0)
2573 return ret;
2574 }
2575
2576 return 0;
2577 }
2578 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
2579
2580 /**
2581 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2582 * @dai: DAI
2583 * @clk_id: DAI specific clock ID
2584 * @freq: new clock frequency in Hz
2585 * @dir: new clock direction - input/output.
2586 *
2587 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2588 */
2589 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2590 unsigned int freq, int dir)
2591 {
2592 if (dai->driver && dai->driver->ops->set_sysclk)
2593 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
2594 else
2595 return -EINVAL;
2596 }
2597 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2598
2599 /**
2600 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2601 * @dai: DAI
2602 * @div_id: DAI specific clock divider ID
2603 * @div: new clock divisor.
2604 *
2605 * Configures the clock dividers. This is used to derive the best DAI bit and
2606 * frame clocks from the system or master clock. It's best to set the DAI bit
2607 * and frame clocks as low as possible to save system power.
2608 */
2609 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2610 int div_id, int div)
2611 {
2612 if (dai->driver && dai->driver->ops->set_clkdiv)
2613 return dai->driver->ops->set_clkdiv(dai, div_id, div);
2614 else
2615 return -EINVAL;
2616 }
2617 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2618
2619 /**
2620 * snd_soc_dai_set_pll - configure DAI PLL.
2621 * @dai: DAI
2622 * @pll_id: DAI specific PLL ID
2623 * @source: DAI specific source for the PLL
2624 * @freq_in: PLL input clock frequency in Hz
2625 * @freq_out: requested PLL output clock frequency in Hz
2626 *
2627 * Configures and enables PLL to generate output clock based on input clock.
2628 */
2629 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
2630 unsigned int freq_in, unsigned int freq_out)
2631 {
2632 if (dai->driver && dai->driver->ops->set_pll)
2633 return dai->driver->ops->set_pll(dai, pll_id, source,
2634 freq_in, freq_out);
2635 else
2636 return -EINVAL;
2637 }
2638 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2639
2640 /**
2641 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2642 * @dai: DAI
2643 * @fmt: SND_SOC_DAIFMT_ format value.
2644 *
2645 * Configures the DAI hardware format and clocking.
2646 */
2647 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2648 {
2649 if (dai->driver && dai->driver->ops->set_fmt)
2650 return dai->driver->ops->set_fmt(dai, fmt);
2651 else
2652 return -EINVAL;
2653 }
2654 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2655
2656 /**
2657 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2658 * @dai: DAI
2659 * @tx_mask: bitmask representing active TX slots.
2660 * @rx_mask: bitmask representing active RX slots.
2661 * @slots: Number of slots in use.
2662 * @slot_width: Width in bits for each slot.
2663 *
2664 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2665 * specific.
2666 */
2667 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2668 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
2669 {
2670 if (dai->driver && dai->driver->ops->set_tdm_slot)
2671 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
2672 slots, slot_width);
2673 else
2674 return -EINVAL;
2675 }
2676 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2677
2678 /**
2679 * snd_soc_dai_set_channel_map - configure DAI audio channel map
2680 * @dai: DAI
2681 * @tx_num: how many TX channels
2682 * @tx_slot: pointer to an array which imply the TX slot number channel
2683 * 0~num-1 uses
2684 * @rx_num: how many RX channels
2685 * @rx_slot: pointer to an array which imply the RX slot number channel
2686 * 0~num-1 uses
2687 *
2688 * configure the relationship between channel number and TDM slot number.
2689 */
2690 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
2691 unsigned int tx_num, unsigned int *tx_slot,
2692 unsigned int rx_num, unsigned int *rx_slot)
2693 {
2694 if (dai->driver && dai->driver->ops->set_channel_map)
2695 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
2696 rx_num, rx_slot);
2697 else
2698 return -EINVAL;
2699 }
2700 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
2701
2702 /**
2703 * snd_soc_dai_set_tristate - configure DAI system or master clock.
2704 * @dai: DAI
2705 * @tristate: tristate enable
2706 *
2707 * Tristates the DAI so that others can use it.
2708 */
2709 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2710 {
2711 if (dai->driver && dai->driver->ops->set_tristate)
2712 return dai->driver->ops->set_tristate(dai, tristate);
2713 else
2714 return -EINVAL;
2715 }
2716 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2717
2718 /**
2719 * snd_soc_dai_digital_mute - configure DAI system or master clock.
2720 * @dai: DAI
2721 * @mute: mute enable
2722 *
2723 * Mutes the DAI DAC.
2724 */
2725 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2726 {
2727 if (dai->driver && dai->driver->ops->digital_mute)
2728 return dai->driver->ops->digital_mute(dai, mute);
2729 else
2730 return -EINVAL;
2731 }
2732 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2733
2734 /**
2735 * snd_soc_register_card - Register a card with the ASoC core
2736 *
2737 * @card: Card to register
2738 *
2739 * Note that currently this is an internal only function: it will be
2740 * exposed to machine drivers after further backporting of ASoC v2
2741 * registration APIs.
2742 */
2743 static int snd_soc_register_card(struct snd_soc_card *card)
2744 {
2745 int i;
2746
2747 if (!card->name || !card->dev)
2748 return -EINVAL;
2749
2750 card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) * card->num_links,
2751 GFP_KERNEL);
2752 if (card->rtd == NULL)
2753 return -ENOMEM;
2754
2755 for (i = 0; i < card->num_links; i++)
2756 card->rtd[i].dai_link = &card->dai_link[i];
2757
2758 INIT_LIST_HEAD(&card->list);
2759 card->instantiated = 0;
2760 mutex_init(&card->mutex);
2761
2762 mutex_lock(&client_mutex);
2763 list_add(&card->list, &card_list);
2764 snd_soc_instantiate_cards();
2765 mutex_unlock(&client_mutex);
2766
2767 dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2768
2769 return 0;
2770 }
2771
2772 /**
2773 * snd_soc_unregister_card - Unregister a card with the ASoC core
2774 *
2775 * @card: Card to unregister
2776 *
2777 * Note that currently this is an internal only function: it will be
2778 * exposed to machine drivers after further backporting of ASoC v2
2779 * registration APIs.
2780 */
2781 static int snd_soc_unregister_card(struct snd_soc_card *card)
2782 {
2783 mutex_lock(&client_mutex);
2784 list_del(&card->list);
2785 mutex_unlock(&client_mutex);
2786 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2787
2788 return 0;
2789 }
2790
2791 /*
2792 * Simplify DAI link configuration by removing ".-1" from device names
2793 * and sanitizing names.
2794 */
2795 static inline char *fmt_single_name(struct device *dev, int *id)
2796 {
2797 char *found, name[NAME_SIZE];
2798 int id1, id2;
2799
2800 if (dev_name(dev) == NULL)
2801 return NULL;
2802
2803 strncpy(name, dev_name(dev), NAME_SIZE);
2804
2805 /* are we a "%s.%d" name (platform and SPI components) */
2806 found = strstr(name, dev->driver->name);
2807 if (found) {
2808 /* get ID */
2809 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
2810
2811 /* discard ID from name if ID == -1 */
2812 if (*id == -1)
2813 found[strlen(dev->driver->name)] = '\0';
2814 }
2815
2816 } else {
2817 /* I2C component devices are named "bus-addr" */
2818 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
2819 char tmp[NAME_SIZE];
2820
2821 /* create unique ID number from I2C addr and bus */
2822 *id = ((id1 && 0xffff) << 16) + id2;
2823
2824 /* sanitize component name for DAI link creation */
2825 snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
2826 strncpy(name, tmp, NAME_SIZE);
2827 } else
2828 *id = 0;
2829 }
2830
2831 return kstrdup(name, GFP_KERNEL);
2832 }
2833
2834 /*
2835 * Simplify DAI link naming for single devices with multiple DAIs by removing
2836 * any ".-1" and using the DAI name (instead of device name).
2837 */
2838 static inline char *fmt_multiple_name(struct device *dev,
2839 struct snd_soc_dai_driver *dai_drv)
2840 {
2841 if (dai_drv->name == NULL) {
2842 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
2843 dev_name(dev));
2844 return NULL;
2845 }
2846
2847 return kstrdup(dai_drv->name, GFP_KERNEL);
2848 }
2849
2850 /**
2851 * snd_soc_register_dai - Register a DAI with the ASoC core
2852 *
2853 * @dai: DAI to register
2854 */
2855 int snd_soc_register_dai(struct device *dev,
2856 struct snd_soc_dai_driver *dai_drv)
2857 {
2858 struct snd_soc_dai *dai;
2859
2860 dev_dbg(dev, "dai register %s\n", dev_name(dev));
2861
2862 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
2863 if (dai == NULL)
2864 return -ENOMEM;
2865
2866 /* create DAI component name */
2867 dai->name = fmt_single_name(dev, &dai->id);
2868 if (dai->name == NULL) {
2869 kfree(dai);
2870 return -ENOMEM;
2871 }
2872
2873 dai->dev = dev;
2874 dai->driver = dai_drv;
2875 if (!dai->driver->ops)
2876 dai->driver->ops = &null_dai_ops;
2877
2878 mutex_lock(&client_mutex);
2879 list_add(&dai->list, &dai_list);
2880 snd_soc_instantiate_cards();
2881 mutex_unlock(&client_mutex);
2882
2883 pr_debug("Registered DAI '%s'\n", dai->name);
2884
2885 return 0;
2886 }
2887 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
2888
2889 /**
2890 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
2891 *
2892 * @dai: DAI to unregister
2893 */
2894 void snd_soc_unregister_dai(struct device *dev)
2895 {
2896 struct snd_soc_dai *dai;
2897
2898 list_for_each_entry(dai, &dai_list, list) {
2899 if (dev == dai->dev)
2900 goto found;
2901 }
2902 return;
2903
2904 found:
2905 mutex_lock(&client_mutex);
2906 list_del(&dai->list);
2907 mutex_unlock(&client_mutex);
2908
2909 pr_debug("Unregistered DAI '%s'\n", dai->name);
2910 kfree(dai->name);
2911 kfree(dai);
2912 }
2913 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
2914
2915 /**
2916 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
2917 *
2918 * @dai: Array of DAIs to register
2919 * @count: Number of DAIs
2920 */
2921 int snd_soc_register_dais(struct device *dev,
2922 struct snd_soc_dai_driver *dai_drv, size_t count)
2923 {
2924 struct snd_soc_dai *dai;
2925 int i, ret = 0;
2926
2927 dev_dbg(dev, "dai register %s #%d\n", dev_name(dev), count);
2928
2929 for (i = 0; i < count; i++) {
2930
2931 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
2932 if (dai == NULL)
2933 return -ENOMEM;
2934
2935 /* create DAI component name */
2936 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
2937 if (dai->name == NULL) {
2938 kfree(dai);
2939 ret = -EINVAL;
2940 goto err;
2941 }
2942
2943 dai->dev = dev;
2944 dai->id = i;
2945 dai->driver = &dai_drv[i];
2946 if (!dai->driver->ops)
2947 dai->driver->ops = &null_dai_ops;
2948
2949 mutex_lock(&client_mutex);
2950 list_add(&dai->list, &dai_list);
2951 mutex_unlock(&client_mutex);
2952
2953 pr_debug("Registered DAI '%s'\n", dai->name);
2954 }
2955
2956 snd_soc_instantiate_cards();
2957 return 0;
2958
2959 err:
2960 for (i--; i >= 0; i--)
2961 snd_soc_unregister_dai(dev);
2962
2963 return ret;
2964 }
2965 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
2966
2967 /**
2968 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
2969 *
2970 * @dai: Array of DAIs to unregister
2971 * @count: Number of DAIs
2972 */
2973 void snd_soc_unregister_dais(struct device *dev, size_t count)
2974 {
2975 int i;
2976
2977 for (i = 0; i < count; i++)
2978 snd_soc_unregister_dai(dev);
2979 }
2980 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
2981
2982 /**
2983 * snd_soc_register_platform - Register a platform with the ASoC core
2984 *
2985 * @platform: platform to register
2986 */
2987 int snd_soc_register_platform(struct device *dev,
2988 struct snd_soc_platform_driver *platform_drv)
2989 {
2990 struct snd_soc_platform *platform;
2991
2992 dev_dbg(dev, "platform register %s\n", dev_name(dev));
2993
2994 platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
2995 if (platform == NULL)
2996 return -ENOMEM;
2997
2998 /* create platform component name */
2999 platform->name = fmt_single_name(dev, &platform->id);
3000 if (platform->name == NULL) {
3001 kfree(platform);
3002 return -ENOMEM;
3003 }
3004
3005 platform->dev = dev;
3006 platform->driver = platform_drv;
3007
3008 mutex_lock(&client_mutex);
3009 list_add(&platform->list, &platform_list);
3010 snd_soc_instantiate_cards();
3011 mutex_unlock(&client_mutex);
3012
3013 pr_debug("Registered platform '%s'\n", platform->name);
3014
3015 return 0;
3016 }
3017 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
3018
3019 /**
3020 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
3021 *
3022 * @platform: platform to unregister
3023 */
3024 void snd_soc_unregister_platform(struct device *dev)
3025 {
3026 struct snd_soc_platform *platform;
3027
3028 list_for_each_entry(platform, &platform_list, list) {
3029 if (dev == platform->dev)
3030 goto found;
3031 }
3032 return;
3033
3034 found:
3035 mutex_lock(&client_mutex);
3036 list_del(&platform->list);
3037 mutex_unlock(&client_mutex);
3038
3039 pr_debug("Unregistered platform '%s'\n", platform->name);
3040 kfree(platform->name);
3041 kfree(platform);
3042 }
3043 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
3044
3045 static u64 codec_format_map[] = {
3046 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
3047 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
3048 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
3049 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
3050 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
3051 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
3052 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3053 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3054 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
3055 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
3056 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
3057 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
3058 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
3059 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
3060 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
3061 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
3062 };
3063
3064 /* Fix up the DAI formats for endianness: codecs don't actually see
3065 * the endianness of the data but we're using the CPU format
3066 * definitions which do need to include endianness so we ensure that
3067 * codec DAIs always have both big and little endian variants set.
3068 */
3069 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
3070 {
3071 int i;
3072
3073 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
3074 if (stream->formats & codec_format_map[i])
3075 stream->formats |= codec_format_map[i];
3076 }
3077
3078 /**
3079 * snd_soc_register_codec - Register a codec with the ASoC core
3080 *
3081 * @codec: codec to register
3082 */
3083 int snd_soc_register_codec(struct device *dev,
3084 struct snd_soc_codec_driver *codec_drv,
3085 struct snd_soc_dai_driver *dai_drv, int num_dai)
3086 {
3087 struct snd_soc_codec *codec;
3088 int ret, i;
3089
3090 dev_dbg(dev, "codec register %s\n", dev_name(dev));
3091
3092 codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
3093 if (codec == NULL)
3094 return -ENOMEM;
3095
3096 /* create CODEC component name */
3097 codec->name = fmt_single_name(dev, &codec->id);
3098 if (codec->name == NULL) {
3099 kfree(codec);
3100 return -ENOMEM;
3101 }
3102
3103 /* allocate CODEC register cache */
3104 if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
3105
3106 if (codec_drv->reg_cache_default)
3107 codec->reg_cache = kmemdup(codec_drv->reg_cache_default,
3108 codec_drv->reg_cache_size * codec_drv->reg_word_size, GFP_KERNEL);
3109 else
3110 codec->reg_cache = kzalloc(codec_drv->reg_cache_size *
3111 codec_drv->reg_word_size, GFP_KERNEL);
3112
3113 if (codec->reg_cache == NULL) {
3114 kfree(codec->name);
3115 kfree(codec);
3116 return -ENOMEM;
3117 }
3118 }
3119
3120 codec->dev = dev;
3121 codec->driver = codec_drv;
3122 codec->bias_level = SND_SOC_BIAS_OFF;
3123 codec->num_dai = num_dai;
3124 mutex_init(&codec->mutex);
3125 INIT_LIST_HEAD(&codec->dapm_widgets);
3126 INIT_LIST_HEAD(&codec->dapm_paths);
3127
3128 for (i = 0; i < num_dai; i++) {
3129 fixup_codec_formats(&dai_drv[i].playback);
3130 fixup_codec_formats(&dai_drv[i].capture);
3131 }
3132
3133 /* register DAIs */
3134 ret = snd_soc_register_dais(dev, dai_drv, num_dai);
3135 if (ret < 0)
3136 goto error;
3137
3138 mutex_lock(&client_mutex);
3139 list_add(&codec->list, &codec_list);
3140 snd_soc_instantiate_cards();
3141 mutex_unlock(&client_mutex);
3142
3143 pr_debug("Registered codec '%s'\n", codec->name);
3144 return 0;
3145
3146 error:
3147 for (i--; i >= 0; i--)
3148 snd_soc_unregister_dai(dev);
3149
3150 if (codec->reg_cache)
3151 kfree(codec->reg_cache);
3152 kfree(codec->name);
3153 kfree(codec);
3154 return ret;
3155 }
3156 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
3157
3158 /**
3159 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
3160 *
3161 * @codec: codec to unregister
3162 */
3163 void snd_soc_unregister_codec(struct device *dev)
3164 {
3165 struct snd_soc_codec *codec;
3166 int i;
3167
3168 list_for_each_entry(codec, &codec_list, list) {
3169 if (dev == codec->dev)
3170 goto found;
3171 }
3172 return;
3173
3174 found:
3175 for (i = 0; i < codec->num_dai; i++)
3176 snd_soc_unregister_dai(dev);
3177
3178 mutex_lock(&client_mutex);
3179 list_del(&codec->list);
3180 mutex_unlock(&client_mutex);
3181
3182 pr_debug("Unregistered codec '%s'\n", codec->name);
3183
3184 if (codec->reg_cache)
3185 kfree(codec->reg_cache);
3186 kfree(codec);
3187 }
3188 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
3189
3190 static int __init snd_soc_init(void)
3191 {
3192 #ifdef CONFIG_DEBUG_FS
3193 debugfs_root = debugfs_create_dir("asoc", NULL);
3194 if (IS_ERR(debugfs_root) || !debugfs_root) {
3195 printk(KERN_WARNING
3196 "ASoC: Failed to create debugfs directory\n");
3197 debugfs_root = NULL;
3198 }
3199 #endif
3200
3201 return platform_driver_register(&soc_driver);
3202 }
3203
3204 static void __exit snd_soc_exit(void)
3205 {
3206 #ifdef CONFIG_DEBUG_FS
3207 debugfs_remove_recursive(debugfs_root);
3208 #endif
3209 platform_driver_unregister(&soc_driver);
3210 }
3211
3212 module_init(snd_soc_init);
3213 module_exit(snd_soc_exit);
3214
3215 /* Module information */
3216 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
3217 MODULE_DESCRIPTION("ALSA SoC Core");
3218 MODULE_LICENSE("GPL");
3219 MODULE_ALIAS("platform:soc-audio");
This page took 0.102532 seconds and 5 git commands to generate.