Merge branch 'for-2.6.32' into for-2.6.33
[deliverable/linux.git] / sound / soc / soc-core.c
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 * with code, comments and ideas from :-
9 * Richard Purdie <richard@openedhand.com>
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * TODO:
17 * o Add hw rules to enforce rates, etc.
18 * o More testing with other codecs/machines.
19 * o Add more codecs and platforms to ensure good API coverage.
20 * o Support TDM on PCM and I2S
21 */
22
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/pm.h>
28 #include <linux/bitops.h>
29 #include <linux/debugfs.h>
30 #include <linux/platform_device.h>
31 #include <sound/ac97_codec.h>
32 #include <sound/core.h>
33 #include <sound/pcm.h>
34 #include <sound/pcm_params.h>
35 #include <sound/soc.h>
36 #include <sound/soc-dapm.h>
37 #include <sound/initval.h>
38
39 static DEFINE_MUTEX(pcm_mutex);
40 static DEFINE_MUTEX(io_mutex);
41 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
42
43 #ifdef CONFIG_DEBUG_FS
44 static struct dentry *debugfs_root;
45 #endif
46
47 static DEFINE_MUTEX(client_mutex);
48 static LIST_HEAD(card_list);
49 static LIST_HEAD(dai_list);
50 static LIST_HEAD(platform_list);
51 static LIST_HEAD(codec_list);
52
53 static int snd_soc_register_card(struct snd_soc_card *card);
54 static int snd_soc_unregister_card(struct snd_soc_card *card);
55
56 /*
57 * This is a timeout to do a DAPM powerdown after a stream is closed().
58 * It can be used to eliminate pops between different playback streams, e.g.
59 * between two audio tracks.
60 */
61 static int pmdown_time = 5000;
62 module_param(pmdown_time, int, 0);
63 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
64
65 /*
66 * This function forces any delayed work to be queued and run.
67 */
68 static int run_delayed_work(struct delayed_work *dwork)
69 {
70 int ret;
71
72 /* cancel any work waiting to be queued. */
73 ret = cancel_delayed_work(dwork);
74
75 /* if there was any work waiting then we run it now and
76 * wait for it's completion */
77 if (ret) {
78 schedule_delayed_work(dwork, 0);
79 flush_scheduled_work();
80 }
81 return ret;
82 }
83
84 #ifdef CONFIG_SND_SOC_AC97_BUS
85 /* unregister ac97 codec */
86 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
87 {
88 if (codec->ac97->dev.bus)
89 device_unregister(&codec->ac97->dev);
90 return 0;
91 }
92
93 /* stop no dev release warning */
94 static void soc_ac97_device_release(struct device *dev){}
95
96 /* register ac97 codec to bus */
97 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
98 {
99 int err;
100
101 codec->ac97->dev.bus = &ac97_bus_type;
102 codec->ac97->dev.parent = codec->card->dev;
103 codec->ac97->dev.release = soc_ac97_device_release;
104
105 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
106 codec->card->number, 0, codec->name);
107 err = device_register(&codec->ac97->dev);
108 if (err < 0) {
109 snd_printk(KERN_ERR "Can't register ac97 bus\n");
110 codec->ac97->dev.bus = NULL;
111 return err;
112 }
113 return 0;
114 }
115 #endif
116
117 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
118 {
119 struct snd_soc_pcm_runtime *rtd = substream->private_data;
120 struct snd_soc_device *socdev = rtd->socdev;
121 struct snd_soc_card *card = socdev->card;
122 struct snd_soc_dai_link *machine = rtd->dai;
123 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
124 struct snd_soc_dai *codec_dai = machine->codec_dai;
125 int ret;
126
127 if (codec_dai->symmetric_rates || cpu_dai->symmetric_rates ||
128 machine->symmetric_rates) {
129 dev_dbg(card->dev, "Symmetry forces %dHz rate\n",
130 machine->rate);
131
132 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
133 SNDRV_PCM_HW_PARAM_RATE,
134 machine->rate,
135 machine->rate);
136 if (ret < 0) {
137 dev_err(card->dev,
138 "Unable to apply rate symmetry constraint: %d\n", ret);
139 return ret;
140 }
141 }
142
143 return 0;
144 }
145
146 /*
147 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
148 * then initialized and any private data can be allocated. This also calls
149 * startup for the cpu DAI, platform, machine and codec DAI.
150 */
151 static int soc_pcm_open(struct snd_pcm_substream *substream)
152 {
153 struct snd_soc_pcm_runtime *rtd = substream->private_data;
154 struct snd_soc_device *socdev = rtd->socdev;
155 struct snd_soc_card *card = socdev->card;
156 struct snd_pcm_runtime *runtime = substream->runtime;
157 struct snd_soc_dai_link *machine = rtd->dai;
158 struct snd_soc_platform *platform = card->platform;
159 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
160 struct snd_soc_dai *codec_dai = machine->codec_dai;
161 int ret = 0;
162
163 mutex_lock(&pcm_mutex);
164
165 /* startup the audio subsystem */
166 if (cpu_dai->ops->startup) {
167 ret = cpu_dai->ops->startup(substream, cpu_dai);
168 if (ret < 0) {
169 printk(KERN_ERR "asoc: can't open interface %s\n",
170 cpu_dai->name);
171 goto out;
172 }
173 }
174
175 if (platform->pcm_ops->open) {
176 ret = platform->pcm_ops->open(substream);
177 if (ret < 0) {
178 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
179 goto platform_err;
180 }
181 }
182
183 if (codec_dai->ops->startup) {
184 ret = codec_dai->ops->startup(substream, codec_dai);
185 if (ret < 0) {
186 printk(KERN_ERR "asoc: can't open codec %s\n",
187 codec_dai->name);
188 goto codec_dai_err;
189 }
190 }
191
192 if (machine->ops && machine->ops->startup) {
193 ret = machine->ops->startup(substream);
194 if (ret < 0) {
195 printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
196 goto machine_err;
197 }
198 }
199
200 /* Check that the codec and cpu DAI's are compatible */
201 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
202 runtime->hw.rate_min =
203 max(codec_dai->playback.rate_min,
204 cpu_dai->playback.rate_min);
205 runtime->hw.rate_max =
206 min(codec_dai->playback.rate_max,
207 cpu_dai->playback.rate_max);
208 runtime->hw.channels_min =
209 max(codec_dai->playback.channels_min,
210 cpu_dai->playback.channels_min);
211 runtime->hw.channels_max =
212 min(codec_dai->playback.channels_max,
213 cpu_dai->playback.channels_max);
214 runtime->hw.formats =
215 codec_dai->playback.formats & cpu_dai->playback.formats;
216 runtime->hw.rates =
217 codec_dai->playback.rates & cpu_dai->playback.rates;
218 } else {
219 runtime->hw.rate_min =
220 max(codec_dai->capture.rate_min,
221 cpu_dai->capture.rate_min);
222 runtime->hw.rate_max =
223 min(codec_dai->capture.rate_max,
224 cpu_dai->capture.rate_max);
225 runtime->hw.channels_min =
226 max(codec_dai->capture.channels_min,
227 cpu_dai->capture.channels_min);
228 runtime->hw.channels_max =
229 min(codec_dai->capture.channels_max,
230 cpu_dai->capture.channels_max);
231 runtime->hw.formats =
232 codec_dai->capture.formats & cpu_dai->capture.formats;
233 runtime->hw.rates =
234 codec_dai->capture.rates & cpu_dai->capture.rates;
235 }
236
237 snd_pcm_limit_hw_rates(runtime);
238 if (!runtime->hw.rates) {
239 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
240 codec_dai->name, cpu_dai->name);
241 goto machine_err;
242 }
243 if (!runtime->hw.formats) {
244 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
245 codec_dai->name, cpu_dai->name);
246 goto machine_err;
247 }
248 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
249 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
250 codec_dai->name, cpu_dai->name);
251 goto machine_err;
252 }
253
254 /* Symmetry only applies if we've already got an active stream. */
255 if (cpu_dai->active || codec_dai->active) {
256 ret = soc_pcm_apply_symmetry(substream);
257 if (ret != 0)
258 goto machine_err;
259 }
260
261 pr_debug("asoc: %s <-> %s info:\n", codec_dai->name, cpu_dai->name);
262 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
263 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
264 runtime->hw.channels_max);
265 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
266 runtime->hw.rate_max);
267
268 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
269 cpu_dai->playback.active = codec_dai->playback.active = 1;
270 else
271 cpu_dai->capture.active = codec_dai->capture.active = 1;
272 cpu_dai->active = codec_dai->active = 1;
273 cpu_dai->runtime = runtime;
274 card->codec->active++;
275 mutex_unlock(&pcm_mutex);
276 return 0;
277
278 machine_err:
279 if (machine->ops && machine->ops->shutdown)
280 machine->ops->shutdown(substream);
281
282 codec_dai_err:
283 if (platform->pcm_ops->close)
284 platform->pcm_ops->close(substream);
285
286 platform_err:
287 if (cpu_dai->ops->shutdown)
288 cpu_dai->ops->shutdown(substream, cpu_dai);
289 out:
290 mutex_unlock(&pcm_mutex);
291 return ret;
292 }
293
294 /*
295 * Power down the audio subsystem pmdown_time msecs after close is called.
296 * This is to ensure there are no pops or clicks in between any music tracks
297 * due to DAPM power cycling.
298 */
299 static void close_delayed_work(struct work_struct *work)
300 {
301 struct snd_soc_card *card = container_of(work, struct snd_soc_card,
302 delayed_work.work);
303 struct snd_soc_codec *codec = card->codec;
304 struct snd_soc_dai *codec_dai;
305 int i;
306
307 mutex_lock(&pcm_mutex);
308 for (i = 0; i < codec->num_dai; i++) {
309 codec_dai = &codec->dai[i];
310
311 pr_debug("pop wq checking: %s status: %s waiting: %s\n",
312 codec_dai->playback.stream_name,
313 codec_dai->playback.active ? "active" : "inactive",
314 codec_dai->pop_wait ? "yes" : "no");
315
316 /* are we waiting on this codec DAI stream */
317 if (codec_dai->pop_wait == 1) {
318 codec_dai->pop_wait = 0;
319 snd_soc_dapm_stream_event(codec,
320 codec_dai->playback.stream_name,
321 SND_SOC_DAPM_STREAM_STOP);
322 }
323 }
324 mutex_unlock(&pcm_mutex);
325 }
326
327 /*
328 * Called by ALSA when a PCM substream is closed. Private data can be
329 * freed here. The cpu DAI, codec DAI, machine and platform are also
330 * shutdown.
331 */
332 static int soc_codec_close(struct snd_pcm_substream *substream)
333 {
334 struct snd_soc_pcm_runtime *rtd = substream->private_data;
335 struct snd_soc_device *socdev = rtd->socdev;
336 struct snd_soc_card *card = socdev->card;
337 struct snd_soc_dai_link *machine = rtd->dai;
338 struct snd_soc_platform *platform = card->platform;
339 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
340 struct snd_soc_dai *codec_dai = machine->codec_dai;
341 struct snd_soc_codec *codec = card->codec;
342
343 mutex_lock(&pcm_mutex);
344
345 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
346 cpu_dai->playback.active = codec_dai->playback.active = 0;
347 else
348 cpu_dai->capture.active = codec_dai->capture.active = 0;
349
350 if (codec_dai->playback.active == 0 &&
351 codec_dai->capture.active == 0) {
352 cpu_dai->active = codec_dai->active = 0;
353 }
354 codec->active--;
355
356 /* Muting the DAC suppresses artifacts caused during digital
357 * shutdown, for example from stopping clocks.
358 */
359 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
360 snd_soc_dai_digital_mute(codec_dai, 1);
361
362 if (cpu_dai->ops->shutdown)
363 cpu_dai->ops->shutdown(substream, cpu_dai);
364
365 if (codec_dai->ops->shutdown)
366 codec_dai->ops->shutdown(substream, codec_dai);
367
368 if (machine->ops && machine->ops->shutdown)
369 machine->ops->shutdown(substream);
370
371 if (platform->pcm_ops->close)
372 platform->pcm_ops->close(substream);
373 cpu_dai->runtime = NULL;
374
375 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
376 /* start delayed pop wq here for playback streams */
377 codec_dai->pop_wait = 1;
378 schedule_delayed_work(&card->delayed_work,
379 msecs_to_jiffies(pmdown_time));
380 } else {
381 /* capture streams can be powered down now */
382 snd_soc_dapm_stream_event(codec,
383 codec_dai->capture.stream_name,
384 SND_SOC_DAPM_STREAM_STOP);
385 }
386
387 mutex_unlock(&pcm_mutex);
388 return 0;
389 }
390
391 /*
392 * Called by ALSA when the PCM substream is prepared, can set format, sample
393 * rate, etc. This function is non atomic and can be called multiple times,
394 * it can refer to the runtime info.
395 */
396 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
397 {
398 struct snd_soc_pcm_runtime *rtd = substream->private_data;
399 struct snd_soc_device *socdev = rtd->socdev;
400 struct snd_soc_card *card = socdev->card;
401 struct snd_soc_dai_link *machine = rtd->dai;
402 struct snd_soc_platform *platform = card->platform;
403 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
404 struct snd_soc_dai *codec_dai = machine->codec_dai;
405 struct snd_soc_codec *codec = card->codec;
406 int ret = 0;
407
408 mutex_lock(&pcm_mutex);
409
410 if (machine->ops && machine->ops->prepare) {
411 ret = machine->ops->prepare(substream);
412 if (ret < 0) {
413 printk(KERN_ERR "asoc: machine prepare error\n");
414 goto out;
415 }
416 }
417
418 if (platform->pcm_ops->prepare) {
419 ret = platform->pcm_ops->prepare(substream);
420 if (ret < 0) {
421 printk(KERN_ERR "asoc: platform prepare error\n");
422 goto out;
423 }
424 }
425
426 if (codec_dai->ops->prepare) {
427 ret = codec_dai->ops->prepare(substream, codec_dai);
428 if (ret < 0) {
429 printk(KERN_ERR "asoc: codec DAI prepare error\n");
430 goto out;
431 }
432 }
433
434 if (cpu_dai->ops->prepare) {
435 ret = cpu_dai->ops->prepare(substream, cpu_dai);
436 if (ret < 0) {
437 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
438 goto out;
439 }
440 }
441
442 /* cancel any delayed stream shutdown that is pending */
443 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
444 codec_dai->pop_wait) {
445 codec_dai->pop_wait = 0;
446 cancel_delayed_work(&card->delayed_work);
447 }
448
449 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
450 snd_soc_dapm_stream_event(codec,
451 codec_dai->playback.stream_name,
452 SND_SOC_DAPM_STREAM_START);
453 else
454 snd_soc_dapm_stream_event(codec,
455 codec_dai->capture.stream_name,
456 SND_SOC_DAPM_STREAM_START);
457
458 snd_soc_dai_digital_mute(codec_dai, 0);
459
460 out:
461 mutex_unlock(&pcm_mutex);
462 return ret;
463 }
464
465 /*
466 * Called by ALSA when the hardware params are set by application. This
467 * function can also be called multiple times and can allocate buffers
468 * (using snd_pcm_lib_* ). It's non-atomic.
469 */
470 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
471 struct snd_pcm_hw_params *params)
472 {
473 struct snd_soc_pcm_runtime *rtd = substream->private_data;
474 struct snd_soc_device *socdev = rtd->socdev;
475 struct snd_soc_dai_link *machine = rtd->dai;
476 struct snd_soc_card *card = socdev->card;
477 struct snd_soc_platform *platform = card->platform;
478 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
479 struct snd_soc_dai *codec_dai = machine->codec_dai;
480 int ret = 0;
481
482 mutex_lock(&pcm_mutex);
483
484 if (machine->ops && machine->ops->hw_params) {
485 ret = machine->ops->hw_params(substream, params);
486 if (ret < 0) {
487 printk(KERN_ERR "asoc: machine hw_params failed\n");
488 goto out;
489 }
490 }
491
492 if (codec_dai->ops->hw_params) {
493 ret = codec_dai->ops->hw_params(substream, params, codec_dai);
494 if (ret < 0) {
495 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
496 codec_dai->name);
497 goto codec_err;
498 }
499 }
500
501 if (cpu_dai->ops->hw_params) {
502 ret = cpu_dai->ops->hw_params(substream, params, cpu_dai);
503 if (ret < 0) {
504 printk(KERN_ERR "asoc: interface %s hw params failed\n",
505 cpu_dai->name);
506 goto interface_err;
507 }
508 }
509
510 if (platform->pcm_ops->hw_params) {
511 ret = platform->pcm_ops->hw_params(substream, params);
512 if (ret < 0) {
513 printk(KERN_ERR "asoc: platform %s hw params failed\n",
514 platform->name);
515 goto platform_err;
516 }
517 }
518
519 machine->rate = params_rate(params);
520
521 out:
522 mutex_unlock(&pcm_mutex);
523 return ret;
524
525 platform_err:
526 if (cpu_dai->ops->hw_free)
527 cpu_dai->ops->hw_free(substream, cpu_dai);
528
529 interface_err:
530 if (codec_dai->ops->hw_free)
531 codec_dai->ops->hw_free(substream, codec_dai);
532
533 codec_err:
534 if (machine->ops && machine->ops->hw_free)
535 machine->ops->hw_free(substream);
536
537 mutex_unlock(&pcm_mutex);
538 return ret;
539 }
540
541 /*
542 * Free's resources allocated by hw_params, can be called multiple times
543 */
544 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
545 {
546 struct snd_soc_pcm_runtime *rtd = substream->private_data;
547 struct snd_soc_device *socdev = rtd->socdev;
548 struct snd_soc_dai_link *machine = rtd->dai;
549 struct snd_soc_card *card = socdev->card;
550 struct snd_soc_platform *platform = card->platform;
551 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
552 struct snd_soc_dai *codec_dai = machine->codec_dai;
553 struct snd_soc_codec *codec = card->codec;
554
555 mutex_lock(&pcm_mutex);
556
557 /* apply codec digital mute */
558 if (!codec->active)
559 snd_soc_dai_digital_mute(codec_dai, 1);
560
561 /* free any machine hw params */
562 if (machine->ops && machine->ops->hw_free)
563 machine->ops->hw_free(substream);
564
565 /* free any DMA resources */
566 if (platform->pcm_ops->hw_free)
567 platform->pcm_ops->hw_free(substream);
568
569 /* now free hw params for the DAI's */
570 if (codec_dai->ops->hw_free)
571 codec_dai->ops->hw_free(substream, codec_dai);
572
573 if (cpu_dai->ops->hw_free)
574 cpu_dai->ops->hw_free(substream, cpu_dai);
575
576 mutex_unlock(&pcm_mutex);
577 return 0;
578 }
579
580 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
581 {
582 struct snd_soc_pcm_runtime *rtd = substream->private_data;
583 struct snd_soc_device *socdev = rtd->socdev;
584 struct snd_soc_card *card= socdev->card;
585 struct snd_soc_dai_link *machine = rtd->dai;
586 struct snd_soc_platform *platform = card->platform;
587 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
588 struct snd_soc_dai *codec_dai = machine->codec_dai;
589 int ret;
590
591 if (codec_dai->ops->trigger) {
592 ret = codec_dai->ops->trigger(substream, cmd, codec_dai);
593 if (ret < 0)
594 return ret;
595 }
596
597 if (platform->pcm_ops->trigger) {
598 ret = platform->pcm_ops->trigger(substream, cmd);
599 if (ret < 0)
600 return ret;
601 }
602
603 if (cpu_dai->ops->trigger) {
604 ret = cpu_dai->ops->trigger(substream, cmd, cpu_dai);
605 if (ret < 0)
606 return ret;
607 }
608 return 0;
609 }
610
611 /* ASoC PCM operations */
612 static struct snd_pcm_ops soc_pcm_ops = {
613 .open = soc_pcm_open,
614 .close = soc_codec_close,
615 .hw_params = soc_pcm_hw_params,
616 .hw_free = soc_pcm_hw_free,
617 .prepare = soc_pcm_prepare,
618 .trigger = soc_pcm_trigger,
619 };
620
621 #ifdef CONFIG_PM
622 /* powers down audio subsystem for suspend */
623 static int soc_suspend(struct device *dev)
624 {
625 struct platform_device *pdev = to_platform_device(dev);
626 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
627 struct snd_soc_card *card = socdev->card;
628 struct snd_soc_platform *platform = card->platform;
629 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
630 struct snd_soc_codec *codec = card->codec;
631 int i;
632
633 /* If the initialization of this soc device failed, there is no codec
634 * associated with it. Just bail out in this case.
635 */
636 if (!codec)
637 return 0;
638
639 /* Due to the resume being scheduled into a workqueue we could
640 * suspend before that's finished - wait for it to complete.
641 */
642 snd_power_lock(codec->card);
643 snd_power_wait(codec->card, SNDRV_CTL_POWER_D0);
644 snd_power_unlock(codec->card);
645
646 /* we're going to block userspace touching us until resume completes */
647 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D3hot);
648
649 /* mute any active DAC's */
650 for (i = 0; i < card->num_links; i++) {
651 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
652 if (dai->ops->digital_mute && dai->playback.active)
653 dai->ops->digital_mute(dai, 1);
654 }
655
656 /* suspend all pcms */
657 for (i = 0; i < card->num_links; i++)
658 snd_pcm_suspend_all(card->dai_link[i].pcm);
659
660 if (card->suspend_pre)
661 card->suspend_pre(pdev, PMSG_SUSPEND);
662
663 for (i = 0; i < card->num_links; i++) {
664 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
665 if (cpu_dai->suspend && !cpu_dai->ac97_control)
666 cpu_dai->suspend(cpu_dai);
667 if (platform->suspend)
668 platform->suspend(cpu_dai);
669 }
670
671 /* close any waiting streams and save state */
672 run_delayed_work(&card->delayed_work);
673 codec->suspend_bias_level = codec->bias_level;
674
675 for (i = 0; i < codec->num_dai; i++) {
676 char *stream = codec->dai[i].playback.stream_name;
677 if (stream != NULL)
678 snd_soc_dapm_stream_event(codec, stream,
679 SND_SOC_DAPM_STREAM_SUSPEND);
680 stream = codec->dai[i].capture.stream_name;
681 if (stream != NULL)
682 snd_soc_dapm_stream_event(codec, stream,
683 SND_SOC_DAPM_STREAM_SUSPEND);
684 }
685
686 if (codec_dev->suspend)
687 codec_dev->suspend(pdev, PMSG_SUSPEND);
688
689 for (i = 0; i < card->num_links; i++) {
690 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
691 if (cpu_dai->suspend && cpu_dai->ac97_control)
692 cpu_dai->suspend(cpu_dai);
693 }
694
695 if (card->suspend_post)
696 card->suspend_post(pdev, PMSG_SUSPEND);
697
698 return 0;
699 }
700
701 /* deferred resume work, so resume can complete before we finished
702 * setting our codec back up, which can be very slow on I2C
703 */
704 static void soc_resume_deferred(struct work_struct *work)
705 {
706 struct snd_soc_card *card = container_of(work,
707 struct snd_soc_card,
708 deferred_resume_work);
709 struct snd_soc_device *socdev = card->socdev;
710 struct snd_soc_platform *platform = card->platform;
711 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
712 struct snd_soc_codec *codec = card->codec;
713 struct platform_device *pdev = to_platform_device(socdev->dev);
714 int i;
715
716 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
717 * so userspace apps are blocked from touching us
718 */
719
720 dev_dbg(socdev->dev, "starting resume work\n");
721
722 if (card->resume_pre)
723 card->resume_pre(pdev);
724
725 for (i = 0; i < card->num_links; i++) {
726 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
727 if (cpu_dai->resume && cpu_dai->ac97_control)
728 cpu_dai->resume(cpu_dai);
729 }
730
731 if (codec_dev->resume)
732 codec_dev->resume(pdev);
733
734 for (i = 0; i < codec->num_dai; i++) {
735 char *stream = codec->dai[i].playback.stream_name;
736 if (stream != NULL)
737 snd_soc_dapm_stream_event(codec, stream,
738 SND_SOC_DAPM_STREAM_RESUME);
739 stream = codec->dai[i].capture.stream_name;
740 if (stream != NULL)
741 snd_soc_dapm_stream_event(codec, stream,
742 SND_SOC_DAPM_STREAM_RESUME);
743 }
744
745 /* unmute any active DACs */
746 for (i = 0; i < card->num_links; i++) {
747 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
748 if (dai->ops->digital_mute && dai->playback.active)
749 dai->ops->digital_mute(dai, 0);
750 }
751
752 for (i = 0; i < card->num_links; i++) {
753 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
754 if (cpu_dai->resume && !cpu_dai->ac97_control)
755 cpu_dai->resume(cpu_dai);
756 if (platform->resume)
757 platform->resume(cpu_dai);
758 }
759
760 if (card->resume_post)
761 card->resume_post(pdev);
762
763 dev_dbg(socdev->dev, "resume work completed\n");
764
765 /* userspace can access us now we are back as we were before */
766 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D0);
767 }
768
769 /* powers up audio subsystem after a suspend */
770 static int soc_resume(struct device *dev)
771 {
772 struct platform_device *pdev = to_platform_device(dev);
773 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
774 struct snd_soc_card *card = socdev->card;
775 struct snd_soc_dai *cpu_dai = card->dai_link[0].cpu_dai;
776
777 /* AC97 devices might have other drivers hanging off them so
778 * need to resume immediately. Other drivers don't have that
779 * problem and may take a substantial amount of time to resume
780 * due to I/O costs and anti-pop so handle them out of line.
781 */
782 if (cpu_dai->ac97_control) {
783 dev_dbg(socdev->dev, "Resuming AC97 immediately\n");
784 soc_resume_deferred(&card->deferred_resume_work);
785 } else {
786 dev_dbg(socdev->dev, "Scheduling resume work\n");
787 if (!schedule_work(&card->deferred_resume_work))
788 dev_err(socdev->dev, "resume work item may be lost\n");
789 }
790
791 return 0;
792 }
793 #else
794 #define soc_suspend NULL
795 #define soc_resume NULL
796 #endif
797
798 static void snd_soc_instantiate_card(struct snd_soc_card *card)
799 {
800 struct platform_device *pdev = container_of(card->dev,
801 struct platform_device,
802 dev);
803 struct snd_soc_codec_device *codec_dev = card->socdev->codec_dev;
804 struct snd_soc_platform *platform;
805 struct snd_soc_dai *dai;
806 int i, found, ret, ac97;
807
808 if (card->instantiated)
809 return;
810
811 found = 0;
812 list_for_each_entry(platform, &platform_list, list)
813 if (card->platform == platform) {
814 found = 1;
815 break;
816 }
817 if (!found) {
818 dev_dbg(card->dev, "Platform %s not registered\n",
819 card->platform->name);
820 return;
821 }
822
823 ac97 = 0;
824 for (i = 0; i < card->num_links; i++) {
825 found = 0;
826 list_for_each_entry(dai, &dai_list, list)
827 if (card->dai_link[i].cpu_dai == dai) {
828 found = 1;
829 break;
830 }
831 if (!found) {
832 dev_dbg(card->dev, "DAI %s not registered\n",
833 card->dai_link[i].cpu_dai->name);
834 return;
835 }
836
837 if (card->dai_link[i].cpu_dai->ac97_control)
838 ac97 = 1;
839 }
840
841 /* If we have AC97 in the system then don't wait for the
842 * codec. This will need revisiting if we have to handle
843 * systems with mixed AC97 and non-AC97 parts. Only check for
844 * DAIs currently; we can't do this per link since some AC97
845 * codecs have non-AC97 DAIs.
846 */
847 if (!ac97)
848 for (i = 0; i < card->num_links; i++) {
849 found = 0;
850 list_for_each_entry(dai, &dai_list, list)
851 if (card->dai_link[i].codec_dai == dai) {
852 found = 1;
853 break;
854 }
855 if (!found) {
856 dev_dbg(card->dev, "DAI %s not registered\n",
857 card->dai_link[i].codec_dai->name);
858 return;
859 }
860 }
861
862 /* Note that we do not current check for codec components */
863
864 dev_dbg(card->dev, "All components present, instantiating\n");
865
866 /* Found everything, bring it up */
867 if (card->probe) {
868 ret = card->probe(pdev);
869 if (ret < 0)
870 return;
871 }
872
873 for (i = 0; i < card->num_links; i++) {
874 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
875 if (cpu_dai->probe) {
876 ret = cpu_dai->probe(pdev, cpu_dai);
877 if (ret < 0)
878 goto cpu_dai_err;
879 }
880 }
881
882 if (codec_dev->probe) {
883 ret = codec_dev->probe(pdev);
884 if (ret < 0)
885 goto cpu_dai_err;
886 }
887
888 if (platform->probe) {
889 ret = platform->probe(pdev);
890 if (ret < 0)
891 goto platform_err;
892 }
893
894 /* DAPM stream work */
895 INIT_DELAYED_WORK(&card->delayed_work, close_delayed_work);
896 #ifdef CONFIG_PM
897 /* deferred resume work */
898 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
899 #endif
900
901 card->instantiated = 1;
902
903 return;
904
905 platform_err:
906 if (codec_dev->remove)
907 codec_dev->remove(pdev);
908
909 cpu_dai_err:
910 for (i--; i >= 0; i--) {
911 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
912 if (cpu_dai->remove)
913 cpu_dai->remove(pdev, cpu_dai);
914 }
915
916 if (card->remove)
917 card->remove(pdev);
918 }
919
920 /*
921 * Attempt to initialise any uninitalised cards. Must be called with
922 * client_mutex.
923 */
924 static void snd_soc_instantiate_cards(void)
925 {
926 struct snd_soc_card *card;
927 list_for_each_entry(card, &card_list, list)
928 snd_soc_instantiate_card(card);
929 }
930
931 /* probes a new socdev */
932 static int soc_probe(struct platform_device *pdev)
933 {
934 int ret = 0;
935 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
936 struct snd_soc_card *card = socdev->card;
937
938 /* Bodge while we push things out of socdev */
939 card->socdev = socdev;
940
941 /* Bodge while we unpick instantiation */
942 card->dev = &pdev->dev;
943 ret = snd_soc_register_card(card);
944 if (ret != 0) {
945 dev_err(&pdev->dev, "Failed to register card\n");
946 return ret;
947 }
948
949 return 0;
950 }
951
952 /* removes a socdev */
953 static int soc_remove(struct platform_device *pdev)
954 {
955 int i;
956 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
957 struct snd_soc_card *card = socdev->card;
958 struct snd_soc_platform *platform = card->platform;
959 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
960
961 if (!card->instantiated)
962 return 0;
963
964 run_delayed_work(&card->delayed_work);
965
966 if (platform->remove)
967 platform->remove(pdev);
968
969 if (codec_dev->remove)
970 codec_dev->remove(pdev);
971
972 for (i = 0; i < card->num_links; i++) {
973 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
974 if (cpu_dai->remove)
975 cpu_dai->remove(pdev, cpu_dai);
976 }
977
978 if (card->remove)
979 card->remove(pdev);
980
981 snd_soc_unregister_card(card);
982
983 return 0;
984 }
985
986 static int soc_poweroff(struct device *dev)
987 {
988 struct platform_device *pdev = to_platform_device(dev);
989 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
990 struct snd_soc_card *card = socdev->card;
991
992 if (!card->instantiated)
993 return 0;
994
995 /* Flush out pmdown_time work - we actually do want to run it
996 * now, we're shutting down so no imminent restart. */
997 run_delayed_work(&card->delayed_work);
998
999 snd_soc_dapm_shutdown(socdev);
1000
1001 return 0;
1002 }
1003
1004 static struct dev_pm_ops soc_pm_ops = {
1005 .suspend = soc_suspend,
1006 .resume = soc_resume,
1007 .poweroff = soc_poweroff,
1008 };
1009
1010 /* ASoC platform driver */
1011 static struct platform_driver soc_driver = {
1012 .driver = {
1013 .name = "soc-audio",
1014 .owner = THIS_MODULE,
1015 .pm = &soc_pm_ops,
1016 },
1017 .probe = soc_probe,
1018 .remove = soc_remove,
1019 };
1020
1021 /* create a new pcm */
1022 static int soc_new_pcm(struct snd_soc_device *socdev,
1023 struct snd_soc_dai_link *dai_link, int num)
1024 {
1025 struct snd_soc_card *card = socdev->card;
1026 struct snd_soc_codec *codec = card->codec;
1027 struct snd_soc_platform *platform = card->platform;
1028 struct snd_soc_dai *codec_dai = dai_link->codec_dai;
1029 struct snd_soc_dai *cpu_dai = dai_link->cpu_dai;
1030 struct snd_soc_pcm_runtime *rtd;
1031 struct snd_pcm *pcm;
1032 char new_name[64];
1033 int ret = 0, playback = 0, capture = 0;
1034
1035 rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
1036 if (rtd == NULL)
1037 return -ENOMEM;
1038
1039 rtd->dai = dai_link;
1040 rtd->socdev = socdev;
1041 codec_dai->codec = card->codec;
1042
1043 /* check client and interface hw capabilities */
1044 sprintf(new_name, "%s %s-%d", dai_link->stream_name, codec_dai->name,
1045 num);
1046
1047 if (codec_dai->playback.channels_min)
1048 playback = 1;
1049 if (codec_dai->capture.channels_min)
1050 capture = 1;
1051
1052 ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
1053 capture, &pcm);
1054 if (ret < 0) {
1055 printk(KERN_ERR "asoc: can't create pcm for codec %s\n",
1056 codec->name);
1057 kfree(rtd);
1058 return ret;
1059 }
1060
1061 dai_link->pcm = pcm;
1062 pcm->private_data = rtd;
1063 soc_pcm_ops.mmap = platform->pcm_ops->mmap;
1064 soc_pcm_ops.pointer = platform->pcm_ops->pointer;
1065 soc_pcm_ops.ioctl = platform->pcm_ops->ioctl;
1066 soc_pcm_ops.copy = platform->pcm_ops->copy;
1067 soc_pcm_ops.silence = platform->pcm_ops->silence;
1068 soc_pcm_ops.ack = platform->pcm_ops->ack;
1069 soc_pcm_ops.page = platform->pcm_ops->page;
1070
1071 if (playback)
1072 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1073
1074 if (capture)
1075 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1076
1077 ret = platform->pcm_new(codec->card, codec_dai, pcm);
1078 if (ret < 0) {
1079 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1080 kfree(rtd);
1081 return ret;
1082 }
1083
1084 pcm->private_free = platform->pcm_free;
1085 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1086 cpu_dai->name);
1087 return ret;
1088 }
1089
1090 /**
1091 * snd_soc_codec_volatile_register: Report if a register is volatile.
1092 *
1093 * @codec: CODEC to query.
1094 * @reg: Register to query.
1095 *
1096 * Boolean function indiciating if a CODEC register is volatile.
1097 */
1098 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
1099 {
1100 if (codec->volatile_register)
1101 return codec->volatile_register(reg);
1102 else
1103 return 0;
1104 }
1105 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
1106
1107 /* codec register dump */
1108 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
1109 {
1110 int i, step = 1, count = 0;
1111
1112 if (!codec->reg_cache_size)
1113 return 0;
1114
1115 if (codec->reg_cache_step)
1116 step = codec->reg_cache_step;
1117
1118 count += sprintf(buf, "%s registers\n", codec->name);
1119 for (i = 0; i < codec->reg_cache_size; i += step) {
1120 if (codec->readable_register && !codec->readable_register(i))
1121 continue;
1122
1123 count += sprintf(buf + count, "%2x: ", i);
1124 if (count >= PAGE_SIZE - 1)
1125 break;
1126
1127 if (codec->display_register)
1128 count += codec->display_register(codec, buf + count,
1129 PAGE_SIZE - count, i);
1130 else
1131 count += snprintf(buf + count, PAGE_SIZE - count,
1132 "%4x", codec->read(codec, i));
1133
1134 if (count >= PAGE_SIZE - 1)
1135 break;
1136
1137 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
1138 if (count >= PAGE_SIZE - 1)
1139 break;
1140 }
1141
1142 /* Truncate count; min() would cause a warning */
1143 if (count >= PAGE_SIZE)
1144 count = PAGE_SIZE - 1;
1145
1146 return count;
1147 }
1148 static ssize_t codec_reg_show(struct device *dev,
1149 struct device_attribute *attr, char *buf)
1150 {
1151 struct snd_soc_device *devdata = dev_get_drvdata(dev);
1152 return soc_codec_reg_show(devdata->card->codec, buf);
1153 }
1154
1155 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
1156
1157 #ifdef CONFIG_DEBUG_FS
1158 static int codec_reg_open_file(struct inode *inode, struct file *file)
1159 {
1160 file->private_data = inode->i_private;
1161 return 0;
1162 }
1163
1164 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
1165 size_t count, loff_t *ppos)
1166 {
1167 ssize_t ret;
1168 struct snd_soc_codec *codec = file->private_data;
1169 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1170 if (!buf)
1171 return -ENOMEM;
1172 ret = soc_codec_reg_show(codec, buf);
1173 if (ret >= 0)
1174 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1175 kfree(buf);
1176 return ret;
1177 }
1178
1179 static ssize_t codec_reg_write_file(struct file *file,
1180 const char __user *user_buf, size_t count, loff_t *ppos)
1181 {
1182 char buf[32];
1183 int buf_size;
1184 char *start = buf;
1185 unsigned long reg, value;
1186 int step = 1;
1187 struct snd_soc_codec *codec = file->private_data;
1188
1189 buf_size = min(count, (sizeof(buf)-1));
1190 if (copy_from_user(buf, user_buf, buf_size))
1191 return -EFAULT;
1192 buf[buf_size] = 0;
1193
1194 if (codec->reg_cache_step)
1195 step = codec->reg_cache_step;
1196
1197 while (*start == ' ')
1198 start++;
1199 reg = simple_strtoul(start, &start, 16);
1200 if ((reg >= codec->reg_cache_size) || (reg % step))
1201 return -EINVAL;
1202 while (*start == ' ')
1203 start++;
1204 if (strict_strtoul(start, 16, &value))
1205 return -EINVAL;
1206 codec->write(codec, reg, value);
1207 return buf_size;
1208 }
1209
1210 static const struct file_operations codec_reg_fops = {
1211 .open = codec_reg_open_file,
1212 .read = codec_reg_read_file,
1213 .write = codec_reg_write_file,
1214 };
1215
1216 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
1217 {
1218 char codec_root[128];
1219
1220 if (codec->dev)
1221 snprintf(codec_root, sizeof(codec_root),
1222 "%s.%s", codec->name, dev_name(codec->dev));
1223 else
1224 snprintf(codec_root, sizeof(codec_root),
1225 "%s", codec->name);
1226
1227 codec->debugfs_codec_root = debugfs_create_dir(codec_root,
1228 debugfs_root);
1229 if (!codec->debugfs_codec_root) {
1230 printk(KERN_WARNING
1231 "ASoC: Failed to create codec debugfs directory\n");
1232 return;
1233 }
1234
1235 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
1236 codec->debugfs_codec_root,
1237 codec, &codec_reg_fops);
1238 if (!codec->debugfs_reg)
1239 printk(KERN_WARNING
1240 "ASoC: Failed to create codec register debugfs file\n");
1241
1242 codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0744,
1243 codec->debugfs_codec_root,
1244 &codec->pop_time);
1245 if (!codec->debugfs_pop_time)
1246 printk(KERN_WARNING
1247 "Failed to create pop time debugfs file\n");
1248
1249 codec->debugfs_dapm = debugfs_create_dir("dapm",
1250 codec->debugfs_codec_root);
1251 if (!codec->debugfs_dapm)
1252 printk(KERN_WARNING
1253 "Failed to create DAPM debugfs directory\n");
1254
1255 snd_soc_dapm_debugfs_init(codec);
1256 }
1257
1258 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
1259 {
1260 debugfs_remove_recursive(codec->debugfs_codec_root);
1261 }
1262
1263 #else
1264
1265 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
1266 {
1267 }
1268
1269 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
1270 {
1271 }
1272 #endif
1273
1274 /**
1275 * snd_soc_new_ac97_codec - initailise AC97 device
1276 * @codec: audio codec
1277 * @ops: AC97 bus operations
1278 * @num: AC97 codec number
1279 *
1280 * Initialises AC97 codec resources for use by ad-hoc devices only.
1281 */
1282 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1283 struct snd_ac97_bus_ops *ops, int num)
1284 {
1285 mutex_lock(&codec->mutex);
1286
1287 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1288 if (codec->ac97 == NULL) {
1289 mutex_unlock(&codec->mutex);
1290 return -ENOMEM;
1291 }
1292
1293 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1294 if (codec->ac97->bus == NULL) {
1295 kfree(codec->ac97);
1296 codec->ac97 = NULL;
1297 mutex_unlock(&codec->mutex);
1298 return -ENOMEM;
1299 }
1300
1301 codec->ac97->bus->ops = ops;
1302 codec->ac97->num = num;
1303 mutex_unlock(&codec->mutex);
1304 return 0;
1305 }
1306 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1307
1308 /**
1309 * snd_soc_free_ac97_codec - free AC97 codec device
1310 * @codec: audio codec
1311 *
1312 * Frees AC97 codec device resources.
1313 */
1314 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1315 {
1316 mutex_lock(&codec->mutex);
1317 kfree(codec->ac97->bus);
1318 kfree(codec->ac97);
1319 codec->ac97 = NULL;
1320 mutex_unlock(&codec->mutex);
1321 }
1322 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1323
1324 /**
1325 * snd_soc_update_bits - update codec register bits
1326 * @codec: audio codec
1327 * @reg: codec register
1328 * @mask: register mask
1329 * @value: new value
1330 *
1331 * Writes new register value.
1332 *
1333 * Returns 1 for change else 0.
1334 */
1335 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1336 unsigned int mask, unsigned int value)
1337 {
1338 int change;
1339 unsigned int old, new;
1340
1341 mutex_lock(&io_mutex);
1342 old = snd_soc_read(codec, reg);
1343 new = (old & ~mask) | value;
1344 change = old != new;
1345 if (change)
1346 snd_soc_write(codec, reg, new);
1347
1348 mutex_unlock(&io_mutex);
1349 return change;
1350 }
1351 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1352
1353 /**
1354 * snd_soc_test_bits - test register for change
1355 * @codec: audio codec
1356 * @reg: codec register
1357 * @mask: register mask
1358 * @value: new value
1359 *
1360 * Tests a register with a new value and checks if the new value is
1361 * different from the old value.
1362 *
1363 * Returns 1 for change else 0.
1364 */
1365 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1366 unsigned int mask, unsigned int value)
1367 {
1368 int change;
1369 unsigned int old, new;
1370
1371 mutex_lock(&io_mutex);
1372 old = snd_soc_read(codec, reg);
1373 new = (old & ~mask) | value;
1374 change = old != new;
1375 mutex_unlock(&io_mutex);
1376
1377 return change;
1378 }
1379 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1380
1381 /**
1382 * snd_soc_new_pcms - create new sound card and pcms
1383 * @socdev: the SoC audio device
1384 * @idx: ALSA card index
1385 * @xid: card identification
1386 *
1387 * Create a new sound card based upon the codec and interface pcms.
1388 *
1389 * Returns 0 for success, else error.
1390 */
1391 int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
1392 {
1393 struct snd_soc_card *card = socdev->card;
1394 struct snd_soc_codec *codec = card->codec;
1395 int ret, i;
1396
1397 mutex_lock(&codec->mutex);
1398
1399 /* register a sound card */
1400 ret = snd_card_create(idx, xid, codec->owner, 0, &codec->card);
1401 if (ret < 0) {
1402 printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
1403 codec->name);
1404 mutex_unlock(&codec->mutex);
1405 return ret;
1406 }
1407
1408 codec->socdev = socdev;
1409 codec->card->dev = socdev->dev;
1410 codec->card->private_data = codec;
1411 strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
1412
1413 /* create the pcms */
1414 for (i = 0; i < card->num_links; i++) {
1415 ret = soc_new_pcm(socdev, &card->dai_link[i], i);
1416 if (ret < 0) {
1417 printk(KERN_ERR "asoc: can't create pcm %s\n",
1418 card->dai_link[i].stream_name);
1419 mutex_unlock(&codec->mutex);
1420 return ret;
1421 }
1422 }
1423
1424 mutex_unlock(&codec->mutex);
1425 return ret;
1426 }
1427 EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
1428
1429 /**
1430 * snd_soc_init_card - register sound card
1431 * @socdev: the SoC audio device
1432 *
1433 * Register a SoC sound card. Also registers an AC97 device if the
1434 * codec is AC97 for ad hoc devices.
1435 *
1436 * Returns 0 for success, else error.
1437 */
1438 int snd_soc_init_card(struct snd_soc_device *socdev)
1439 {
1440 struct snd_soc_card *card = socdev->card;
1441 struct snd_soc_codec *codec = card->codec;
1442 int ret = 0, i, ac97 = 0, err = 0;
1443
1444 for (i = 0; i < card->num_links; i++) {
1445 if (card->dai_link[i].init) {
1446 err = card->dai_link[i].init(codec);
1447 if (err < 0) {
1448 printk(KERN_ERR "asoc: failed to init %s\n",
1449 card->dai_link[i].stream_name);
1450 continue;
1451 }
1452 }
1453 if (card->dai_link[i].codec_dai->ac97_control) {
1454 ac97 = 1;
1455 snd_ac97_dev_add_pdata(codec->ac97,
1456 card->dai_link[i].cpu_dai->ac97_pdata);
1457 }
1458 }
1459 snprintf(codec->card->shortname, sizeof(codec->card->shortname),
1460 "%s", card->name);
1461 snprintf(codec->card->longname, sizeof(codec->card->longname),
1462 "%s (%s)", card->name, codec->name);
1463
1464 /* Make sure all DAPM widgets are instantiated */
1465 snd_soc_dapm_new_widgets(codec);
1466
1467 ret = snd_card_register(codec->card);
1468 if (ret < 0) {
1469 printk(KERN_ERR "asoc: failed to register soundcard for %s\n",
1470 codec->name);
1471 goto out;
1472 }
1473
1474 mutex_lock(&codec->mutex);
1475 #ifdef CONFIG_SND_SOC_AC97_BUS
1476 /* Only instantiate AC97 if not already done by the adaptor
1477 * for the generic AC97 subsystem.
1478 */
1479 if (ac97 && strcmp(codec->name, "AC97") != 0) {
1480 ret = soc_ac97_dev_register(codec);
1481 if (ret < 0) {
1482 printk(KERN_ERR "asoc: AC97 device register failed\n");
1483 snd_card_free(codec->card);
1484 mutex_unlock(&codec->mutex);
1485 goto out;
1486 }
1487 }
1488 #endif
1489
1490 err = snd_soc_dapm_sys_add(socdev->dev);
1491 if (err < 0)
1492 printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
1493
1494 err = device_create_file(socdev->dev, &dev_attr_codec_reg);
1495 if (err < 0)
1496 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1497
1498 soc_init_codec_debugfs(codec);
1499 mutex_unlock(&codec->mutex);
1500
1501 out:
1502 return ret;
1503 }
1504 EXPORT_SYMBOL_GPL(snd_soc_init_card);
1505
1506 /**
1507 * snd_soc_free_pcms - free sound card and pcms
1508 * @socdev: the SoC audio device
1509 *
1510 * Frees sound card and pcms associated with the socdev.
1511 * Also unregister the codec if it is an AC97 device.
1512 */
1513 void snd_soc_free_pcms(struct snd_soc_device *socdev)
1514 {
1515 struct snd_soc_codec *codec = socdev->card->codec;
1516 #ifdef CONFIG_SND_SOC_AC97_BUS
1517 struct snd_soc_dai *codec_dai;
1518 int i;
1519 #endif
1520
1521 mutex_lock(&codec->mutex);
1522 soc_cleanup_codec_debugfs(codec);
1523 #ifdef CONFIG_SND_SOC_AC97_BUS
1524 for (i = 0; i < codec->num_dai; i++) {
1525 codec_dai = &codec->dai[i];
1526 if (codec_dai->ac97_control && codec->ac97 &&
1527 strcmp(codec->name, "AC97") != 0) {
1528 soc_ac97_dev_unregister(codec);
1529 goto free_card;
1530 }
1531 }
1532 free_card:
1533 #endif
1534
1535 if (codec->card)
1536 snd_card_free(codec->card);
1537 device_remove_file(socdev->dev, &dev_attr_codec_reg);
1538 mutex_unlock(&codec->mutex);
1539 }
1540 EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
1541
1542 /**
1543 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1544 * @substream: the pcm substream
1545 * @hw: the hardware parameters
1546 *
1547 * Sets the substream runtime hardware parameters.
1548 */
1549 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1550 const struct snd_pcm_hardware *hw)
1551 {
1552 struct snd_pcm_runtime *runtime = substream->runtime;
1553 runtime->hw.info = hw->info;
1554 runtime->hw.formats = hw->formats;
1555 runtime->hw.period_bytes_min = hw->period_bytes_min;
1556 runtime->hw.period_bytes_max = hw->period_bytes_max;
1557 runtime->hw.periods_min = hw->periods_min;
1558 runtime->hw.periods_max = hw->periods_max;
1559 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1560 runtime->hw.fifo_size = hw->fifo_size;
1561 return 0;
1562 }
1563 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1564
1565 /**
1566 * snd_soc_cnew - create new control
1567 * @_template: control template
1568 * @data: control private data
1569 * @long_name: control long name
1570 *
1571 * Create a new mixer control from a template control.
1572 *
1573 * Returns 0 for success, else error.
1574 */
1575 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1576 void *data, char *long_name)
1577 {
1578 struct snd_kcontrol_new template;
1579
1580 memcpy(&template, _template, sizeof(template));
1581 if (long_name)
1582 template.name = long_name;
1583 template.index = 0;
1584
1585 return snd_ctl_new1(&template, data);
1586 }
1587 EXPORT_SYMBOL_GPL(snd_soc_cnew);
1588
1589 /**
1590 * snd_soc_add_controls - add an array of controls to a codec.
1591 * Convienience function to add a list of controls. Many codecs were
1592 * duplicating this code.
1593 *
1594 * @codec: codec to add controls to
1595 * @controls: array of controls to add
1596 * @num_controls: number of elements in the array
1597 *
1598 * Return 0 for success, else error.
1599 */
1600 int snd_soc_add_controls(struct snd_soc_codec *codec,
1601 const struct snd_kcontrol_new *controls, int num_controls)
1602 {
1603 struct snd_card *card = codec->card;
1604 int err, i;
1605
1606 for (i = 0; i < num_controls; i++) {
1607 const struct snd_kcontrol_new *control = &controls[i];
1608 err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
1609 if (err < 0) {
1610 dev_err(codec->dev, "%s: Failed to add %s\n",
1611 codec->name, control->name);
1612 return err;
1613 }
1614 }
1615
1616 return 0;
1617 }
1618 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
1619
1620 /**
1621 * snd_soc_info_enum_double - enumerated double mixer info callback
1622 * @kcontrol: mixer control
1623 * @uinfo: control element information
1624 *
1625 * Callback to provide information about a double enumerated
1626 * mixer control.
1627 *
1628 * Returns 0 for success.
1629 */
1630 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1631 struct snd_ctl_elem_info *uinfo)
1632 {
1633 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1634
1635 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1636 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1637 uinfo->value.enumerated.items = e->max;
1638
1639 if (uinfo->value.enumerated.item > e->max - 1)
1640 uinfo->value.enumerated.item = e->max - 1;
1641 strcpy(uinfo->value.enumerated.name,
1642 e->texts[uinfo->value.enumerated.item]);
1643 return 0;
1644 }
1645 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1646
1647 /**
1648 * snd_soc_get_enum_double - enumerated double mixer get callback
1649 * @kcontrol: mixer control
1650 * @ucontrol: control element information
1651 *
1652 * Callback to get the value of a double enumerated mixer.
1653 *
1654 * Returns 0 for success.
1655 */
1656 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1657 struct snd_ctl_elem_value *ucontrol)
1658 {
1659 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1660 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1661 unsigned int val, bitmask;
1662
1663 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1664 ;
1665 val = snd_soc_read(codec, e->reg);
1666 ucontrol->value.enumerated.item[0]
1667 = (val >> e->shift_l) & (bitmask - 1);
1668 if (e->shift_l != e->shift_r)
1669 ucontrol->value.enumerated.item[1] =
1670 (val >> e->shift_r) & (bitmask - 1);
1671
1672 return 0;
1673 }
1674 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1675
1676 /**
1677 * snd_soc_put_enum_double - enumerated double mixer put callback
1678 * @kcontrol: mixer control
1679 * @ucontrol: control element information
1680 *
1681 * Callback to set the value of a double enumerated mixer.
1682 *
1683 * Returns 0 for success.
1684 */
1685 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1686 struct snd_ctl_elem_value *ucontrol)
1687 {
1688 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1689 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1690 unsigned int val;
1691 unsigned int mask, bitmask;
1692
1693 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1694 ;
1695 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1696 return -EINVAL;
1697 val = ucontrol->value.enumerated.item[0] << e->shift_l;
1698 mask = (bitmask - 1) << e->shift_l;
1699 if (e->shift_l != e->shift_r) {
1700 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1701 return -EINVAL;
1702 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1703 mask |= (bitmask - 1) << e->shift_r;
1704 }
1705
1706 return snd_soc_update_bits(codec, e->reg, mask, val);
1707 }
1708 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
1709
1710 /**
1711 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
1712 * @kcontrol: mixer control
1713 * @ucontrol: control element information
1714 *
1715 * Callback to get the value of a double semi enumerated mixer.
1716 *
1717 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1718 * used for handling bitfield coded enumeration for example.
1719 *
1720 * Returns 0 for success.
1721 */
1722 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
1723 struct snd_ctl_elem_value *ucontrol)
1724 {
1725 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1726 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1727 unsigned int reg_val, val, mux;
1728
1729 reg_val = snd_soc_read(codec, e->reg);
1730 val = (reg_val >> e->shift_l) & e->mask;
1731 for (mux = 0; mux < e->max; mux++) {
1732 if (val == e->values[mux])
1733 break;
1734 }
1735 ucontrol->value.enumerated.item[0] = mux;
1736 if (e->shift_l != e->shift_r) {
1737 val = (reg_val >> e->shift_r) & e->mask;
1738 for (mux = 0; mux < e->max; mux++) {
1739 if (val == e->values[mux])
1740 break;
1741 }
1742 ucontrol->value.enumerated.item[1] = mux;
1743 }
1744
1745 return 0;
1746 }
1747 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
1748
1749 /**
1750 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
1751 * @kcontrol: mixer control
1752 * @ucontrol: control element information
1753 *
1754 * Callback to set the value of a double semi enumerated mixer.
1755 *
1756 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1757 * used for handling bitfield coded enumeration for example.
1758 *
1759 * Returns 0 for success.
1760 */
1761 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
1762 struct snd_ctl_elem_value *ucontrol)
1763 {
1764 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1765 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1766 unsigned int val;
1767 unsigned int mask;
1768
1769 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1770 return -EINVAL;
1771 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
1772 mask = e->mask << e->shift_l;
1773 if (e->shift_l != e->shift_r) {
1774 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1775 return -EINVAL;
1776 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
1777 mask |= e->mask << e->shift_r;
1778 }
1779
1780 return snd_soc_update_bits(codec, e->reg, mask, val);
1781 }
1782 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
1783
1784 /**
1785 * snd_soc_info_enum_ext - external enumerated single mixer info callback
1786 * @kcontrol: mixer control
1787 * @uinfo: control element information
1788 *
1789 * Callback to provide information about an external enumerated
1790 * single mixer.
1791 *
1792 * Returns 0 for success.
1793 */
1794 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
1795 struct snd_ctl_elem_info *uinfo)
1796 {
1797 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1798
1799 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1800 uinfo->count = 1;
1801 uinfo->value.enumerated.items = e->max;
1802
1803 if (uinfo->value.enumerated.item > e->max - 1)
1804 uinfo->value.enumerated.item = e->max - 1;
1805 strcpy(uinfo->value.enumerated.name,
1806 e->texts[uinfo->value.enumerated.item]);
1807 return 0;
1808 }
1809 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
1810
1811 /**
1812 * snd_soc_info_volsw_ext - external single mixer info callback
1813 * @kcontrol: mixer control
1814 * @uinfo: control element information
1815 *
1816 * Callback to provide information about a single external mixer control.
1817 *
1818 * Returns 0 for success.
1819 */
1820 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
1821 struct snd_ctl_elem_info *uinfo)
1822 {
1823 int max = kcontrol->private_value;
1824
1825 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1826 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1827 else
1828 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1829
1830 uinfo->count = 1;
1831 uinfo->value.integer.min = 0;
1832 uinfo->value.integer.max = max;
1833 return 0;
1834 }
1835 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
1836
1837 /**
1838 * snd_soc_info_volsw - single mixer info callback
1839 * @kcontrol: mixer control
1840 * @uinfo: control element information
1841 *
1842 * Callback to provide information about a single mixer control.
1843 *
1844 * Returns 0 for success.
1845 */
1846 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
1847 struct snd_ctl_elem_info *uinfo)
1848 {
1849 struct soc_mixer_control *mc =
1850 (struct soc_mixer_control *)kcontrol->private_value;
1851 int max = mc->max;
1852 unsigned int shift = mc->shift;
1853 unsigned int rshift = mc->rshift;
1854
1855 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1856 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1857 else
1858 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1859
1860 uinfo->count = shift == rshift ? 1 : 2;
1861 uinfo->value.integer.min = 0;
1862 uinfo->value.integer.max = max;
1863 return 0;
1864 }
1865 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
1866
1867 /**
1868 * snd_soc_get_volsw - single mixer get callback
1869 * @kcontrol: mixer control
1870 * @ucontrol: control element information
1871 *
1872 * Callback to get the value of a single mixer control.
1873 *
1874 * Returns 0 for success.
1875 */
1876 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
1877 struct snd_ctl_elem_value *ucontrol)
1878 {
1879 struct soc_mixer_control *mc =
1880 (struct soc_mixer_control *)kcontrol->private_value;
1881 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1882 unsigned int reg = mc->reg;
1883 unsigned int shift = mc->shift;
1884 unsigned int rshift = mc->rshift;
1885 int max = mc->max;
1886 unsigned int mask = (1 << fls(max)) - 1;
1887 unsigned int invert = mc->invert;
1888
1889 ucontrol->value.integer.value[0] =
1890 (snd_soc_read(codec, reg) >> shift) & mask;
1891 if (shift != rshift)
1892 ucontrol->value.integer.value[1] =
1893 (snd_soc_read(codec, reg) >> rshift) & mask;
1894 if (invert) {
1895 ucontrol->value.integer.value[0] =
1896 max - ucontrol->value.integer.value[0];
1897 if (shift != rshift)
1898 ucontrol->value.integer.value[1] =
1899 max - ucontrol->value.integer.value[1];
1900 }
1901
1902 return 0;
1903 }
1904 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
1905
1906 /**
1907 * snd_soc_put_volsw - single mixer put callback
1908 * @kcontrol: mixer control
1909 * @ucontrol: control element information
1910 *
1911 * Callback to set the value of a single mixer control.
1912 *
1913 * Returns 0 for success.
1914 */
1915 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
1916 struct snd_ctl_elem_value *ucontrol)
1917 {
1918 struct soc_mixer_control *mc =
1919 (struct soc_mixer_control *)kcontrol->private_value;
1920 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1921 unsigned int reg = mc->reg;
1922 unsigned int shift = mc->shift;
1923 unsigned int rshift = mc->rshift;
1924 int max = mc->max;
1925 unsigned int mask = (1 << fls(max)) - 1;
1926 unsigned int invert = mc->invert;
1927 unsigned int val, val2, val_mask;
1928
1929 val = (ucontrol->value.integer.value[0] & mask);
1930 if (invert)
1931 val = max - val;
1932 val_mask = mask << shift;
1933 val = val << shift;
1934 if (shift != rshift) {
1935 val2 = (ucontrol->value.integer.value[1] & mask);
1936 if (invert)
1937 val2 = max - val2;
1938 val_mask |= mask << rshift;
1939 val |= val2 << rshift;
1940 }
1941 return snd_soc_update_bits(codec, reg, val_mask, val);
1942 }
1943 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
1944
1945 /**
1946 * snd_soc_info_volsw_2r - double mixer info callback
1947 * @kcontrol: mixer control
1948 * @uinfo: control element information
1949 *
1950 * Callback to provide information about a double mixer control that
1951 * spans 2 codec registers.
1952 *
1953 * Returns 0 for success.
1954 */
1955 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
1956 struct snd_ctl_elem_info *uinfo)
1957 {
1958 struct soc_mixer_control *mc =
1959 (struct soc_mixer_control *)kcontrol->private_value;
1960 int max = mc->max;
1961
1962 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1963 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1964 else
1965 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1966
1967 uinfo->count = 2;
1968 uinfo->value.integer.min = 0;
1969 uinfo->value.integer.max = max;
1970 return 0;
1971 }
1972 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
1973
1974 /**
1975 * snd_soc_get_volsw_2r - double mixer get callback
1976 * @kcontrol: mixer control
1977 * @ucontrol: control element information
1978 *
1979 * Callback to get the value of a double mixer control that spans 2 registers.
1980 *
1981 * Returns 0 for success.
1982 */
1983 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
1984 struct snd_ctl_elem_value *ucontrol)
1985 {
1986 struct soc_mixer_control *mc =
1987 (struct soc_mixer_control *)kcontrol->private_value;
1988 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1989 unsigned int reg = mc->reg;
1990 unsigned int reg2 = mc->rreg;
1991 unsigned int shift = mc->shift;
1992 int max = mc->max;
1993 unsigned int mask = (1 << fls(max)) - 1;
1994 unsigned int invert = mc->invert;
1995
1996 ucontrol->value.integer.value[0] =
1997 (snd_soc_read(codec, reg) >> shift) & mask;
1998 ucontrol->value.integer.value[1] =
1999 (snd_soc_read(codec, reg2) >> shift) & mask;
2000 if (invert) {
2001 ucontrol->value.integer.value[0] =
2002 max - ucontrol->value.integer.value[0];
2003 ucontrol->value.integer.value[1] =
2004 max - ucontrol->value.integer.value[1];
2005 }
2006
2007 return 0;
2008 }
2009 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2010
2011 /**
2012 * snd_soc_put_volsw_2r - double mixer set callback
2013 * @kcontrol: mixer control
2014 * @ucontrol: control element information
2015 *
2016 * Callback to set the value of a double mixer control that spans 2 registers.
2017 *
2018 * Returns 0 for success.
2019 */
2020 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2021 struct snd_ctl_elem_value *ucontrol)
2022 {
2023 struct soc_mixer_control *mc =
2024 (struct soc_mixer_control *)kcontrol->private_value;
2025 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2026 unsigned int reg = mc->reg;
2027 unsigned int reg2 = mc->rreg;
2028 unsigned int shift = mc->shift;
2029 int max = mc->max;
2030 unsigned int mask = (1 << fls(max)) - 1;
2031 unsigned int invert = mc->invert;
2032 int err;
2033 unsigned int val, val2, val_mask;
2034
2035 val_mask = mask << shift;
2036 val = (ucontrol->value.integer.value[0] & mask);
2037 val2 = (ucontrol->value.integer.value[1] & mask);
2038
2039 if (invert) {
2040 val = max - val;
2041 val2 = max - val2;
2042 }
2043
2044 val = val << shift;
2045 val2 = val2 << shift;
2046
2047 err = snd_soc_update_bits(codec, reg, val_mask, val);
2048 if (err < 0)
2049 return err;
2050
2051 err = snd_soc_update_bits(codec, reg2, val_mask, val2);
2052 return err;
2053 }
2054 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2055
2056 /**
2057 * snd_soc_info_volsw_s8 - signed mixer info callback
2058 * @kcontrol: mixer control
2059 * @uinfo: control element information
2060 *
2061 * Callback to provide information about a signed mixer control.
2062 *
2063 * Returns 0 for success.
2064 */
2065 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2066 struct snd_ctl_elem_info *uinfo)
2067 {
2068 struct soc_mixer_control *mc =
2069 (struct soc_mixer_control *)kcontrol->private_value;
2070 int max = mc->max;
2071 int min = mc->min;
2072
2073 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2074 uinfo->count = 2;
2075 uinfo->value.integer.min = 0;
2076 uinfo->value.integer.max = max-min;
2077 return 0;
2078 }
2079 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2080
2081 /**
2082 * snd_soc_get_volsw_s8 - signed mixer get callback
2083 * @kcontrol: mixer control
2084 * @ucontrol: control element information
2085 *
2086 * Callback to get the value of a signed mixer control.
2087 *
2088 * Returns 0 for success.
2089 */
2090 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2091 struct snd_ctl_elem_value *ucontrol)
2092 {
2093 struct soc_mixer_control *mc =
2094 (struct soc_mixer_control *)kcontrol->private_value;
2095 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2096 unsigned int reg = mc->reg;
2097 int min = mc->min;
2098 int val = snd_soc_read(codec, reg);
2099
2100 ucontrol->value.integer.value[0] =
2101 ((signed char)(val & 0xff))-min;
2102 ucontrol->value.integer.value[1] =
2103 ((signed char)((val >> 8) & 0xff))-min;
2104 return 0;
2105 }
2106 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2107
2108 /**
2109 * snd_soc_put_volsw_sgn - signed mixer put callback
2110 * @kcontrol: mixer control
2111 * @ucontrol: control element information
2112 *
2113 * Callback to set the value of a signed mixer control.
2114 *
2115 * Returns 0 for success.
2116 */
2117 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2118 struct snd_ctl_elem_value *ucontrol)
2119 {
2120 struct soc_mixer_control *mc =
2121 (struct soc_mixer_control *)kcontrol->private_value;
2122 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2123 unsigned int reg = mc->reg;
2124 int min = mc->min;
2125 unsigned int val;
2126
2127 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2128 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2129
2130 return snd_soc_update_bits(codec, reg, 0xffff, val);
2131 }
2132 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2133
2134 /**
2135 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2136 * @dai: DAI
2137 * @clk_id: DAI specific clock ID
2138 * @freq: new clock frequency in Hz
2139 * @dir: new clock direction - input/output.
2140 *
2141 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2142 */
2143 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2144 unsigned int freq, int dir)
2145 {
2146 if (dai->ops && dai->ops->set_sysclk)
2147 return dai->ops->set_sysclk(dai, clk_id, freq, dir);
2148 else
2149 return -EINVAL;
2150 }
2151 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2152
2153 /**
2154 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2155 * @dai: DAI
2156 * @div_id: DAI specific clock divider ID
2157 * @div: new clock divisor.
2158 *
2159 * Configures the clock dividers. This is used to derive the best DAI bit and
2160 * frame clocks from the system or master clock. It's best to set the DAI bit
2161 * and frame clocks as low as possible to save system power.
2162 */
2163 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2164 int div_id, int div)
2165 {
2166 if (dai->ops && dai->ops->set_clkdiv)
2167 return dai->ops->set_clkdiv(dai, div_id, div);
2168 else
2169 return -EINVAL;
2170 }
2171 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2172
2173 /**
2174 * snd_soc_dai_set_pll - configure DAI PLL.
2175 * @dai: DAI
2176 * @pll_id: DAI specific PLL ID
2177 * @source: DAI specific source for the PLL
2178 * @freq_in: PLL input clock frequency in Hz
2179 * @freq_out: requested PLL output clock frequency in Hz
2180 *
2181 * Configures and enables PLL to generate output clock based on input clock.
2182 */
2183 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
2184 unsigned int freq_in, unsigned int freq_out)
2185 {
2186 if (dai->ops && dai->ops->set_pll)
2187 return dai->ops->set_pll(dai, pll_id, source,
2188 freq_in, freq_out);
2189 else
2190 return -EINVAL;
2191 }
2192 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2193
2194 /**
2195 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2196 * @dai: DAI
2197 * @fmt: SND_SOC_DAIFMT_ format value.
2198 *
2199 * Configures the DAI hardware format and clocking.
2200 */
2201 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2202 {
2203 if (dai->ops && dai->ops->set_fmt)
2204 return dai->ops->set_fmt(dai, fmt);
2205 else
2206 return -EINVAL;
2207 }
2208 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2209
2210 /**
2211 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2212 * @dai: DAI
2213 * @tx_mask: bitmask representing active TX slots.
2214 * @rx_mask: bitmask representing active RX slots.
2215 * @slots: Number of slots in use.
2216 * @slot_width: Width in bits for each slot.
2217 *
2218 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2219 * specific.
2220 */
2221 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2222 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
2223 {
2224 if (dai->ops && dai->ops->set_tdm_slot)
2225 return dai->ops->set_tdm_slot(dai, tx_mask, rx_mask,
2226 slots, slot_width);
2227 else
2228 return -EINVAL;
2229 }
2230 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2231
2232 /**
2233 * snd_soc_dai_set_channel_map - configure DAI audio channel map
2234 * @dai: DAI
2235 * @tx_num: how many TX channels
2236 * @tx_slot: pointer to an array which imply the TX slot number channel
2237 * 0~num-1 uses
2238 * @rx_num: how many RX channels
2239 * @rx_slot: pointer to an array which imply the RX slot number channel
2240 * 0~num-1 uses
2241 *
2242 * configure the relationship between channel number and TDM slot number.
2243 */
2244 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
2245 unsigned int tx_num, unsigned int *tx_slot,
2246 unsigned int rx_num, unsigned int *rx_slot)
2247 {
2248 if (dai->ops && dai->ops->set_channel_map)
2249 return dai->ops->set_channel_map(dai, tx_num, tx_slot,
2250 rx_num, rx_slot);
2251 else
2252 return -EINVAL;
2253 }
2254 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
2255
2256 /**
2257 * snd_soc_dai_set_tristate - configure DAI system or master clock.
2258 * @dai: DAI
2259 * @tristate: tristate enable
2260 *
2261 * Tristates the DAI so that others can use it.
2262 */
2263 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2264 {
2265 if (dai->ops && dai->ops->set_tristate)
2266 return dai->ops->set_tristate(dai, tristate);
2267 else
2268 return -EINVAL;
2269 }
2270 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2271
2272 /**
2273 * snd_soc_dai_digital_mute - configure DAI system or master clock.
2274 * @dai: DAI
2275 * @mute: mute enable
2276 *
2277 * Mutes the DAI DAC.
2278 */
2279 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2280 {
2281 if (dai->ops && dai->ops->digital_mute)
2282 return dai->ops->digital_mute(dai, mute);
2283 else
2284 return -EINVAL;
2285 }
2286 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2287
2288 /**
2289 * snd_soc_register_card - Register a card with the ASoC core
2290 *
2291 * @card: Card to register
2292 *
2293 * Note that currently this is an internal only function: it will be
2294 * exposed to machine drivers after further backporting of ASoC v2
2295 * registration APIs.
2296 */
2297 static int snd_soc_register_card(struct snd_soc_card *card)
2298 {
2299 if (!card->name || !card->dev)
2300 return -EINVAL;
2301
2302 INIT_LIST_HEAD(&card->list);
2303 card->instantiated = 0;
2304
2305 mutex_lock(&client_mutex);
2306 list_add(&card->list, &card_list);
2307 snd_soc_instantiate_cards();
2308 mutex_unlock(&client_mutex);
2309
2310 dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2311
2312 return 0;
2313 }
2314
2315 /**
2316 * snd_soc_unregister_card - Unregister a card with the ASoC core
2317 *
2318 * @card: Card to unregister
2319 *
2320 * Note that currently this is an internal only function: it will be
2321 * exposed to machine drivers after further backporting of ASoC v2
2322 * registration APIs.
2323 */
2324 static int snd_soc_unregister_card(struct snd_soc_card *card)
2325 {
2326 mutex_lock(&client_mutex);
2327 list_del(&card->list);
2328 mutex_unlock(&client_mutex);
2329
2330 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2331
2332 return 0;
2333 }
2334
2335 static struct snd_soc_dai_ops null_dai_ops = {
2336 };
2337
2338 /**
2339 * snd_soc_register_dai - Register a DAI with the ASoC core
2340 *
2341 * @dai: DAI to register
2342 */
2343 int snd_soc_register_dai(struct snd_soc_dai *dai)
2344 {
2345 if (!dai->name)
2346 return -EINVAL;
2347
2348 /* The device should become mandatory over time */
2349 if (!dai->dev)
2350 printk(KERN_WARNING "No device for DAI %s\n", dai->name);
2351
2352 if (!dai->ops)
2353 dai->ops = &null_dai_ops;
2354
2355 INIT_LIST_HEAD(&dai->list);
2356
2357 mutex_lock(&client_mutex);
2358 list_add(&dai->list, &dai_list);
2359 snd_soc_instantiate_cards();
2360 mutex_unlock(&client_mutex);
2361
2362 pr_debug("Registered DAI '%s'\n", dai->name);
2363
2364 return 0;
2365 }
2366 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
2367
2368 /**
2369 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
2370 *
2371 * @dai: DAI to unregister
2372 */
2373 void snd_soc_unregister_dai(struct snd_soc_dai *dai)
2374 {
2375 mutex_lock(&client_mutex);
2376 list_del(&dai->list);
2377 mutex_unlock(&client_mutex);
2378
2379 pr_debug("Unregistered DAI '%s'\n", dai->name);
2380 }
2381 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
2382
2383 /**
2384 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
2385 *
2386 * @dai: Array of DAIs to register
2387 * @count: Number of DAIs
2388 */
2389 int snd_soc_register_dais(struct snd_soc_dai *dai, size_t count)
2390 {
2391 int i, ret;
2392
2393 for (i = 0; i < count; i++) {
2394 ret = snd_soc_register_dai(&dai[i]);
2395 if (ret != 0)
2396 goto err;
2397 }
2398
2399 return 0;
2400
2401 err:
2402 for (i--; i >= 0; i--)
2403 snd_soc_unregister_dai(&dai[i]);
2404
2405 return ret;
2406 }
2407 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
2408
2409 /**
2410 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
2411 *
2412 * @dai: Array of DAIs to unregister
2413 * @count: Number of DAIs
2414 */
2415 void snd_soc_unregister_dais(struct snd_soc_dai *dai, size_t count)
2416 {
2417 int i;
2418
2419 for (i = 0; i < count; i++)
2420 snd_soc_unregister_dai(&dai[i]);
2421 }
2422 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
2423
2424 /**
2425 * snd_soc_register_platform - Register a platform with the ASoC core
2426 *
2427 * @platform: platform to register
2428 */
2429 int snd_soc_register_platform(struct snd_soc_platform *platform)
2430 {
2431 if (!platform->name)
2432 return -EINVAL;
2433
2434 INIT_LIST_HEAD(&platform->list);
2435
2436 mutex_lock(&client_mutex);
2437 list_add(&platform->list, &platform_list);
2438 snd_soc_instantiate_cards();
2439 mutex_unlock(&client_mutex);
2440
2441 pr_debug("Registered platform '%s'\n", platform->name);
2442
2443 return 0;
2444 }
2445 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
2446
2447 /**
2448 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
2449 *
2450 * @platform: platform to unregister
2451 */
2452 void snd_soc_unregister_platform(struct snd_soc_platform *platform)
2453 {
2454 mutex_lock(&client_mutex);
2455 list_del(&platform->list);
2456 mutex_unlock(&client_mutex);
2457
2458 pr_debug("Unregistered platform '%s'\n", platform->name);
2459 }
2460 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
2461
2462 static u64 codec_format_map[] = {
2463 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
2464 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
2465 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
2466 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
2467 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
2468 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
2469 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
2470 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
2471 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
2472 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
2473 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
2474 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
2475 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
2476 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
2477 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
2478 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
2479 };
2480
2481 /* Fix up the DAI formats for endianness: codecs don't actually see
2482 * the endianness of the data but we're using the CPU format
2483 * definitions which do need to include endianness so we ensure that
2484 * codec DAIs always have both big and little endian variants set.
2485 */
2486 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
2487 {
2488 int i;
2489
2490 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
2491 if (stream->formats & codec_format_map[i])
2492 stream->formats |= codec_format_map[i];
2493 }
2494
2495 /**
2496 * snd_soc_register_codec - Register a codec with the ASoC core
2497 *
2498 * @codec: codec to register
2499 */
2500 int snd_soc_register_codec(struct snd_soc_codec *codec)
2501 {
2502 int i;
2503
2504 if (!codec->name)
2505 return -EINVAL;
2506
2507 /* The device should become mandatory over time */
2508 if (!codec->dev)
2509 printk(KERN_WARNING "No device for codec %s\n", codec->name);
2510
2511 INIT_LIST_HEAD(&codec->list);
2512
2513 for (i = 0; i < codec->num_dai; i++) {
2514 fixup_codec_formats(&codec->dai[i].playback);
2515 fixup_codec_formats(&codec->dai[i].capture);
2516 }
2517
2518 mutex_lock(&client_mutex);
2519 list_add(&codec->list, &codec_list);
2520 snd_soc_instantiate_cards();
2521 mutex_unlock(&client_mutex);
2522
2523 pr_debug("Registered codec '%s'\n", codec->name);
2524
2525 return 0;
2526 }
2527 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
2528
2529 /**
2530 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
2531 *
2532 * @codec: codec to unregister
2533 */
2534 void snd_soc_unregister_codec(struct snd_soc_codec *codec)
2535 {
2536 mutex_lock(&client_mutex);
2537 list_del(&codec->list);
2538 mutex_unlock(&client_mutex);
2539
2540 pr_debug("Unregistered codec '%s'\n", codec->name);
2541 }
2542 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
2543
2544 static int __init snd_soc_init(void)
2545 {
2546 #ifdef CONFIG_DEBUG_FS
2547 debugfs_root = debugfs_create_dir("asoc", NULL);
2548 if (IS_ERR(debugfs_root) || !debugfs_root) {
2549 printk(KERN_WARNING
2550 "ASoC: Failed to create debugfs directory\n");
2551 debugfs_root = NULL;
2552 }
2553 #endif
2554
2555 return platform_driver_register(&soc_driver);
2556 }
2557
2558 static void __exit snd_soc_exit(void)
2559 {
2560 #ifdef CONFIG_DEBUG_FS
2561 debugfs_remove_recursive(debugfs_root);
2562 #endif
2563 platform_driver_unregister(&soc_driver);
2564 }
2565
2566 module_init(snd_soc_init);
2567 module_exit(snd_soc_exit);
2568
2569 /* Module information */
2570 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
2571 MODULE_DESCRIPTION("ALSA SoC Core");
2572 MODULE_LICENSE("GPL");
2573 MODULE_ALIAS("platform:soc-audio");
This page took 0.084723 seconds and 6 git commands to generate.