ASoC: fix two ident style problems
[deliverable/linux.git] / sound / soc / soc-core.c
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
6 * Copyright (C) 2010 Slimlogic Ltd.
7 * Copyright (C) 2010 Texas Instruments Inc.
8 *
9 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10 * with code, comments and ideas from :-
11 * Richard Purdie <richard@openedhand.com>
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 *
18 * TODO:
19 * o Add hw rules to enforce rates, etc.
20 * o More testing with other codecs/machines.
21 * o Add more codecs and platforms to ensure good API coverage.
22 * o Support TDM on PCM and I2S
23 */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h>
35 #include <sound/core.h>
36 #include <sound/jack.h>
37 #include <sound/pcm.h>
38 #include <sound/pcm_params.h>
39 #include <sound/soc.h>
40 #include <sound/initval.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/asoc.h>
44
45 #define NAME_SIZE 32
46
47 static DEFINE_MUTEX(pcm_mutex);
48 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
49
50 #ifdef CONFIG_DEBUG_FS
51 struct dentry *snd_soc_debugfs_root;
52 EXPORT_SYMBOL_GPL(snd_soc_debugfs_root);
53 #endif
54
55 static DEFINE_MUTEX(client_mutex);
56 static LIST_HEAD(card_list);
57 static LIST_HEAD(dai_list);
58 static LIST_HEAD(platform_list);
59 static LIST_HEAD(codec_list);
60
61 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
62
63 /*
64 * This is a timeout to do a DAPM powerdown after a stream is closed().
65 * It can be used to eliminate pops between different playback streams, e.g.
66 * between two audio tracks.
67 */
68 static int pmdown_time = 5000;
69 module_param(pmdown_time, int, 0);
70 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
71
72 /* returns the minimum number of bytes needed to represent
73 * a particular given value */
74 static int min_bytes_needed(unsigned long val)
75 {
76 int c = 0;
77 int i;
78
79 for (i = (sizeof val * 8) - 1; i >= 0; --i, ++c)
80 if (val & (1UL << i))
81 break;
82 c = (sizeof val * 8) - c;
83 if (!c || (c % 8))
84 c = (c + 8) / 8;
85 else
86 c /= 8;
87 return c;
88 }
89
90 /* fill buf which is 'len' bytes with a formatted
91 * string of the form 'reg: value\n' */
92 static int format_register_str(struct snd_soc_codec *codec,
93 unsigned int reg, char *buf, size_t len)
94 {
95 int wordsize = min_bytes_needed(codec->driver->reg_cache_size) * 2;
96 int regsize = codec->driver->reg_word_size * 2;
97 int ret;
98 char tmpbuf[len + 1];
99 char regbuf[regsize + 1];
100
101 /* since tmpbuf is allocated on the stack, warn the callers if they
102 * try to abuse this function */
103 WARN_ON(len > 63);
104
105 /* +2 for ': ' and + 1 for '\n' */
106 if (wordsize + regsize + 2 + 1 != len)
107 return -EINVAL;
108
109 ret = snd_soc_read(codec , reg);
110 if (ret < 0) {
111 memset(regbuf, 'X', regsize);
112 regbuf[regsize] = '\0';
113 } else {
114 snprintf(regbuf, regsize + 1, "%.*x", regsize, ret);
115 }
116
117 /* prepare the buffer */
118 snprintf(tmpbuf, len + 1, "%.*x: %s\n", wordsize, reg, regbuf);
119 /* copy it back to the caller without the '\0' */
120 memcpy(buf, tmpbuf, len);
121
122 return 0;
123 }
124
125 /* codec register dump */
126 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf,
127 size_t count, loff_t pos)
128 {
129 int i, step = 1;
130 int wordsize, regsize;
131 int len;
132 size_t total = 0;
133 loff_t p = 0;
134
135 wordsize = min_bytes_needed(codec->driver->reg_cache_size) * 2;
136 regsize = codec->driver->reg_word_size * 2;
137
138 len = wordsize + regsize + 2 + 1;
139
140 if (!codec->driver->reg_cache_size)
141 return 0;
142
143 if (codec->driver->reg_cache_step)
144 step = codec->driver->reg_cache_step;
145
146 for (i = 0; i < codec->driver->reg_cache_size; i += step) {
147 if (codec->readable_register && !codec->readable_register(codec, i))
148 continue;
149 if (codec->driver->display_register) {
150 count += codec->driver->display_register(codec, buf + count,
151 PAGE_SIZE - count, i);
152 } else {
153 /* only support larger than PAGE_SIZE bytes debugfs
154 * entries for the default case */
155 if (p >= pos) {
156 if (total + len >= count - 1)
157 break;
158 format_register_str(codec, i, buf + total, len);
159 total += len;
160 }
161 p += len;
162 }
163 }
164
165 total = min(total, count - 1);
166
167 return total;
168 }
169
170 static ssize_t codec_reg_show(struct device *dev,
171 struct device_attribute *attr, char *buf)
172 {
173 struct snd_soc_pcm_runtime *rtd =
174 container_of(dev, struct snd_soc_pcm_runtime, dev);
175
176 return soc_codec_reg_show(rtd->codec, buf, PAGE_SIZE, 0);
177 }
178
179 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
180
181 static ssize_t pmdown_time_show(struct device *dev,
182 struct device_attribute *attr, char *buf)
183 {
184 struct snd_soc_pcm_runtime *rtd =
185 container_of(dev, struct snd_soc_pcm_runtime, dev);
186
187 return sprintf(buf, "%ld\n", rtd->pmdown_time);
188 }
189
190 static ssize_t pmdown_time_set(struct device *dev,
191 struct device_attribute *attr,
192 const char *buf, size_t count)
193 {
194 struct snd_soc_pcm_runtime *rtd =
195 container_of(dev, struct snd_soc_pcm_runtime, dev);
196 int ret;
197
198 ret = strict_strtol(buf, 10, &rtd->pmdown_time);
199 if (ret)
200 return ret;
201
202 return count;
203 }
204
205 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
206
207 #ifdef CONFIG_DEBUG_FS
208 static int codec_reg_open_file(struct inode *inode, struct file *file)
209 {
210 file->private_data = inode->i_private;
211 return 0;
212 }
213
214 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
215 size_t count, loff_t *ppos)
216 {
217 ssize_t ret;
218 struct snd_soc_codec *codec = file->private_data;
219 char *buf;
220
221 if (*ppos < 0 || !count)
222 return -EINVAL;
223
224 buf = kmalloc(count, GFP_KERNEL);
225 if (!buf)
226 return -ENOMEM;
227
228 ret = soc_codec_reg_show(codec, buf, count, *ppos);
229 if (ret >= 0) {
230 if (copy_to_user(user_buf, buf, ret)) {
231 kfree(buf);
232 return -EFAULT;
233 }
234 *ppos += ret;
235 }
236
237 kfree(buf);
238 return ret;
239 }
240
241 static ssize_t codec_reg_write_file(struct file *file,
242 const char __user *user_buf, size_t count, loff_t *ppos)
243 {
244 char buf[32];
245 int buf_size;
246 char *start = buf;
247 unsigned long reg, value;
248 int step = 1;
249 struct snd_soc_codec *codec = file->private_data;
250
251 buf_size = min(count, (sizeof(buf)-1));
252 if (copy_from_user(buf, user_buf, buf_size))
253 return -EFAULT;
254 buf[buf_size] = 0;
255
256 if (codec->driver->reg_cache_step)
257 step = codec->driver->reg_cache_step;
258
259 while (*start == ' ')
260 start++;
261 reg = simple_strtoul(start, &start, 16);
262 while (*start == ' ')
263 start++;
264 if (strict_strtoul(start, 16, &value))
265 return -EINVAL;
266
267 /* Userspace has been fiddling around behind the kernel's back */
268 add_taint(TAINT_USER);
269
270 snd_soc_write(codec, reg, value);
271 return buf_size;
272 }
273
274 static const struct file_operations codec_reg_fops = {
275 .open = codec_reg_open_file,
276 .read = codec_reg_read_file,
277 .write = codec_reg_write_file,
278 .llseek = default_llseek,
279 };
280
281 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
282 {
283 struct dentry *debugfs_card_root = codec->card->debugfs_card_root;
284
285 codec->debugfs_codec_root = debugfs_create_dir(codec->name,
286 debugfs_card_root);
287 if (!codec->debugfs_codec_root) {
288 printk(KERN_WARNING
289 "ASoC: Failed to create codec debugfs directory\n");
290 return;
291 }
292
293 debugfs_create_bool("cache_sync", 0444, codec->debugfs_codec_root,
294 &codec->cache_sync);
295 debugfs_create_bool("cache_only", 0444, codec->debugfs_codec_root,
296 &codec->cache_only);
297
298 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
299 codec->debugfs_codec_root,
300 codec, &codec_reg_fops);
301 if (!codec->debugfs_reg)
302 printk(KERN_WARNING
303 "ASoC: Failed to create codec register debugfs file\n");
304
305 codec->dapm.debugfs_dapm = debugfs_create_dir("dapm",
306 codec->debugfs_codec_root);
307 if (!codec->dapm.debugfs_dapm)
308 printk(KERN_WARNING
309 "Failed to create DAPM debugfs directory\n");
310
311 snd_soc_dapm_debugfs_init(&codec->dapm);
312 }
313
314 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
315 {
316 debugfs_remove_recursive(codec->debugfs_codec_root);
317 }
318
319 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
320 size_t count, loff_t *ppos)
321 {
322 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
323 ssize_t len, ret = 0;
324 struct snd_soc_codec *codec;
325
326 if (!buf)
327 return -ENOMEM;
328
329 list_for_each_entry(codec, &codec_list, list) {
330 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
331 codec->name);
332 if (len >= 0)
333 ret += len;
334 if (ret > PAGE_SIZE) {
335 ret = PAGE_SIZE;
336 break;
337 }
338 }
339
340 if (ret >= 0)
341 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
342
343 kfree(buf);
344
345 return ret;
346 }
347
348 static const struct file_operations codec_list_fops = {
349 .read = codec_list_read_file,
350 .llseek = default_llseek,/* read accesses f_pos */
351 };
352
353 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
354 size_t count, loff_t *ppos)
355 {
356 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
357 ssize_t len, ret = 0;
358 struct snd_soc_dai *dai;
359
360 if (!buf)
361 return -ENOMEM;
362
363 list_for_each_entry(dai, &dai_list, list) {
364 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
365 if (len >= 0)
366 ret += len;
367 if (ret > PAGE_SIZE) {
368 ret = PAGE_SIZE;
369 break;
370 }
371 }
372
373 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
374
375 kfree(buf);
376
377 return ret;
378 }
379
380 static const struct file_operations dai_list_fops = {
381 .read = dai_list_read_file,
382 .llseek = default_llseek,/* read accesses f_pos */
383 };
384
385 static ssize_t platform_list_read_file(struct file *file,
386 char __user *user_buf,
387 size_t count, loff_t *ppos)
388 {
389 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
390 ssize_t len, ret = 0;
391 struct snd_soc_platform *platform;
392
393 if (!buf)
394 return -ENOMEM;
395
396 list_for_each_entry(platform, &platform_list, list) {
397 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
398 platform->name);
399 if (len >= 0)
400 ret += len;
401 if (ret > PAGE_SIZE) {
402 ret = PAGE_SIZE;
403 break;
404 }
405 }
406
407 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
408
409 kfree(buf);
410
411 return ret;
412 }
413
414 static const struct file_operations platform_list_fops = {
415 .read = platform_list_read_file,
416 .llseek = default_llseek,/* read accesses f_pos */
417 };
418
419 static void soc_init_card_debugfs(struct snd_soc_card *card)
420 {
421 card->debugfs_card_root = debugfs_create_dir(card->name,
422 snd_soc_debugfs_root);
423 if (!card->debugfs_card_root) {
424 dev_warn(card->dev,
425 "ASoC: Failed to create codec debugfs directory\n");
426 return;
427 }
428
429 card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
430 card->debugfs_card_root,
431 &card->pop_time);
432 if (!card->debugfs_pop_time)
433 dev_warn(card->dev,
434 "Failed to create pop time debugfs file\n");
435 }
436
437 static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
438 {
439 debugfs_remove_recursive(card->debugfs_card_root);
440 }
441
442 #else
443
444 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
445 {
446 }
447
448 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
449 {
450 }
451
452 static inline void soc_init_card_debugfs(struct snd_soc_card *card)
453 {
454 }
455
456 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
457 {
458 }
459 #endif
460
461 #ifdef CONFIG_SND_SOC_AC97_BUS
462 /* unregister ac97 codec */
463 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
464 {
465 if (codec->ac97->dev.bus)
466 device_unregister(&codec->ac97->dev);
467 return 0;
468 }
469
470 /* stop no dev release warning */
471 static void soc_ac97_device_release(struct device *dev){}
472
473 /* register ac97 codec to bus */
474 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
475 {
476 int err;
477
478 codec->ac97->dev.bus = &ac97_bus_type;
479 codec->ac97->dev.parent = codec->card->dev;
480 codec->ac97->dev.release = soc_ac97_device_release;
481
482 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
483 codec->card->snd_card->number, 0, codec->name);
484 err = device_register(&codec->ac97->dev);
485 if (err < 0) {
486 snd_printk(KERN_ERR "Can't register ac97 bus\n");
487 codec->ac97->dev.bus = NULL;
488 return err;
489 }
490 return 0;
491 }
492 #endif
493
494 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
495 {
496 struct snd_soc_pcm_runtime *rtd = substream->private_data;
497 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
498 struct snd_soc_dai *codec_dai = rtd->codec_dai;
499 int ret;
500
501 if (!codec_dai->driver->symmetric_rates &&
502 !cpu_dai->driver->symmetric_rates &&
503 !rtd->dai_link->symmetric_rates)
504 return 0;
505
506 /* This can happen if multiple streams are starting simultaneously -
507 * the second can need to get its constraints before the first has
508 * picked a rate. Complain and allow the application to carry on.
509 */
510 if (!rtd->rate) {
511 dev_warn(&rtd->dev,
512 "Not enforcing symmetric_rates due to race\n");
513 return 0;
514 }
515
516 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n", rtd->rate);
517
518 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
519 SNDRV_PCM_HW_PARAM_RATE,
520 rtd->rate, rtd->rate);
521 if (ret < 0) {
522 dev_err(&rtd->dev,
523 "Unable to apply rate symmetry constraint: %d\n", ret);
524 return ret;
525 }
526
527 return 0;
528 }
529
530 /*
531 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
532 * then initialized and any private data can be allocated. This also calls
533 * startup for the cpu DAI, platform, machine and codec DAI.
534 */
535 static int soc_pcm_open(struct snd_pcm_substream *substream)
536 {
537 struct snd_soc_pcm_runtime *rtd = substream->private_data;
538 struct snd_pcm_runtime *runtime = substream->runtime;
539 struct snd_soc_platform *platform = rtd->platform;
540 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
541 struct snd_soc_dai *codec_dai = rtd->codec_dai;
542 struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
543 struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
544 int ret = 0;
545
546 mutex_lock(&pcm_mutex);
547
548 /* startup the audio subsystem */
549 if (cpu_dai->driver->ops->startup) {
550 ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
551 if (ret < 0) {
552 printk(KERN_ERR "asoc: can't open interface %s\n",
553 cpu_dai->name);
554 goto out;
555 }
556 }
557
558 if (platform->driver->ops->open) {
559 ret = platform->driver->ops->open(substream);
560 if (ret < 0) {
561 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
562 goto platform_err;
563 }
564 }
565
566 if (codec_dai->driver->ops->startup) {
567 ret = codec_dai->driver->ops->startup(substream, codec_dai);
568 if (ret < 0) {
569 printk(KERN_ERR "asoc: can't open codec %s\n",
570 codec_dai->name);
571 goto codec_dai_err;
572 }
573 }
574
575 if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
576 ret = rtd->dai_link->ops->startup(substream);
577 if (ret < 0) {
578 printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
579 goto machine_err;
580 }
581 }
582
583 /* Check that the codec and cpu DAIs are compatible */
584 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
585 runtime->hw.rate_min =
586 max(codec_dai_drv->playback.rate_min,
587 cpu_dai_drv->playback.rate_min);
588 runtime->hw.rate_max =
589 min(codec_dai_drv->playback.rate_max,
590 cpu_dai_drv->playback.rate_max);
591 runtime->hw.channels_min =
592 max(codec_dai_drv->playback.channels_min,
593 cpu_dai_drv->playback.channels_min);
594 runtime->hw.channels_max =
595 min(codec_dai_drv->playback.channels_max,
596 cpu_dai_drv->playback.channels_max);
597 runtime->hw.formats =
598 codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
599 runtime->hw.rates =
600 codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
601 if (codec_dai_drv->playback.rates
602 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
603 runtime->hw.rates |= cpu_dai_drv->playback.rates;
604 if (cpu_dai_drv->playback.rates
605 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
606 runtime->hw.rates |= codec_dai_drv->playback.rates;
607 } else {
608 runtime->hw.rate_min =
609 max(codec_dai_drv->capture.rate_min,
610 cpu_dai_drv->capture.rate_min);
611 runtime->hw.rate_max =
612 min(codec_dai_drv->capture.rate_max,
613 cpu_dai_drv->capture.rate_max);
614 runtime->hw.channels_min =
615 max(codec_dai_drv->capture.channels_min,
616 cpu_dai_drv->capture.channels_min);
617 runtime->hw.channels_max =
618 min(codec_dai_drv->capture.channels_max,
619 cpu_dai_drv->capture.channels_max);
620 runtime->hw.formats =
621 codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
622 runtime->hw.rates =
623 codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
624 if (codec_dai_drv->capture.rates
625 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
626 runtime->hw.rates |= cpu_dai_drv->capture.rates;
627 if (cpu_dai_drv->capture.rates
628 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
629 runtime->hw.rates |= codec_dai_drv->capture.rates;
630 }
631
632 ret = -EINVAL;
633 snd_pcm_limit_hw_rates(runtime);
634 if (!runtime->hw.rates) {
635 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
636 codec_dai->name, cpu_dai->name);
637 goto config_err;
638 }
639 if (!runtime->hw.formats) {
640 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
641 codec_dai->name, cpu_dai->name);
642 goto config_err;
643 }
644 if (!runtime->hw.channels_min || !runtime->hw.channels_max ||
645 runtime->hw.channels_min > runtime->hw.channels_max) {
646 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
647 codec_dai->name, cpu_dai->name);
648 goto config_err;
649 }
650
651 /* Symmetry only applies if we've already got an active stream. */
652 if (cpu_dai->active || codec_dai->active) {
653 ret = soc_pcm_apply_symmetry(substream);
654 if (ret != 0)
655 goto config_err;
656 }
657
658 pr_debug("asoc: %s <-> %s info:\n",
659 codec_dai->name, cpu_dai->name);
660 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
661 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
662 runtime->hw.channels_max);
663 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
664 runtime->hw.rate_max);
665
666 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
667 cpu_dai->playback_active++;
668 codec_dai->playback_active++;
669 } else {
670 cpu_dai->capture_active++;
671 codec_dai->capture_active++;
672 }
673 cpu_dai->active++;
674 codec_dai->active++;
675 rtd->codec->active++;
676 mutex_unlock(&pcm_mutex);
677 return 0;
678
679 config_err:
680 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
681 rtd->dai_link->ops->shutdown(substream);
682
683 machine_err:
684 if (codec_dai->driver->ops->shutdown)
685 codec_dai->driver->ops->shutdown(substream, codec_dai);
686
687 codec_dai_err:
688 if (platform->driver->ops->close)
689 platform->driver->ops->close(substream);
690
691 platform_err:
692 if (cpu_dai->driver->ops->shutdown)
693 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
694 out:
695 mutex_unlock(&pcm_mutex);
696 return ret;
697 }
698
699 /*
700 * Power down the audio subsystem pmdown_time msecs after close is called.
701 * This is to ensure there are no pops or clicks in between any music tracks
702 * due to DAPM power cycling.
703 */
704 static void close_delayed_work(struct work_struct *work)
705 {
706 struct snd_soc_pcm_runtime *rtd =
707 container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
708 struct snd_soc_dai *codec_dai = rtd->codec_dai;
709
710 mutex_lock(&pcm_mutex);
711
712 pr_debug("pop wq checking: %s status: %s waiting: %s\n",
713 codec_dai->driver->playback.stream_name,
714 codec_dai->playback_active ? "active" : "inactive",
715 codec_dai->pop_wait ? "yes" : "no");
716
717 /* are we waiting on this codec DAI stream */
718 if (codec_dai->pop_wait == 1) {
719 codec_dai->pop_wait = 0;
720 snd_soc_dapm_stream_event(rtd,
721 codec_dai->driver->playback.stream_name,
722 SND_SOC_DAPM_STREAM_STOP);
723 }
724
725 mutex_unlock(&pcm_mutex);
726 }
727
728 /*
729 * Called by ALSA when a PCM substream is closed. Private data can be
730 * freed here. The cpu DAI, codec DAI, machine and platform are also
731 * shutdown.
732 */
733 static int soc_codec_close(struct snd_pcm_substream *substream)
734 {
735 struct snd_soc_pcm_runtime *rtd = substream->private_data;
736 struct snd_soc_platform *platform = rtd->platform;
737 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
738 struct snd_soc_dai *codec_dai = rtd->codec_dai;
739 struct snd_soc_codec *codec = rtd->codec;
740
741 mutex_lock(&pcm_mutex);
742
743 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
744 cpu_dai->playback_active--;
745 codec_dai->playback_active--;
746 } else {
747 cpu_dai->capture_active--;
748 codec_dai->capture_active--;
749 }
750
751 cpu_dai->active--;
752 codec_dai->active--;
753 codec->active--;
754
755 /* Muting the DAC suppresses artifacts caused during digital
756 * shutdown, for example from stopping clocks.
757 */
758 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
759 snd_soc_dai_digital_mute(codec_dai, 1);
760
761 if (cpu_dai->driver->ops->shutdown)
762 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
763
764 if (codec_dai->driver->ops->shutdown)
765 codec_dai->driver->ops->shutdown(substream, codec_dai);
766
767 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
768 rtd->dai_link->ops->shutdown(substream);
769
770 if (platform->driver->ops->close)
771 platform->driver->ops->close(substream);
772 cpu_dai->runtime = NULL;
773
774 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
775 /* start delayed pop wq here for playback streams */
776 codec_dai->pop_wait = 1;
777 schedule_delayed_work(&rtd->delayed_work,
778 msecs_to_jiffies(rtd->pmdown_time));
779 } else {
780 /* capture streams can be powered down now */
781 snd_soc_dapm_stream_event(rtd,
782 codec_dai->driver->capture.stream_name,
783 SND_SOC_DAPM_STREAM_STOP);
784 }
785
786 mutex_unlock(&pcm_mutex);
787 return 0;
788 }
789
790 /*
791 * Called by ALSA when the PCM substream is prepared, can set format, sample
792 * rate, etc. This function is non atomic and can be called multiple times,
793 * it can refer to the runtime info.
794 */
795 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
796 {
797 struct snd_soc_pcm_runtime *rtd = substream->private_data;
798 struct snd_soc_platform *platform = rtd->platform;
799 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
800 struct snd_soc_dai *codec_dai = rtd->codec_dai;
801 int ret = 0;
802
803 mutex_lock(&pcm_mutex);
804
805 if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
806 ret = rtd->dai_link->ops->prepare(substream);
807 if (ret < 0) {
808 printk(KERN_ERR "asoc: machine prepare error\n");
809 goto out;
810 }
811 }
812
813 if (platform->driver->ops->prepare) {
814 ret = platform->driver->ops->prepare(substream);
815 if (ret < 0) {
816 printk(KERN_ERR "asoc: platform prepare error\n");
817 goto out;
818 }
819 }
820
821 if (codec_dai->driver->ops->prepare) {
822 ret = codec_dai->driver->ops->prepare(substream, codec_dai);
823 if (ret < 0) {
824 printk(KERN_ERR "asoc: codec DAI prepare error\n");
825 goto out;
826 }
827 }
828
829 if (cpu_dai->driver->ops->prepare) {
830 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
831 if (ret < 0) {
832 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
833 goto out;
834 }
835 }
836
837 /* cancel any delayed stream shutdown that is pending */
838 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
839 codec_dai->pop_wait) {
840 codec_dai->pop_wait = 0;
841 cancel_delayed_work(&rtd->delayed_work);
842 }
843
844 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
845 snd_soc_dapm_stream_event(rtd,
846 codec_dai->driver->playback.stream_name,
847 SND_SOC_DAPM_STREAM_START);
848 else
849 snd_soc_dapm_stream_event(rtd,
850 codec_dai->driver->capture.stream_name,
851 SND_SOC_DAPM_STREAM_START);
852
853 snd_soc_dai_digital_mute(codec_dai, 0);
854
855 out:
856 mutex_unlock(&pcm_mutex);
857 return ret;
858 }
859
860 /*
861 * Called by ALSA when the hardware params are set by application. This
862 * function can also be called multiple times and can allocate buffers
863 * (using snd_pcm_lib_* ). It's non-atomic.
864 */
865 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
866 struct snd_pcm_hw_params *params)
867 {
868 struct snd_soc_pcm_runtime *rtd = substream->private_data;
869 struct snd_soc_platform *platform = rtd->platform;
870 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
871 struct snd_soc_dai *codec_dai = rtd->codec_dai;
872 int ret = 0;
873
874 mutex_lock(&pcm_mutex);
875
876 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
877 ret = rtd->dai_link->ops->hw_params(substream, params);
878 if (ret < 0) {
879 printk(KERN_ERR "asoc: machine hw_params failed\n");
880 goto out;
881 }
882 }
883
884 if (codec_dai->driver->ops->hw_params) {
885 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
886 if (ret < 0) {
887 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
888 codec_dai->name);
889 goto codec_err;
890 }
891 }
892
893 if (cpu_dai->driver->ops->hw_params) {
894 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
895 if (ret < 0) {
896 printk(KERN_ERR "asoc: interface %s hw params failed\n",
897 cpu_dai->name);
898 goto interface_err;
899 }
900 }
901
902 if (platform->driver->ops->hw_params) {
903 ret = platform->driver->ops->hw_params(substream, params);
904 if (ret < 0) {
905 printk(KERN_ERR "asoc: platform %s hw params failed\n",
906 platform->name);
907 goto platform_err;
908 }
909 }
910
911 rtd->rate = params_rate(params);
912
913 out:
914 mutex_unlock(&pcm_mutex);
915 return ret;
916
917 platform_err:
918 if (cpu_dai->driver->ops->hw_free)
919 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
920
921 interface_err:
922 if (codec_dai->driver->ops->hw_free)
923 codec_dai->driver->ops->hw_free(substream, codec_dai);
924
925 codec_err:
926 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
927 rtd->dai_link->ops->hw_free(substream);
928
929 mutex_unlock(&pcm_mutex);
930 return ret;
931 }
932
933 /*
934 * Frees resources allocated by hw_params, can be called multiple times
935 */
936 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
937 {
938 struct snd_soc_pcm_runtime *rtd = substream->private_data;
939 struct snd_soc_platform *platform = rtd->platform;
940 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
941 struct snd_soc_dai *codec_dai = rtd->codec_dai;
942 struct snd_soc_codec *codec = rtd->codec;
943
944 mutex_lock(&pcm_mutex);
945
946 /* apply codec digital mute */
947 if (!codec->active)
948 snd_soc_dai_digital_mute(codec_dai, 1);
949
950 /* free any machine hw params */
951 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
952 rtd->dai_link->ops->hw_free(substream);
953
954 /* free any DMA resources */
955 if (platform->driver->ops->hw_free)
956 platform->driver->ops->hw_free(substream);
957
958 /* now free hw params for the DAIs */
959 if (codec_dai->driver->ops->hw_free)
960 codec_dai->driver->ops->hw_free(substream, codec_dai);
961
962 if (cpu_dai->driver->ops->hw_free)
963 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
964
965 mutex_unlock(&pcm_mutex);
966 return 0;
967 }
968
969 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
970 {
971 struct snd_soc_pcm_runtime *rtd = substream->private_data;
972 struct snd_soc_platform *platform = rtd->platform;
973 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
974 struct snd_soc_dai *codec_dai = rtd->codec_dai;
975 int ret;
976
977 if (codec_dai->driver->ops->trigger) {
978 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
979 if (ret < 0)
980 return ret;
981 }
982
983 if (platform->driver->ops->trigger) {
984 ret = platform->driver->ops->trigger(substream, cmd);
985 if (ret < 0)
986 return ret;
987 }
988
989 if (cpu_dai->driver->ops->trigger) {
990 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
991 if (ret < 0)
992 return ret;
993 }
994 return 0;
995 }
996
997 /*
998 * soc level wrapper for pointer callback
999 * If cpu_dai, codec_dai, platform driver has the delay callback, than
1000 * the runtime->delay will be updated accordingly.
1001 */
1002 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
1003 {
1004 struct snd_soc_pcm_runtime *rtd = substream->private_data;
1005 struct snd_soc_platform *platform = rtd->platform;
1006 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1007 struct snd_soc_dai *codec_dai = rtd->codec_dai;
1008 struct snd_pcm_runtime *runtime = substream->runtime;
1009 snd_pcm_uframes_t offset = 0;
1010 snd_pcm_sframes_t delay = 0;
1011
1012 if (platform->driver->ops->pointer)
1013 offset = platform->driver->ops->pointer(substream);
1014
1015 if (cpu_dai->driver->ops->delay)
1016 delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
1017
1018 if (codec_dai->driver->ops->delay)
1019 delay += codec_dai->driver->ops->delay(substream, codec_dai);
1020
1021 if (platform->driver->delay)
1022 delay += platform->driver->delay(substream, codec_dai);
1023
1024 runtime->delay = delay;
1025
1026 return offset;
1027 }
1028
1029 /* ASoC PCM operations */
1030 static struct snd_pcm_ops soc_pcm_ops = {
1031 .open = soc_pcm_open,
1032 .close = soc_codec_close,
1033 .hw_params = soc_pcm_hw_params,
1034 .hw_free = soc_pcm_hw_free,
1035 .prepare = soc_pcm_prepare,
1036 .trigger = soc_pcm_trigger,
1037 .pointer = soc_pcm_pointer,
1038 };
1039
1040 #ifdef CONFIG_PM_SLEEP
1041 /* powers down audio subsystem for suspend */
1042 int snd_soc_suspend(struct device *dev)
1043 {
1044 struct snd_soc_card *card = dev_get_drvdata(dev);
1045 struct snd_soc_codec *codec;
1046 int i;
1047
1048 /* If the initialization of this soc device failed, there is no codec
1049 * associated with it. Just bail out in this case.
1050 */
1051 if (list_empty(&card->codec_dev_list))
1052 return 0;
1053
1054 /* Due to the resume being scheduled into a workqueue we could
1055 * suspend before that's finished - wait for it to complete.
1056 */
1057 snd_power_lock(card->snd_card);
1058 snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
1059 snd_power_unlock(card->snd_card);
1060
1061 /* we're going to block userspace touching us until resume completes */
1062 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
1063
1064 /* mute any active DACs */
1065 for (i = 0; i < card->num_rtd; i++) {
1066 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1067 struct snd_soc_dai_driver *drv = dai->driver;
1068
1069 if (card->rtd[i].dai_link->ignore_suspend)
1070 continue;
1071
1072 if (drv->ops->digital_mute && dai->playback_active)
1073 drv->ops->digital_mute(dai, 1);
1074 }
1075
1076 /* suspend all pcms */
1077 for (i = 0; i < card->num_rtd; i++) {
1078 if (card->rtd[i].dai_link->ignore_suspend)
1079 continue;
1080
1081 snd_pcm_suspend_all(card->rtd[i].pcm);
1082 }
1083
1084 if (card->suspend_pre)
1085 card->suspend_pre(card);
1086
1087 for (i = 0; i < card->num_rtd; i++) {
1088 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1089 struct snd_soc_platform *platform = card->rtd[i].platform;
1090
1091 if (card->rtd[i].dai_link->ignore_suspend)
1092 continue;
1093
1094 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
1095 cpu_dai->driver->suspend(cpu_dai);
1096 if (platform->driver->suspend && !platform->suspended) {
1097 platform->driver->suspend(cpu_dai);
1098 platform->suspended = 1;
1099 }
1100 }
1101
1102 /* close any waiting streams and save state */
1103 for (i = 0; i < card->num_rtd; i++) {
1104 flush_delayed_work_sync(&card->rtd[i].delayed_work);
1105 card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level;
1106 }
1107
1108 for (i = 0; i < card->num_rtd; i++) {
1109 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1110
1111 if (card->rtd[i].dai_link->ignore_suspend)
1112 continue;
1113
1114 if (driver->playback.stream_name != NULL)
1115 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1116 SND_SOC_DAPM_STREAM_SUSPEND);
1117
1118 if (driver->capture.stream_name != NULL)
1119 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1120 SND_SOC_DAPM_STREAM_SUSPEND);
1121 }
1122
1123 /* suspend all CODECs */
1124 list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1125 /* If there are paths active then the CODEC will be held with
1126 * bias _ON and should not be suspended. */
1127 if (!codec->suspended && codec->driver->suspend) {
1128 switch (codec->dapm.bias_level) {
1129 case SND_SOC_BIAS_STANDBY:
1130 case SND_SOC_BIAS_OFF:
1131 codec->driver->suspend(codec, PMSG_SUSPEND);
1132 codec->suspended = 1;
1133 break;
1134 default:
1135 dev_dbg(codec->dev, "CODEC is on over suspend\n");
1136 break;
1137 }
1138 }
1139 }
1140
1141 for (i = 0; i < card->num_rtd; i++) {
1142 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1143
1144 if (card->rtd[i].dai_link->ignore_suspend)
1145 continue;
1146
1147 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
1148 cpu_dai->driver->suspend(cpu_dai);
1149 }
1150
1151 if (card->suspend_post)
1152 card->suspend_post(card);
1153
1154 return 0;
1155 }
1156 EXPORT_SYMBOL_GPL(snd_soc_suspend);
1157
1158 /* deferred resume work, so resume can complete before we finished
1159 * setting our codec back up, which can be very slow on I2C
1160 */
1161 static void soc_resume_deferred(struct work_struct *work)
1162 {
1163 struct snd_soc_card *card =
1164 container_of(work, struct snd_soc_card, deferred_resume_work);
1165 struct snd_soc_codec *codec;
1166 int i;
1167
1168 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
1169 * so userspace apps are blocked from touching us
1170 */
1171
1172 dev_dbg(card->dev, "starting resume work\n");
1173
1174 /* Bring us up into D2 so that DAPM starts enabling things */
1175 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
1176
1177 if (card->resume_pre)
1178 card->resume_pre(card);
1179
1180 /* resume AC97 DAIs */
1181 for (i = 0; i < card->num_rtd; i++) {
1182 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1183
1184 if (card->rtd[i].dai_link->ignore_suspend)
1185 continue;
1186
1187 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
1188 cpu_dai->driver->resume(cpu_dai);
1189 }
1190
1191 list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1192 /* If the CODEC was idle over suspend then it will have been
1193 * left with bias OFF or STANDBY and suspended so we must now
1194 * resume. Otherwise the suspend was suppressed.
1195 */
1196 if (codec->driver->resume && codec->suspended) {
1197 switch (codec->dapm.bias_level) {
1198 case SND_SOC_BIAS_STANDBY:
1199 case SND_SOC_BIAS_OFF:
1200 codec->driver->resume(codec);
1201 codec->suspended = 0;
1202 break;
1203 default:
1204 dev_dbg(codec->dev, "CODEC was on over suspend\n");
1205 break;
1206 }
1207 }
1208 }
1209
1210 for (i = 0; i < card->num_rtd; i++) {
1211 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1212
1213 if (card->rtd[i].dai_link->ignore_suspend)
1214 continue;
1215
1216 if (driver->playback.stream_name != NULL)
1217 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1218 SND_SOC_DAPM_STREAM_RESUME);
1219
1220 if (driver->capture.stream_name != NULL)
1221 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1222 SND_SOC_DAPM_STREAM_RESUME);
1223 }
1224
1225 /* unmute any active DACs */
1226 for (i = 0; i < card->num_rtd; i++) {
1227 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1228 struct snd_soc_dai_driver *drv = dai->driver;
1229
1230 if (card->rtd[i].dai_link->ignore_suspend)
1231 continue;
1232
1233 if (drv->ops->digital_mute && dai->playback_active)
1234 drv->ops->digital_mute(dai, 0);
1235 }
1236
1237 for (i = 0; i < card->num_rtd; i++) {
1238 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1239 struct snd_soc_platform *platform = card->rtd[i].platform;
1240
1241 if (card->rtd[i].dai_link->ignore_suspend)
1242 continue;
1243
1244 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1245 cpu_dai->driver->resume(cpu_dai);
1246 if (platform->driver->resume && platform->suspended) {
1247 platform->driver->resume(cpu_dai);
1248 platform->suspended = 0;
1249 }
1250 }
1251
1252 if (card->resume_post)
1253 card->resume_post(card);
1254
1255 dev_dbg(card->dev, "resume work completed\n");
1256
1257 /* userspace can access us now we are back as we were before */
1258 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1259 }
1260
1261 /* powers up audio subsystem after a suspend */
1262 int snd_soc_resume(struct device *dev)
1263 {
1264 struct snd_soc_card *card = dev_get_drvdata(dev);
1265 int i;
1266
1267 /* AC97 devices might have other drivers hanging off them so
1268 * need to resume immediately. Other drivers don't have that
1269 * problem and may take a substantial amount of time to resume
1270 * due to I/O costs and anti-pop so handle them out of line.
1271 */
1272 for (i = 0; i < card->num_rtd; i++) {
1273 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1274 if (cpu_dai->driver->ac97_control) {
1275 dev_dbg(dev, "Resuming AC97 immediately\n");
1276 soc_resume_deferred(&card->deferred_resume_work);
1277 } else {
1278 dev_dbg(dev, "Scheduling resume work\n");
1279 if (!schedule_work(&card->deferred_resume_work))
1280 dev_err(dev, "resume work item may be lost\n");
1281 }
1282 }
1283
1284 return 0;
1285 }
1286 EXPORT_SYMBOL_GPL(snd_soc_resume);
1287 #else
1288 #define snd_soc_suspend NULL
1289 #define snd_soc_resume NULL
1290 #endif
1291
1292 static struct snd_soc_dai_ops null_dai_ops = {
1293 };
1294
1295 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1296 {
1297 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1298 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1299 struct snd_soc_codec *codec;
1300 struct snd_soc_platform *platform;
1301 struct snd_soc_dai *codec_dai, *cpu_dai;
1302
1303 if (rtd->complete)
1304 return 1;
1305 dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1306
1307 /* do we already have the CPU DAI for this link ? */
1308 if (rtd->cpu_dai) {
1309 goto find_codec;
1310 }
1311 /* no, then find CPU DAI from registered DAIs*/
1312 list_for_each_entry(cpu_dai, &dai_list, list) {
1313 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1314
1315 if (!try_module_get(cpu_dai->dev->driver->owner))
1316 return -ENODEV;
1317
1318 rtd->cpu_dai = cpu_dai;
1319 goto find_codec;
1320 }
1321 }
1322 dev_dbg(card->dev, "CPU DAI %s not registered\n",
1323 dai_link->cpu_dai_name);
1324
1325 find_codec:
1326 /* do we already have the CODEC for this link ? */
1327 if (rtd->codec) {
1328 goto find_platform;
1329 }
1330
1331 /* no, then find CODEC from registered CODECs*/
1332 list_for_each_entry(codec, &codec_list, list) {
1333 if (!strcmp(codec->name, dai_link->codec_name)) {
1334 rtd->codec = codec;
1335
1336 /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1337 list_for_each_entry(codec_dai, &dai_list, list) {
1338 if (codec->dev == codec_dai->dev &&
1339 !strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1340 rtd->codec_dai = codec_dai;
1341 goto find_platform;
1342 }
1343 }
1344 dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1345 dai_link->codec_dai_name);
1346
1347 goto find_platform;
1348 }
1349 }
1350 dev_dbg(card->dev, "CODEC %s not registered\n",
1351 dai_link->codec_name);
1352
1353 find_platform:
1354 /* do we already have the CODEC DAI for this link ? */
1355 if (rtd->platform) {
1356 goto out;
1357 }
1358 /* no, then find CPU DAI from registered DAIs*/
1359 list_for_each_entry(platform, &platform_list, list) {
1360 if (!strcmp(platform->name, dai_link->platform_name)) {
1361 rtd->platform = platform;
1362 goto out;
1363 }
1364 }
1365
1366 dev_dbg(card->dev, "platform %s not registered\n",
1367 dai_link->platform_name);
1368 return 0;
1369
1370 out:
1371 /* mark rtd as complete if we found all 4 of our client devices */
1372 if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1373 rtd->complete = 1;
1374 card->num_rtd++;
1375 }
1376 return 1;
1377 }
1378
1379 static void soc_remove_codec(struct snd_soc_codec *codec)
1380 {
1381 int err;
1382
1383 if (codec->driver->remove) {
1384 err = codec->driver->remove(codec);
1385 if (err < 0)
1386 dev_err(codec->dev,
1387 "asoc: failed to remove %s: %d\n",
1388 codec->name, err);
1389 }
1390
1391 /* Make sure all DAPM widgets are freed */
1392 snd_soc_dapm_free(&codec->dapm);
1393
1394 soc_cleanup_codec_debugfs(codec);
1395 codec->probed = 0;
1396 list_del(&codec->card_list);
1397 module_put(codec->dev->driver->owner);
1398 }
1399
1400 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1401 {
1402 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1403 struct snd_soc_codec *codec = rtd->codec;
1404 struct snd_soc_platform *platform = rtd->platform;
1405 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1406 int err;
1407
1408 /* unregister the rtd device */
1409 if (rtd->dev_registered) {
1410 device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1411 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1412 device_unregister(&rtd->dev);
1413 rtd->dev_registered = 0;
1414 }
1415
1416 /* remove the CODEC DAI */
1417 if (codec_dai && codec_dai->probed) {
1418 if (codec_dai->driver->remove) {
1419 err = codec_dai->driver->remove(codec_dai);
1420 if (err < 0)
1421 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1422 }
1423 codec_dai->probed = 0;
1424 list_del(&codec_dai->card_list);
1425 }
1426
1427 /* remove the platform */
1428 if (platform && platform->probed) {
1429 if (platform->driver->remove) {
1430 err = platform->driver->remove(platform);
1431 if (err < 0)
1432 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1433 }
1434 platform->probed = 0;
1435 list_del(&platform->card_list);
1436 module_put(platform->dev->driver->owner);
1437 }
1438
1439 /* remove the CODEC */
1440 if (codec && codec->probed)
1441 soc_remove_codec(codec);
1442
1443 /* remove the cpu_dai */
1444 if (cpu_dai && cpu_dai->probed) {
1445 if (cpu_dai->driver->remove) {
1446 err = cpu_dai->driver->remove(cpu_dai);
1447 if (err < 0)
1448 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1449 }
1450 cpu_dai->probed = 0;
1451 list_del(&cpu_dai->card_list);
1452 module_put(cpu_dai->dev->driver->owner);
1453 }
1454 }
1455
1456 static void soc_remove_dai_links(struct snd_soc_card *card)
1457 {
1458 int i;
1459
1460 for (i = 0; i < card->num_rtd; i++)
1461 soc_remove_dai_link(card, i);
1462
1463 card->num_rtd = 0;
1464 }
1465
1466 static void soc_set_name_prefix(struct snd_soc_card *card,
1467 struct snd_soc_codec *codec)
1468 {
1469 int i;
1470
1471 if (card->codec_conf == NULL)
1472 return;
1473
1474 for (i = 0; i < card->num_configs; i++) {
1475 struct snd_soc_codec_conf *map = &card->codec_conf[i];
1476 if (map->dev_name && !strcmp(codec->name, map->dev_name)) {
1477 codec->name_prefix = map->name_prefix;
1478 break;
1479 }
1480 }
1481 }
1482
1483 static int soc_probe_codec(struct snd_soc_card *card,
1484 struct snd_soc_codec *codec)
1485 {
1486 int ret = 0;
1487 const struct snd_soc_codec_driver *driver = codec->driver;
1488
1489 codec->card = card;
1490 codec->dapm.card = card;
1491 soc_set_name_prefix(card, codec);
1492
1493 if (!try_module_get(codec->dev->driver->owner))
1494 return -ENODEV;
1495
1496 if (driver->probe) {
1497 ret = driver->probe(codec);
1498 if (ret < 0) {
1499 dev_err(codec->dev,
1500 "asoc: failed to probe CODEC %s: %d\n",
1501 codec->name, ret);
1502 goto err_probe;
1503 }
1504 }
1505
1506 if (driver->controls)
1507 snd_soc_add_controls(codec, driver->controls,
1508 driver->num_controls);
1509 if (driver->dapm_widgets)
1510 snd_soc_dapm_new_controls(&codec->dapm, driver->dapm_widgets,
1511 driver->num_dapm_widgets);
1512 if (driver->dapm_routes)
1513 snd_soc_dapm_add_routes(&codec->dapm, driver->dapm_routes,
1514 driver->num_dapm_routes);
1515
1516 soc_init_codec_debugfs(codec);
1517
1518 /* mark codec as probed and add to card codec list */
1519 codec->probed = 1;
1520 list_add(&codec->card_list, &card->codec_dev_list);
1521 list_add(&codec->dapm.list, &card->dapm_list);
1522
1523 return 0;
1524
1525 err_probe:
1526 module_put(codec->dev->driver->owner);
1527
1528 return ret;
1529 }
1530
1531 static void rtd_release(struct device *dev) {}
1532
1533 static int soc_post_component_init(struct snd_soc_card *card,
1534 struct snd_soc_codec *codec,
1535 int num, int dailess)
1536 {
1537 struct snd_soc_dai_link *dai_link = NULL;
1538 struct snd_soc_aux_dev *aux_dev = NULL;
1539 struct snd_soc_pcm_runtime *rtd;
1540 const char *temp, *name;
1541 int ret = 0;
1542
1543 if (!dailess) {
1544 dai_link = &card->dai_link[num];
1545 rtd = &card->rtd[num];
1546 name = dai_link->name;
1547 } else {
1548 aux_dev = &card->aux_dev[num];
1549 rtd = &card->rtd_aux[num];
1550 name = aux_dev->name;
1551 }
1552 rtd->card = card;
1553
1554 /* machine controls, routes and widgets are not prefixed */
1555 temp = codec->name_prefix;
1556 codec->name_prefix = NULL;
1557
1558 /* do machine specific initialization */
1559 if (!dailess && dai_link->init)
1560 ret = dai_link->init(rtd);
1561 else if (dailess && aux_dev->init)
1562 ret = aux_dev->init(&codec->dapm);
1563 if (ret < 0) {
1564 dev_err(card->dev, "asoc: failed to init %s: %d\n", name, ret);
1565 return ret;
1566 }
1567 codec->name_prefix = temp;
1568
1569 /* Make sure all DAPM widgets are instantiated */
1570 snd_soc_dapm_new_widgets(&codec->dapm);
1571
1572 /* register the rtd device */
1573 rtd->codec = codec;
1574 rtd->dev.parent = card->dev;
1575 rtd->dev.release = rtd_release;
1576 rtd->dev.init_name = name;
1577 ret = device_register(&rtd->dev);
1578 if (ret < 0) {
1579 dev_err(card->dev,
1580 "asoc: failed to register runtime device: %d\n", ret);
1581 return ret;
1582 }
1583 rtd->dev_registered = 1;
1584
1585 /* add DAPM sysfs entries for this codec */
1586 ret = snd_soc_dapm_sys_add(&rtd->dev);
1587 if (ret < 0)
1588 dev_err(codec->dev,
1589 "asoc: failed to add codec dapm sysfs entries: %d\n",
1590 ret);
1591
1592 /* add codec sysfs entries */
1593 ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1594 if (ret < 0)
1595 dev_err(codec->dev,
1596 "asoc: failed to add codec sysfs files: %d\n", ret);
1597
1598 return 0;
1599 }
1600
1601 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1602 {
1603 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1604 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1605 struct snd_soc_codec *codec = rtd->codec;
1606 struct snd_soc_platform *platform = rtd->platform;
1607 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1608 int ret;
1609
1610 dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1611
1612 /* config components */
1613 codec_dai->codec = codec;
1614 cpu_dai->platform = platform;
1615 codec_dai->card = card;
1616 cpu_dai->card = card;
1617
1618 /* set default power off timeout */
1619 rtd->pmdown_time = pmdown_time;
1620
1621 /* probe the cpu_dai */
1622 if (!cpu_dai->probed) {
1623 if (cpu_dai->driver->probe) {
1624 ret = cpu_dai->driver->probe(cpu_dai);
1625 if (ret < 0) {
1626 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1627 cpu_dai->name);
1628 return ret;
1629 }
1630 }
1631 cpu_dai->probed = 1;
1632 /* mark cpu_dai as probed and add to card cpu_dai list */
1633 list_add(&cpu_dai->card_list, &card->dai_dev_list);
1634 }
1635
1636 /* probe the CODEC */
1637 if (!codec->probed) {
1638 ret = soc_probe_codec(card, codec);
1639 if (ret < 0)
1640 return ret;
1641 }
1642
1643 /* probe the platform */
1644 if (!platform->probed) {
1645 if (!try_module_get(platform->dev->driver->owner))
1646 return -ENODEV;
1647
1648 if (platform->driver->probe) {
1649 ret = platform->driver->probe(platform);
1650 if (ret < 0) {
1651 printk(KERN_ERR "asoc: failed to probe platform %s\n",
1652 platform->name);
1653 module_put(platform->dev->driver->owner);
1654 return ret;
1655 }
1656 }
1657 /* mark platform as probed and add to card platform list */
1658 platform->probed = 1;
1659 list_add(&platform->card_list, &card->platform_dev_list);
1660 }
1661
1662 /* probe the CODEC DAI */
1663 if (!codec_dai->probed) {
1664 if (codec_dai->driver->probe) {
1665 ret = codec_dai->driver->probe(codec_dai);
1666 if (ret < 0) {
1667 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1668 codec_dai->name);
1669 return ret;
1670 }
1671 }
1672
1673 /* mark cpu_dai as probed and add to card cpu_dai list */
1674 codec_dai->probed = 1;
1675 list_add(&codec_dai->card_list, &card->dai_dev_list);
1676 }
1677
1678 /* DAPM dai link stream work */
1679 INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1680
1681 ret = soc_post_component_init(card, codec, num, 0);
1682 if (ret)
1683 return ret;
1684
1685 ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1686 if (ret < 0)
1687 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1688
1689 /* create the pcm */
1690 ret = soc_new_pcm(rtd, num);
1691 if (ret < 0) {
1692 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1693 return ret;
1694 }
1695
1696 /* add platform data for AC97 devices */
1697 if (rtd->codec_dai->driver->ac97_control)
1698 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1699
1700 return 0;
1701 }
1702
1703 #ifdef CONFIG_SND_SOC_AC97_BUS
1704 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1705 {
1706 int ret;
1707
1708 /* Only instantiate AC97 if not already done by the adaptor
1709 * for the generic AC97 subsystem.
1710 */
1711 if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1712 /*
1713 * It is possible that the AC97 device is already registered to
1714 * the device subsystem. This happens when the device is created
1715 * via snd_ac97_mixer(). Currently only SoC codec that does so
1716 * is the generic AC97 glue but others migh emerge.
1717 *
1718 * In those cases we don't try to register the device again.
1719 */
1720 if (!rtd->codec->ac97_created)
1721 return 0;
1722
1723 ret = soc_ac97_dev_register(rtd->codec);
1724 if (ret < 0) {
1725 printk(KERN_ERR "asoc: AC97 device register failed\n");
1726 return ret;
1727 }
1728
1729 rtd->codec->ac97_registered = 1;
1730 }
1731 return 0;
1732 }
1733
1734 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1735 {
1736 if (codec->ac97_registered) {
1737 soc_ac97_dev_unregister(codec);
1738 codec->ac97_registered = 0;
1739 }
1740 }
1741 #endif
1742
1743 static int soc_probe_aux_dev(struct snd_soc_card *card, int num)
1744 {
1745 struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1746 struct snd_soc_codec *codec;
1747 int ret = -ENODEV;
1748
1749 /* find CODEC from registered CODECs*/
1750 list_for_each_entry(codec, &codec_list, list) {
1751 if (!strcmp(codec->name, aux_dev->codec_name)) {
1752 if (codec->probed) {
1753 dev_err(codec->dev,
1754 "asoc: codec already probed");
1755 ret = -EBUSY;
1756 goto out;
1757 }
1758 goto found;
1759 }
1760 }
1761 /* codec not found */
1762 dev_err(card->dev, "asoc: codec %s not found", aux_dev->codec_name);
1763 goto out;
1764
1765 found:
1766 ret = soc_probe_codec(card, codec);
1767 if (ret < 0)
1768 return ret;
1769
1770 ret = soc_post_component_init(card, codec, num, 1);
1771
1772 out:
1773 return ret;
1774 }
1775
1776 static void soc_remove_aux_dev(struct snd_soc_card *card, int num)
1777 {
1778 struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1779 struct snd_soc_codec *codec = rtd->codec;
1780
1781 /* unregister the rtd device */
1782 if (rtd->dev_registered) {
1783 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1784 device_unregister(&rtd->dev);
1785 rtd->dev_registered = 0;
1786 }
1787
1788 if (codec && codec->probed)
1789 soc_remove_codec(codec);
1790 }
1791
1792 static int snd_soc_init_codec_cache(struct snd_soc_codec *codec,
1793 enum snd_soc_compress_type compress_type)
1794 {
1795 int ret;
1796
1797 if (codec->cache_init)
1798 return 0;
1799
1800 /* override the compress_type if necessary */
1801 if (compress_type && codec->compress_type != compress_type)
1802 codec->compress_type = compress_type;
1803 ret = snd_soc_cache_init(codec);
1804 if (ret < 0) {
1805 dev_err(codec->dev, "Failed to set cache compression type: %d\n",
1806 ret);
1807 return ret;
1808 }
1809 codec->cache_init = 1;
1810 return 0;
1811 }
1812
1813 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1814 {
1815 struct snd_soc_codec *codec;
1816 struct snd_soc_codec_conf *codec_conf;
1817 enum snd_soc_compress_type compress_type;
1818 int ret, i;
1819
1820 mutex_lock(&card->mutex);
1821
1822 if (card->instantiated) {
1823 mutex_unlock(&card->mutex);
1824 return;
1825 }
1826
1827 /* bind DAIs */
1828 for (i = 0; i < card->num_links; i++)
1829 soc_bind_dai_link(card, i);
1830
1831 /* bind completed ? */
1832 if (card->num_rtd != card->num_links) {
1833 mutex_unlock(&card->mutex);
1834 return;
1835 }
1836
1837 /* initialize the register cache for each available codec */
1838 list_for_each_entry(codec, &codec_list, list) {
1839 if (codec->cache_init)
1840 continue;
1841 /* by default we don't override the compress_type */
1842 compress_type = 0;
1843 /* check to see if we need to override the compress_type */
1844 for (i = 0; i < card->num_configs; ++i) {
1845 codec_conf = &card->codec_conf[i];
1846 if (!strcmp(codec->name, codec_conf->dev_name)) {
1847 compress_type = codec_conf->compress_type;
1848 if (compress_type && compress_type
1849 != codec->compress_type)
1850 break;
1851 }
1852 }
1853 ret = snd_soc_init_codec_cache(codec, compress_type);
1854 if (ret < 0) {
1855 mutex_unlock(&card->mutex);
1856 return;
1857 }
1858 }
1859
1860 /* card bind complete so register a sound card */
1861 ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1862 card->owner, 0, &card->snd_card);
1863 if (ret < 0) {
1864 printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1865 card->name);
1866 mutex_unlock(&card->mutex);
1867 return;
1868 }
1869 card->snd_card->dev = card->dev;
1870
1871 card->dapm.bias_level = SND_SOC_BIAS_OFF;
1872 card->dapm.dev = card->dev;
1873 card->dapm.card = card;
1874 list_add(&card->dapm.list, &card->dapm_list);
1875
1876 #ifdef CONFIG_PM_SLEEP
1877 /* deferred resume work */
1878 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1879 #endif
1880
1881 if (card->dapm_widgets)
1882 snd_soc_dapm_new_controls(&card->dapm, card->dapm_widgets,
1883 card->num_dapm_widgets);
1884
1885 /* initialise the sound card only once */
1886 if (card->probe) {
1887 ret = card->probe(card);
1888 if (ret < 0)
1889 goto card_probe_error;
1890 }
1891
1892 for (i = 0; i < card->num_links; i++) {
1893 ret = soc_probe_dai_link(card, i);
1894 if (ret < 0) {
1895 pr_err("asoc: failed to instantiate card %s: %d\n",
1896 card->name, ret);
1897 goto probe_dai_err;
1898 }
1899 }
1900
1901 for (i = 0; i < card->num_aux_devs; i++) {
1902 ret = soc_probe_aux_dev(card, i);
1903 if (ret < 0) {
1904 pr_err("asoc: failed to add auxiliary devices %s: %d\n",
1905 card->name, ret);
1906 goto probe_aux_dev_err;
1907 }
1908 }
1909
1910 /* We should have a non-codec control add function but we don't */
1911 if (card->controls)
1912 snd_soc_add_controls(list_first_entry(&card->codec_dev_list,
1913 struct snd_soc_codec,
1914 card_list),
1915 card->controls,
1916 card->num_controls);
1917
1918 if (card->dapm_routes)
1919 snd_soc_dapm_add_routes(&card->dapm, card->dapm_routes,
1920 card->num_dapm_routes);
1921
1922 #ifdef CONFIG_DEBUG_FS
1923 card->dapm.debugfs_dapm = debugfs_create_dir("dapm",
1924 card->debugfs_card_root);
1925 if (!card->dapm.debugfs_dapm)
1926 printk(KERN_WARNING
1927 "Failed to create card DAPM debugfs directory\n");
1928
1929 snd_soc_dapm_debugfs_init(&card->dapm);
1930 #endif
1931
1932 snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1933 "%s", card->name);
1934 snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1935 "%s", card->name);
1936
1937 if (card->late_probe) {
1938 ret = card->late_probe(card);
1939 if (ret < 0) {
1940 dev_err(card->dev, "%s late_probe() failed: %d\n",
1941 card->name, ret);
1942 goto probe_aux_dev_err;
1943 }
1944 }
1945
1946 ret = snd_card_register(card->snd_card);
1947 if (ret < 0) {
1948 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1949 goto probe_aux_dev_err;
1950 }
1951
1952 #ifdef CONFIG_SND_SOC_AC97_BUS
1953 /* register any AC97 codecs */
1954 for (i = 0; i < card->num_rtd; i++) {
1955 ret = soc_register_ac97_dai_link(&card->rtd[i]);
1956 if (ret < 0) {
1957 printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1958 while (--i >= 0)
1959 soc_unregister_ac97_dai_link(card->rtd[i].codec);
1960 goto probe_aux_dev_err;
1961 }
1962 }
1963 #endif
1964
1965 card->instantiated = 1;
1966 mutex_unlock(&card->mutex);
1967 return;
1968
1969 probe_aux_dev_err:
1970 for (i = 0; i < card->num_aux_devs; i++)
1971 soc_remove_aux_dev(card, i);
1972
1973 probe_dai_err:
1974 soc_remove_dai_links(card);
1975
1976 card_probe_error:
1977 if (card->remove)
1978 card->remove(card);
1979
1980 snd_card_free(card->snd_card);
1981
1982 mutex_unlock(&card->mutex);
1983 }
1984
1985 /*
1986 * Attempt to initialise any uninitialised cards. Must be called with
1987 * client_mutex.
1988 */
1989 static void snd_soc_instantiate_cards(void)
1990 {
1991 struct snd_soc_card *card;
1992 list_for_each_entry(card, &card_list, list)
1993 snd_soc_instantiate_card(card);
1994 }
1995
1996 /* probes a new socdev */
1997 static int soc_probe(struct platform_device *pdev)
1998 {
1999 struct snd_soc_card *card = platform_get_drvdata(pdev);
2000 int ret = 0;
2001
2002 /*
2003 * no card, so machine driver should be registering card
2004 * we should not be here in that case so ret error
2005 */
2006 if (!card)
2007 return -EINVAL;
2008
2009 /* Bodge while we unpick instantiation */
2010 card->dev = &pdev->dev;
2011
2012 ret = snd_soc_register_card(card);
2013 if (ret != 0) {
2014 dev_err(&pdev->dev, "Failed to register card\n");
2015 return ret;
2016 }
2017
2018 return 0;
2019 }
2020
2021 static int soc_cleanup_card_resources(struct snd_soc_card *card)
2022 {
2023 int i;
2024
2025 /* make sure any delayed work runs */
2026 for (i = 0; i < card->num_rtd; i++) {
2027 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
2028 flush_delayed_work_sync(&rtd->delayed_work);
2029 }
2030
2031 /* remove auxiliary devices */
2032 for (i = 0; i < card->num_aux_devs; i++)
2033 soc_remove_aux_dev(card, i);
2034
2035 /* remove and free each DAI */
2036 soc_remove_dai_links(card);
2037
2038 soc_cleanup_card_debugfs(card);
2039
2040 /* remove the card */
2041 if (card->remove)
2042 card->remove(card);
2043
2044 kfree(card->rtd);
2045 snd_card_free(card->snd_card);
2046 return 0;
2047
2048 }
2049
2050 /* removes a socdev */
2051 static int soc_remove(struct platform_device *pdev)
2052 {
2053 struct snd_soc_card *card = platform_get_drvdata(pdev);
2054
2055 snd_soc_unregister_card(card);
2056 return 0;
2057 }
2058
2059 int snd_soc_poweroff(struct device *dev)
2060 {
2061 struct snd_soc_card *card = dev_get_drvdata(dev);
2062 int i;
2063
2064 if (!card->instantiated)
2065 return 0;
2066
2067 /* Flush out pmdown_time work - we actually do want to run it
2068 * now, we're shutting down so no imminent restart. */
2069 for (i = 0; i < card->num_rtd; i++) {
2070 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
2071 flush_delayed_work_sync(&rtd->delayed_work);
2072 }
2073
2074 snd_soc_dapm_shutdown(card);
2075
2076 return 0;
2077 }
2078 EXPORT_SYMBOL_GPL(snd_soc_poweroff);
2079
2080 const struct dev_pm_ops snd_soc_pm_ops = {
2081 .suspend = snd_soc_suspend,
2082 .resume = snd_soc_resume,
2083 .poweroff = snd_soc_poweroff,
2084 };
2085 EXPORT_SYMBOL_GPL(snd_soc_pm_ops);
2086
2087 /* ASoC platform driver */
2088 static struct platform_driver soc_driver = {
2089 .driver = {
2090 .name = "soc-audio",
2091 .owner = THIS_MODULE,
2092 .pm = &snd_soc_pm_ops,
2093 },
2094 .probe = soc_probe,
2095 .remove = soc_remove,
2096 };
2097
2098 /* create a new pcm */
2099 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
2100 {
2101 struct snd_soc_codec *codec = rtd->codec;
2102 struct snd_soc_platform *platform = rtd->platform;
2103 struct snd_soc_dai *codec_dai = rtd->codec_dai;
2104 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
2105 struct snd_pcm *pcm;
2106 char new_name[64];
2107 int ret = 0, playback = 0, capture = 0;
2108
2109 /* check client and interface hw capabilities */
2110 snprintf(new_name, sizeof(new_name), "%s %s-%d",
2111 rtd->dai_link->stream_name, codec_dai->name, num);
2112
2113 if (codec_dai->driver->playback.channels_min)
2114 playback = 1;
2115 if (codec_dai->driver->capture.channels_min)
2116 capture = 1;
2117
2118 dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
2119 ret = snd_pcm_new(rtd->card->snd_card, new_name,
2120 num, playback, capture, &pcm);
2121 if (ret < 0) {
2122 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
2123 return ret;
2124 }
2125
2126 rtd->pcm = pcm;
2127 pcm->private_data = rtd;
2128 soc_pcm_ops.mmap = platform->driver->ops->mmap;
2129 soc_pcm_ops.pointer = platform->driver->ops->pointer;
2130 soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
2131 soc_pcm_ops.copy = platform->driver->ops->copy;
2132 soc_pcm_ops.silence = platform->driver->ops->silence;
2133 soc_pcm_ops.ack = platform->driver->ops->ack;
2134 soc_pcm_ops.page = platform->driver->ops->page;
2135
2136 if (playback)
2137 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
2138
2139 if (capture)
2140 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
2141
2142 ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm);
2143 if (ret < 0) {
2144 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
2145 return ret;
2146 }
2147
2148 pcm->private_free = platform->driver->pcm_free;
2149 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
2150 cpu_dai->name);
2151 return ret;
2152 }
2153
2154 /**
2155 * snd_soc_codec_volatile_register: Report if a register is volatile.
2156 *
2157 * @codec: CODEC to query.
2158 * @reg: Register to query.
2159 *
2160 * Boolean function indiciating if a CODEC register is volatile.
2161 */
2162 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec,
2163 unsigned int reg)
2164 {
2165 if (codec->volatile_register)
2166 return codec->volatile_register(codec, reg);
2167 else
2168 return 0;
2169 }
2170 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
2171
2172 /**
2173 * snd_soc_codec_readable_register: Report if a register is readable.
2174 *
2175 * @codec: CODEC to query.
2176 * @reg: Register to query.
2177 *
2178 * Boolean function indicating if a CODEC register is readable.
2179 */
2180 int snd_soc_codec_readable_register(struct snd_soc_codec *codec,
2181 unsigned int reg)
2182 {
2183 if (codec->readable_register)
2184 return codec->readable_register(codec, reg);
2185 else
2186 return 0;
2187 }
2188 EXPORT_SYMBOL_GPL(snd_soc_codec_readable_register);
2189
2190 /**
2191 * snd_soc_codec_writable_register: Report if a register is writable.
2192 *
2193 * @codec: CODEC to query.
2194 * @reg: Register to query.
2195 *
2196 * Boolean function indicating if a CODEC register is writable.
2197 */
2198 int snd_soc_codec_writable_register(struct snd_soc_codec *codec,
2199 unsigned int reg)
2200 {
2201 if (codec->writable_register)
2202 return codec->writable_register(codec, reg);
2203 else
2204 return 0;
2205 }
2206 EXPORT_SYMBOL_GPL(snd_soc_codec_writable_register);
2207
2208 /**
2209 * snd_soc_new_ac97_codec - initailise AC97 device
2210 * @codec: audio codec
2211 * @ops: AC97 bus operations
2212 * @num: AC97 codec number
2213 *
2214 * Initialises AC97 codec resources for use by ad-hoc devices only.
2215 */
2216 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
2217 struct snd_ac97_bus_ops *ops, int num)
2218 {
2219 mutex_lock(&codec->mutex);
2220
2221 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
2222 if (codec->ac97 == NULL) {
2223 mutex_unlock(&codec->mutex);
2224 return -ENOMEM;
2225 }
2226
2227 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
2228 if (codec->ac97->bus == NULL) {
2229 kfree(codec->ac97);
2230 codec->ac97 = NULL;
2231 mutex_unlock(&codec->mutex);
2232 return -ENOMEM;
2233 }
2234
2235 codec->ac97->bus->ops = ops;
2236 codec->ac97->num = num;
2237
2238 /*
2239 * Mark the AC97 device to be created by us. This way we ensure that the
2240 * device will be registered with the device subsystem later on.
2241 */
2242 codec->ac97_created = 1;
2243
2244 mutex_unlock(&codec->mutex);
2245 return 0;
2246 }
2247 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
2248
2249 /**
2250 * snd_soc_free_ac97_codec - free AC97 codec device
2251 * @codec: audio codec
2252 *
2253 * Frees AC97 codec device resources.
2254 */
2255 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
2256 {
2257 mutex_lock(&codec->mutex);
2258 #ifdef CONFIG_SND_SOC_AC97_BUS
2259 soc_unregister_ac97_dai_link(codec);
2260 #endif
2261 kfree(codec->ac97->bus);
2262 kfree(codec->ac97);
2263 codec->ac97 = NULL;
2264 codec->ac97_created = 0;
2265 mutex_unlock(&codec->mutex);
2266 }
2267 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
2268
2269 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg)
2270 {
2271 unsigned int ret;
2272
2273 ret = codec->read(codec, reg);
2274 dev_dbg(codec->dev, "read %x => %x\n", reg, ret);
2275 trace_snd_soc_reg_read(codec, reg, ret);
2276
2277 return ret;
2278 }
2279 EXPORT_SYMBOL_GPL(snd_soc_read);
2280
2281 unsigned int snd_soc_write(struct snd_soc_codec *codec,
2282 unsigned int reg, unsigned int val)
2283 {
2284 dev_dbg(codec->dev, "write %x = %x\n", reg, val);
2285 trace_snd_soc_reg_write(codec, reg, val);
2286 return codec->write(codec, reg, val);
2287 }
2288 EXPORT_SYMBOL_GPL(snd_soc_write);
2289
2290 unsigned int snd_soc_bulk_write_raw(struct snd_soc_codec *codec,
2291 unsigned int reg, const void *data, size_t len)
2292 {
2293 return codec->bulk_write_raw(codec, reg, data, len);
2294 }
2295 EXPORT_SYMBOL_GPL(snd_soc_bulk_write_raw);
2296
2297 /**
2298 * snd_soc_update_bits - update codec register bits
2299 * @codec: audio codec
2300 * @reg: codec register
2301 * @mask: register mask
2302 * @value: new value
2303 *
2304 * Writes new register value.
2305 *
2306 * Returns 1 for change, 0 for no change, or negative error code.
2307 */
2308 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
2309 unsigned int mask, unsigned int value)
2310 {
2311 int change;
2312 unsigned int old, new;
2313 int ret;
2314
2315 ret = snd_soc_read(codec, reg);
2316 if (ret < 0)
2317 return ret;
2318
2319 old = ret;
2320 new = (old & ~mask) | value;
2321 change = old != new;
2322 if (change) {
2323 ret = snd_soc_write(codec, reg, new);
2324 if (ret < 0)
2325 return ret;
2326 }
2327
2328 return change;
2329 }
2330 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
2331
2332 /**
2333 * snd_soc_update_bits_locked - update codec register bits
2334 * @codec: audio codec
2335 * @reg: codec register
2336 * @mask: register mask
2337 * @value: new value
2338 *
2339 * Writes new register value, and takes the codec mutex.
2340 *
2341 * Returns 1 for change else 0.
2342 */
2343 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
2344 unsigned short reg, unsigned int mask,
2345 unsigned int value)
2346 {
2347 int change;
2348
2349 mutex_lock(&codec->mutex);
2350 change = snd_soc_update_bits(codec, reg, mask, value);
2351 mutex_unlock(&codec->mutex);
2352
2353 return change;
2354 }
2355 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
2356
2357 /**
2358 * snd_soc_test_bits - test register for change
2359 * @codec: audio codec
2360 * @reg: codec register
2361 * @mask: register mask
2362 * @value: new value
2363 *
2364 * Tests a register with a new value and checks if the new value is
2365 * different from the old value.
2366 *
2367 * Returns 1 for change else 0.
2368 */
2369 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
2370 unsigned int mask, unsigned int value)
2371 {
2372 int change;
2373 unsigned int old, new;
2374
2375 old = snd_soc_read(codec, reg);
2376 new = (old & ~mask) | value;
2377 change = old != new;
2378
2379 return change;
2380 }
2381 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
2382
2383 /**
2384 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
2385 * @substream: the pcm substream
2386 * @hw: the hardware parameters
2387 *
2388 * Sets the substream runtime hardware parameters.
2389 */
2390 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
2391 const struct snd_pcm_hardware *hw)
2392 {
2393 struct snd_pcm_runtime *runtime = substream->runtime;
2394 runtime->hw.info = hw->info;
2395 runtime->hw.formats = hw->formats;
2396 runtime->hw.period_bytes_min = hw->period_bytes_min;
2397 runtime->hw.period_bytes_max = hw->period_bytes_max;
2398 runtime->hw.periods_min = hw->periods_min;
2399 runtime->hw.periods_max = hw->periods_max;
2400 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
2401 runtime->hw.fifo_size = hw->fifo_size;
2402 return 0;
2403 }
2404 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
2405
2406 /**
2407 * snd_soc_cnew - create new control
2408 * @_template: control template
2409 * @data: control private data
2410 * @long_name: control long name
2411 * @prefix: control name prefix
2412 *
2413 * Create a new mixer control from a template control.
2414 *
2415 * Returns 0 for success, else error.
2416 */
2417 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2418 void *data, char *long_name,
2419 const char *prefix)
2420 {
2421 struct snd_kcontrol_new template;
2422 struct snd_kcontrol *kcontrol;
2423 char *name = NULL;
2424 int name_len;
2425
2426 memcpy(&template, _template, sizeof(template));
2427 template.index = 0;
2428
2429 if (!long_name)
2430 long_name = template.name;
2431
2432 if (prefix) {
2433 name_len = strlen(long_name) + strlen(prefix) + 2;
2434 name = kmalloc(name_len, GFP_ATOMIC);
2435 if (!name)
2436 return NULL;
2437
2438 snprintf(name, name_len, "%s %s", prefix, long_name);
2439
2440 template.name = name;
2441 } else {
2442 template.name = long_name;
2443 }
2444
2445 kcontrol = snd_ctl_new1(&template, data);
2446
2447 kfree(name);
2448
2449 return kcontrol;
2450 }
2451 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2452
2453 /**
2454 * snd_soc_add_controls - add an array of controls to a codec.
2455 * Convienience function to add a list of controls. Many codecs were
2456 * duplicating this code.
2457 *
2458 * @codec: codec to add controls to
2459 * @controls: array of controls to add
2460 * @num_controls: number of elements in the array
2461 *
2462 * Return 0 for success, else error.
2463 */
2464 int snd_soc_add_controls(struct snd_soc_codec *codec,
2465 const struct snd_kcontrol_new *controls, int num_controls)
2466 {
2467 struct snd_card *card = codec->card->snd_card;
2468 int err, i;
2469
2470 for (i = 0; i < num_controls; i++) {
2471 const struct snd_kcontrol_new *control = &controls[i];
2472 err = snd_ctl_add(card, snd_soc_cnew(control, codec,
2473 control->name,
2474 codec->name_prefix));
2475 if (err < 0) {
2476 dev_err(codec->dev, "%s: Failed to add %s: %d\n",
2477 codec->name, control->name, err);
2478 return err;
2479 }
2480 }
2481
2482 return 0;
2483 }
2484 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
2485
2486 /**
2487 * snd_soc_info_enum_double - enumerated double mixer info callback
2488 * @kcontrol: mixer control
2489 * @uinfo: control element information
2490 *
2491 * Callback to provide information about a double enumerated
2492 * mixer control.
2493 *
2494 * Returns 0 for success.
2495 */
2496 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2497 struct snd_ctl_elem_info *uinfo)
2498 {
2499 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2500
2501 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2502 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2503 uinfo->value.enumerated.items = e->max;
2504
2505 if (uinfo->value.enumerated.item > e->max - 1)
2506 uinfo->value.enumerated.item = e->max - 1;
2507 strcpy(uinfo->value.enumerated.name,
2508 e->texts[uinfo->value.enumerated.item]);
2509 return 0;
2510 }
2511 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2512
2513 /**
2514 * snd_soc_get_enum_double - enumerated double mixer get callback
2515 * @kcontrol: mixer control
2516 * @ucontrol: control element information
2517 *
2518 * Callback to get the value of a double enumerated mixer.
2519 *
2520 * Returns 0 for success.
2521 */
2522 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2523 struct snd_ctl_elem_value *ucontrol)
2524 {
2525 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2526 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2527 unsigned int val, bitmask;
2528
2529 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2530 ;
2531 val = snd_soc_read(codec, e->reg);
2532 ucontrol->value.enumerated.item[0]
2533 = (val >> e->shift_l) & (bitmask - 1);
2534 if (e->shift_l != e->shift_r)
2535 ucontrol->value.enumerated.item[1] =
2536 (val >> e->shift_r) & (bitmask - 1);
2537
2538 return 0;
2539 }
2540 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2541
2542 /**
2543 * snd_soc_put_enum_double - enumerated double mixer put callback
2544 * @kcontrol: mixer control
2545 * @ucontrol: control element information
2546 *
2547 * Callback to set the value of a double enumerated mixer.
2548 *
2549 * Returns 0 for success.
2550 */
2551 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2552 struct snd_ctl_elem_value *ucontrol)
2553 {
2554 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2555 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2556 unsigned int val;
2557 unsigned int mask, bitmask;
2558
2559 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2560 ;
2561 if (ucontrol->value.enumerated.item[0] > e->max - 1)
2562 return -EINVAL;
2563 val = ucontrol->value.enumerated.item[0] << e->shift_l;
2564 mask = (bitmask - 1) << e->shift_l;
2565 if (e->shift_l != e->shift_r) {
2566 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2567 return -EINVAL;
2568 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2569 mask |= (bitmask - 1) << e->shift_r;
2570 }
2571
2572 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2573 }
2574 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2575
2576 /**
2577 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2578 * @kcontrol: mixer control
2579 * @ucontrol: control element information
2580 *
2581 * Callback to get the value of a double semi enumerated mixer.
2582 *
2583 * Semi enumerated mixer: the enumerated items are referred as values. Can be
2584 * used for handling bitfield coded enumeration for example.
2585 *
2586 * Returns 0 for success.
2587 */
2588 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2589 struct snd_ctl_elem_value *ucontrol)
2590 {
2591 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2592 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2593 unsigned int reg_val, val, mux;
2594
2595 reg_val = snd_soc_read(codec, e->reg);
2596 val = (reg_val >> e->shift_l) & e->mask;
2597 for (mux = 0; mux < e->max; mux++) {
2598 if (val == e->values[mux])
2599 break;
2600 }
2601 ucontrol->value.enumerated.item[0] = mux;
2602 if (e->shift_l != e->shift_r) {
2603 val = (reg_val >> e->shift_r) & e->mask;
2604 for (mux = 0; mux < e->max; mux++) {
2605 if (val == e->values[mux])
2606 break;
2607 }
2608 ucontrol->value.enumerated.item[1] = mux;
2609 }
2610
2611 return 0;
2612 }
2613 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2614
2615 /**
2616 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2617 * @kcontrol: mixer control
2618 * @ucontrol: control element information
2619 *
2620 * Callback to set the value of a double semi enumerated mixer.
2621 *
2622 * Semi enumerated mixer: the enumerated items are referred as values. Can be
2623 * used for handling bitfield coded enumeration for example.
2624 *
2625 * Returns 0 for success.
2626 */
2627 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2628 struct snd_ctl_elem_value *ucontrol)
2629 {
2630 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2631 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2632 unsigned int val;
2633 unsigned int mask;
2634
2635 if (ucontrol->value.enumerated.item[0] > e->max - 1)
2636 return -EINVAL;
2637 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2638 mask = e->mask << e->shift_l;
2639 if (e->shift_l != e->shift_r) {
2640 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2641 return -EINVAL;
2642 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2643 mask |= e->mask << e->shift_r;
2644 }
2645
2646 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2647 }
2648 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2649
2650 /**
2651 * snd_soc_info_enum_ext - external enumerated single mixer info callback
2652 * @kcontrol: mixer control
2653 * @uinfo: control element information
2654 *
2655 * Callback to provide information about an external enumerated
2656 * single mixer.
2657 *
2658 * Returns 0 for success.
2659 */
2660 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2661 struct snd_ctl_elem_info *uinfo)
2662 {
2663 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2664
2665 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2666 uinfo->count = 1;
2667 uinfo->value.enumerated.items = e->max;
2668
2669 if (uinfo->value.enumerated.item > e->max - 1)
2670 uinfo->value.enumerated.item = e->max - 1;
2671 strcpy(uinfo->value.enumerated.name,
2672 e->texts[uinfo->value.enumerated.item]);
2673 return 0;
2674 }
2675 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2676
2677 /**
2678 * snd_soc_info_volsw_ext - external single mixer info callback
2679 * @kcontrol: mixer control
2680 * @uinfo: control element information
2681 *
2682 * Callback to provide information about a single external mixer control.
2683 *
2684 * Returns 0 for success.
2685 */
2686 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2687 struct snd_ctl_elem_info *uinfo)
2688 {
2689 int max = kcontrol->private_value;
2690
2691 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2692 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2693 else
2694 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2695
2696 uinfo->count = 1;
2697 uinfo->value.integer.min = 0;
2698 uinfo->value.integer.max = max;
2699 return 0;
2700 }
2701 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2702
2703 /**
2704 * snd_soc_info_volsw - single mixer info callback
2705 * @kcontrol: mixer control
2706 * @uinfo: control element information
2707 *
2708 * Callback to provide information about a single mixer control.
2709 *
2710 * Returns 0 for success.
2711 */
2712 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2713 struct snd_ctl_elem_info *uinfo)
2714 {
2715 struct soc_mixer_control *mc =
2716 (struct soc_mixer_control *)kcontrol->private_value;
2717 int platform_max;
2718 unsigned int shift = mc->shift;
2719 unsigned int rshift = mc->rshift;
2720
2721 if (!mc->platform_max)
2722 mc->platform_max = mc->max;
2723 platform_max = mc->platform_max;
2724
2725 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2726 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2727 else
2728 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2729
2730 uinfo->count = shift == rshift ? 1 : 2;
2731 uinfo->value.integer.min = 0;
2732 uinfo->value.integer.max = platform_max;
2733 return 0;
2734 }
2735 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2736
2737 /**
2738 * snd_soc_get_volsw - single mixer get callback
2739 * @kcontrol: mixer control
2740 * @ucontrol: control element information
2741 *
2742 * Callback to get the value of a single mixer control.
2743 *
2744 * Returns 0 for success.
2745 */
2746 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2747 struct snd_ctl_elem_value *ucontrol)
2748 {
2749 struct soc_mixer_control *mc =
2750 (struct soc_mixer_control *)kcontrol->private_value;
2751 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2752 unsigned int reg = mc->reg;
2753 unsigned int shift = mc->shift;
2754 unsigned int rshift = mc->rshift;
2755 int max = mc->max;
2756 unsigned int mask = (1 << fls(max)) - 1;
2757 unsigned int invert = mc->invert;
2758
2759 ucontrol->value.integer.value[0] =
2760 (snd_soc_read(codec, reg) >> shift) & mask;
2761 if (shift != rshift)
2762 ucontrol->value.integer.value[1] =
2763 (snd_soc_read(codec, reg) >> rshift) & mask;
2764 if (invert) {
2765 ucontrol->value.integer.value[0] =
2766 max - ucontrol->value.integer.value[0];
2767 if (shift != rshift)
2768 ucontrol->value.integer.value[1] =
2769 max - ucontrol->value.integer.value[1];
2770 }
2771
2772 return 0;
2773 }
2774 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2775
2776 /**
2777 * snd_soc_put_volsw - single mixer put callback
2778 * @kcontrol: mixer control
2779 * @ucontrol: control element information
2780 *
2781 * Callback to set the value of a single mixer control.
2782 *
2783 * Returns 0 for success.
2784 */
2785 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2786 struct snd_ctl_elem_value *ucontrol)
2787 {
2788 struct soc_mixer_control *mc =
2789 (struct soc_mixer_control *)kcontrol->private_value;
2790 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2791 unsigned int reg = mc->reg;
2792 unsigned int shift = mc->shift;
2793 unsigned int rshift = mc->rshift;
2794 int max = mc->max;
2795 unsigned int mask = (1 << fls(max)) - 1;
2796 unsigned int invert = mc->invert;
2797 unsigned int val, val2, val_mask;
2798
2799 val = (ucontrol->value.integer.value[0] & mask);
2800 if (invert)
2801 val = max - val;
2802 val_mask = mask << shift;
2803 val = val << shift;
2804 if (shift != rshift) {
2805 val2 = (ucontrol->value.integer.value[1] & mask);
2806 if (invert)
2807 val2 = max - val2;
2808 val_mask |= mask << rshift;
2809 val |= val2 << rshift;
2810 }
2811 return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2812 }
2813 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2814
2815 /**
2816 * snd_soc_info_volsw_2r - double mixer info callback
2817 * @kcontrol: mixer control
2818 * @uinfo: control element information
2819 *
2820 * Callback to provide information about a double mixer control that
2821 * spans 2 codec registers.
2822 *
2823 * Returns 0 for success.
2824 */
2825 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2826 struct snd_ctl_elem_info *uinfo)
2827 {
2828 struct soc_mixer_control *mc =
2829 (struct soc_mixer_control *)kcontrol->private_value;
2830 int platform_max;
2831
2832 if (!mc->platform_max)
2833 mc->platform_max = mc->max;
2834 platform_max = mc->platform_max;
2835
2836 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2837 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2838 else
2839 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2840
2841 uinfo->count = 2;
2842 uinfo->value.integer.min = 0;
2843 uinfo->value.integer.max = platform_max;
2844 return 0;
2845 }
2846 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2847
2848 /**
2849 * snd_soc_get_volsw_2r - double mixer get callback
2850 * @kcontrol: mixer control
2851 * @ucontrol: control element information
2852 *
2853 * Callback to get the value of a double mixer control that spans 2 registers.
2854 *
2855 * Returns 0 for success.
2856 */
2857 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2858 struct snd_ctl_elem_value *ucontrol)
2859 {
2860 struct soc_mixer_control *mc =
2861 (struct soc_mixer_control *)kcontrol->private_value;
2862 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2863 unsigned int reg = mc->reg;
2864 unsigned int reg2 = mc->rreg;
2865 unsigned int shift = mc->shift;
2866 int max = mc->max;
2867 unsigned int mask = (1 << fls(max)) - 1;
2868 unsigned int invert = mc->invert;
2869
2870 ucontrol->value.integer.value[0] =
2871 (snd_soc_read(codec, reg) >> shift) & mask;
2872 ucontrol->value.integer.value[1] =
2873 (snd_soc_read(codec, reg2) >> shift) & mask;
2874 if (invert) {
2875 ucontrol->value.integer.value[0] =
2876 max - ucontrol->value.integer.value[0];
2877 ucontrol->value.integer.value[1] =
2878 max - ucontrol->value.integer.value[1];
2879 }
2880
2881 return 0;
2882 }
2883 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2884
2885 /**
2886 * snd_soc_put_volsw_2r - double mixer set callback
2887 * @kcontrol: mixer control
2888 * @ucontrol: control element information
2889 *
2890 * Callback to set the value of a double mixer control that spans 2 registers.
2891 *
2892 * Returns 0 for success.
2893 */
2894 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2895 struct snd_ctl_elem_value *ucontrol)
2896 {
2897 struct soc_mixer_control *mc =
2898 (struct soc_mixer_control *)kcontrol->private_value;
2899 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2900 unsigned int reg = mc->reg;
2901 unsigned int reg2 = mc->rreg;
2902 unsigned int shift = mc->shift;
2903 int max = mc->max;
2904 unsigned int mask = (1 << fls(max)) - 1;
2905 unsigned int invert = mc->invert;
2906 int err;
2907 unsigned int val, val2, val_mask;
2908
2909 val_mask = mask << shift;
2910 val = (ucontrol->value.integer.value[0] & mask);
2911 val2 = (ucontrol->value.integer.value[1] & mask);
2912
2913 if (invert) {
2914 val = max - val;
2915 val2 = max - val2;
2916 }
2917
2918 val = val << shift;
2919 val2 = val2 << shift;
2920
2921 err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2922 if (err < 0)
2923 return err;
2924
2925 err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2926 return err;
2927 }
2928 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2929
2930 /**
2931 * snd_soc_info_volsw_s8 - signed mixer info callback
2932 * @kcontrol: mixer control
2933 * @uinfo: control element information
2934 *
2935 * Callback to provide information about a signed mixer control.
2936 *
2937 * Returns 0 for success.
2938 */
2939 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2940 struct snd_ctl_elem_info *uinfo)
2941 {
2942 struct soc_mixer_control *mc =
2943 (struct soc_mixer_control *)kcontrol->private_value;
2944 int platform_max;
2945 int min = mc->min;
2946
2947 if (!mc->platform_max)
2948 mc->platform_max = mc->max;
2949 platform_max = mc->platform_max;
2950
2951 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2952 uinfo->count = 2;
2953 uinfo->value.integer.min = 0;
2954 uinfo->value.integer.max = platform_max - min;
2955 return 0;
2956 }
2957 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2958
2959 /**
2960 * snd_soc_get_volsw_s8 - signed mixer get callback
2961 * @kcontrol: mixer control
2962 * @ucontrol: control element information
2963 *
2964 * Callback to get the value of a signed mixer control.
2965 *
2966 * Returns 0 for success.
2967 */
2968 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2969 struct snd_ctl_elem_value *ucontrol)
2970 {
2971 struct soc_mixer_control *mc =
2972 (struct soc_mixer_control *)kcontrol->private_value;
2973 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2974 unsigned int reg = mc->reg;
2975 int min = mc->min;
2976 int val = snd_soc_read(codec, reg);
2977
2978 ucontrol->value.integer.value[0] =
2979 ((signed char)(val & 0xff))-min;
2980 ucontrol->value.integer.value[1] =
2981 ((signed char)((val >> 8) & 0xff))-min;
2982 return 0;
2983 }
2984 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2985
2986 /**
2987 * snd_soc_put_volsw_sgn - signed mixer put callback
2988 * @kcontrol: mixer control
2989 * @ucontrol: control element information
2990 *
2991 * Callback to set the value of a signed mixer control.
2992 *
2993 * Returns 0 for success.
2994 */
2995 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2996 struct snd_ctl_elem_value *ucontrol)
2997 {
2998 struct soc_mixer_control *mc =
2999 (struct soc_mixer_control *)kcontrol->private_value;
3000 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3001 unsigned int reg = mc->reg;
3002 int min = mc->min;
3003 unsigned int val;
3004
3005 val = (ucontrol->value.integer.value[0]+min) & 0xff;
3006 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
3007
3008 return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
3009 }
3010 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
3011
3012 /**
3013 * snd_soc_limit_volume - Set new limit to an existing volume control.
3014 *
3015 * @codec: where to look for the control
3016 * @name: Name of the control
3017 * @max: new maximum limit
3018 *
3019 * Return 0 for success, else error.
3020 */
3021 int snd_soc_limit_volume(struct snd_soc_codec *codec,
3022 const char *name, int max)
3023 {
3024 struct snd_card *card = codec->card->snd_card;
3025 struct snd_kcontrol *kctl;
3026 struct soc_mixer_control *mc;
3027 int found = 0;
3028 int ret = -EINVAL;
3029
3030 /* Sanity check for name and max */
3031 if (unlikely(!name || max <= 0))
3032 return -EINVAL;
3033
3034 list_for_each_entry(kctl, &card->controls, list) {
3035 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
3036 found = 1;
3037 break;
3038 }
3039 }
3040 if (found) {
3041 mc = (struct soc_mixer_control *)kctl->private_value;
3042 if (max <= mc->max) {
3043 mc->platform_max = max;
3044 ret = 0;
3045 }
3046 }
3047 return ret;
3048 }
3049 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
3050
3051 /**
3052 * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
3053 * mixer info callback
3054 * @kcontrol: mixer control
3055 * @uinfo: control element information
3056 *
3057 * Returns 0 for success.
3058 */
3059 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
3060 struct snd_ctl_elem_info *uinfo)
3061 {
3062 struct soc_mixer_control *mc =
3063 (struct soc_mixer_control *)kcontrol->private_value;
3064 int max = mc->max;
3065 int min = mc->min;
3066
3067 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3068 uinfo->count = 2;
3069 uinfo->value.integer.min = 0;
3070 uinfo->value.integer.max = max-min;
3071
3072 return 0;
3073 }
3074 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
3075
3076 /**
3077 * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
3078 * mixer get callback
3079 * @kcontrol: mixer control
3080 * @uinfo: control element information
3081 *
3082 * Returns 0 for success.
3083 */
3084 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
3085 struct snd_ctl_elem_value *ucontrol)
3086 {
3087 struct soc_mixer_control *mc =
3088 (struct soc_mixer_control *)kcontrol->private_value;
3089 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3090 unsigned int mask = (1<<mc->shift)-1;
3091 int min = mc->min;
3092 int val = snd_soc_read(codec, mc->reg) & mask;
3093 int valr = snd_soc_read(codec, mc->rreg) & mask;
3094
3095 ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
3096 ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
3097 return 0;
3098 }
3099 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
3100
3101 /**
3102 * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
3103 * mixer put callback
3104 * @kcontrol: mixer control
3105 * @uinfo: control element information
3106 *
3107 * Returns 0 for success.
3108 */
3109 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
3110 struct snd_ctl_elem_value *ucontrol)
3111 {
3112 struct soc_mixer_control *mc =
3113 (struct soc_mixer_control *)kcontrol->private_value;
3114 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3115 unsigned int mask = (1<<mc->shift)-1;
3116 int min = mc->min;
3117 int ret;
3118 unsigned int val, valr, oval, ovalr;
3119
3120 val = ((ucontrol->value.integer.value[0]+min) & 0xff);
3121 val &= mask;
3122 valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
3123 valr &= mask;
3124
3125 oval = snd_soc_read(codec, mc->reg) & mask;
3126 ovalr = snd_soc_read(codec, mc->rreg) & mask;
3127
3128 ret = 0;
3129 if (oval != val) {
3130 ret = snd_soc_write(codec, mc->reg, val);
3131 if (ret < 0)
3132 return ret;
3133 }
3134 if (ovalr != valr) {
3135 ret = snd_soc_write(codec, mc->rreg, valr);
3136 if (ret < 0)
3137 return ret;
3138 }
3139
3140 return 0;
3141 }
3142 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
3143
3144 /**
3145 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
3146 * @dai: DAI
3147 * @clk_id: DAI specific clock ID
3148 * @freq: new clock frequency in Hz
3149 * @dir: new clock direction - input/output.
3150 *
3151 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
3152 */
3153 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
3154 unsigned int freq, int dir)
3155 {
3156 if (dai->driver && dai->driver->ops->set_sysclk)
3157 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
3158 else if (dai->codec && dai->codec->driver->set_sysclk)
3159 return dai->codec->driver->set_sysclk(dai->codec, clk_id,
3160 freq, dir);
3161 else
3162 return -EINVAL;
3163 }
3164 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
3165
3166 /**
3167 * snd_soc_codec_set_sysclk - configure CODEC system or master clock.
3168 * @codec: CODEC
3169 * @clk_id: DAI specific clock ID
3170 * @freq: new clock frequency in Hz
3171 * @dir: new clock direction - input/output.
3172 *
3173 * Configures the CODEC master (MCLK) or system (SYSCLK) clocking.
3174 */
3175 int snd_soc_codec_set_sysclk(struct snd_soc_codec *codec, int clk_id,
3176 unsigned int freq, int dir)
3177 {
3178 if (codec->driver->set_sysclk)
3179 return codec->driver->set_sysclk(codec, clk_id, freq, dir);
3180 else
3181 return -EINVAL;
3182 }
3183 EXPORT_SYMBOL_GPL(snd_soc_codec_set_sysclk);
3184
3185 /**
3186 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
3187 * @dai: DAI
3188 * @div_id: DAI specific clock divider ID
3189 * @div: new clock divisor.
3190 *
3191 * Configures the clock dividers. This is used to derive the best DAI bit and
3192 * frame clocks from the system or master clock. It's best to set the DAI bit
3193 * and frame clocks as low as possible to save system power.
3194 */
3195 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
3196 int div_id, int div)
3197 {
3198 if (dai->driver && dai->driver->ops->set_clkdiv)
3199 return dai->driver->ops->set_clkdiv(dai, div_id, div);
3200 else
3201 return -EINVAL;
3202 }
3203 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
3204
3205 /**
3206 * snd_soc_dai_set_pll - configure DAI PLL.
3207 * @dai: DAI
3208 * @pll_id: DAI specific PLL ID
3209 * @source: DAI specific source for the PLL
3210 * @freq_in: PLL input clock frequency in Hz
3211 * @freq_out: requested PLL output clock frequency in Hz
3212 *
3213 * Configures and enables PLL to generate output clock based on input clock.
3214 */
3215 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
3216 unsigned int freq_in, unsigned int freq_out)
3217 {
3218 if (dai->driver && dai->driver->ops->set_pll)
3219 return dai->driver->ops->set_pll(dai, pll_id, source,
3220 freq_in, freq_out);
3221 else if (dai->codec && dai->codec->driver->set_pll)
3222 return dai->codec->driver->set_pll(dai->codec, pll_id, source,
3223 freq_in, freq_out);
3224 else
3225 return -EINVAL;
3226 }
3227 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
3228
3229 /*
3230 * snd_soc_codec_set_pll - configure codec PLL.
3231 * @codec: CODEC
3232 * @pll_id: DAI specific PLL ID
3233 * @source: DAI specific source for the PLL
3234 * @freq_in: PLL input clock frequency in Hz
3235 * @freq_out: requested PLL output clock frequency in Hz
3236 *
3237 * Configures and enables PLL to generate output clock based on input clock.
3238 */
3239 int snd_soc_codec_set_pll(struct snd_soc_codec *codec, int pll_id, int source,
3240 unsigned int freq_in, unsigned int freq_out)
3241 {
3242 if (codec->driver->set_pll)
3243 return codec->driver->set_pll(codec, pll_id, source,
3244 freq_in, freq_out);
3245 else
3246 return -EINVAL;
3247 }
3248 EXPORT_SYMBOL_GPL(snd_soc_codec_set_pll);
3249
3250 /**
3251 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
3252 * @dai: DAI
3253 * @fmt: SND_SOC_DAIFMT_ format value.
3254 *
3255 * Configures the DAI hardware format and clocking.
3256 */
3257 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
3258 {
3259 if (dai->driver && dai->driver->ops->set_fmt)
3260 return dai->driver->ops->set_fmt(dai, fmt);
3261 else
3262 return -EINVAL;
3263 }
3264 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
3265
3266 /**
3267 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
3268 * @dai: DAI
3269 * @tx_mask: bitmask representing active TX slots.
3270 * @rx_mask: bitmask representing active RX slots.
3271 * @slots: Number of slots in use.
3272 * @slot_width: Width in bits for each slot.
3273 *
3274 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
3275 * specific.
3276 */
3277 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
3278 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
3279 {
3280 if (dai->driver && dai->driver->ops->set_tdm_slot)
3281 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
3282 slots, slot_width);
3283 else
3284 return -EINVAL;
3285 }
3286 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
3287
3288 /**
3289 * snd_soc_dai_set_channel_map - configure DAI audio channel map
3290 * @dai: DAI
3291 * @tx_num: how many TX channels
3292 * @tx_slot: pointer to an array which imply the TX slot number channel
3293 * 0~num-1 uses
3294 * @rx_num: how many RX channels
3295 * @rx_slot: pointer to an array which imply the RX slot number channel
3296 * 0~num-1 uses
3297 *
3298 * configure the relationship between channel number and TDM slot number.
3299 */
3300 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
3301 unsigned int tx_num, unsigned int *tx_slot,
3302 unsigned int rx_num, unsigned int *rx_slot)
3303 {
3304 if (dai->driver && dai->driver->ops->set_channel_map)
3305 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
3306 rx_num, rx_slot);
3307 else
3308 return -EINVAL;
3309 }
3310 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
3311
3312 /**
3313 * snd_soc_dai_set_tristate - configure DAI system or master clock.
3314 * @dai: DAI
3315 * @tristate: tristate enable
3316 *
3317 * Tristates the DAI so that others can use it.
3318 */
3319 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
3320 {
3321 if (dai->driver && dai->driver->ops->set_tristate)
3322 return dai->driver->ops->set_tristate(dai, tristate);
3323 else
3324 return -EINVAL;
3325 }
3326 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
3327
3328 /**
3329 * snd_soc_dai_digital_mute - configure DAI system or master clock.
3330 * @dai: DAI
3331 * @mute: mute enable
3332 *
3333 * Mutes the DAI DAC.
3334 */
3335 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
3336 {
3337 if (dai->driver && dai->driver->ops->digital_mute)
3338 return dai->driver->ops->digital_mute(dai, mute);
3339 else
3340 return -EINVAL;
3341 }
3342 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
3343
3344 /**
3345 * snd_soc_register_card - Register a card with the ASoC core
3346 *
3347 * @card: Card to register
3348 *
3349 */
3350 int snd_soc_register_card(struct snd_soc_card *card)
3351 {
3352 int i;
3353
3354 if (!card->name || !card->dev)
3355 return -EINVAL;
3356
3357 snd_soc_initialize_card_lists(card);
3358
3359 soc_init_card_debugfs(card);
3360
3361 card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) *
3362 (card->num_links + card->num_aux_devs),
3363 GFP_KERNEL);
3364 if (card->rtd == NULL)
3365 return -ENOMEM;
3366 card->rtd_aux = &card->rtd[card->num_links];
3367
3368 for (i = 0; i < card->num_links; i++)
3369 card->rtd[i].dai_link = &card->dai_link[i];
3370
3371 INIT_LIST_HEAD(&card->list);
3372 card->instantiated = 0;
3373 mutex_init(&card->mutex);
3374
3375 mutex_lock(&client_mutex);
3376 list_add(&card->list, &card_list);
3377 snd_soc_instantiate_cards();
3378 mutex_unlock(&client_mutex);
3379
3380 dev_dbg(card->dev, "Registered card '%s'\n", card->name);
3381
3382 return 0;
3383 }
3384 EXPORT_SYMBOL_GPL(snd_soc_register_card);
3385
3386 /**
3387 * snd_soc_unregister_card - Unregister a card with the ASoC core
3388 *
3389 * @card: Card to unregister
3390 *
3391 */
3392 int snd_soc_unregister_card(struct snd_soc_card *card)
3393 {
3394 if (card->instantiated)
3395 soc_cleanup_card_resources(card);
3396 mutex_lock(&client_mutex);
3397 list_del(&card->list);
3398 mutex_unlock(&client_mutex);
3399 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
3400
3401 return 0;
3402 }
3403 EXPORT_SYMBOL_GPL(snd_soc_unregister_card);
3404
3405 /*
3406 * Simplify DAI link configuration by removing ".-1" from device names
3407 * and sanitizing names.
3408 */
3409 static char *fmt_single_name(struct device *dev, int *id)
3410 {
3411 char *found, name[NAME_SIZE];
3412 int id1, id2;
3413
3414 if (dev_name(dev) == NULL)
3415 return NULL;
3416
3417 strlcpy(name, dev_name(dev), NAME_SIZE);
3418
3419 /* are we a "%s.%d" name (platform and SPI components) */
3420 found = strstr(name, dev->driver->name);
3421 if (found) {
3422 /* get ID */
3423 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
3424
3425 /* discard ID from name if ID == -1 */
3426 if (*id == -1)
3427 found[strlen(dev->driver->name)] = '\0';
3428 }
3429
3430 } else {
3431 /* I2C component devices are named "bus-addr" */
3432 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
3433 char tmp[NAME_SIZE];
3434
3435 /* create unique ID number from I2C addr and bus */
3436 *id = ((id1 & 0xffff) << 16) + id2;
3437
3438 /* sanitize component name for DAI link creation */
3439 snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
3440 strlcpy(name, tmp, NAME_SIZE);
3441 } else
3442 *id = 0;
3443 }
3444
3445 return kstrdup(name, GFP_KERNEL);
3446 }
3447
3448 /*
3449 * Simplify DAI link naming for single devices with multiple DAIs by removing
3450 * any ".-1" and using the DAI name (instead of device name).
3451 */
3452 static inline char *fmt_multiple_name(struct device *dev,
3453 struct snd_soc_dai_driver *dai_drv)
3454 {
3455 if (dai_drv->name == NULL) {
3456 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
3457 dev_name(dev));
3458 return NULL;
3459 }
3460
3461 return kstrdup(dai_drv->name, GFP_KERNEL);
3462 }
3463
3464 /**
3465 * snd_soc_register_dai - Register a DAI with the ASoC core
3466 *
3467 * @dai: DAI to register
3468 */
3469 int snd_soc_register_dai(struct device *dev,
3470 struct snd_soc_dai_driver *dai_drv)
3471 {
3472 struct snd_soc_dai *dai;
3473
3474 dev_dbg(dev, "dai register %s\n", dev_name(dev));
3475
3476 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3477 if (dai == NULL)
3478 return -ENOMEM;
3479
3480 /* create DAI component name */
3481 dai->name = fmt_single_name(dev, &dai->id);
3482 if (dai->name == NULL) {
3483 kfree(dai);
3484 return -ENOMEM;
3485 }
3486
3487 dai->dev = dev;
3488 dai->driver = dai_drv;
3489 if (!dai->driver->ops)
3490 dai->driver->ops = &null_dai_ops;
3491
3492 mutex_lock(&client_mutex);
3493 list_add(&dai->list, &dai_list);
3494 snd_soc_instantiate_cards();
3495 mutex_unlock(&client_mutex);
3496
3497 pr_debug("Registered DAI '%s'\n", dai->name);
3498
3499 return 0;
3500 }
3501 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
3502
3503 /**
3504 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
3505 *
3506 * @dai: DAI to unregister
3507 */
3508 void snd_soc_unregister_dai(struct device *dev)
3509 {
3510 struct snd_soc_dai *dai;
3511
3512 list_for_each_entry(dai, &dai_list, list) {
3513 if (dev == dai->dev)
3514 goto found;
3515 }
3516 return;
3517
3518 found:
3519 mutex_lock(&client_mutex);
3520 list_del(&dai->list);
3521 mutex_unlock(&client_mutex);
3522
3523 pr_debug("Unregistered DAI '%s'\n", dai->name);
3524 kfree(dai->name);
3525 kfree(dai);
3526 }
3527 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
3528
3529 /**
3530 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
3531 *
3532 * @dai: Array of DAIs to register
3533 * @count: Number of DAIs
3534 */
3535 int snd_soc_register_dais(struct device *dev,
3536 struct snd_soc_dai_driver *dai_drv, size_t count)
3537 {
3538 struct snd_soc_dai *dai;
3539 int i, ret = 0;
3540
3541 dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count);
3542
3543 for (i = 0; i < count; i++) {
3544
3545 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3546 if (dai == NULL) {
3547 ret = -ENOMEM;
3548 goto err;
3549 }
3550
3551 /* create DAI component name */
3552 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3553 if (dai->name == NULL) {
3554 kfree(dai);
3555 ret = -EINVAL;
3556 goto err;
3557 }
3558
3559 dai->dev = dev;
3560 dai->driver = &dai_drv[i];
3561 if (dai->driver->id)
3562 dai->id = dai->driver->id;
3563 else
3564 dai->id = i;
3565 if (!dai->driver->ops)
3566 dai->driver->ops = &null_dai_ops;
3567
3568 mutex_lock(&client_mutex);
3569 list_add(&dai->list, &dai_list);
3570 mutex_unlock(&client_mutex);
3571
3572 pr_debug("Registered DAI '%s'\n", dai->name);
3573 }
3574
3575 mutex_lock(&client_mutex);
3576 snd_soc_instantiate_cards();
3577 mutex_unlock(&client_mutex);
3578 return 0;
3579
3580 err:
3581 for (i--; i >= 0; i--)
3582 snd_soc_unregister_dai(dev);
3583
3584 return ret;
3585 }
3586 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
3587
3588 /**
3589 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
3590 *
3591 * @dai: Array of DAIs to unregister
3592 * @count: Number of DAIs
3593 */
3594 void snd_soc_unregister_dais(struct device *dev, size_t count)
3595 {
3596 int i;
3597
3598 for (i = 0; i < count; i++)
3599 snd_soc_unregister_dai(dev);
3600 }
3601 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
3602
3603 /**
3604 * snd_soc_register_platform - Register a platform with the ASoC core
3605 *
3606 * @platform: platform to register
3607 */
3608 int snd_soc_register_platform(struct device *dev,
3609 struct snd_soc_platform_driver *platform_drv)
3610 {
3611 struct snd_soc_platform *platform;
3612
3613 dev_dbg(dev, "platform register %s\n", dev_name(dev));
3614
3615 platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
3616 if (platform == NULL)
3617 return -ENOMEM;
3618
3619 /* create platform component name */
3620 platform->name = fmt_single_name(dev, &platform->id);
3621 if (platform->name == NULL) {
3622 kfree(platform);
3623 return -ENOMEM;
3624 }
3625
3626 platform->dev = dev;
3627 platform->driver = platform_drv;
3628
3629 mutex_lock(&client_mutex);
3630 list_add(&platform->list, &platform_list);
3631 snd_soc_instantiate_cards();
3632 mutex_unlock(&client_mutex);
3633
3634 pr_debug("Registered platform '%s'\n", platform->name);
3635
3636 return 0;
3637 }
3638 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
3639
3640 /**
3641 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
3642 *
3643 * @platform: platform to unregister
3644 */
3645 void snd_soc_unregister_platform(struct device *dev)
3646 {
3647 struct snd_soc_platform *platform;
3648
3649 list_for_each_entry(platform, &platform_list, list) {
3650 if (dev == platform->dev)
3651 goto found;
3652 }
3653 return;
3654
3655 found:
3656 mutex_lock(&client_mutex);
3657 list_del(&platform->list);
3658 mutex_unlock(&client_mutex);
3659
3660 pr_debug("Unregistered platform '%s'\n", platform->name);
3661 kfree(platform->name);
3662 kfree(platform);
3663 }
3664 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
3665
3666 static u64 codec_format_map[] = {
3667 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
3668 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
3669 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
3670 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
3671 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
3672 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
3673 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3674 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3675 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
3676 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
3677 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
3678 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
3679 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
3680 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
3681 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
3682 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
3683 };
3684
3685 /* Fix up the DAI formats for endianness: codecs don't actually see
3686 * the endianness of the data but we're using the CPU format
3687 * definitions which do need to include endianness so we ensure that
3688 * codec DAIs always have both big and little endian variants set.
3689 */
3690 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
3691 {
3692 int i;
3693
3694 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
3695 if (stream->formats & codec_format_map[i])
3696 stream->formats |= codec_format_map[i];
3697 }
3698
3699 /**
3700 * snd_soc_register_codec - Register a codec with the ASoC core
3701 *
3702 * @codec: codec to register
3703 */
3704 int snd_soc_register_codec(struct device *dev,
3705 const struct snd_soc_codec_driver *codec_drv,
3706 struct snd_soc_dai_driver *dai_drv,
3707 int num_dai)
3708 {
3709 size_t reg_size;
3710 struct snd_soc_codec *codec;
3711 int ret, i;
3712
3713 dev_dbg(dev, "codec register %s\n", dev_name(dev));
3714
3715 codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
3716 if (codec == NULL)
3717 return -ENOMEM;
3718
3719 /* create CODEC component name */
3720 codec->name = fmt_single_name(dev, &codec->id);
3721 if (codec->name == NULL) {
3722 kfree(codec);
3723 return -ENOMEM;
3724 }
3725
3726 if (codec_drv->compress_type)
3727 codec->compress_type = codec_drv->compress_type;
3728 else
3729 codec->compress_type = SND_SOC_FLAT_COMPRESSION;
3730
3731 codec->write = codec_drv->write;
3732 codec->read = codec_drv->read;
3733 codec->volatile_register = codec_drv->volatile_register;
3734 codec->readable_register = codec_drv->readable_register;
3735 codec->writable_register = codec_drv->writable_register;
3736 codec->dapm.bias_level = SND_SOC_BIAS_OFF;
3737 codec->dapm.dev = dev;
3738 codec->dapm.codec = codec;
3739 codec->dapm.seq_notifier = codec_drv->seq_notifier;
3740 codec->dev = dev;
3741 codec->driver = codec_drv;
3742 codec->num_dai = num_dai;
3743 mutex_init(&codec->mutex);
3744
3745 /* allocate CODEC register cache */
3746 if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
3747 reg_size = codec_drv->reg_cache_size * codec_drv->reg_word_size;
3748 codec->reg_size = reg_size;
3749 /* it is necessary to make a copy of the default register cache
3750 * because in the case of using a compression type that requires
3751 * the default register cache to be marked as __devinitconst the
3752 * kernel might have freed the array by the time we initialize
3753 * the cache.
3754 */
3755 if (codec_drv->reg_cache_default) {
3756 codec->reg_def_copy = kmemdup(codec_drv->reg_cache_default,
3757 reg_size, GFP_KERNEL);
3758 if (!codec->reg_def_copy) {
3759 ret = -ENOMEM;
3760 goto fail;
3761 }
3762 }
3763 }
3764
3765 if (codec_drv->reg_access_size && codec_drv->reg_access_default) {
3766 if (!codec->volatile_register)
3767 codec->volatile_register = snd_soc_default_volatile_register;
3768 if (!codec->readable_register)
3769 codec->readable_register = snd_soc_default_readable_register;
3770 if (!codec->writable_register)
3771 codec->writable_register = snd_soc_default_writable_register;
3772 }
3773
3774 for (i = 0; i < num_dai; i++) {
3775 fixup_codec_formats(&dai_drv[i].playback);
3776 fixup_codec_formats(&dai_drv[i].capture);
3777 }
3778
3779 /* register any DAIs */
3780 if (num_dai) {
3781 ret = snd_soc_register_dais(dev, dai_drv, num_dai);
3782 if (ret < 0)
3783 goto fail;
3784 }
3785
3786 mutex_lock(&client_mutex);
3787 list_add(&codec->list, &codec_list);
3788 snd_soc_instantiate_cards();
3789 mutex_unlock(&client_mutex);
3790
3791 pr_debug("Registered codec '%s'\n", codec->name);
3792 return 0;
3793
3794 fail:
3795 kfree(codec->reg_def_copy);
3796 codec->reg_def_copy = NULL;
3797 kfree(codec->name);
3798 kfree(codec);
3799 return ret;
3800 }
3801 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
3802
3803 /**
3804 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
3805 *
3806 * @codec: codec to unregister
3807 */
3808 void snd_soc_unregister_codec(struct device *dev)
3809 {
3810 struct snd_soc_codec *codec;
3811 int i;
3812
3813 list_for_each_entry(codec, &codec_list, list) {
3814 if (dev == codec->dev)
3815 goto found;
3816 }
3817 return;
3818
3819 found:
3820 if (codec->num_dai)
3821 for (i = 0; i < codec->num_dai; i++)
3822 snd_soc_unregister_dai(dev);
3823
3824 mutex_lock(&client_mutex);
3825 list_del(&codec->list);
3826 mutex_unlock(&client_mutex);
3827
3828 pr_debug("Unregistered codec '%s'\n", codec->name);
3829
3830 snd_soc_cache_exit(codec);
3831 kfree(codec->reg_def_copy);
3832 kfree(codec->name);
3833 kfree(codec);
3834 }
3835 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
3836
3837 static int __init snd_soc_init(void)
3838 {
3839 #ifdef CONFIG_DEBUG_FS
3840 snd_soc_debugfs_root = debugfs_create_dir("asoc", NULL);
3841 if (IS_ERR(snd_soc_debugfs_root) || !snd_soc_debugfs_root) {
3842 printk(KERN_WARNING
3843 "ASoC: Failed to create debugfs directory\n");
3844 snd_soc_debugfs_root = NULL;
3845 }
3846
3847 if (!debugfs_create_file("codecs", 0444, snd_soc_debugfs_root, NULL,
3848 &codec_list_fops))
3849 pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
3850
3851 if (!debugfs_create_file("dais", 0444, snd_soc_debugfs_root, NULL,
3852 &dai_list_fops))
3853 pr_warn("ASoC: Failed to create DAI list debugfs file\n");
3854
3855 if (!debugfs_create_file("platforms", 0444, snd_soc_debugfs_root, NULL,
3856 &platform_list_fops))
3857 pr_warn("ASoC: Failed to create platform list debugfs file\n");
3858 #endif
3859
3860 return platform_driver_register(&soc_driver);
3861 }
3862 module_init(snd_soc_init);
3863
3864 static void __exit snd_soc_exit(void)
3865 {
3866 #ifdef CONFIG_DEBUG_FS
3867 debugfs_remove_recursive(snd_soc_debugfs_root);
3868 #endif
3869 platform_driver_unregister(&soc_driver);
3870 }
3871 module_exit(snd_soc_exit);
3872
3873 /* Module information */
3874 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
3875 MODULE_DESCRIPTION("ALSA SoC Core");
3876 MODULE_LICENSE("GPL");
3877 MODULE_ALIAS("platform:soc-audio");
This page took 0.126467 seconds and 5 git commands to generate.