ASoC: add support for multiple cards/codecs in debugfs
[deliverable/linux.git] / sound / soc / soc-core.c
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 * with code, comments and ideas from :-
9 * Richard Purdie <richard@openedhand.com>
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * TODO:
17 * o Add hw rules to enforce rates, etc.
18 * o More testing with other codecs/machines.
19 * o Add more codecs and platforms to ensure good API coverage.
20 * o Support TDM on PCM and I2S
21 */
22
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/pm.h>
28 #include <linux/bitops.h>
29 #include <linux/debugfs.h>
30 #include <linux/platform_device.h>
31 #include <sound/ac97_codec.h>
32 #include <sound/core.h>
33 #include <sound/pcm.h>
34 #include <sound/pcm_params.h>
35 #include <sound/soc.h>
36 #include <sound/soc-dapm.h>
37 #include <sound/initval.h>
38
39 static DEFINE_MUTEX(pcm_mutex);
40 static DEFINE_MUTEX(io_mutex);
41 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
42
43 #ifdef CONFIG_DEBUG_FS
44 static struct dentry *debugfs_root;
45 #endif
46
47 static DEFINE_MUTEX(client_mutex);
48 static LIST_HEAD(card_list);
49 static LIST_HEAD(dai_list);
50 static LIST_HEAD(platform_list);
51 static LIST_HEAD(codec_list);
52
53 static int snd_soc_register_card(struct snd_soc_card *card);
54 static int snd_soc_unregister_card(struct snd_soc_card *card);
55
56 /*
57 * This is a timeout to do a DAPM powerdown after a stream is closed().
58 * It can be used to eliminate pops between different playback streams, e.g.
59 * between two audio tracks.
60 */
61 static int pmdown_time = 5000;
62 module_param(pmdown_time, int, 0);
63 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
64
65 /*
66 * This function forces any delayed work to be queued and run.
67 */
68 static int run_delayed_work(struct delayed_work *dwork)
69 {
70 int ret;
71
72 /* cancel any work waiting to be queued. */
73 ret = cancel_delayed_work(dwork);
74
75 /* if there was any work waiting then we run it now and
76 * wait for it's completion */
77 if (ret) {
78 schedule_delayed_work(dwork, 0);
79 flush_scheduled_work();
80 }
81 return ret;
82 }
83
84 #ifdef CONFIG_SND_SOC_AC97_BUS
85 /* unregister ac97 codec */
86 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
87 {
88 if (codec->ac97->dev.bus)
89 device_unregister(&codec->ac97->dev);
90 return 0;
91 }
92
93 /* stop no dev release warning */
94 static void soc_ac97_device_release(struct device *dev){}
95
96 /* register ac97 codec to bus */
97 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
98 {
99 int err;
100
101 codec->ac97->dev.bus = &ac97_bus_type;
102 codec->ac97->dev.parent = codec->card->dev;
103 codec->ac97->dev.release = soc_ac97_device_release;
104
105 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
106 codec->card->number, 0, codec->name);
107 err = device_register(&codec->ac97->dev);
108 if (err < 0) {
109 snd_printk(KERN_ERR "Can't register ac97 bus\n");
110 codec->ac97->dev.bus = NULL;
111 return err;
112 }
113 return 0;
114 }
115 #endif
116
117 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
118 {
119 struct snd_soc_pcm_runtime *rtd = substream->private_data;
120 struct snd_soc_device *socdev = rtd->socdev;
121 struct snd_soc_card *card = socdev->card;
122 struct snd_soc_dai_link *machine = rtd->dai;
123 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
124 struct snd_soc_dai *codec_dai = machine->codec_dai;
125 int ret;
126
127 if (codec_dai->symmetric_rates || cpu_dai->symmetric_rates ||
128 machine->symmetric_rates) {
129 dev_dbg(card->dev, "Symmetry forces %dHz rate\n",
130 machine->rate);
131
132 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
133 SNDRV_PCM_HW_PARAM_RATE,
134 machine->rate,
135 machine->rate);
136 if (ret < 0) {
137 dev_err(card->dev,
138 "Unable to apply rate symmetry constraint: %d\n", ret);
139 return ret;
140 }
141 }
142
143 return 0;
144 }
145
146 /*
147 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
148 * then initialized and any private data can be allocated. This also calls
149 * startup for the cpu DAI, platform, machine and codec DAI.
150 */
151 static int soc_pcm_open(struct snd_pcm_substream *substream)
152 {
153 struct snd_soc_pcm_runtime *rtd = substream->private_data;
154 struct snd_soc_device *socdev = rtd->socdev;
155 struct snd_soc_card *card = socdev->card;
156 struct snd_pcm_runtime *runtime = substream->runtime;
157 struct snd_soc_dai_link *machine = rtd->dai;
158 struct snd_soc_platform *platform = card->platform;
159 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
160 struct snd_soc_dai *codec_dai = machine->codec_dai;
161 int ret = 0;
162
163 mutex_lock(&pcm_mutex);
164
165 /* startup the audio subsystem */
166 if (cpu_dai->ops->startup) {
167 ret = cpu_dai->ops->startup(substream, cpu_dai);
168 if (ret < 0) {
169 printk(KERN_ERR "asoc: can't open interface %s\n",
170 cpu_dai->name);
171 goto out;
172 }
173 }
174
175 if (platform->pcm_ops->open) {
176 ret = platform->pcm_ops->open(substream);
177 if (ret < 0) {
178 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
179 goto platform_err;
180 }
181 }
182
183 if (codec_dai->ops->startup) {
184 ret = codec_dai->ops->startup(substream, codec_dai);
185 if (ret < 0) {
186 printk(KERN_ERR "asoc: can't open codec %s\n",
187 codec_dai->name);
188 goto codec_dai_err;
189 }
190 }
191
192 if (machine->ops && machine->ops->startup) {
193 ret = machine->ops->startup(substream);
194 if (ret < 0) {
195 printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
196 goto machine_err;
197 }
198 }
199
200 /* Check that the codec and cpu DAI's are compatible */
201 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
202 runtime->hw.rate_min =
203 max(codec_dai->playback.rate_min,
204 cpu_dai->playback.rate_min);
205 runtime->hw.rate_max =
206 min(codec_dai->playback.rate_max,
207 cpu_dai->playback.rate_max);
208 runtime->hw.channels_min =
209 max(codec_dai->playback.channels_min,
210 cpu_dai->playback.channels_min);
211 runtime->hw.channels_max =
212 min(codec_dai->playback.channels_max,
213 cpu_dai->playback.channels_max);
214 runtime->hw.formats =
215 codec_dai->playback.formats & cpu_dai->playback.formats;
216 runtime->hw.rates =
217 codec_dai->playback.rates & cpu_dai->playback.rates;
218 } else {
219 runtime->hw.rate_min =
220 max(codec_dai->capture.rate_min,
221 cpu_dai->capture.rate_min);
222 runtime->hw.rate_max =
223 min(codec_dai->capture.rate_max,
224 cpu_dai->capture.rate_max);
225 runtime->hw.channels_min =
226 max(codec_dai->capture.channels_min,
227 cpu_dai->capture.channels_min);
228 runtime->hw.channels_max =
229 min(codec_dai->capture.channels_max,
230 cpu_dai->capture.channels_max);
231 runtime->hw.formats =
232 codec_dai->capture.formats & cpu_dai->capture.formats;
233 runtime->hw.rates =
234 codec_dai->capture.rates & cpu_dai->capture.rates;
235 }
236
237 snd_pcm_limit_hw_rates(runtime);
238 if (!runtime->hw.rates) {
239 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
240 codec_dai->name, cpu_dai->name);
241 goto machine_err;
242 }
243 if (!runtime->hw.formats) {
244 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
245 codec_dai->name, cpu_dai->name);
246 goto machine_err;
247 }
248 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
249 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
250 codec_dai->name, cpu_dai->name);
251 goto machine_err;
252 }
253
254 /* Symmetry only applies if we've already got an active stream. */
255 if (cpu_dai->active || codec_dai->active) {
256 ret = soc_pcm_apply_symmetry(substream);
257 if (ret != 0)
258 goto machine_err;
259 }
260
261 pr_debug("asoc: %s <-> %s info:\n", codec_dai->name, cpu_dai->name);
262 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
263 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
264 runtime->hw.channels_max);
265 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
266 runtime->hw.rate_max);
267
268 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
269 cpu_dai->playback.active = codec_dai->playback.active = 1;
270 else
271 cpu_dai->capture.active = codec_dai->capture.active = 1;
272 cpu_dai->active = codec_dai->active = 1;
273 cpu_dai->runtime = runtime;
274 card->codec->active++;
275 mutex_unlock(&pcm_mutex);
276 return 0;
277
278 machine_err:
279 if (machine->ops && machine->ops->shutdown)
280 machine->ops->shutdown(substream);
281
282 codec_dai_err:
283 if (platform->pcm_ops->close)
284 platform->pcm_ops->close(substream);
285
286 platform_err:
287 if (cpu_dai->ops->shutdown)
288 cpu_dai->ops->shutdown(substream, cpu_dai);
289 out:
290 mutex_unlock(&pcm_mutex);
291 return ret;
292 }
293
294 /*
295 * Power down the audio subsystem pmdown_time msecs after close is called.
296 * This is to ensure there are no pops or clicks in between any music tracks
297 * due to DAPM power cycling.
298 */
299 static void close_delayed_work(struct work_struct *work)
300 {
301 struct snd_soc_card *card = container_of(work, struct snd_soc_card,
302 delayed_work.work);
303 struct snd_soc_codec *codec = card->codec;
304 struct snd_soc_dai *codec_dai;
305 int i;
306
307 mutex_lock(&pcm_mutex);
308 for (i = 0; i < codec->num_dai; i++) {
309 codec_dai = &codec->dai[i];
310
311 pr_debug("pop wq checking: %s status: %s waiting: %s\n",
312 codec_dai->playback.stream_name,
313 codec_dai->playback.active ? "active" : "inactive",
314 codec_dai->pop_wait ? "yes" : "no");
315
316 /* are we waiting on this codec DAI stream */
317 if (codec_dai->pop_wait == 1) {
318 codec_dai->pop_wait = 0;
319 snd_soc_dapm_stream_event(codec,
320 codec_dai->playback.stream_name,
321 SND_SOC_DAPM_STREAM_STOP);
322 }
323 }
324 mutex_unlock(&pcm_mutex);
325 }
326
327 /*
328 * Called by ALSA when a PCM substream is closed. Private data can be
329 * freed here. The cpu DAI, codec DAI, machine and platform are also
330 * shutdown.
331 */
332 static int soc_codec_close(struct snd_pcm_substream *substream)
333 {
334 struct snd_soc_pcm_runtime *rtd = substream->private_data;
335 struct snd_soc_device *socdev = rtd->socdev;
336 struct snd_soc_card *card = socdev->card;
337 struct snd_soc_dai_link *machine = rtd->dai;
338 struct snd_soc_platform *platform = card->platform;
339 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
340 struct snd_soc_dai *codec_dai = machine->codec_dai;
341 struct snd_soc_codec *codec = card->codec;
342
343 mutex_lock(&pcm_mutex);
344
345 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
346 cpu_dai->playback.active = codec_dai->playback.active = 0;
347 else
348 cpu_dai->capture.active = codec_dai->capture.active = 0;
349
350 if (codec_dai->playback.active == 0 &&
351 codec_dai->capture.active == 0) {
352 cpu_dai->active = codec_dai->active = 0;
353 }
354 codec->active--;
355
356 /* Muting the DAC suppresses artifacts caused during digital
357 * shutdown, for example from stopping clocks.
358 */
359 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
360 snd_soc_dai_digital_mute(codec_dai, 1);
361
362 if (cpu_dai->ops->shutdown)
363 cpu_dai->ops->shutdown(substream, cpu_dai);
364
365 if (codec_dai->ops->shutdown)
366 codec_dai->ops->shutdown(substream, codec_dai);
367
368 if (machine->ops && machine->ops->shutdown)
369 machine->ops->shutdown(substream);
370
371 if (platform->pcm_ops->close)
372 platform->pcm_ops->close(substream);
373 cpu_dai->runtime = NULL;
374
375 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
376 /* start delayed pop wq here for playback streams */
377 codec_dai->pop_wait = 1;
378 schedule_delayed_work(&card->delayed_work,
379 msecs_to_jiffies(pmdown_time));
380 } else {
381 /* capture streams can be powered down now */
382 snd_soc_dapm_stream_event(codec,
383 codec_dai->capture.stream_name,
384 SND_SOC_DAPM_STREAM_STOP);
385 }
386
387 mutex_unlock(&pcm_mutex);
388 return 0;
389 }
390
391 /*
392 * Called by ALSA when the PCM substream is prepared, can set format, sample
393 * rate, etc. This function is non atomic and can be called multiple times,
394 * it can refer to the runtime info.
395 */
396 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
397 {
398 struct snd_soc_pcm_runtime *rtd = substream->private_data;
399 struct snd_soc_device *socdev = rtd->socdev;
400 struct snd_soc_card *card = socdev->card;
401 struct snd_soc_dai_link *machine = rtd->dai;
402 struct snd_soc_platform *platform = card->platform;
403 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
404 struct snd_soc_dai *codec_dai = machine->codec_dai;
405 struct snd_soc_codec *codec = card->codec;
406 int ret = 0;
407
408 mutex_lock(&pcm_mutex);
409
410 if (machine->ops && machine->ops->prepare) {
411 ret = machine->ops->prepare(substream);
412 if (ret < 0) {
413 printk(KERN_ERR "asoc: machine prepare error\n");
414 goto out;
415 }
416 }
417
418 if (platform->pcm_ops->prepare) {
419 ret = platform->pcm_ops->prepare(substream);
420 if (ret < 0) {
421 printk(KERN_ERR "asoc: platform prepare error\n");
422 goto out;
423 }
424 }
425
426 if (codec_dai->ops->prepare) {
427 ret = codec_dai->ops->prepare(substream, codec_dai);
428 if (ret < 0) {
429 printk(KERN_ERR "asoc: codec DAI prepare error\n");
430 goto out;
431 }
432 }
433
434 if (cpu_dai->ops->prepare) {
435 ret = cpu_dai->ops->prepare(substream, cpu_dai);
436 if (ret < 0) {
437 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
438 goto out;
439 }
440 }
441
442 /* cancel any delayed stream shutdown that is pending */
443 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
444 codec_dai->pop_wait) {
445 codec_dai->pop_wait = 0;
446 cancel_delayed_work(&card->delayed_work);
447 }
448
449 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
450 snd_soc_dapm_stream_event(codec,
451 codec_dai->playback.stream_name,
452 SND_SOC_DAPM_STREAM_START);
453 else
454 snd_soc_dapm_stream_event(codec,
455 codec_dai->capture.stream_name,
456 SND_SOC_DAPM_STREAM_START);
457
458 snd_soc_dai_digital_mute(codec_dai, 0);
459
460 out:
461 mutex_unlock(&pcm_mutex);
462 return ret;
463 }
464
465 /*
466 * Called by ALSA when the hardware params are set by application. This
467 * function can also be called multiple times and can allocate buffers
468 * (using snd_pcm_lib_* ). It's non-atomic.
469 */
470 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
471 struct snd_pcm_hw_params *params)
472 {
473 struct snd_soc_pcm_runtime *rtd = substream->private_data;
474 struct snd_soc_device *socdev = rtd->socdev;
475 struct snd_soc_dai_link *machine = rtd->dai;
476 struct snd_soc_card *card = socdev->card;
477 struct snd_soc_platform *platform = card->platform;
478 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
479 struct snd_soc_dai *codec_dai = machine->codec_dai;
480 int ret = 0;
481
482 mutex_lock(&pcm_mutex);
483
484 if (machine->ops && machine->ops->hw_params) {
485 ret = machine->ops->hw_params(substream, params);
486 if (ret < 0) {
487 printk(KERN_ERR "asoc: machine hw_params failed\n");
488 goto out;
489 }
490 }
491
492 if (codec_dai->ops->hw_params) {
493 ret = codec_dai->ops->hw_params(substream, params, codec_dai);
494 if (ret < 0) {
495 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
496 codec_dai->name);
497 goto codec_err;
498 }
499 }
500
501 if (cpu_dai->ops->hw_params) {
502 ret = cpu_dai->ops->hw_params(substream, params, cpu_dai);
503 if (ret < 0) {
504 printk(KERN_ERR "asoc: interface %s hw params failed\n",
505 cpu_dai->name);
506 goto interface_err;
507 }
508 }
509
510 if (platform->pcm_ops->hw_params) {
511 ret = platform->pcm_ops->hw_params(substream, params);
512 if (ret < 0) {
513 printk(KERN_ERR "asoc: platform %s hw params failed\n",
514 platform->name);
515 goto platform_err;
516 }
517 }
518
519 machine->rate = params_rate(params);
520
521 out:
522 mutex_unlock(&pcm_mutex);
523 return ret;
524
525 platform_err:
526 if (cpu_dai->ops->hw_free)
527 cpu_dai->ops->hw_free(substream, cpu_dai);
528
529 interface_err:
530 if (codec_dai->ops->hw_free)
531 codec_dai->ops->hw_free(substream, codec_dai);
532
533 codec_err:
534 if (machine->ops && machine->ops->hw_free)
535 machine->ops->hw_free(substream);
536
537 mutex_unlock(&pcm_mutex);
538 return ret;
539 }
540
541 /*
542 * Free's resources allocated by hw_params, can be called multiple times
543 */
544 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
545 {
546 struct snd_soc_pcm_runtime *rtd = substream->private_data;
547 struct snd_soc_device *socdev = rtd->socdev;
548 struct snd_soc_dai_link *machine = rtd->dai;
549 struct snd_soc_card *card = socdev->card;
550 struct snd_soc_platform *platform = card->platform;
551 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
552 struct snd_soc_dai *codec_dai = machine->codec_dai;
553 struct snd_soc_codec *codec = card->codec;
554
555 mutex_lock(&pcm_mutex);
556
557 /* apply codec digital mute */
558 if (!codec->active)
559 snd_soc_dai_digital_mute(codec_dai, 1);
560
561 /* free any machine hw params */
562 if (machine->ops && machine->ops->hw_free)
563 machine->ops->hw_free(substream);
564
565 /* free any DMA resources */
566 if (platform->pcm_ops->hw_free)
567 platform->pcm_ops->hw_free(substream);
568
569 /* now free hw params for the DAI's */
570 if (codec_dai->ops->hw_free)
571 codec_dai->ops->hw_free(substream, codec_dai);
572
573 if (cpu_dai->ops->hw_free)
574 cpu_dai->ops->hw_free(substream, cpu_dai);
575
576 mutex_unlock(&pcm_mutex);
577 return 0;
578 }
579
580 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
581 {
582 struct snd_soc_pcm_runtime *rtd = substream->private_data;
583 struct snd_soc_device *socdev = rtd->socdev;
584 struct snd_soc_card *card= socdev->card;
585 struct snd_soc_dai_link *machine = rtd->dai;
586 struct snd_soc_platform *platform = card->platform;
587 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
588 struct snd_soc_dai *codec_dai = machine->codec_dai;
589 int ret;
590
591 if (codec_dai->ops->trigger) {
592 ret = codec_dai->ops->trigger(substream, cmd, codec_dai);
593 if (ret < 0)
594 return ret;
595 }
596
597 if (platform->pcm_ops->trigger) {
598 ret = platform->pcm_ops->trigger(substream, cmd);
599 if (ret < 0)
600 return ret;
601 }
602
603 if (cpu_dai->ops->trigger) {
604 ret = cpu_dai->ops->trigger(substream, cmd, cpu_dai);
605 if (ret < 0)
606 return ret;
607 }
608 return 0;
609 }
610
611 /* ASoC PCM operations */
612 static struct snd_pcm_ops soc_pcm_ops = {
613 .open = soc_pcm_open,
614 .close = soc_codec_close,
615 .hw_params = soc_pcm_hw_params,
616 .hw_free = soc_pcm_hw_free,
617 .prepare = soc_pcm_prepare,
618 .trigger = soc_pcm_trigger,
619 };
620
621 #ifdef CONFIG_PM
622 /* powers down audio subsystem for suspend */
623 static int soc_suspend(struct device *dev)
624 {
625 struct platform_device *pdev = to_platform_device(dev);
626 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
627 struct snd_soc_card *card = socdev->card;
628 struct snd_soc_platform *platform = card->platform;
629 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
630 struct snd_soc_codec *codec = card->codec;
631 int i;
632
633 /* If the initialization of this soc device failed, there is no codec
634 * associated with it. Just bail out in this case.
635 */
636 if (!codec)
637 return 0;
638
639 /* Due to the resume being scheduled into a workqueue we could
640 * suspend before that's finished - wait for it to complete.
641 */
642 snd_power_lock(codec->card);
643 snd_power_wait(codec->card, SNDRV_CTL_POWER_D0);
644 snd_power_unlock(codec->card);
645
646 /* we're going to block userspace touching us until resume completes */
647 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D3hot);
648
649 /* mute any active DAC's */
650 for (i = 0; i < card->num_links; i++) {
651 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
652 if (dai->ops->digital_mute && dai->playback.active)
653 dai->ops->digital_mute(dai, 1);
654 }
655
656 /* suspend all pcms */
657 for (i = 0; i < card->num_links; i++)
658 snd_pcm_suspend_all(card->dai_link[i].pcm);
659
660 if (card->suspend_pre)
661 card->suspend_pre(pdev, PMSG_SUSPEND);
662
663 for (i = 0; i < card->num_links; i++) {
664 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
665 if (cpu_dai->suspend && !cpu_dai->ac97_control)
666 cpu_dai->suspend(cpu_dai);
667 if (platform->suspend)
668 platform->suspend(cpu_dai);
669 }
670
671 /* close any waiting streams and save state */
672 run_delayed_work(&card->delayed_work);
673 codec->suspend_bias_level = codec->bias_level;
674
675 for (i = 0; i < codec->num_dai; i++) {
676 char *stream = codec->dai[i].playback.stream_name;
677 if (stream != NULL)
678 snd_soc_dapm_stream_event(codec, stream,
679 SND_SOC_DAPM_STREAM_SUSPEND);
680 stream = codec->dai[i].capture.stream_name;
681 if (stream != NULL)
682 snd_soc_dapm_stream_event(codec, stream,
683 SND_SOC_DAPM_STREAM_SUSPEND);
684 }
685
686 if (codec_dev->suspend)
687 codec_dev->suspend(pdev, PMSG_SUSPEND);
688
689 for (i = 0; i < card->num_links; i++) {
690 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
691 if (cpu_dai->suspend && cpu_dai->ac97_control)
692 cpu_dai->suspend(cpu_dai);
693 }
694
695 if (card->suspend_post)
696 card->suspend_post(pdev, PMSG_SUSPEND);
697
698 return 0;
699 }
700
701 /* deferred resume work, so resume can complete before we finished
702 * setting our codec back up, which can be very slow on I2C
703 */
704 static void soc_resume_deferred(struct work_struct *work)
705 {
706 struct snd_soc_card *card = container_of(work,
707 struct snd_soc_card,
708 deferred_resume_work);
709 struct snd_soc_device *socdev = card->socdev;
710 struct snd_soc_platform *platform = card->platform;
711 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
712 struct snd_soc_codec *codec = card->codec;
713 struct platform_device *pdev = to_platform_device(socdev->dev);
714 int i;
715
716 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
717 * so userspace apps are blocked from touching us
718 */
719
720 dev_dbg(socdev->dev, "starting resume work\n");
721
722 if (card->resume_pre)
723 card->resume_pre(pdev);
724
725 for (i = 0; i < card->num_links; i++) {
726 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
727 if (cpu_dai->resume && cpu_dai->ac97_control)
728 cpu_dai->resume(cpu_dai);
729 }
730
731 if (codec_dev->resume)
732 codec_dev->resume(pdev);
733
734 for (i = 0; i < codec->num_dai; i++) {
735 char *stream = codec->dai[i].playback.stream_name;
736 if (stream != NULL)
737 snd_soc_dapm_stream_event(codec, stream,
738 SND_SOC_DAPM_STREAM_RESUME);
739 stream = codec->dai[i].capture.stream_name;
740 if (stream != NULL)
741 snd_soc_dapm_stream_event(codec, stream,
742 SND_SOC_DAPM_STREAM_RESUME);
743 }
744
745 /* unmute any active DACs */
746 for (i = 0; i < card->num_links; i++) {
747 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
748 if (dai->ops->digital_mute && dai->playback.active)
749 dai->ops->digital_mute(dai, 0);
750 }
751
752 for (i = 0; i < card->num_links; i++) {
753 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
754 if (cpu_dai->resume && !cpu_dai->ac97_control)
755 cpu_dai->resume(cpu_dai);
756 if (platform->resume)
757 platform->resume(cpu_dai);
758 }
759
760 if (card->resume_post)
761 card->resume_post(pdev);
762
763 dev_dbg(socdev->dev, "resume work completed\n");
764
765 /* userspace can access us now we are back as we were before */
766 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D0);
767 }
768
769 /* powers up audio subsystem after a suspend */
770 static int soc_resume(struct device *dev)
771 {
772 struct platform_device *pdev = to_platform_device(dev);
773 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
774 struct snd_soc_card *card = socdev->card;
775 struct snd_soc_dai *cpu_dai = card->dai_link[0].cpu_dai;
776
777 /* AC97 devices might have other drivers hanging off them so
778 * need to resume immediately. Other drivers don't have that
779 * problem and may take a substantial amount of time to resume
780 * due to I/O costs and anti-pop so handle them out of line.
781 */
782 if (cpu_dai->ac97_control) {
783 dev_dbg(socdev->dev, "Resuming AC97 immediately\n");
784 soc_resume_deferred(&card->deferred_resume_work);
785 } else {
786 dev_dbg(socdev->dev, "Scheduling resume work\n");
787 if (!schedule_work(&card->deferred_resume_work))
788 dev_err(socdev->dev, "resume work item may be lost\n");
789 }
790
791 return 0;
792 }
793
794 /**
795 * snd_soc_suspend_device: Notify core of device suspend
796 *
797 * @dev: Device being suspended.
798 *
799 * In order to ensure that the entire audio subsystem is suspended in a
800 * coordinated fashion ASoC devices should suspend themselves when
801 * called by ASoC. When the standard kernel suspend process asks the
802 * device to suspend it should call this function to initiate a suspend
803 * of the entire ASoC card.
804 *
805 * \note Currently this function is stubbed out.
806 */
807 int snd_soc_suspend_device(struct device *dev)
808 {
809 return 0;
810 }
811 EXPORT_SYMBOL_GPL(snd_soc_suspend_device);
812
813 /**
814 * snd_soc_resume_device: Notify core of device resume
815 *
816 * @dev: Device being resumed.
817 *
818 * In order to ensure that the entire audio subsystem is resumed in a
819 * coordinated fashion ASoC devices should resume themselves when called
820 * by ASoC. When the standard kernel resume process asks the device
821 * to resume it should call this function. Once all the components of
822 * the card have notified that they are ready to be resumed the card
823 * will be resumed.
824 *
825 * \note Currently this function is stubbed out.
826 */
827 int snd_soc_resume_device(struct device *dev)
828 {
829 return 0;
830 }
831 EXPORT_SYMBOL_GPL(snd_soc_resume_device);
832 #else
833 #define soc_suspend NULL
834 #define soc_resume NULL
835 #endif
836
837 static void snd_soc_instantiate_card(struct snd_soc_card *card)
838 {
839 struct platform_device *pdev = container_of(card->dev,
840 struct platform_device,
841 dev);
842 struct snd_soc_codec_device *codec_dev = card->socdev->codec_dev;
843 struct snd_soc_platform *platform;
844 struct snd_soc_dai *dai;
845 int i, found, ret, ac97;
846
847 if (card->instantiated)
848 return;
849
850 found = 0;
851 list_for_each_entry(platform, &platform_list, list)
852 if (card->platform == platform) {
853 found = 1;
854 break;
855 }
856 if (!found) {
857 dev_dbg(card->dev, "Platform %s not registered\n",
858 card->platform->name);
859 return;
860 }
861
862 ac97 = 0;
863 for (i = 0; i < card->num_links; i++) {
864 found = 0;
865 list_for_each_entry(dai, &dai_list, list)
866 if (card->dai_link[i].cpu_dai == dai) {
867 found = 1;
868 break;
869 }
870 if (!found) {
871 dev_dbg(card->dev, "DAI %s not registered\n",
872 card->dai_link[i].cpu_dai->name);
873 return;
874 }
875
876 if (card->dai_link[i].cpu_dai->ac97_control)
877 ac97 = 1;
878 }
879
880 /* If we have AC97 in the system then don't wait for the
881 * codec. This will need revisiting if we have to handle
882 * systems with mixed AC97 and non-AC97 parts. Only check for
883 * DAIs currently; we can't do this per link since some AC97
884 * codecs have non-AC97 DAIs.
885 */
886 if (!ac97)
887 for (i = 0; i < card->num_links; i++) {
888 found = 0;
889 list_for_each_entry(dai, &dai_list, list)
890 if (card->dai_link[i].codec_dai == dai) {
891 found = 1;
892 break;
893 }
894 if (!found) {
895 dev_dbg(card->dev, "DAI %s not registered\n",
896 card->dai_link[i].codec_dai->name);
897 return;
898 }
899 }
900
901 /* Note that we do not current check for codec components */
902
903 dev_dbg(card->dev, "All components present, instantiating\n");
904
905 /* Found everything, bring it up */
906 if (card->probe) {
907 ret = card->probe(pdev);
908 if (ret < 0)
909 return;
910 }
911
912 for (i = 0; i < card->num_links; i++) {
913 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
914 if (cpu_dai->probe) {
915 ret = cpu_dai->probe(pdev, cpu_dai);
916 if (ret < 0)
917 goto cpu_dai_err;
918 }
919 }
920
921 if (codec_dev->probe) {
922 ret = codec_dev->probe(pdev);
923 if (ret < 0)
924 goto cpu_dai_err;
925 }
926
927 if (platform->probe) {
928 ret = platform->probe(pdev);
929 if (ret < 0)
930 goto platform_err;
931 }
932
933 /* DAPM stream work */
934 INIT_DELAYED_WORK(&card->delayed_work, close_delayed_work);
935 #ifdef CONFIG_PM
936 /* deferred resume work */
937 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
938 #endif
939
940 card->instantiated = 1;
941
942 return;
943
944 platform_err:
945 if (codec_dev->remove)
946 codec_dev->remove(pdev);
947
948 cpu_dai_err:
949 for (i--; i >= 0; i--) {
950 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
951 if (cpu_dai->remove)
952 cpu_dai->remove(pdev, cpu_dai);
953 }
954
955 if (card->remove)
956 card->remove(pdev);
957 }
958
959 /*
960 * Attempt to initialise any uninitalised cards. Must be called with
961 * client_mutex.
962 */
963 static void snd_soc_instantiate_cards(void)
964 {
965 struct snd_soc_card *card;
966 list_for_each_entry(card, &card_list, list)
967 snd_soc_instantiate_card(card);
968 }
969
970 /* probes a new socdev */
971 static int soc_probe(struct platform_device *pdev)
972 {
973 int ret = 0;
974 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
975 struct snd_soc_card *card = socdev->card;
976
977 /* Bodge while we push things out of socdev */
978 card->socdev = socdev;
979
980 /* Bodge while we unpick instantiation */
981 card->dev = &pdev->dev;
982 ret = snd_soc_register_card(card);
983 if (ret != 0) {
984 dev_err(&pdev->dev, "Failed to register card\n");
985 return ret;
986 }
987
988 return 0;
989 }
990
991 /* removes a socdev */
992 static int soc_remove(struct platform_device *pdev)
993 {
994 int i;
995 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
996 struct snd_soc_card *card = socdev->card;
997 struct snd_soc_platform *platform = card->platform;
998 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
999
1000 if (!card->instantiated)
1001 return 0;
1002
1003 run_delayed_work(&card->delayed_work);
1004
1005 if (platform->remove)
1006 platform->remove(pdev);
1007
1008 if (codec_dev->remove)
1009 codec_dev->remove(pdev);
1010
1011 for (i = 0; i < card->num_links; i++) {
1012 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
1013 if (cpu_dai->remove)
1014 cpu_dai->remove(pdev, cpu_dai);
1015 }
1016
1017 if (card->remove)
1018 card->remove(pdev);
1019
1020 snd_soc_unregister_card(card);
1021
1022 return 0;
1023 }
1024
1025 static int soc_poweroff(struct device *dev)
1026 {
1027 struct platform_device *pdev = to_platform_device(dev);
1028 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1029 struct snd_soc_card *card = socdev->card;
1030
1031 if (!card->instantiated)
1032 return 0;
1033
1034 /* Flush out pmdown_time work - we actually do want to run it
1035 * now, we're shutting down so no imminent restart. */
1036 run_delayed_work(&card->delayed_work);
1037
1038 snd_soc_dapm_shutdown(socdev);
1039
1040 return 0;
1041 }
1042
1043 static struct dev_pm_ops soc_pm_ops = {
1044 .suspend = soc_suspend,
1045 .resume = soc_resume,
1046 .poweroff = soc_poweroff,
1047 };
1048
1049 /* ASoC platform driver */
1050 static struct platform_driver soc_driver = {
1051 .driver = {
1052 .name = "soc-audio",
1053 .owner = THIS_MODULE,
1054 .pm = &soc_pm_ops,
1055 },
1056 .probe = soc_probe,
1057 .remove = soc_remove,
1058 };
1059
1060 /* create a new pcm */
1061 static int soc_new_pcm(struct snd_soc_device *socdev,
1062 struct snd_soc_dai_link *dai_link, int num)
1063 {
1064 struct snd_soc_card *card = socdev->card;
1065 struct snd_soc_codec *codec = card->codec;
1066 struct snd_soc_platform *platform = card->platform;
1067 struct snd_soc_dai *codec_dai = dai_link->codec_dai;
1068 struct snd_soc_dai *cpu_dai = dai_link->cpu_dai;
1069 struct snd_soc_pcm_runtime *rtd;
1070 struct snd_pcm *pcm;
1071 char new_name[64];
1072 int ret = 0, playback = 0, capture = 0;
1073
1074 rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
1075 if (rtd == NULL)
1076 return -ENOMEM;
1077
1078 rtd->dai = dai_link;
1079 rtd->socdev = socdev;
1080 codec_dai->codec = card->codec;
1081
1082 /* check client and interface hw capabilities */
1083 sprintf(new_name, "%s %s-%d", dai_link->stream_name, codec_dai->name,
1084 num);
1085
1086 if (codec_dai->playback.channels_min)
1087 playback = 1;
1088 if (codec_dai->capture.channels_min)
1089 capture = 1;
1090
1091 ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
1092 capture, &pcm);
1093 if (ret < 0) {
1094 printk(KERN_ERR "asoc: can't create pcm for codec %s\n",
1095 codec->name);
1096 kfree(rtd);
1097 return ret;
1098 }
1099
1100 dai_link->pcm = pcm;
1101 pcm->private_data = rtd;
1102 soc_pcm_ops.mmap = platform->pcm_ops->mmap;
1103 soc_pcm_ops.pointer = platform->pcm_ops->pointer;
1104 soc_pcm_ops.ioctl = platform->pcm_ops->ioctl;
1105 soc_pcm_ops.copy = platform->pcm_ops->copy;
1106 soc_pcm_ops.silence = platform->pcm_ops->silence;
1107 soc_pcm_ops.ack = platform->pcm_ops->ack;
1108 soc_pcm_ops.page = platform->pcm_ops->page;
1109
1110 if (playback)
1111 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1112
1113 if (capture)
1114 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1115
1116 ret = platform->pcm_new(codec->card, codec_dai, pcm);
1117 if (ret < 0) {
1118 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1119 kfree(rtd);
1120 return ret;
1121 }
1122
1123 pcm->private_free = platform->pcm_free;
1124 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1125 cpu_dai->name);
1126 return ret;
1127 }
1128
1129 /**
1130 * snd_soc_codec_volatile_register: Report if a register is volatile.
1131 *
1132 * @codec: CODEC to query.
1133 * @reg: Register to query.
1134 *
1135 * Boolean function indiciating if a CODEC register is volatile.
1136 */
1137 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
1138 {
1139 if (codec->volatile_register)
1140 return codec->volatile_register(reg);
1141 else
1142 return 0;
1143 }
1144 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
1145
1146 /* codec register dump */
1147 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
1148 {
1149 int i, step = 1, count = 0;
1150
1151 if (!codec->reg_cache_size)
1152 return 0;
1153
1154 if (codec->reg_cache_step)
1155 step = codec->reg_cache_step;
1156
1157 count += sprintf(buf, "%s registers\n", codec->name);
1158 for (i = 0; i < codec->reg_cache_size; i += step) {
1159 if (codec->readable_register && !codec->readable_register(i))
1160 continue;
1161
1162 count += sprintf(buf + count, "%2x: ", i);
1163 if (count >= PAGE_SIZE - 1)
1164 break;
1165
1166 if (codec->display_register)
1167 count += codec->display_register(codec, buf + count,
1168 PAGE_SIZE - count, i);
1169 else
1170 count += snprintf(buf + count, PAGE_SIZE - count,
1171 "%4x", codec->read(codec, i));
1172
1173 if (count >= PAGE_SIZE - 1)
1174 break;
1175
1176 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
1177 if (count >= PAGE_SIZE - 1)
1178 break;
1179 }
1180
1181 /* Truncate count; min() would cause a warning */
1182 if (count >= PAGE_SIZE)
1183 count = PAGE_SIZE - 1;
1184
1185 return count;
1186 }
1187 static ssize_t codec_reg_show(struct device *dev,
1188 struct device_attribute *attr, char *buf)
1189 {
1190 struct snd_soc_device *devdata = dev_get_drvdata(dev);
1191 return soc_codec_reg_show(devdata->card->codec, buf);
1192 }
1193
1194 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
1195
1196 #ifdef CONFIG_DEBUG_FS
1197 static int codec_reg_open_file(struct inode *inode, struct file *file)
1198 {
1199 file->private_data = inode->i_private;
1200 return 0;
1201 }
1202
1203 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
1204 size_t count, loff_t *ppos)
1205 {
1206 ssize_t ret;
1207 struct snd_soc_codec *codec = file->private_data;
1208 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1209 if (!buf)
1210 return -ENOMEM;
1211 ret = soc_codec_reg_show(codec, buf);
1212 if (ret >= 0)
1213 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1214 kfree(buf);
1215 return ret;
1216 }
1217
1218 static ssize_t codec_reg_write_file(struct file *file,
1219 const char __user *user_buf, size_t count, loff_t *ppos)
1220 {
1221 char buf[32];
1222 int buf_size;
1223 char *start = buf;
1224 unsigned long reg, value;
1225 int step = 1;
1226 struct snd_soc_codec *codec = file->private_data;
1227
1228 buf_size = min(count, (sizeof(buf)-1));
1229 if (copy_from_user(buf, user_buf, buf_size))
1230 return -EFAULT;
1231 buf[buf_size] = 0;
1232
1233 if (codec->reg_cache_step)
1234 step = codec->reg_cache_step;
1235
1236 while (*start == ' ')
1237 start++;
1238 reg = simple_strtoul(start, &start, 16);
1239 if ((reg >= codec->reg_cache_size) || (reg % step))
1240 return -EINVAL;
1241 while (*start == ' ')
1242 start++;
1243 if (strict_strtoul(start, 16, &value))
1244 return -EINVAL;
1245 codec->write(codec, reg, value);
1246 return buf_size;
1247 }
1248
1249 static const struct file_operations codec_reg_fops = {
1250 .open = codec_reg_open_file,
1251 .read = codec_reg_read_file,
1252 .write = codec_reg_write_file,
1253 };
1254
1255 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
1256 {
1257 char codec_root[128];
1258
1259 snprintf(codec_root, sizeof(codec_root),
1260 "%s-%s", dev_name(codec->socdev->dev), codec->name);
1261
1262 codec->debugfs_codec_root = debugfs_create_dir(codec_root,
1263 debugfs_root);
1264 if (!codec->debugfs_codec_root) {
1265 printk(KERN_WARNING
1266 "ASoC: Failed to create codec debugfs directory\n");
1267 return;
1268 }
1269
1270 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
1271 codec->debugfs_codec_root,
1272 codec, &codec_reg_fops);
1273 if (!codec->debugfs_reg)
1274 printk(KERN_WARNING
1275 "ASoC: Failed to create codec register debugfs file\n");
1276
1277 codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0744,
1278 codec->debugfs_codec_root,
1279 &codec->pop_time);
1280 if (!codec->debugfs_pop_time)
1281 printk(KERN_WARNING
1282 "Failed to create pop time debugfs file\n");
1283
1284 codec->debugfs_dapm = debugfs_create_dir("dapm",
1285 codec->debugfs_codec_root);
1286 if (!codec->debugfs_dapm)
1287 printk(KERN_WARNING
1288 "Failed to create DAPM debugfs directory\n");
1289
1290 snd_soc_dapm_debugfs_init(codec);
1291 }
1292
1293 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
1294 {
1295 debugfs_remove_recursive(codec->debugfs_codec_root);
1296 }
1297
1298 #else
1299
1300 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
1301 {
1302 }
1303
1304 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
1305 {
1306 }
1307 #endif
1308
1309 /**
1310 * snd_soc_new_ac97_codec - initailise AC97 device
1311 * @codec: audio codec
1312 * @ops: AC97 bus operations
1313 * @num: AC97 codec number
1314 *
1315 * Initialises AC97 codec resources for use by ad-hoc devices only.
1316 */
1317 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1318 struct snd_ac97_bus_ops *ops, int num)
1319 {
1320 mutex_lock(&codec->mutex);
1321
1322 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1323 if (codec->ac97 == NULL) {
1324 mutex_unlock(&codec->mutex);
1325 return -ENOMEM;
1326 }
1327
1328 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1329 if (codec->ac97->bus == NULL) {
1330 kfree(codec->ac97);
1331 codec->ac97 = NULL;
1332 mutex_unlock(&codec->mutex);
1333 return -ENOMEM;
1334 }
1335
1336 codec->ac97->bus->ops = ops;
1337 codec->ac97->num = num;
1338 mutex_unlock(&codec->mutex);
1339 return 0;
1340 }
1341 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1342
1343 /**
1344 * snd_soc_free_ac97_codec - free AC97 codec device
1345 * @codec: audio codec
1346 *
1347 * Frees AC97 codec device resources.
1348 */
1349 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1350 {
1351 mutex_lock(&codec->mutex);
1352 kfree(codec->ac97->bus);
1353 kfree(codec->ac97);
1354 codec->ac97 = NULL;
1355 mutex_unlock(&codec->mutex);
1356 }
1357 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1358
1359 /**
1360 * snd_soc_update_bits - update codec register bits
1361 * @codec: audio codec
1362 * @reg: codec register
1363 * @mask: register mask
1364 * @value: new value
1365 *
1366 * Writes new register value.
1367 *
1368 * Returns 1 for change else 0.
1369 */
1370 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1371 unsigned int mask, unsigned int value)
1372 {
1373 int change;
1374 unsigned int old, new;
1375
1376 mutex_lock(&io_mutex);
1377 old = snd_soc_read(codec, reg);
1378 new = (old & ~mask) | value;
1379 change = old != new;
1380 if (change)
1381 snd_soc_write(codec, reg, new);
1382
1383 mutex_unlock(&io_mutex);
1384 return change;
1385 }
1386 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1387
1388 /**
1389 * snd_soc_test_bits - test register for change
1390 * @codec: audio codec
1391 * @reg: codec register
1392 * @mask: register mask
1393 * @value: new value
1394 *
1395 * Tests a register with a new value and checks if the new value is
1396 * different from the old value.
1397 *
1398 * Returns 1 for change else 0.
1399 */
1400 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1401 unsigned int mask, unsigned int value)
1402 {
1403 int change;
1404 unsigned int old, new;
1405
1406 mutex_lock(&io_mutex);
1407 old = snd_soc_read(codec, reg);
1408 new = (old & ~mask) | value;
1409 change = old != new;
1410 mutex_unlock(&io_mutex);
1411
1412 return change;
1413 }
1414 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1415
1416 /**
1417 * snd_soc_new_pcms - create new sound card and pcms
1418 * @socdev: the SoC audio device
1419 * @idx: ALSA card index
1420 * @xid: card identification
1421 *
1422 * Create a new sound card based upon the codec and interface pcms.
1423 *
1424 * Returns 0 for success, else error.
1425 */
1426 int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
1427 {
1428 struct snd_soc_card *card = socdev->card;
1429 struct snd_soc_codec *codec = card->codec;
1430 int ret, i;
1431
1432 mutex_lock(&codec->mutex);
1433
1434 /* register a sound card */
1435 ret = snd_card_create(idx, xid, codec->owner, 0, &codec->card);
1436 if (ret < 0) {
1437 printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
1438 codec->name);
1439 mutex_unlock(&codec->mutex);
1440 return ret;
1441 }
1442
1443 codec->socdev = socdev;
1444 codec->card->dev = socdev->dev;
1445 codec->card->private_data = codec;
1446 strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
1447
1448 /* create the pcms */
1449 for (i = 0; i < card->num_links; i++) {
1450 ret = soc_new_pcm(socdev, &card->dai_link[i], i);
1451 if (ret < 0) {
1452 printk(KERN_ERR "asoc: can't create pcm %s\n",
1453 card->dai_link[i].stream_name);
1454 mutex_unlock(&codec->mutex);
1455 return ret;
1456 }
1457 }
1458
1459 mutex_unlock(&codec->mutex);
1460 return ret;
1461 }
1462 EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
1463
1464 /**
1465 * snd_soc_init_card - register sound card
1466 * @socdev: the SoC audio device
1467 *
1468 * Register a SoC sound card. Also registers an AC97 device if the
1469 * codec is AC97 for ad hoc devices.
1470 *
1471 * Returns 0 for success, else error.
1472 */
1473 int snd_soc_init_card(struct snd_soc_device *socdev)
1474 {
1475 struct snd_soc_card *card = socdev->card;
1476 struct snd_soc_codec *codec = card->codec;
1477 int ret = 0, i, ac97 = 0, err = 0;
1478
1479 for (i = 0; i < card->num_links; i++) {
1480 if (card->dai_link[i].init) {
1481 err = card->dai_link[i].init(codec);
1482 if (err < 0) {
1483 printk(KERN_ERR "asoc: failed to init %s\n",
1484 card->dai_link[i].stream_name);
1485 continue;
1486 }
1487 }
1488 if (card->dai_link[i].codec_dai->ac97_control) {
1489 ac97 = 1;
1490 snd_ac97_dev_add_pdata(codec->ac97,
1491 card->dai_link[i].cpu_dai->ac97_pdata);
1492 }
1493 }
1494 snprintf(codec->card->shortname, sizeof(codec->card->shortname),
1495 "%s", card->name);
1496 snprintf(codec->card->longname, sizeof(codec->card->longname),
1497 "%s (%s)", card->name, codec->name);
1498
1499 /* Make sure all DAPM widgets are instantiated */
1500 snd_soc_dapm_new_widgets(codec);
1501
1502 ret = snd_card_register(codec->card);
1503 if (ret < 0) {
1504 printk(KERN_ERR "asoc: failed to register soundcard for %s\n",
1505 codec->name);
1506 goto out;
1507 }
1508
1509 mutex_lock(&codec->mutex);
1510 #ifdef CONFIG_SND_SOC_AC97_BUS
1511 /* Only instantiate AC97 if not already done by the adaptor
1512 * for the generic AC97 subsystem.
1513 */
1514 if (ac97 && strcmp(codec->name, "AC97") != 0) {
1515 ret = soc_ac97_dev_register(codec);
1516 if (ret < 0) {
1517 printk(KERN_ERR "asoc: AC97 device register failed\n");
1518 snd_card_free(codec->card);
1519 mutex_unlock(&codec->mutex);
1520 goto out;
1521 }
1522 }
1523 #endif
1524
1525 err = snd_soc_dapm_sys_add(socdev->dev);
1526 if (err < 0)
1527 printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
1528
1529 err = device_create_file(socdev->dev, &dev_attr_codec_reg);
1530 if (err < 0)
1531 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1532
1533 soc_init_codec_debugfs(codec);
1534 mutex_unlock(&codec->mutex);
1535
1536 out:
1537 return ret;
1538 }
1539 EXPORT_SYMBOL_GPL(snd_soc_init_card);
1540
1541 /**
1542 * snd_soc_free_pcms - free sound card and pcms
1543 * @socdev: the SoC audio device
1544 *
1545 * Frees sound card and pcms associated with the socdev.
1546 * Also unregister the codec if it is an AC97 device.
1547 */
1548 void snd_soc_free_pcms(struct snd_soc_device *socdev)
1549 {
1550 struct snd_soc_codec *codec = socdev->card->codec;
1551 #ifdef CONFIG_SND_SOC_AC97_BUS
1552 struct snd_soc_dai *codec_dai;
1553 int i;
1554 #endif
1555
1556 mutex_lock(&codec->mutex);
1557 soc_cleanup_codec_debugfs(codec);
1558 #ifdef CONFIG_SND_SOC_AC97_BUS
1559 for (i = 0; i < codec->num_dai; i++) {
1560 codec_dai = &codec->dai[i];
1561 if (codec_dai->ac97_control && codec->ac97 &&
1562 strcmp(codec->name, "AC97") != 0) {
1563 soc_ac97_dev_unregister(codec);
1564 goto free_card;
1565 }
1566 }
1567 free_card:
1568 #endif
1569
1570 if (codec->card)
1571 snd_card_free(codec->card);
1572 device_remove_file(socdev->dev, &dev_attr_codec_reg);
1573 mutex_unlock(&codec->mutex);
1574 }
1575 EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
1576
1577 /**
1578 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1579 * @substream: the pcm substream
1580 * @hw: the hardware parameters
1581 *
1582 * Sets the substream runtime hardware parameters.
1583 */
1584 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1585 const struct snd_pcm_hardware *hw)
1586 {
1587 struct snd_pcm_runtime *runtime = substream->runtime;
1588 runtime->hw.info = hw->info;
1589 runtime->hw.formats = hw->formats;
1590 runtime->hw.period_bytes_min = hw->period_bytes_min;
1591 runtime->hw.period_bytes_max = hw->period_bytes_max;
1592 runtime->hw.periods_min = hw->periods_min;
1593 runtime->hw.periods_max = hw->periods_max;
1594 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1595 runtime->hw.fifo_size = hw->fifo_size;
1596 return 0;
1597 }
1598 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1599
1600 /**
1601 * snd_soc_cnew - create new control
1602 * @_template: control template
1603 * @data: control private data
1604 * @long_name: control long name
1605 *
1606 * Create a new mixer control from a template control.
1607 *
1608 * Returns 0 for success, else error.
1609 */
1610 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1611 void *data, char *long_name)
1612 {
1613 struct snd_kcontrol_new template;
1614
1615 memcpy(&template, _template, sizeof(template));
1616 if (long_name)
1617 template.name = long_name;
1618 template.index = 0;
1619
1620 return snd_ctl_new1(&template, data);
1621 }
1622 EXPORT_SYMBOL_GPL(snd_soc_cnew);
1623
1624 /**
1625 * snd_soc_add_controls - add an array of controls to a codec.
1626 * Convienience function to add a list of controls. Many codecs were
1627 * duplicating this code.
1628 *
1629 * @codec: codec to add controls to
1630 * @controls: array of controls to add
1631 * @num_controls: number of elements in the array
1632 *
1633 * Return 0 for success, else error.
1634 */
1635 int snd_soc_add_controls(struct snd_soc_codec *codec,
1636 const struct snd_kcontrol_new *controls, int num_controls)
1637 {
1638 struct snd_card *card = codec->card;
1639 int err, i;
1640
1641 for (i = 0; i < num_controls; i++) {
1642 const struct snd_kcontrol_new *control = &controls[i];
1643 err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
1644 if (err < 0) {
1645 dev_err(codec->dev, "%s: Failed to add %s\n",
1646 codec->name, control->name);
1647 return err;
1648 }
1649 }
1650
1651 return 0;
1652 }
1653 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
1654
1655 /**
1656 * snd_soc_info_enum_double - enumerated double mixer info callback
1657 * @kcontrol: mixer control
1658 * @uinfo: control element information
1659 *
1660 * Callback to provide information about a double enumerated
1661 * mixer control.
1662 *
1663 * Returns 0 for success.
1664 */
1665 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1666 struct snd_ctl_elem_info *uinfo)
1667 {
1668 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1669
1670 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1671 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1672 uinfo->value.enumerated.items = e->max;
1673
1674 if (uinfo->value.enumerated.item > e->max - 1)
1675 uinfo->value.enumerated.item = e->max - 1;
1676 strcpy(uinfo->value.enumerated.name,
1677 e->texts[uinfo->value.enumerated.item]);
1678 return 0;
1679 }
1680 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1681
1682 /**
1683 * snd_soc_get_enum_double - enumerated double mixer get callback
1684 * @kcontrol: mixer control
1685 * @ucontrol: control element information
1686 *
1687 * Callback to get the value of a double enumerated mixer.
1688 *
1689 * Returns 0 for success.
1690 */
1691 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1692 struct snd_ctl_elem_value *ucontrol)
1693 {
1694 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1695 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1696 unsigned int val, bitmask;
1697
1698 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1699 ;
1700 val = snd_soc_read(codec, e->reg);
1701 ucontrol->value.enumerated.item[0]
1702 = (val >> e->shift_l) & (bitmask - 1);
1703 if (e->shift_l != e->shift_r)
1704 ucontrol->value.enumerated.item[1] =
1705 (val >> e->shift_r) & (bitmask - 1);
1706
1707 return 0;
1708 }
1709 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1710
1711 /**
1712 * snd_soc_put_enum_double - enumerated double mixer put callback
1713 * @kcontrol: mixer control
1714 * @ucontrol: control element information
1715 *
1716 * Callback to set the value of a double enumerated mixer.
1717 *
1718 * Returns 0 for success.
1719 */
1720 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1721 struct snd_ctl_elem_value *ucontrol)
1722 {
1723 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1724 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1725 unsigned int val;
1726 unsigned int mask, bitmask;
1727
1728 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1729 ;
1730 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1731 return -EINVAL;
1732 val = ucontrol->value.enumerated.item[0] << e->shift_l;
1733 mask = (bitmask - 1) << e->shift_l;
1734 if (e->shift_l != e->shift_r) {
1735 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1736 return -EINVAL;
1737 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1738 mask |= (bitmask - 1) << e->shift_r;
1739 }
1740
1741 return snd_soc_update_bits(codec, e->reg, mask, val);
1742 }
1743 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
1744
1745 /**
1746 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
1747 * @kcontrol: mixer control
1748 * @ucontrol: control element information
1749 *
1750 * Callback to get the value of a double semi enumerated mixer.
1751 *
1752 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1753 * used for handling bitfield coded enumeration for example.
1754 *
1755 * Returns 0 for success.
1756 */
1757 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
1758 struct snd_ctl_elem_value *ucontrol)
1759 {
1760 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1761 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1762 unsigned int reg_val, val, mux;
1763
1764 reg_val = snd_soc_read(codec, e->reg);
1765 val = (reg_val >> e->shift_l) & e->mask;
1766 for (mux = 0; mux < e->max; mux++) {
1767 if (val == e->values[mux])
1768 break;
1769 }
1770 ucontrol->value.enumerated.item[0] = mux;
1771 if (e->shift_l != e->shift_r) {
1772 val = (reg_val >> e->shift_r) & e->mask;
1773 for (mux = 0; mux < e->max; mux++) {
1774 if (val == e->values[mux])
1775 break;
1776 }
1777 ucontrol->value.enumerated.item[1] = mux;
1778 }
1779
1780 return 0;
1781 }
1782 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
1783
1784 /**
1785 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
1786 * @kcontrol: mixer control
1787 * @ucontrol: control element information
1788 *
1789 * Callback to set the value of a double semi enumerated mixer.
1790 *
1791 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1792 * used for handling bitfield coded enumeration for example.
1793 *
1794 * Returns 0 for success.
1795 */
1796 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
1797 struct snd_ctl_elem_value *ucontrol)
1798 {
1799 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1800 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1801 unsigned int val;
1802 unsigned int mask;
1803
1804 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1805 return -EINVAL;
1806 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
1807 mask = e->mask << e->shift_l;
1808 if (e->shift_l != e->shift_r) {
1809 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1810 return -EINVAL;
1811 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
1812 mask |= e->mask << e->shift_r;
1813 }
1814
1815 return snd_soc_update_bits(codec, e->reg, mask, val);
1816 }
1817 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
1818
1819 /**
1820 * snd_soc_info_enum_ext - external enumerated single mixer info callback
1821 * @kcontrol: mixer control
1822 * @uinfo: control element information
1823 *
1824 * Callback to provide information about an external enumerated
1825 * single mixer.
1826 *
1827 * Returns 0 for success.
1828 */
1829 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
1830 struct snd_ctl_elem_info *uinfo)
1831 {
1832 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1833
1834 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1835 uinfo->count = 1;
1836 uinfo->value.enumerated.items = e->max;
1837
1838 if (uinfo->value.enumerated.item > e->max - 1)
1839 uinfo->value.enumerated.item = e->max - 1;
1840 strcpy(uinfo->value.enumerated.name,
1841 e->texts[uinfo->value.enumerated.item]);
1842 return 0;
1843 }
1844 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
1845
1846 /**
1847 * snd_soc_info_volsw_ext - external single mixer info callback
1848 * @kcontrol: mixer control
1849 * @uinfo: control element information
1850 *
1851 * Callback to provide information about a single external mixer control.
1852 *
1853 * Returns 0 for success.
1854 */
1855 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
1856 struct snd_ctl_elem_info *uinfo)
1857 {
1858 int max = kcontrol->private_value;
1859
1860 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1861 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1862 else
1863 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1864
1865 uinfo->count = 1;
1866 uinfo->value.integer.min = 0;
1867 uinfo->value.integer.max = max;
1868 return 0;
1869 }
1870 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
1871
1872 /**
1873 * snd_soc_info_volsw - single mixer info callback
1874 * @kcontrol: mixer control
1875 * @uinfo: control element information
1876 *
1877 * Callback to provide information about a single mixer control.
1878 *
1879 * Returns 0 for success.
1880 */
1881 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
1882 struct snd_ctl_elem_info *uinfo)
1883 {
1884 struct soc_mixer_control *mc =
1885 (struct soc_mixer_control *)kcontrol->private_value;
1886 int max = mc->max;
1887 unsigned int shift = mc->shift;
1888 unsigned int rshift = mc->rshift;
1889
1890 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1891 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1892 else
1893 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1894
1895 uinfo->count = shift == rshift ? 1 : 2;
1896 uinfo->value.integer.min = 0;
1897 uinfo->value.integer.max = max;
1898 return 0;
1899 }
1900 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
1901
1902 /**
1903 * snd_soc_get_volsw - single mixer get callback
1904 * @kcontrol: mixer control
1905 * @ucontrol: control element information
1906 *
1907 * Callback to get the value of a single mixer control.
1908 *
1909 * Returns 0 for success.
1910 */
1911 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
1912 struct snd_ctl_elem_value *ucontrol)
1913 {
1914 struct soc_mixer_control *mc =
1915 (struct soc_mixer_control *)kcontrol->private_value;
1916 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1917 unsigned int reg = mc->reg;
1918 unsigned int shift = mc->shift;
1919 unsigned int rshift = mc->rshift;
1920 int max = mc->max;
1921 unsigned int mask = (1 << fls(max)) - 1;
1922 unsigned int invert = mc->invert;
1923
1924 ucontrol->value.integer.value[0] =
1925 (snd_soc_read(codec, reg) >> shift) & mask;
1926 if (shift != rshift)
1927 ucontrol->value.integer.value[1] =
1928 (snd_soc_read(codec, reg) >> rshift) & mask;
1929 if (invert) {
1930 ucontrol->value.integer.value[0] =
1931 max - ucontrol->value.integer.value[0];
1932 if (shift != rshift)
1933 ucontrol->value.integer.value[1] =
1934 max - ucontrol->value.integer.value[1];
1935 }
1936
1937 return 0;
1938 }
1939 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
1940
1941 /**
1942 * snd_soc_put_volsw - single mixer put callback
1943 * @kcontrol: mixer control
1944 * @ucontrol: control element information
1945 *
1946 * Callback to set the value of a single mixer control.
1947 *
1948 * Returns 0 for success.
1949 */
1950 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
1951 struct snd_ctl_elem_value *ucontrol)
1952 {
1953 struct soc_mixer_control *mc =
1954 (struct soc_mixer_control *)kcontrol->private_value;
1955 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1956 unsigned int reg = mc->reg;
1957 unsigned int shift = mc->shift;
1958 unsigned int rshift = mc->rshift;
1959 int max = mc->max;
1960 unsigned int mask = (1 << fls(max)) - 1;
1961 unsigned int invert = mc->invert;
1962 unsigned int val, val2, val_mask;
1963
1964 val = (ucontrol->value.integer.value[0] & mask);
1965 if (invert)
1966 val = max - val;
1967 val_mask = mask << shift;
1968 val = val << shift;
1969 if (shift != rshift) {
1970 val2 = (ucontrol->value.integer.value[1] & mask);
1971 if (invert)
1972 val2 = max - val2;
1973 val_mask |= mask << rshift;
1974 val |= val2 << rshift;
1975 }
1976 return snd_soc_update_bits(codec, reg, val_mask, val);
1977 }
1978 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
1979
1980 /**
1981 * snd_soc_info_volsw_2r - double mixer info callback
1982 * @kcontrol: mixer control
1983 * @uinfo: control element information
1984 *
1985 * Callback to provide information about a double mixer control that
1986 * spans 2 codec registers.
1987 *
1988 * Returns 0 for success.
1989 */
1990 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
1991 struct snd_ctl_elem_info *uinfo)
1992 {
1993 struct soc_mixer_control *mc =
1994 (struct soc_mixer_control *)kcontrol->private_value;
1995 int max = mc->max;
1996
1997 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1998 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1999 else
2000 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2001
2002 uinfo->count = 2;
2003 uinfo->value.integer.min = 0;
2004 uinfo->value.integer.max = max;
2005 return 0;
2006 }
2007 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2008
2009 /**
2010 * snd_soc_get_volsw_2r - double mixer get callback
2011 * @kcontrol: mixer control
2012 * @ucontrol: control element information
2013 *
2014 * Callback to get the value of a double mixer control that spans 2 registers.
2015 *
2016 * Returns 0 for success.
2017 */
2018 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2019 struct snd_ctl_elem_value *ucontrol)
2020 {
2021 struct soc_mixer_control *mc =
2022 (struct soc_mixer_control *)kcontrol->private_value;
2023 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2024 unsigned int reg = mc->reg;
2025 unsigned int reg2 = mc->rreg;
2026 unsigned int shift = mc->shift;
2027 int max = mc->max;
2028 unsigned int mask = (1 << fls(max)) - 1;
2029 unsigned int invert = mc->invert;
2030
2031 ucontrol->value.integer.value[0] =
2032 (snd_soc_read(codec, reg) >> shift) & mask;
2033 ucontrol->value.integer.value[1] =
2034 (snd_soc_read(codec, reg2) >> shift) & mask;
2035 if (invert) {
2036 ucontrol->value.integer.value[0] =
2037 max - ucontrol->value.integer.value[0];
2038 ucontrol->value.integer.value[1] =
2039 max - ucontrol->value.integer.value[1];
2040 }
2041
2042 return 0;
2043 }
2044 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2045
2046 /**
2047 * snd_soc_put_volsw_2r - double mixer set callback
2048 * @kcontrol: mixer control
2049 * @ucontrol: control element information
2050 *
2051 * Callback to set the value of a double mixer control that spans 2 registers.
2052 *
2053 * Returns 0 for success.
2054 */
2055 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2056 struct snd_ctl_elem_value *ucontrol)
2057 {
2058 struct soc_mixer_control *mc =
2059 (struct soc_mixer_control *)kcontrol->private_value;
2060 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2061 unsigned int reg = mc->reg;
2062 unsigned int reg2 = mc->rreg;
2063 unsigned int shift = mc->shift;
2064 int max = mc->max;
2065 unsigned int mask = (1 << fls(max)) - 1;
2066 unsigned int invert = mc->invert;
2067 int err;
2068 unsigned int val, val2, val_mask;
2069
2070 val_mask = mask << shift;
2071 val = (ucontrol->value.integer.value[0] & mask);
2072 val2 = (ucontrol->value.integer.value[1] & mask);
2073
2074 if (invert) {
2075 val = max - val;
2076 val2 = max - val2;
2077 }
2078
2079 val = val << shift;
2080 val2 = val2 << shift;
2081
2082 err = snd_soc_update_bits(codec, reg, val_mask, val);
2083 if (err < 0)
2084 return err;
2085
2086 err = snd_soc_update_bits(codec, reg2, val_mask, val2);
2087 return err;
2088 }
2089 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2090
2091 /**
2092 * snd_soc_info_volsw_s8 - signed mixer info callback
2093 * @kcontrol: mixer control
2094 * @uinfo: control element information
2095 *
2096 * Callback to provide information about a signed mixer control.
2097 *
2098 * Returns 0 for success.
2099 */
2100 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2101 struct snd_ctl_elem_info *uinfo)
2102 {
2103 struct soc_mixer_control *mc =
2104 (struct soc_mixer_control *)kcontrol->private_value;
2105 int max = mc->max;
2106 int min = mc->min;
2107
2108 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2109 uinfo->count = 2;
2110 uinfo->value.integer.min = 0;
2111 uinfo->value.integer.max = max-min;
2112 return 0;
2113 }
2114 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2115
2116 /**
2117 * snd_soc_get_volsw_s8 - signed mixer get callback
2118 * @kcontrol: mixer control
2119 * @ucontrol: control element information
2120 *
2121 * Callback to get the value of a signed mixer control.
2122 *
2123 * Returns 0 for success.
2124 */
2125 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2126 struct snd_ctl_elem_value *ucontrol)
2127 {
2128 struct soc_mixer_control *mc =
2129 (struct soc_mixer_control *)kcontrol->private_value;
2130 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2131 unsigned int reg = mc->reg;
2132 int min = mc->min;
2133 int val = snd_soc_read(codec, reg);
2134
2135 ucontrol->value.integer.value[0] =
2136 ((signed char)(val & 0xff))-min;
2137 ucontrol->value.integer.value[1] =
2138 ((signed char)((val >> 8) & 0xff))-min;
2139 return 0;
2140 }
2141 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2142
2143 /**
2144 * snd_soc_put_volsw_sgn - signed mixer put callback
2145 * @kcontrol: mixer control
2146 * @ucontrol: control element information
2147 *
2148 * Callback to set the value of a signed mixer control.
2149 *
2150 * Returns 0 for success.
2151 */
2152 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2153 struct snd_ctl_elem_value *ucontrol)
2154 {
2155 struct soc_mixer_control *mc =
2156 (struct soc_mixer_control *)kcontrol->private_value;
2157 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2158 unsigned int reg = mc->reg;
2159 int min = mc->min;
2160 unsigned int val;
2161
2162 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2163 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2164
2165 return snd_soc_update_bits(codec, reg, 0xffff, val);
2166 }
2167 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2168
2169 /**
2170 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2171 * @dai: DAI
2172 * @clk_id: DAI specific clock ID
2173 * @freq: new clock frequency in Hz
2174 * @dir: new clock direction - input/output.
2175 *
2176 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2177 */
2178 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2179 unsigned int freq, int dir)
2180 {
2181 if (dai->ops && dai->ops->set_sysclk)
2182 return dai->ops->set_sysclk(dai, clk_id, freq, dir);
2183 else
2184 return -EINVAL;
2185 }
2186 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2187
2188 /**
2189 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2190 * @dai: DAI
2191 * @div_id: DAI specific clock divider ID
2192 * @div: new clock divisor.
2193 *
2194 * Configures the clock dividers. This is used to derive the best DAI bit and
2195 * frame clocks from the system or master clock. It's best to set the DAI bit
2196 * and frame clocks as low as possible to save system power.
2197 */
2198 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2199 int div_id, int div)
2200 {
2201 if (dai->ops && dai->ops->set_clkdiv)
2202 return dai->ops->set_clkdiv(dai, div_id, div);
2203 else
2204 return -EINVAL;
2205 }
2206 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2207
2208 /**
2209 * snd_soc_dai_set_pll - configure DAI PLL.
2210 * @dai: DAI
2211 * @pll_id: DAI specific PLL ID
2212 * @source: DAI specific source for the PLL
2213 * @freq_in: PLL input clock frequency in Hz
2214 * @freq_out: requested PLL output clock frequency in Hz
2215 *
2216 * Configures and enables PLL to generate output clock based on input clock.
2217 */
2218 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
2219 unsigned int freq_in, unsigned int freq_out)
2220 {
2221 if (dai->ops && dai->ops->set_pll)
2222 return dai->ops->set_pll(dai, pll_id, source,
2223 freq_in, freq_out);
2224 else
2225 return -EINVAL;
2226 }
2227 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2228
2229 /**
2230 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2231 * @dai: DAI
2232 * @fmt: SND_SOC_DAIFMT_ format value.
2233 *
2234 * Configures the DAI hardware format and clocking.
2235 */
2236 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2237 {
2238 if (dai->ops && dai->ops->set_fmt)
2239 return dai->ops->set_fmt(dai, fmt);
2240 else
2241 return -EINVAL;
2242 }
2243 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2244
2245 /**
2246 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2247 * @dai: DAI
2248 * @tx_mask: bitmask representing active TX slots.
2249 * @rx_mask: bitmask representing active RX slots.
2250 * @slots: Number of slots in use.
2251 * @slot_width: Width in bits for each slot.
2252 *
2253 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2254 * specific.
2255 */
2256 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2257 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
2258 {
2259 if (dai->ops && dai->ops->set_tdm_slot)
2260 return dai->ops->set_tdm_slot(dai, tx_mask, rx_mask,
2261 slots, slot_width);
2262 else
2263 return -EINVAL;
2264 }
2265 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2266
2267 /**
2268 * snd_soc_dai_set_channel_map - configure DAI audio channel map
2269 * @dai: DAI
2270 * @tx_num: how many TX channels
2271 * @tx_slot: pointer to an array which imply the TX slot number channel
2272 * 0~num-1 uses
2273 * @rx_num: how many RX channels
2274 * @rx_slot: pointer to an array which imply the RX slot number channel
2275 * 0~num-1 uses
2276 *
2277 * configure the relationship between channel number and TDM slot number.
2278 */
2279 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
2280 unsigned int tx_num, unsigned int *tx_slot,
2281 unsigned int rx_num, unsigned int *rx_slot)
2282 {
2283 if (dai->ops && dai->ops->set_channel_map)
2284 return dai->ops->set_channel_map(dai, tx_num, tx_slot,
2285 rx_num, rx_slot);
2286 else
2287 return -EINVAL;
2288 }
2289 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
2290
2291 /**
2292 * snd_soc_dai_set_tristate - configure DAI system or master clock.
2293 * @dai: DAI
2294 * @tristate: tristate enable
2295 *
2296 * Tristates the DAI so that others can use it.
2297 */
2298 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2299 {
2300 if (dai->ops && dai->ops->set_tristate)
2301 return dai->ops->set_tristate(dai, tristate);
2302 else
2303 return -EINVAL;
2304 }
2305 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2306
2307 /**
2308 * snd_soc_dai_digital_mute - configure DAI system or master clock.
2309 * @dai: DAI
2310 * @mute: mute enable
2311 *
2312 * Mutes the DAI DAC.
2313 */
2314 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2315 {
2316 if (dai->ops && dai->ops->digital_mute)
2317 return dai->ops->digital_mute(dai, mute);
2318 else
2319 return -EINVAL;
2320 }
2321 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2322
2323 /**
2324 * snd_soc_register_card - Register a card with the ASoC core
2325 *
2326 * @card: Card to register
2327 *
2328 * Note that currently this is an internal only function: it will be
2329 * exposed to machine drivers after further backporting of ASoC v2
2330 * registration APIs.
2331 */
2332 static int snd_soc_register_card(struct snd_soc_card *card)
2333 {
2334 if (!card->name || !card->dev)
2335 return -EINVAL;
2336
2337 INIT_LIST_HEAD(&card->list);
2338 card->instantiated = 0;
2339
2340 mutex_lock(&client_mutex);
2341 list_add(&card->list, &card_list);
2342 snd_soc_instantiate_cards();
2343 mutex_unlock(&client_mutex);
2344
2345 dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2346
2347 return 0;
2348 }
2349
2350 /**
2351 * snd_soc_unregister_card - Unregister a card with the ASoC core
2352 *
2353 * @card: Card to unregister
2354 *
2355 * Note that currently this is an internal only function: it will be
2356 * exposed to machine drivers after further backporting of ASoC v2
2357 * registration APIs.
2358 */
2359 static int snd_soc_unregister_card(struct snd_soc_card *card)
2360 {
2361 mutex_lock(&client_mutex);
2362 list_del(&card->list);
2363 mutex_unlock(&client_mutex);
2364
2365 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2366
2367 return 0;
2368 }
2369
2370 static struct snd_soc_dai_ops null_dai_ops = {
2371 };
2372
2373 /**
2374 * snd_soc_register_dai - Register a DAI with the ASoC core
2375 *
2376 * @dai: DAI to register
2377 */
2378 int snd_soc_register_dai(struct snd_soc_dai *dai)
2379 {
2380 if (!dai->name)
2381 return -EINVAL;
2382
2383 /* The device should become mandatory over time */
2384 if (!dai->dev)
2385 printk(KERN_WARNING "No device for DAI %s\n", dai->name);
2386
2387 if (!dai->ops)
2388 dai->ops = &null_dai_ops;
2389
2390 INIT_LIST_HEAD(&dai->list);
2391
2392 mutex_lock(&client_mutex);
2393 list_add(&dai->list, &dai_list);
2394 snd_soc_instantiate_cards();
2395 mutex_unlock(&client_mutex);
2396
2397 pr_debug("Registered DAI '%s'\n", dai->name);
2398
2399 return 0;
2400 }
2401 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
2402
2403 /**
2404 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
2405 *
2406 * @dai: DAI to unregister
2407 */
2408 void snd_soc_unregister_dai(struct snd_soc_dai *dai)
2409 {
2410 mutex_lock(&client_mutex);
2411 list_del(&dai->list);
2412 mutex_unlock(&client_mutex);
2413
2414 pr_debug("Unregistered DAI '%s'\n", dai->name);
2415 }
2416 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
2417
2418 /**
2419 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
2420 *
2421 * @dai: Array of DAIs to register
2422 * @count: Number of DAIs
2423 */
2424 int snd_soc_register_dais(struct snd_soc_dai *dai, size_t count)
2425 {
2426 int i, ret;
2427
2428 for (i = 0; i < count; i++) {
2429 ret = snd_soc_register_dai(&dai[i]);
2430 if (ret != 0)
2431 goto err;
2432 }
2433
2434 return 0;
2435
2436 err:
2437 for (i--; i >= 0; i--)
2438 snd_soc_unregister_dai(&dai[i]);
2439
2440 return ret;
2441 }
2442 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
2443
2444 /**
2445 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
2446 *
2447 * @dai: Array of DAIs to unregister
2448 * @count: Number of DAIs
2449 */
2450 void snd_soc_unregister_dais(struct snd_soc_dai *dai, size_t count)
2451 {
2452 int i;
2453
2454 for (i = 0; i < count; i++)
2455 snd_soc_unregister_dai(&dai[i]);
2456 }
2457 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
2458
2459 /**
2460 * snd_soc_register_platform - Register a platform with the ASoC core
2461 *
2462 * @platform: platform to register
2463 */
2464 int snd_soc_register_platform(struct snd_soc_platform *platform)
2465 {
2466 if (!platform->name)
2467 return -EINVAL;
2468
2469 INIT_LIST_HEAD(&platform->list);
2470
2471 mutex_lock(&client_mutex);
2472 list_add(&platform->list, &platform_list);
2473 snd_soc_instantiate_cards();
2474 mutex_unlock(&client_mutex);
2475
2476 pr_debug("Registered platform '%s'\n", platform->name);
2477
2478 return 0;
2479 }
2480 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
2481
2482 /**
2483 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
2484 *
2485 * @platform: platform to unregister
2486 */
2487 void snd_soc_unregister_platform(struct snd_soc_platform *platform)
2488 {
2489 mutex_lock(&client_mutex);
2490 list_del(&platform->list);
2491 mutex_unlock(&client_mutex);
2492
2493 pr_debug("Unregistered platform '%s'\n", platform->name);
2494 }
2495 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
2496
2497 static u64 codec_format_map[] = {
2498 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
2499 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
2500 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
2501 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
2502 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
2503 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
2504 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
2505 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
2506 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
2507 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
2508 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
2509 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
2510 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
2511 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
2512 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
2513 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
2514 };
2515
2516 /* Fix up the DAI formats for endianness: codecs don't actually see
2517 * the endianness of the data but we're using the CPU format
2518 * definitions which do need to include endianness so we ensure that
2519 * codec DAIs always have both big and little endian variants set.
2520 */
2521 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
2522 {
2523 int i;
2524
2525 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
2526 if (stream->formats & codec_format_map[i])
2527 stream->formats |= codec_format_map[i];
2528 }
2529
2530 /**
2531 * snd_soc_register_codec - Register a codec with the ASoC core
2532 *
2533 * @codec: codec to register
2534 */
2535 int snd_soc_register_codec(struct snd_soc_codec *codec)
2536 {
2537 int i;
2538
2539 if (!codec->name)
2540 return -EINVAL;
2541
2542 /* The device should become mandatory over time */
2543 if (!codec->dev)
2544 printk(KERN_WARNING "No device for codec %s\n", codec->name);
2545
2546 INIT_LIST_HEAD(&codec->list);
2547
2548 for (i = 0; i < codec->num_dai; i++) {
2549 fixup_codec_formats(&codec->dai[i].playback);
2550 fixup_codec_formats(&codec->dai[i].capture);
2551 }
2552
2553 mutex_lock(&client_mutex);
2554 list_add(&codec->list, &codec_list);
2555 snd_soc_instantiate_cards();
2556 mutex_unlock(&client_mutex);
2557
2558 pr_debug("Registered codec '%s'\n", codec->name);
2559
2560 return 0;
2561 }
2562 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
2563
2564 /**
2565 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
2566 *
2567 * @codec: codec to unregister
2568 */
2569 void snd_soc_unregister_codec(struct snd_soc_codec *codec)
2570 {
2571 mutex_lock(&client_mutex);
2572 list_del(&codec->list);
2573 mutex_unlock(&client_mutex);
2574
2575 pr_debug("Unregistered codec '%s'\n", codec->name);
2576 }
2577 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
2578
2579 static int __init snd_soc_init(void)
2580 {
2581 #ifdef CONFIG_DEBUG_FS
2582 debugfs_root = debugfs_create_dir("asoc", NULL);
2583 if (IS_ERR(debugfs_root) || !debugfs_root) {
2584 printk(KERN_WARNING
2585 "ASoC: Failed to create debugfs directory\n");
2586 debugfs_root = NULL;
2587 }
2588 #endif
2589
2590 return platform_driver_register(&soc_driver);
2591 }
2592
2593 static void __exit snd_soc_exit(void)
2594 {
2595 #ifdef CONFIG_DEBUG_FS
2596 debugfs_remove_recursive(debugfs_root);
2597 #endif
2598 platform_driver_unregister(&soc_driver);
2599 }
2600
2601 module_init(snd_soc_init);
2602 module_exit(snd_soc_exit);
2603
2604 /* Module information */
2605 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
2606 MODULE_DESCRIPTION("ALSA SoC Core");
2607 MODULE_LICENSE("GPL");
2608 MODULE_ALIAS("platform:soc-audio");
This page took 0.133443 seconds and 5 git commands to generate.