Merge branch 'for-2.6.37' into for-2.6.38
[deliverable/linux.git] / sound / soc / soc-core.c
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
6 * Copyright (C) 2010 Slimlogic Ltd.
7 * Copyright (C) 2010 Texas Instruments Inc.
8 *
9 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10 * with code, comments and ideas from :-
11 * Richard Purdie <richard@openedhand.com>
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 *
18 * TODO:
19 * o Add hw rules to enforce rates, etc.
20 * o More testing with other codecs/machines.
21 * o Add more codecs and platforms to ensure good API coverage.
22 * o Support TDM on PCM and I2S
23 */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h>
35 #include <sound/core.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/soc.h>
39 #include <sound/soc-dapm.h>
40 #include <sound/initval.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/asoc.h>
44
45 #define NAME_SIZE 32
46
47 static DEFINE_MUTEX(pcm_mutex);
48 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
49
50 #ifdef CONFIG_DEBUG_FS
51 static struct dentry *debugfs_root;
52 #endif
53
54 static DEFINE_MUTEX(client_mutex);
55 static LIST_HEAD(card_list);
56 static LIST_HEAD(dai_list);
57 static LIST_HEAD(platform_list);
58 static LIST_HEAD(codec_list);
59
60 static int snd_soc_register_card(struct snd_soc_card *card);
61 static int snd_soc_unregister_card(struct snd_soc_card *card);
62 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
63
64 /*
65 * This is a timeout to do a DAPM powerdown after a stream is closed().
66 * It can be used to eliminate pops between different playback streams, e.g.
67 * between two audio tracks.
68 */
69 static int pmdown_time = 5000;
70 module_param(pmdown_time, int, 0);
71 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
72
73 /*
74 * This function forces any delayed work to be queued and run.
75 */
76 static int run_delayed_work(struct delayed_work *dwork)
77 {
78 int ret;
79
80 /* cancel any work waiting to be queued. */
81 ret = cancel_delayed_work(dwork);
82
83 /* if there was any work waiting then we run it now and
84 * wait for it's completion */
85 if (ret) {
86 schedule_delayed_work(dwork, 0);
87 flush_scheduled_work();
88 }
89 return ret;
90 }
91
92 /* codec register dump */
93 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
94 {
95 int ret, i, step = 1, count = 0;
96
97 if (!codec->driver->reg_cache_size)
98 return 0;
99
100 if (codec->driver->reg_cache_step)
101 step = codec->driver->reg_cache_step;
102
103 count += sprintf(buf, "%s registers\n", codec->name);
104 for (i = 0; i < codec->driver->reg_cache_size; i += step) {
105 if (codec->driver->readable_register && !codec->driver->readable_register(i))
106 continue;
107
108 count += sprintf(buf + count, "%2x: ", i);
109 if (count >= PAGE_SIZE - 1)
110 break;
111
112 if (codec->driver->display_register) {
113 count += codec->driver->display_register(codec, buf + count,
114 PAGE_SIZE - count, i);
115 } else {
116 /* If the read fails it's almost certainly due to
117 * the register being volatile and the device being
118 * powered off.
119 */
120 ret = codec->driver->read(codec, i);
121 if (ret >= 0)
122 count += snprintf(buf + count,
123 PAGE_SIZE - count,
124 "%4x", ret);
125 else
126 count += snprintf(buf + count,
127 PAGE_SIZE - count,
128 "<no data: %d>", ret);
129 }
130
131 if (count >= PAGE_SIZE - 1)
132 break;
133
134 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
135 if (count >= PAGE_SIZE - 1)
136 break;
137 }
138
139 /* Truncate count; min() would cause a warning */
140 if (count >= PAGE_SIZE)
141 count = PAGE_SIZE - 1;
142
143 return count;
144 }
145 static ssize_t codec_reg_show(struct device *dev,
146 struct device_attribute *attr, char *buf)
147 {
148 struct snd_soc_pcm_runtime *rtd =
149 container_of(dev, struct snd_soc_pcm_runtime, dev);
150
151 return soc_codec_reg_show(rtd->codec, buf);
152 }
153
154 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
155
156 static ssize_t pmdown_time_show(struct device *dev,
157 struct device_attribute *attr, char *buf)
158 {
159 struct snd_soc_pcm_runtime *rtd =
160 container_of(dev, struct snd_soc_pcm_runtime, dev);
161
162 return sprintf(buf, "%ld\n", rtd->pmdown_time);
163 }
164
165 static ssize_t pmdown_time_set(struct device *dev,
166 struct device_attribute *attr,
167 const char *buf, size_t count)
168 {
169 struct snd_soc_pcm_runtime *rtd =
170 container_of(dev, struct snd_soc_pcm_runtime, dev);
171 int ret;
172
173 ret = strict_strtol(buf, 10, &rtd->pmdown_time);
174 if (ret)
175 return ret;
176
177 return count;
178 }
179
180 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
181
182 #ifdef CONFIG_DEBUG_FS
183 static int codec_reg_open_file(struct inode *inode, struct file *file)
184 {
185 file->private_data = inode->i_private;
186 return 0;
187 }
188
189 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
190 size_t count, loff_t *ppos)
191 {
192 ssize_t ret;
193 struct snd_soc_codec *codec = file->private_data;
194 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
195 if (!buf)
196 return -ENOMEM;
197 ret = soc_codec_reg_show(codec, buf);
198 if (ret >= 0)
199 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
200 kfree(buf);
201 return ret;
202 }
203
204 static ssize_t codec_reg_write_file(struct file *file,
205 const char __user *user_buf, size_t count, loff_t *ppos)
206 {
207 char buf[32];
208 int buf_size;
209 char *start = buf;
210 unsigned long reg, value;
211 int step = 1;
212 struct snd_soc_codec *codec = file->private_data;
213
214 buf_size = min(count, (sizeof(buf)-1));
215 if (copy_from_user(buf, user_buf, buf_size))
216 return -EFAULT;
217 buf[buf_size] = 0;
218
219 if (codec->driver->reg_cache_step)
220 step = codec->driver->reg_cache_step;
221
222 while (*start == ' ')
223 start++;
224 reg = simple_strtoul(start, &start, 16);
225 if ((reg >= codec->driver->reg_cache_size) || (reg % step))
226 return -EINVAL;
227 while (*start == ' ')
228 start++;
229 if (strict_strtoul(start, 16, &value))
230 return -EINVAL;
231 codec->driver->write(codec, reg, value);
232 return buf_size;
233 }
234
235 static const struct file_operations codec_reg_fops = {
236 .open = codec_reg_open_file,
237 .read = codec_reg_read_file,
238 .write = codec_reg_write_file,
239 .llseek = default_llseek,
240 };
241
242 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
243 {
244 struct dentry *debugfs_card_root = codec->card->debugfs_card_root;
245
246 codec->debugfs_codec_root = debugfs_create_dir(codec->name,
247 debugfs_card_root);
248 if (!codec->debugfs_codec_root) {
249 printk(KERN_WARNING
250 "ASoC: Failed to create codec debugfs directory\n");
251 return;
252 }
253
254 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
255 codec->debugfs_codec_root,
256 codec, &codec_reg_fops);
257 if (!codec->debugfs_reg)
258 printk(KERN_WARNING
259 "ASoC: Failed to create codec register debugfs file\n");
260
261 codec->dapm.debugfs_dapm = debugfs_create_dir("dapm",
262 codec->debugfs_codec_root);
263 if (!codec->dapm.debugfs_dapm)
264 printk(KERN_WARNING
265 "Failed to create DAPM debugfs directory\n");
266
267 snd_soc_dapm_debugfs_init(&codec->dapm);
268 }
269
270 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
271 {
272 debugfs_remove_recursive(codec->debugfs_codec_root);
273 }
274
275 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
276 size_t count, loff_t *ppos)
277 {
278 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
279 ssize_t len, ret = 0;
280 struct snd_soc_codec *codec;
281
282 if (!buf)
283 return -ENOMEM;
284
285 list_for_each_entry(codec, &codec_list, list) {
286 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
287 codec->name);
288 if (len >= 0)
289 ret += len;
290 if (ret > PAGE_SIZE) {
291 ret = PAGE_SIZE;
292 break;
293 }
294 }
295
296 if (ret >= 0)
297 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
298
299 kfree(buf);
300
301 return ret;
302 }
303
304 static const struct file_operations codec_list_fops = {
305 .read = codec_list_read_file,
306 .llseek = default_llseek,/* read accesses f_pos */
307 };
308
309 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
310 size_t count, loff_t *ppos)
311 {
312 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
313 ssize_t len, ret = 0;
314 struct snd_soc_dai *dai;
315
316 if (!buf)
317 return -ENOMEM;
318
319 list_for_each_entry(dai, &dai_list, list) {
320 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
321 if (len >= 0)
322 ret += len;
323 if (ret > PAGE_SIZE) {
324 ret = PAGE_SIZE;
325 break;
326 }
327 }
328
329 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
330
331 kfree(buf);
332
333 return ret;
334 }
335
336 static const struct file_operations dai_list_fops = {
337 .read = dai_list_read_file,
338 .llseek = default_llseek,/* read accesses f_pos */
339 };
340
341 static ssize_t platform_list_read_file(struct file *file,
342 char __user *user_buf,
343 size_t count, loff_t *ppos)
344 {
345 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
346 ssize_t len, ret = 0;
347 struct snd_soc_platform *platform;
348
349 if (!buf)
350 return -ENOMEM;
351
352 list_for_each_entry(platform, &platform_list, list) {
353 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
354 platform->name);
355 if (len >= 0)
356 ret += len;
357 if (ret > PAGE_SIZE) {
358 ret = PAGE_SIZE;
359 break;
360 }
361 }
362
363 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
364
365 kfree(buf);
366
367 return ret;
368 }
369
370 static const struct file_operations platform_list_fops = {
371 .read = platform_list_read_file,
372 .llseek = default_llseek,/* read accesses f_pos */
373 };
374
375 static void soc_init_card_debugfs(struct snd_soc_card *card)
376 {
377 card->debugfs_card_root = debugfs_create_dir(card->name,
378 debugfs_root);
379 if (!card->debugfs_card_root) {
380 dev_warn(card->dev,
381 "ASoC: Failed to create codec debugfs directory\n");
382 return;
383 }
384
385 card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
386 card->debugfs_card_root,
387 &card->pop_time);
388 if (!card->debugfs_pop_time)
389 dev_warn(card->dev,
390 "Failed to create pop time debugfs file\n");
391 }
392
393 static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
394 {
395 debugfs_remove_recursive(card->debugfs_card_root);
396 }
397
398 #else
399
400 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
401 {
402 }
403
404 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
405 {
406 }
407
408 static inline void soc_init_card_debugfs(struct snd_soc_card *card)
409 {
410 }
411
412 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
413 {
414 }
415 #endif
416
417 #ifdef CONFIG_SND_SOC_AC97_BUS
418 /* unregister ac97 codec */
419 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
420 {
421 if (codec->ac97->dev.bus)
422 device_unregister(&codec->ac97->dev);
423 return 0;
424 }
425
426 /* stop no dev release warning */
427 static void soc_ac97_device_release(struct device *dev){}
428
429 /* register ac97 codec to bus */
430 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
431 {
432 int err;
433
434 codec->ac97->dev.bus = &ac97_bus_type;
435 codec->ac97->dev.parent = codec->card->dev;
436 codec->ac97->dev.release = soc_ac97_device_release;
437
438 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
439 codec->card->snd_card->number, 0, codec->name);
440 err = device_register(&codec->ac97->dev);
441 if (err < 0) {
442 snd_printk(KERN_ERR "Can't register ac97 bus\n");
443 codec->ac97->dev.bus = NULL;
444 return err;
445 }
446 return 0;
447 }
448 #endif
449
450 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
451 {
452 struct snd_soc_pcm_runtime *rtd = substream->private_data;
453 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
454 struct snd_soc_dai *codec_dai = rtd->codec_dai;
455 int ret;
456
457 if (codec_dai->driver->symmetric_rates || cpu_dai->driver->symmetric_rates ||
458 rtd->dai_link->symmetric_rates) {
459 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n",
460 rtd->rate);
461
462 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
463 SNDRV_PCM_HW_PARAM_RATE,
464 rtd->rate,
465 rtd->rate);
466 if (ret < 0) {
467 dev_err(&rtd->dev,
468 "Unable to apply rate symmetry constraint: %d\n", ret);
469 return ret;
470 }
471 }
472
473 return 0;
474 }
475
476 /*
477 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
478 * then initialized and any private data can be allocated. This also calls
479 * startup for the cpu DAI, platform, machine and codec DAI.
480 */
481 static int soc_pcm_open(struct snd_pcm_substream *substream)
482 {
483 struct snd_soc_pcm_runtime *rtd = substream->private_data;
484 struct snd_pcm_runtime *runtime = substream->runtime;
485 struct snd_soc_platform *platform = rtd->platform;
486 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
487 struct snd_soc_dai *codec_dai = rtd->codec_dai;
488 struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
489 struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
490 int ret = 0;
491
492 mutex_lock(&pcm_mutex);
493
494 /* startup the audio subsystem */
495 if (cpu_dai->driver->ops->startup) {
496 ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
497 if (ret < 0) {
498 printk(KERN_ERR "asoc: can't open interface %s\n",
499 cpu_dai->name);
500 goto out;
501 }
502 }
503
504 if (platform->driver->ops->open) {
505 ret = platform->driver->ops->open(substream);
506 if (ret < 0) {
507 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
508 goto platform_err;
509 }
510 }
511
512 if (codec_dai->driver->ops->startup) {
513 ret = codec_dai->driver->ops->startup(substream, codec_dai);
514 if (ret < 0) {
515 printk(KERN_ERR "asoc: can't open codec %s\n",
516 codec_dai->name);
517 goto codec_dai_err;
518 }
519 }
520
521 if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
522 ret = rtd->dai_link->ops->startup(substream);
523 if (ret < 0) {
524 printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
525 goto machine_err;
526 }
527 }
528
529 /* Check that the codec and cpu DAI's are compatible */
530 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
531 runtime->hw.rate_min =
532 max(codec_dai_drv->playback.rate_min,
533 cpu_dai_drv->playback.rate_min);
534 runtime->hw.rate_max =
535 min(codec_dai_drv->playback.rate_max,
536 cpu_dai_drv->playback.rate_max);
537 runtime->hw.channels_min =
538 max(codec_dai_drv->playback.channels_min,
539 cpu_dai_drv->playback.channels_min);
540 runtime->hw.channels_max =
541 min(codec_dai_drv->playback.channels_max,
542 cpu_dai_drv->playback.channels_max);
543 runtime->hw.formats =
544 codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
545 runtime->hw.rates =
546 codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
547 if (codec_dai_drv->playback.rates
548 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
549 runtime->hw.rates |= cpu_dai_drv->playback.rates;
550 if (cpu_dai_drv->playback.rates
551 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
552 runtime->hw.rates |= codec_dai_drv->playback.rates;
553 } else {
554 runtime->hw.rate_min =
555 max(codec_dai_drv->capture.rate_min,
556 cpu_dai_drv->capture.rate_min);
557 runtime->hw.rate_max =
558 min(codec_dai_drv->capture.rate_max,
559 cpu_dai_drv->capture.rate_max);
560 runtime->hw.channels_min =
561 max(codec_dai_drv->capture.channels_min,
562 cpu_dai_drv->capture.channels_min);
563 runtime->hw.channels_max =
564 min(codec_dai_drv->capture.channels_max,
565 cpu_dai_drv->capture.channels_max);
566 runtime->hw.formats =
567 codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
568 runtime->hw.rates =
569 codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
570 if (codec_dai_drv->capture.rates
571 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
572 runtime->hw.rates |= cpu_dai_drv->capture.rates;
573 if (cpu_dai_drv->capture.rates
574 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
575 runtime->hw.rates |= codec_dai_drv->capture.rates;
576 }
577
578 snd_pcm_limit_hw_rates(runtime);
579 if (!runtime->hw.rates) {
580 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
581 codec_dai->name, cpu_dai->name);
582 goto config_err;
583 }
584 if (!runtime->hw.formats) {
585 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
586 codec_dai->name, cpu_dai->name);
587 goto config_err;
588 }
589 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
590 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
591 codec_dai->name, cpu_dai->name);
592 goto config_err;
593 }
594
595 /* Symmetry only applies if we've already got an active stream. */
596 if (cpu_dai->active || codec_dai->active) {
597 ret = soc_pcm_apply_symmetry(substream);
598 if (ret != 0)
599 goto config_err;
600 }
601
602 pr_debug("asoc: %s <-> %s info:\n",
603 codec_dai->name, cpu_dai->name);
604 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
605 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
606 runtime->hw.channels_max);
607 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
608 runtime->hw.rate_max);
609
610 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
611 cpu_dai->playback_active++;
612 codec_dai->playback_active++;
613 } else {
614 cpu_dai->capture_active++;
615 codec_dai->capture_active++;
616 }
617 cpu_dai->active++;
618 codec_dai->active++;
619 rtd->codec->active++;
620 mutex_unlock(&pcm_mutex);
621 return 0;
622
623 config_err:
624 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
625 rtd->dai_link->ops->shutdown(substream);
626
627 machine_err:
628 if (codec_dai->driver->ops->shutdown)
629 codec_dai->driver->ops->shutdown(substream, codec_dai);
630
631 codec_dai_err:
632 if (platform->driver->ops->close)
633 platform->driver->ops->close(substream);
634
635 platform_err:
636 if (cpu_dai->driver->ops->shutdown)
637 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
638 out:
639 mutex_unlock(&pcm_mutex);
640 return ret;
641 }
642
643 /*
644 * Power down the audio subsystem pmdown_time msecs after close is called.
645 * This is to ensure there are no pops or clicks in between any music tracks
646 * due to DAPM power cycling.
647 */
648 static void close_delayed_work(struct work_struct *work)
649 {
650 struct snd_soc_pcm_runtime *rtd =
651 container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
652 struct snd_soc_dai *codec_dai = rtd->codec_dai;
653
654 mutex_lock(&pcm_mutex);
655
656 pr_debug("pop wq checking: %s status: %s waiting: %s\n",
657 codec_dai->driver->playback.stream_name,
658 codec_dai->playback_active ? "active" : "inactive",
659 codec_dai->pop_wait ? "yes" : "no");
660
661 /* are we waiting on this codec DAI stream */
662 if (codec_dai->pop_wait == 1) {
663 codec_dai->pop_wait = 0;
664 snd_soc_dapm_stream_event(rtd,
665 codec_dai->driver->playback.stream_name,
666 SND_SOC_DAPM_STREAM_STOP);
667 }
668
669 mutex_unlock(&pcm_mutex);
670 }
671
672 /*
673 * Called by ALSA when a PCM substream is closed. Private data can be
674 * freed here. The cpu DAI, codec DAI, machine and platform are also
675 * shutdown.
676 */
677 static int soc_codec_close(struct snd_pcm_substream *substream)
678 {
679 struct snd_soc_pcm_runtime *rtd = substream->private_data;
680 struct snd_soc_platform *platform = rtd->platform;
681 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
682 struct snd_soc_dai *codec_dai = rtd->codec_dai;
683 struct snd_soc_codec *codec = rtd->codec;
684
685 mutex_lock(&pcm_mutex);
686
687 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
688 cpu_dai->playback_active--;
689 codec_dai->playback_active--;
690 } else {
691 cpu_dai->capture_active--;
692 codec_dai->capture_active--;
693 }
694
695 cpu_dai->active--;
696 codec_dai->active--;
697 codec->active--;
698
699 /* Muting the DAC suppresses artifacts caused during digital
700 * shutdown, for example from stopping clocks.
701 */
702 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
703 snd_soc_dai_digital_mute(codec_dai, 1);
704
705 if (cpu_dai->driver->ops->shutdown)
706 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
707
708 if (codec_dai->driver->ops->shutdown)
709 codec_dai->driver->ops->shutdown(substream, codec_dai);
710
711 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
712 rtd->dai_link->ops->shutdown(substream);
713
714 if (platform->driver->ops->close)
715 platform->driver->ops->close(substream);
716 cpu_dai->runtime = NULL;
717
718 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
719 /* start delayed pop wq here for playback streams */
720 codec_dai->pop_wait = 1;
721 schedule_delayed_work(&rtd->delayed_work,
722 msecs_to_jiffies(rtd->pmdown_time));
723 } else {
724 /* capture streams can be powered down now */
725 snd_soc_dapm_stream_event(rtd,
726 codec_dai->driver->capture.stream_name,
727 SND_SOC_DAPM_STREAM_STOP);
728 }
729
730 mutex_unlock(&pcm_mutex);
731 return 0;
732 }
733
734 /*
735 * Called by ALSA when the PCM substream is prepared, can set format, sample
736 * rate, etc. This function is non atomic and can be called multiple times,
737 * it can refer to the runtime info.
738 */
739 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
740 {
741 struct snd_soc_pcm_runtime *rtd = substream->private_data;
742 struct snd_soc_platform *platform = rtd->platform;
743 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
744 struct snd_soc_dai *codec_dai = rtd->codec_dai;
745 int ret = 0;
746
747 mutex_lock(&pcm_mutex);
748
749 if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
750 ret = rtd->dai_link->ops->prepare(substream);
751 if (ret < 0) {
752 printk(KERN_ERR "asoc: machine prepare error\n");
753 goto out;
754 }
755 }
756
757 if (platform->driver->ops->prepare) {
758 ret = platform->driver->ops->prepare(substream);
759 if (ret < 0) {
760 printk(KERN_ERR "asoc: platform prepare error\n");
761 goto out;
762 }
763 }
764
765 if (codec_dai->driver->ops->prepare) {
766 ret = codec_dai->driver->ops->prepare(substream, codec_dai);
767 if (ret < 0) {
768 printk(KERN_ERR "asoc: codec DAI prepare error\n");
769 goto out;
770 }
771 }
772
773 if (cpu_dai->driver->ops->prepare) {
774 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
775 if (ret < 0) {
776 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
777 goto out;
778 }
779 }
780
781 /* cancel any delayed stream shutdown that is pending */
782 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
783 codec_dai->pop_wait) {
784 codec_dai->pop_wait = 0;
785 cancel_delayed_work(&rtd->delayed_work);
786 }
787
788 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
789 snd_soc_dapm_stream_event(rtd,
790 codec_dai->driver->playback.stream_name,
791 SND_SOC_DAPM_STREAM_START);
792 else
793 snd_soc_dapm_stream_event(rtd,
794 codec_dai->driver->capture.stream_name,
795 SND_SOC_DAPM_STREAM_START);
796
797 snd_soc_dai_digital_mute(codec_dai, 0);
798
799 out:
800 mutex_unlock(&pcm_mutex);
801 return ret;
802 }
803
804 /*
805 * Called by ALSA when the hardware params are set by application. This
806 * function can also be called multiple times and can allocate buffers
807 * (using snd_pcm_lib_* ). It's non-atomic.
808 */
809 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
810 struct snd_pcm_hw_params *params)
811 {
812 struct snd_soc_pcm_runtime *rtd = substream->private_data;
813 struct snd_soc_platform *platform = rtd->platform;
814 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
815 struct snd_soc_dai *codec_dai = rtd->codec_dai;
816 int ret = 0;
817
818 mutex_lock(&pcm_mutex);
819
820 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
821 ret = rtd->dai_link->ops->hw_params(substream, params);
822 if (ret < 0) {
823 printk(KERN_ERR "asoc: machine hw_params failed\n");
824 goto out;
825 }
826 }
827
828 if (codec_dai->driver->ops->hw_params) {
829 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
830 if (ret < 0) {
831 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
832 codec_dai->name);
833 goto codec_err;
834 }
835 }
836
837 if (cpu_dai->driver->ops->hw_params) {
838 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
839 if (ret < 0) {
840 printk(KERN_ERR "asoc: interface %s hw params failed\n",
841 cpu_dai->name);
842 goto interface_err;
843 }
844 }
845
846 if (platform->driver->ops->hw_params) {
847 ret = platform->driver->ops->hw_params(substream, params);
848 if (ret < 0) {
849 printk(KERN_ERR "asoc: platform %s hw params failed\n",
850 platform->name);
851 goto platform_err;
852 }
853 }
854
855 rtd->rate = params_rate(params);
856
857 out:
858 mutex_unlock(&pcm_mutex);
859 return ret;
860
861 platform_err:
862 if (cpu_dai->driver->ops->hw_free)
863 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
864
865 interface_err:
866 if (codec_dai->driver->ops->hw_free)
867 codec_dai->driver->ops->hw_free(substream, codec_dai);
868
869 codec_err:
870 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
871 rtd->dai_link->ops->hw_free(substream);
872
873 mutex_unlock(&pcm_mutex);
874 return ret;
875 }
876
877 /*
878 * Free's resources allocated by hw_params, can be called multiple times
879 */
880 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
881 {
882 struct snd_soc_pcm_runtime *rtd = substream->private_data;
883 struct snd_soc_platform *platform = rtd->platform;
884 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
885 struct snd_soc_dai *codec_dai = rtd->codec_dai;
886 struct snd_soc_codec *codec = rtd->codec;
887
888 mutex_lock(&pcm_mutex);
889
890 /* apply codec digital mute */
891 if (!codec->active)
892 snd_soc_dai_digital_mute(codec_dai, 1);
893
894 /* free any machine hw params */
895 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
896 rtd->dai_link->ops->hw_free(substream);
897
898 /* free any DMA resources */
899 if (platform->driver->ops->hw_free)
900 platform->driver->ops->hw_free(substream);
901
902 /* now free hw params for the DAI's */
903 if (codec_dai->driver->ops->hw_free)
904 codec_dai->driver->ops->hw_free(substream, codec_dai);
905
906 if (cpu_dai->driver->ops->hw_free)
907 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
908
909 mutex_unlock(&pcm_mutex);
910 return 0;
911 }
912
913 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
914 {
915 struct snd_soc_pcm_runtime *rtd = substream->private_data;
916 struct snd_soc_platform *platform = rtd->platform;
917 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
918 struct snd_soc_dai *codec_dai = rtd->codec_dai;
919 int ret;
920
921 if (codec_dai->driver->ops->trigger) {
922 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
923 if (ret < 0)
924 return ret;
925 }
926
927 if (platform->driver->ops->trigger) {
928 ret = platform->driver->ops->trigger(substream, cmd);
929 if (ret < 0)
930 return ret;
931 }
932
933 if (cpu_dai->driver->ops->trigger) {
934 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
935 if (ret < 0)
936 return ret;
937 }
938 return 0;
939 }
940
941 /*
942 * soc level wrapper for pointer callback
943 * If cpu_dai, codec_dai, platform driver has the delay callback, than
944 * the runtime->delay will be updated accordingly.
945 */
946 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
947 {
948 struct snd_soc_pcm_runtime *rtd = substream->private_data;
949 struct snd_soc_platform *platform = rtd->platform;
950 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
951 struct snd_soc_dai *codec_dai = rtd->codec_dai;
952 struct snd_pcm_runtime *runtime = substream->runtime;
953 snd_pcm_uframes_t offset = 0;
954 snd_pcm_sframes_t delay = 0;
955
956 if (platform->driver->ops->pointer)
957 offset = platform->driver->ops->pointer(substream);
958
959 if (cpu_dai->driver->ops->delay)
960 delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
961
962 if (codec_dai->driver->ops->delay)
963 delay += codec_dai->driver->ops->delay(substream, codec_dai);
964
965 if (platform->driver->delay)
966 delay += platform->driver->delay(substream, codec_dai);
967
968 runtime->delay = delay;
969
970 return offset;
971 }
972
973 /* ASoC PCM operations */
974 static struct snd_pcm_ops soc_pcm_ops = {
975 .open = soc_pcm_open,
976 .close = soc_codec_close,
977 .hw_params = soc_pcm_hw_params,
978 .hw_free = soc_pcm_hw_free,
979 .prepare = soc_pcm_prepare,
980 .trigger = soc_pcm_trigger,
981 .pointer = soc_pcm_pointer,
982 };
983
984 #ifdef CONFIG_PM
985 /* powers down audio subsystem for suspend */
986 static int soc_suspend(struct device *dev)
987 {
988 struct platform_device *pdev = to_platform_device(dev);
989 struct snd_soc_card *card = platform_get_drvdata(pdev);
990 int i;
991
992 /* If the initialization of this soc device failed, there is no codec
993 * associated with it. Just bail out in this case.
994 */
995 if (list_empty(&card->codec_dev_list))
996 return 0;
997
998 /* Due to the resume being scheduled into a workqueue we could
999 * suspend before that's finished - wait for it to complete.
1000 */
1001 snd_power_lock(card->snd_card);
1002 snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
1003 snd_power_unlock(card->snd_card);
1004
1005 /* we're going to block userspace touching us until resume completes */
1006 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
1007
1008 /* mute any active DAC's */
1009 for (i = 0; i < card->num_rtd; i++) {
1010 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1011 struct snd_soc_dai_driver *drv = dai->driver;
1012
1013 if (card->rtd[i].dai_link->ignore_suspend)
1014 continue;
1015
1016 if (drv->ops->digital_mute && dai->playback_active)
1017 drv->ops->digital_mute(dai, 1);
1018 }
1019
1020 /* suspend all pcms */
1021 for (i = 0; i < card->num_rtd; i++) {
1022 if (card->rtd[i].dai_link->ignore_suspend)
1023 continue;
1024
1025 snd_pcm_suspend_all(card->rtd[i].pcm);
1026 }
1027
1028 if (card->suspend_pre)
1029 card->suspend_pre(pdev, PMSG_SUSPEND);
1030
1031 for (i = 0; i < card->num_rtd; i++) {
1032 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1033 struct snd_soc_platform *platform = card->rtd[i].platform;
1034
1035 if (card->rtd[i].dai_link->ignore_suspend)
1036 continue;
1037
1038 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
1039 cpu_dai->driver->suspend(cpu_dai);
1040 if (platform->driver->suspend && !platform->suspended) {
1041 platform->driver->suspend(cpu_dai);
1042 platform->suspended = 1;
1043 }
1044 }
1045
1046 /* close any waiting streams and save state */
1047 for (i = 0; i < card->num_rtd; i++) {
1048 run_delayed_work(&card->rtd[i].delayed_work);
1049 card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level;
1050 }
1051
1052 for (i = 0; i < card->num_rtd; i++) {
1053 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1054
1055 if (card->rtd[i].dai_link->ignore_suspend)
1056 continue;
1057
1058 if (driver->playback.stream_name != NULL)
1059 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1060 SND_SOC_DAPM_STREAM_SUSPEND);
1061
1062 if (driver->capture.stream_name != NULL)
1063 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1064 SND_SOC_DAPM_STREAM_SUSPEND);
1065 }
1066
1067 /* suspend all CODECs */
1068 for (i = 0; i < card->num_rtd; i++) {
1069 struct snd_soc_codec *codec = card->rtd[i].codec;
1070 /* If there are paths active then the CODEC will be held with
1071 * bias _ON and should not be suspended. */
1072 if (!codec->suspended && codec->driver->suspend) {
1073 switch (codec->dapm.bias_level) {
1074 case SND_SOC_BIAS_STANDBY:
1075 case SND_SOC_BIAS_OFF:
1076 codec->driver->suspend(codec, PMSG_SUSPEND);
1077 codec->suspended = 1;
1078 break;
1079 default:
1080 dev_dbg(codec->dev, "CODEC is on over suspend\n");
1081 break;
1082 }
1083 }
1084 }
1085
1086 for (i = 0; i < card->num_rtd; i++) {
1087 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1088
1089 if (card->rtd[i].dai_link->ignore_suspend)
1090 continue;
1091
1092 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
1093 cpu_dai->driver->suspend(cpu_dai);
1094 }
1095
1096 if (card->suspend_post)
1097 card->suspend_post(pdev, PMSG_SUSPEND);
1098
1099 return 0;
1100 }
1101
1102 /* deferred resume work, so resume can complete before we finished
1103 * setting our codec back up, which can be very slow on I2C
1104 */
1105 static void soc_resume_deferred(struct work_struct *work)
1106 {
1107 struct snd_soc_card *card =
1108 container_of(work, struct snd_soc_card, deferred_resume_work);
1109 struct platform_device *pdev = to_platform_device(card->dev);
1110 int i;
1111
1112 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
1113 * so userspace apps are blocked from touching us
1114 */
1115
1116 dev_dbg(card->dev, "starting resume work\n");
1117
1118 /* Bring us up into D2 so that DAPM starts enabling things */
1119 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
1120
1121 if (card->resume_pre)
1122 card->resume_pre(pdev);
1123
1124 /* resume AC97 DAIs */
1125 for (i = 0; i < card->num_rtd; i++) {
1126 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1127
1128 if (card->rtd[i].dai_link->ignore_suspend)
1129 continue;
1130
1131 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
1132 cpu_dai->driver->resume(cpu_dai);
1133 }
1134
1135 for (i = 0; i < card->num_rtd; i++) {
1136 struct snd_soc_codec *codec = card->rtd[i].codec;
1137 /* If the CODEC was idle over suspend then it will have been
1138 * left with bias OFF or STANDBY and suspended so we must now
1139 * resume. Otherwise the suspend was suppressed.
1140 */
1141 if (codec->driver->resume && codec->suspended) {
1142 switch (codec->dapm.bias_level) {
1143 case SND_SOC_BIAS_STANDBY:
1144 case SND_SOC_BIAS_OFF:
1145 codec->driver->resume(codec);
1146 codec->suspended = 0;
1147 break;
1148 default:
1149 dev_dbg(codec->dev, "CODEC was on over suspend\n");
1150 break;
1151 }
1152 }
1153 }
1154
1155 for (i = 0; i < card->num_rtd; i++) {
1156 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1157
1158 if (card->rtd[i].dai_link->ignore_suspend)
1159 continue;
1160
1161 if (driver->playback.stream_name != NULL)
1162 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1163 SND_SOC_DAPM_STREAM_RESUME);
1164
1165 if (driver->capture.stream_name != NULL)
1166 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1167 SND_SOC_DAPM_STREAM_RESUME);
1168 }
1169
1170 /* unmute any active DACs */
1171 for (i = 0; i < card->num_rtd; i++) {
1172 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1173 struct snd_soc_dai_driver *drv = dai->driver;
1174
1175 if (card->rtd[i].dai_link->ignore_suspend)
1176 continue;
1177
1178 if (drv->ops->digital_mute && dai->playback_active)
1179 drv->ops->digital_mute(dai, 0);
1180 }
1181
1182 for (i = 0; i < card->num_rtd; i++) {
1183 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1184 struct snd_soc_platform *platform = card->rtd[i].platform;
1185
1186 if (card->rtd[i].dai_link->ignore_suspend)
1187 continue;
1188
1189 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1190 cpu_dai->driver->resume(cpu_dai);
1191 if (platform->driver->resume && platform->suspended) {
1192 platform->driver->resume(cpu_dai);
1193 platform->suspended = 0;
1194 }
1195 }
1196
1197 if (card->resume_post)
1198 card->resume_post(pdev);
1199
1200 dev_dbg(card->dev, "resume work completed\n");
1201
1202 /* userspace can access us now we are back as we were before */
1203 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1204 }
1205
1206 /* powers up audio subsystem after a suspend */
1207 static int soc_resume(struct device *dev)
1208 {
1209 struct platform_device *pdev = to_platform_device(dev);
1210 struct snd_soc_card *card = platform_get_drvdata(pdev);
1211 int i;
1212
1213 /* AC97 devices might have other drivers hanging off them so
1214 * need to resume immediately. Other drivers don't have that
1215 * problem and may take a substantial amount of time to resume
1216 * due to I/O costs and anti-pop so handle them out of line.
1217 */
1218 for (i = 0; i < card->num_rtd; i++) {
1219 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1220 if (cpu_dai->driver->ac97_control) {
1221 dev_dbg(dev, "Resuming AC97 immediately\n");
1222 soc_resume_deferred(&card->deferred_resume_work);
1223 } else {
1224 dev_dbg(dev, "Scheduling resume work\n");
1225 if (!schedule_work(&card->deferred_resume_work))
1226 dev_err(dev, "resume work item may be lost\n");
1227 }
1228 }
1229
1230 return 0;
1231 }
1232 #else
1233 #define soc_suspend NULL
1234 #define soc_resume NULL
1235 #endif
1236
1237 static struct snd_soc_dai_ops null_dai_ops = {
1238 };
1239
1240 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1241 {
1242 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1243 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1244 struct snd_soc_codec *codec;
1245 struct snd_soc_platform *platform;
1246 struct snd_soc_dai *codec_dai, *cpu_dai;
1247
1248 if (rtd->complete)
1249 return 1;
1250 dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1251
1252 /* do we already have the CPU DAI for this link ? */
1253 if (rtd->cpu_dai) {
1254 goto find_codec;
1255 }
1256 /* no, then find CPU DAI from registered DAIs*/
1257 list_for_each_entry(cpu_dai, &dai_list, list) {
1258 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1259
1260 if (!try_module_get(cpu_dai->dev->driver->owner))
1261 return -ENODEV;
1262
1263 rtd->cpu_dai = cpu_dai;
1264 goto find_codec;
1265 }
1266 }
1267 dev_dbg(card->dev, "CPU DAI %s not registered\n",
1268 dai_link->cpu_dai_name);
1269
1270 find_codec:
1271 /* do we already have the CODEC for this link ? */
1272 if (rtd->codec) {
1273 goto find_platform;
1274 }
1275
1276 /* no, then find CODEC from registered CODECs*/
1277 list_for_each_entry(codec, &codec_list, list) {
1278 if (!strcmp(codec->name, dai_link->codec_name)) {
1279 rtd->codec = codec;
1280
1281 if (!try_module_get(codec->dev->driver->owner))
1282 return -ENODEV;
1283
1284 /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1285 list_for_each_entry(codec_dai, &dai_list, list) {
1286 if (codec->dev == codec_dai->dev &&
1287 !strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1288 rtd->codec_dai = codec_dai;
1289 goto find_platform;
1290 }
1291 }
1292 dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1293 dai_link->codec_dai_name);
1294
1295 goto find_platform;
1296 }
1297 }
1298 dev_dbg(card->dev, "CODEC %s not registered\n",
1299 dai_link->codec_name);
1300
1301 find_platform:
1302 /* do we already have the CODEC DAI for this link ? */
1303 if (rtd->platform) {
1304 goto out;
1305 }
1306 /* no, then find CPU DAI from registered DAIs*/
1307 list_for_each_entry(platform, &platform_list, list) {
1308 if (!strcmp(platform->name, dai_link->platform_name)) {
1309
1310 if (!try_module_get(platform->dev->driver->owner))
1311 return -ENODEV;
1312
1313 rtd->platform = platform;
1314 goto out;
1315 }
1316 }
1317
1318 dev_dbg(card->dev, "platform %s not registered\n",
1319 dai_link->platform_name);
1320 return 0;
1321
1322 out:
1323 /* mark rtd as complete if we found all 4 of our client devices */
1324 if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1325 rtd->complete = 1;
1326 card->num_rtd++;
1327 }
1328 return 1;
1329 }
1330
1331 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1332 {
1333 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1334 struct snd_soc_codec *codec = rtd->codec;
1335 struct snd_soc_platform *platform = rtd->platform;
1336 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1337 int err;
1338
1339 /* unregister the rtd device */
1340 if (rtd->dev_registered) {
1341 device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1342 device_unregister(&rtd->dev);
1343 rtd->dev_registered = 0;
1344 }
1345
1346 /* remove the CODEC DAI */
1347 if (codec_dai && codec_dai->probed) {
1348 if (codec_dai->driver->remove) {
1349 err = codec_dai->driver->remove(codec_dai);
1350 if (err < 0)
1351 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1352 }
1353 codec_dai->probed = 0;
1354 list_del(&codec_dai->card_list);
1355 }
1356
1357 /* remove the platform */
1358 if (platform && platform->probed) {
1359 if (platform->driver->remove) {
1360 err = platform->driver->remove(platform);
1361 if (err < 0)
1362 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1363 }
1364 platform->probed = 0;
1365 list_del(&platform->card_list);
1366 module_put(platform->dev->driver->owner);
1367 }
1368
1369 /* remove the CODEC */
1370 if (codec && codec->probed) {
1371 if (codec->driver->remove) {
1372 err = codec->driver->remove(codec);
1373 if (err < 0)
1374 printk(KERN_ERR "asoc: failed to remove %s\n", codec->name);
1375 }
1376
1377 /* Make sure all DAPM widgets are freed */
1378 snd_soc_dapm_free(&codec->dapm);
1379
1380 soc_cleanup_codec_debugfs(codec);
1381 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1382 codec->probed = 0;
1383 list_del(&codec->card_list);
1384 module_put(codec->dev->driver->owner);
1385 }
1386
1387 /* remove the cpu_dai */
1388 if (cpu_dai && cpu_dai->probed) {
1389 if (cpu_dai->driver->remove) {
1390 err = cpu_dai->driver->remove(cpu_dai);
1391 if (err < 0)
1392 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1393 }
1394 cpu_dai->probed = 0;
1395 list_del(&cpu_dai->card_list);
1396 module_put(cpu_dai->dev->driver->owner);
1397 }
1398 }
1399
1400 static void soc_set_name_prefix(struct snd_soc_card *card,
1401 struct snd_soc_codec *codec)
1402 {
1403 int i;
1404
1405 if (card->prefix_map == NULL)
1406 return;
1407
1408 for (i = 0; i < card->num_prefixes; i++) {
1409 struct snd_soc_prefix_map *map = &card->prefix_map[i];
1410 if (map->dev_name && !strcmp(codec->name, map->dev_name)) {
1411 codec->name_prefix = map->name_prefix;
1412 break;
1413 }
1414 }
1415 }
1416
1417 static void rtd_release(struct device *dev) {}
1418
1419 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1420 {
1421 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1422 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1423 struct snd_soc_codec *codec = rtd->codec;
1424 struct snd_soc_platform *platform = rtd->platform;
1425 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1426 const char *temp;
1427 int ret;
1428
1429 dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1430
1431 /* config components */
1432 codec_dai->codec = codec;
1433 codec->card = card;
1434 cpu_dai->platform = platform;
1435 rtd->card = card;
1436 rtd->dev.parent = card->dev;
1437 codec_dai->card = card;
1438 cpu_dai->card = card;
1439
1440 /* set default power off timeout */
1441 rtd->pmdown_time = pmdown_time;
1442
1443 /* probe the cpu_dai */
1444 if (!cpu_dai->probed) {
1445 if (cpu_dai->driver->probe) {
1446 ret = cpu_dai->driver->probe(cpu_dai);
1447 if (ret < 0) {
1448 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1449 cpu_dai->name);
1450 return ret;
1451 }
1452 }
1453 cpu_dai->probed = 1;
1454 /* mark cpu_dai as probed and add to card cpu_dai list */
1455 list_add(&cpu_dai->card_list, &card->dai_dev_list);
1456 }
1457
1458 /* probe the CODEC */
1459 if (!codec->probed) {
1460 codec->dapm.card = card;
1461 soc_set_name_prefix(card, codec);
1462 if (codec->driver->probe) {
1463 ret = codec->driver->probe(codec);
1464 if (ret < 0) {
1465 printk(KERN_ERR "asoc: failed to probe CODEC %s\n",
1466 codec->name);
1467 return ret;
1468 }
1469 }
1470
1471 soc_init_codec_debugfs(codec);
1472
1473 /* mark codec as probed and add to card codec list */
1474 codec->probed = 1;
1475 list_add(&codec->card_list, &card->codec_dev_list);
1476 }
1477
1478 /* probe the platform */
1479 if (!platform->probed) {
1480 if (platform->driver->probe) {
1481 ret = platform->driver->probe(platform);
1482 if (ret < 0) {
1483 printk(KERN_ERR "asoc: failed to probe platform %s\n",
1484 platform->name);
1485 return ret;
1486 }
1487 }
1488 /* mark platform as probed and add to card platform list */
1489 platform->probed = 1;
1490 list_add(&platform->card_list, &card->platform_dev_list);
1491 }
1492
1493 /* probe the CODEC DAI */
1494 if (!codec_dai->probed) {
1495 if (codec_dai->driver->probe) {
1496 ret = codec_dai->driver->probe(codec_dai);
1497 if (ret < 0) {
1498 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1499 codec_dai->name);
1500 return ret;
1501 }
1502 }
1503
1504 /* mark cpu_dai as probed and add to card cpu_dai list */
1505 codec_dai->probed = 1;
1506 list_add(&codec_dai->card_list, &card->dai_dev_list);
1507 }
1508
1509 /* DAPM dai link stream work */
1510 INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1511
1512 /* now that all clients have probed, initialise the DAI link */
1513 if (dai_link->init) {
1514 /* machine controls, routes and widgets are not prefixed */
1515 temp = rtd->codec->name_prefix;
1516 rtd->codec->name_prefix = NULL;
1517 ret = dai_link->init(rtd);
1518 if (ret < 0) {
1519 printk(KERN_ERR "asoc: failed to init %s\n", dai_link->stream_name);
1520 return ret;
1521 }
1522 rtd->codec->name_prefix = temp;
1523 }
1524
1525 /* Make sure all DAPM widgets are instantiated */
1526 snd_soc_dapm_new_widgets(&codec->dapm);
1527 snd_soc_dapm_sync(&codec->dapm);
1528
1529 /* register the rtd device */
1530 rtd->dev.release = rtd_release;
1531 rtd->dev.init_name = dai_link->name;
1532 ret = device_register(&rtd->dev);
1533 if (ret < 0) {
1534 printk(KERN_ERR "asoc: failed to register DAI runtime device %d\n", ret);
1535 return ret;
1536 }
1537
1538 rtd->dev_registered = 1;
1539 ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1540 if (ret < 0)
1541 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1542
1543 /* add DAPM sysfs entries for this codec */
1544 ret = snd_soc_dapm_sys_add(&rtd->dev);
1545 if (ret < 0)
1546 printk(KERN_WARNING "asoc: failed to add codec dapm sysfs entries\n");
1547
1548 /* add codec sysfs entries */
1549 ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1550 if (ret < 0)
1551 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1552
1553 /* create the pcm */
1554 ret = soc_new_pcm(rtd, num);
1555 if (ret < 0) {
1556 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1557 return ret;
1558 }
1559
1560 /* add platform data for AC97 devices */
1561 if (rtd->codec_dai->driver->ac97_control)
1562 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1563
1564 return 0;
1565 }
1566
1567 #ifdef CONFIG_SND_SOC_AC97_BUS
1568 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1569 {
1570 int ret;
1571
1572 /* Only instantiate AC97 if not already done by the adaptor
1573 * for the generic AC97 subsystem.
1574 */
1575 if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1576 /*
1577 * It is possible that the AC97 device is already registered to
1578 * the device subsystem. This happens when the device is created
1579 * via snd_ac97_mixer(). Currently only SoC codec that does so
1580 * is the generic AC97 glue but others migh emerge.
1581 *
1582 * In those cases we don't try to register the device again.
1583 */
1584 if (!rtd->codec->ac97_created)
1585 return 0;
1586
1587 ret = soc_ac97_dev_register(rtd->codec);
1588 if (ret < 0) {
1589 printk(KERN_ERR "asoc: AC97 device register failed\n");
1590 return ret;
1591 }
1592
1593 rtd->codec->ac97_registered = 1;
1594 }
1595 return 0;
1596 }
1597
1598 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1599 {
1600 if (codec->ac97_registered) {
1601 soc_ac97_dev_unregister(codec);
1602 codec->ac97_registered = 0;
1603 }
1604 }
1605 #endif
1606
1607 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1608 {
1609 struct platform_device *pdev = to_platform_device(card->dev);
1610 int ret, i;
1611
1612 mutex_lock(&card->mutex);
1613
1614 if (card->instantiated) {
1615 mutex_unlock(&card->mutex);
1616 return;
1617 }
1618
1619 /* bind DAIs */
1620 for (i = 0; i < card->num_links; i++)
1621 soc_bind_dai_link(card, i);
1622
1623 /* bind completed ? */
1624 if (card->num_rtd != card->num_links) {
1625 mutex_unlock(&card->mutex);
1626 return;
1627 }
1628
1629 /* card bind complete so register a sound card */
1630 ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1631 card->owner, 0, &card->snd_card);
1632 if (ret < 0) {
1633 printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1634 card->name);
1635 mutex_unlock(&card->mutex);
1636 return;
1637 }
1638 card->snd_card->dev = card->dev;
1639
1640 #ifdef CONFIG_PM
1641 /* deferred resume work */
1642 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1643 #endif
1644
1645 /* initialise the sound card only once */
1646 if (card->probe) {
1647 ret = card->probe(pdev);
1648 if (ret < 0)
1649 goto card_probe_error;
1650 }
1651
1652 for (i = 0; i < card->num_links; i++) {
1653 ret = soc_probe_dai_link(card, i);
1654 if (ret < 0) {
1655 pr_err("asoc: failed to instantiate card %s: %d\n",
1656 card->name, ret);
1657 goto probe_dai_err;
1658 }
1659 }
1660
1661 snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1662 "%s", card->name);
1663 snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1664 "%s", card->name);
1665
1666 ret = snd_card_register(card->snd_card);
1667 if (ret < 0) {
1668 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1669 goto probe_dai_err;
1670 }
1671
1672 #ifdef CONFIG_SND_SOC_AC97_BUS
1673 /* register any AC97 codecs */
1674 for (i = 0; i < card->num_rtd; i++) {
1675 ret = soc_register_ac97_dai_link(&card->rtd[i]);
1676 if (ret < 0) {
1677 printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1678 goto probe_dai_err;
1679 }
1680 }
1681 #endif
1682
1683 card->instantiated = 1;
1684 mutex_unlock(&card->mutex);
1685 return;
1686
1687 probe_dai_err:
1688 for (i = 0; i < card->num_links; i++)
1689 soc_remove_dai_link(card, i);
1690
1691 card_probe_error:
1692 if (card->remove)
1693 card->remove(pdev);
1694
1695 snd_card_free(card->snd_card);
1696
1697 mutex_unlock(&card->mutex);
1698 }
1699
1700 /*
1701 * Attempt to initialise any uninitialised cards. Must be called with
1702 * client_mutex.
1703 */
1704 static void snd_soc_instantiate_cards(void)
1705 {
1706 struct snd_soc_card *card;
1707 list_for_each_entry(card, &card_list, list)
1708 snd_soc_instantiate_card(card);
1709 }
1710
1711 /* probes a new socdev */
1712 static int soc_probe(struct platform_device *pdev)
1713 {
1714 struct snd_soc_card *card = platform_get_drvdata(pdev);
1715 int ret = 0;
1716
1717 /* Bodge while we unpick instantiation */
1718 card->dev = &pdev->dev;
1719 INIT_LIST_HEAD(&card->dai_dev_list);
1720 INIT_LIST_HEAD(&card->codec_dev_list);
1721 INIT_LIST_HEAD(&card->platform_dev_list);
1722
1723 soc_init_card_debugfs(card);
1724
1725 ret = snd_soc_register_card(card);
1726 if (ret != 0) {
1727 dev_err(&pdev->dev, "Failed to register card\n");
1728 return ret;
1729 }
1730
1731 return 0;
1732 }
1733
1734 /* removes a socdev */
1735 static int soc_remove(struct platform_device *pdev)
1736 {
1737 struct snd_soc_card *card = platform_get_drvdata(pdev);
1738 int i;
1739
1740 if (card->instantiated) {
1741
1742 /* make sure any delayed work runs */
1743 for (i = 0; i < card->num_rtd; i++) {
1744 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1745 run_delayed_work(&rtd->delayed_work);
1746 }
1747
1748 /* remove and free each DAI */
1749 for (i = 0; i < card->num_rtd; i++)
1750 soc_remove_dai_link(card, i);
1751
1752 soc_cleanup_card_debugfs(card);
1753
1754 /* remove the card */
1755 if (card->remove)
1756 card->remove(pdev);
1757
1758 kfree(card->rtd);
1759 snd_card_free(card->snd_card);
1760 }
1761 snd_soc_unregister_card(card);
1762 return 0;
1763 }
1764
1765 static int soc_poweroff(struct device *dev)
1766 {
1767 struct platform_device *pdev = to_platform_device(dev);
1768 struct snd_soc_card *card = platform_get_drvdata(pdev);
1769 int i;
1770
1771 if (!card->instantiated)
1772 return 0;
1773
1774 /* Flush out pmdown_time work - we actually do want to run it
1775 * now, we're shutting down so no imminent restart. */
1776 for (i = 0; i < card->num_rtd; i++) {
1777 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1778 run_delayed_work(&rtd->delayed_work);
1779 }
1780
1781 snd_soc_dapm_shutdown(card);
1782
1783 return 0;
1784 }
1785
1786 static const struct dev_pm_ops soc_pm_ops = {
1787 .suspend = soc_suspend,
1788 .resume = soc_resume,
1789 .poweroff = soc_poweroff,
1790 };
1791
1792 /* ASoC platform driver */
1793 static struct platform_driver soc_driver = {
1794 .driver = {
1795 .name = "soc-audio",
1796 .owner = THIS_MODULE,
1797 .pm = &soc_pm_ops,
1798 },
1799 .probe = soc_probe,
1800 .remove = soc_remove,
1801 };
1802
1803 /* create a new pcm */
1804 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
1805 {
1806 struct snd_soc_codec *codec = rtd->codec;
1807 struct snd_soc_platform *platform = rtd->platform;
1808 struct snd_soc_dai *codec_dai = rtd->codec_dai;
1809 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1810 struct snd_pcm *pcm;
1811 char new_name[64];
1812 int ret = 0, playback = 0, capture = 0;
1813
1814 /* check client and interface hw capabilities */
1815 snprintf(new_name, sizeof(new_name), "%s %s-%d",
1816 rtd->dai_link->stream_name, codec_dai->name, num);
1817
1818 if (codec_dai->driver->playback.channels_min)
1819 playback = 1;
1820 if (codec_dai->driver->capture.channels_min)
1821 capture = 1;
1822
1823 dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
1824 ret = snd_pcm_new(rtd->card->snd_card, new_name,
1825 num, playback, capture, &pcm);
1826 if (ret < 0) {
1827 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
1828 return ret;
1829 }
1830
1831 rtd->pcm = pcm;
1832 pcm->private_data = rtd;
1833 soc_pcm_ops.mmap = platform->driver->ops->mmap;
1834 soc_pcm_ops.pointer = platform->driver->ops->pointer;
1835 soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
1836 soc_pcm_ops.copy = platform->driver->ops->copy;
1837 soc_pcm_ops.silence = platform->driver->ops->silence;
1838 soc_pcm_ops.ack = platform->driver->ops->ack;
1839 soc_pcm_ops.page = platform->driver->ops->page;
1840
1841 if (playback)
1842 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1843
1844 if (capture)
1845 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1846
1847 ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm);
1848 if (ret < 0) {
1849 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1850 return ret;
1851 }
1852
1853 pcm->private_free = platform->driver->pcm_free;
1854 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1855 cpu_dai->name);
1856 return ret;
1857 }
1858
1859 /**
1860 * snd_soc_codec_volatile_register: Report if a register is volatile.
1861 *
1862 * @codec: CODEC to query.
1863 * @reg: Register to query.
1864 *
1865 * Boolean function indiciating if a CODEC register is volatile.
1866 */
1867 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
1868 {
1869 if (codec->driver->volatile_register)
1870 return codec->driver->volatile_register(reg);
1871 else
1872 return 0;
1873 }
1874 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
1875
1876 /**
1877 * snd_soc_new_ac97_codec - initailise AC97 device
1878 * @codec: audio codec
1879 * @ops: AC97 bus operations
1880 * @num: AC97 codec number
1881 *
1882 * Initialises AC97 codec resources for use by ad-hoc devices only.
1883 */
1884 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1885 struct snd_ac97_bus_ops *ops, int num)
1886 {
1887 mutex_lock(&codec->mutex);
1888
1889 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1890 if (codec->ac97 == NULL) {
1891 mutex_unlock(&codec->mutex);
1892 return -ENOMEM;
1893 }
1894
1895 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1896 if (codec->ac97->bus == NULL) {
1897 kfree(codec->ac97);
1898 codec->ac97 = NULL;
1899 mutex_unlock(&codec->mutex);
1900 return -ENOMEM;
1901 }
1902
1903 codec->ac97->bus->ops = ops;
1904 codec->ac97->num = num;
1905
1906 /*
1907 * Mark the AC97 device to be created by us. This way we ensure that the
1908 * device will be registered with the device subsystem later on.
1909 */
1910 codec->ac97_created = 1;
1911
1912 mutex_unlock(&codec->mutex);
1913 return 0;
1914 }
1915 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1916
1917 /**
1918 * snd_soc_free_ac97_codec - free AC97 codec device
1919 * @codec: audio codec
1920 *
1921 * Frees AC97 codec device resources.
1922 */
1923 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1924 {
1925 mutex_lock(&codec->mutex);
1926 #ifdef CONFIG_SND_SOC_AC97_BUS
1927 soc_unregister_ac97_dai_link(codec);
1928 #endif
1929 kfree(codec->ac97->bus);
1930 kfree(codec->ac97);
1931 codec->ac97 = NULL;
1932 codec->ac97_created = 0;
1933 mutex_unlock(&codec->mutex);
1934 }
1935 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1936
1937 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg)
1938 {
1939 unsigned int ret;
1940
1941 ret = codec->driver->read(codec, reg);
1942 dev_dbg(codec->dev, "read %x => %x\n", reg, ret);
1943 trace_snd_soc_reg_read(codec, reg, ret);
1944
1945 return ret;
1946 }
1947 EXPORT_SYMBOL_GPL(snd_soc_read);
1948
1949 unsigned int snd_soc_write(struct snd_soc_codec *codec,
1950 unsigned int reg, unsigned int val)
1951 {
1952 dev_dbg(codec->dev, "write %x = %x\n", reg, val);
1953 trace_snd_soc_reg_write(codec, reg, val);
1954 return codec->driver->write(codec, reg, val);
1955 }
1956 EXPORT_SYMBOL_GPL(snd_soc_write);
1957
1958 /**
1959 * snd_soc_update_bits - update codec register bits
1960 * @codec: audio codec
1961 * @reg: codec register
1962 * @mask: register mask
1963 * @value: new value
1964 *
1965 * Writes new register value.
1966 *
1967 * Returns 1 for change else 0.
1968 */
1969 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1970 unsigned int mask, unsigned int value)
1971 {
1972 int change;
1973 unsigned int old, new;
1974
1975 old = snd_soc_read(codec, reg);
1976 new = (old & ~mask) | value;
1977 change = old != new;
1978 if (change)
1979 snd_soc_write(codec, reg, new);
1980
1981 return change;
1982 }
1983 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1984
1985 /**
1986 * snd_soc_update_bits_locked - update codec register bits
1987 * @codec: audio codec
1988 * @reg: codec register
1989 * @mask: register mask
1990 * @value: new value
1991 *
1992 * Writes new register value, and takes the codec mutex.
1993 *
1994 * Returns 1 for change else 0.
1995 */
1996 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
1997 unsigned short reg, unsigned int mask,
1998 unsigned int value)
1999 {
2000 int change;
2001
2002 mutex_lock(&codec->mutex);
2003 change = snd_soc_update_bits(codec, reg, mask, value);
2004 mutex_unlock(&codec->mutex);
2005
2006 return change;
2007 }
2008 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
2009
2010 /**
2011 * snd_soc_test_bits - test register for change
2012 * @codec: audio codec
2013 * @reg: codec register
2014 * @mask: register mask
2015 * @value: new value
2016 *
2017 * Tests a register with a new value and checks if the new value is
2018 * different from the old value.
2019 *
2020 * Returns 1 for change else 0.
2021 */
2022 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
2023 unsigned int mask, unsigned int value)
2024 {
2025 int change;
2026 unsigned int old, new;
2027
2028 old = snd_soc_read(codec, reg);
2029 new = (old & ~mask) | value;
2030 change = old != new;
2031
2032 return change;
2033 }
2034 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
2035
2036 /**
2037 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
2038 * @substream: the pcm substream
2039 * @hw: the hardware parameters
2040 *
2041 * Sets the substream runtime hardware parameters.
2042 */
2043 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
2044 const struct snd_pcm_hardware *hw)
2045 {
2046 struct snd_pcm_runtime *runtime = substream->runtime;
2047 runtime->hw.info = hw->info;
2048 runtime->hw.formats = hw->formats;
2049 runtime->hw.period_bytes_min = hw->period_bytes_min;
2050 runtime->hw.period_bytes_max = hw->period_bytes_max;
2051 runtime->hw.periods_min = hw->periods_min;
2052 runtime->hw.periods_max = hw->periods_max;
2053 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
2054 runtime->hw.fifo_size = hw->fifo_size;
2055 return 0;
2056 }
2057 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
2058
2059 /**
2060 * snd_soc_cnew - create new control
2061 * @_template: control template
2062 * @data: control private data
2063 * @long_name: control long name
2064 *
2065 * Create a new mixer control from a template control.
2066 *
2067 * Returns 0 for success, else error.
2068 */
2069 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2070 void *data, char *long_name)
2071 {
2072 struct snd_kcontrol_new template;
2073
2074 memcpy(&template, _template, sizeof(template));
2075 if (long_name)
2076 template.name = long_name;
2077 template.index = 0;
2078
2079 return snd_ctl_new1(&template, data);
2080 }
2081 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2082
2083 /**
2084 * snd_soc_add_controls - add an array of controls to a codec.
2085 * Convienience function to add a list of controls. Many codecs were
2086 * duplicating this code.
2087 *
2088 * @codec: codec to add controls to
2089 * @controls: array of controls to add
2090 * @num_controls: number of elements in the array
2091 *
2092 * Return 0 for success, else error.
2093 */
2094 int snd_soc_add_controls(struct snd_soc_codec *codec,
2095 const struct snd_kcontrol_new *controls, int num_controls)
2096 {
2097 struct snd_card *card = codec->card->snd_card;
2098 char prefixed_name[44], *name;
2099 int err, i;
2100
2101 for (i = 0; i < num_controls; i++) {
2102 const struct snd_kcontrol_new *control = &controls[i];
2103 if (codec->name_prefix) {
2104 snprintf(prefixed_name, sizeof(prefixed_name), "%s %s",
2105 codec->name_prefix, control->name);
2106 name = prefixed_name;
2107 } else {
2108 name = control->name;
2109 }
2110 err = snd_ctl_add(card, snd_soc_cnew(control, codec, name));
2111 if (err < 0) {
2112 dev_err(codec->dev, "%s: Failed to add %s: %d\n",
2113 codec->name, name, err);
2114 return err;
2115 }
2116 }
2117
2118 return 0;
2119 }
2120 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
2121
2122 /**
2123 * snd_soc_info_enum_double - enumerated double mixer info callback
2124 * @kcontrol: mixer control
2125 * @uinfo: control element information
2126 *
2127 * Callback to provide information about a double enumerated
2128 * mixer control.
2129 *
2130 * Returns 0 for success.
2131 */
2132 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2133 struct snd_ctl_elem_info *uinfo)
2134 {
2135 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2136
2137 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2138 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2139 uinfo->value.enumerated.items = e->max;
2140
2141 if (uinfo->value.enumerated.item > e->max - 1)
2142 uinfo->value.enumerated.item = e->max - 1;
2143 strcpy(uinfo->value.enumerated.name,
2144 e->texts[uinfo->value.enumerated.item]);
2145 return 0;
2146 }
2147 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2148
2149 /**
2150 * snd_soc_get_enum_double - enumerated double mixer get callback
2151 * @kcontrol: mixer control
2152 * @ucontrol: control element information
2153 *
2154 * Callback to get the value of a double enumerated mixer.
2155 *
2156 * Returns 0 for success.
2157 */
2158 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2159 struct snd_ctl_elem_value *ucontrol)
2160 {
2161 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2162 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2163 unsigned int val, bitmask;
2164
2165 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2166 ;
2167 val = snd_soc_read(codec, e->reg);
2168 ucontrol->value.enumerated.item[0]
2169 = (val >> e->shift_l) & (bitmask - 1);
2170 if (e->shift_l != e->shift_r)
2171 ucontrol->value.enumerated.item[1] =
2172 (val >> e->shift_r) & (bitmask - 1);
2173
2174 return 0;
2175 }
2176 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2177
2178 /**
2179 * snd_soc_put_enum_double - enumerated double mixer put callback
2180 * @kcontrol: mixer control
2181 * @ucontrol: control element information
2182 *
2183 * Callback to set the value of a double enumerated mixer.
2184 *
2185 * Returns 0 for success.
2186 */
2187 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2188 struct snd_ctl_elem_value *ucontrol)
2189 {
2190 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2191 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2192 unsigned int val;
2193 unsigned int mask, bitmask;
2194
2195 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2196 ;
2197 if (ucontrol->value.enumerated.item[0] > e->max - 1)
2198 return -EINVAL;
2199 val = ucontrol->value.enumerated.item[0] << e->shift_l;
2200 mask = (bitmask - 1) << e->shift_l;
2201 if (e->shift_l != e->shift_r) {
2202 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2203 return -EINVAL;
2204 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2205 mask |= (bitmask - 1) << e->shift_r;
2206 }
2207
2208 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2209 }
2210 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2211
2212 /**
2213 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2214 * @kcontrol: mixer control
2215 * @ucontrol: control element information
2216 *
2217 * Callback to get the value of a double semi enumerated mixer.
2218 *
2219 * Semi enumerated mixer: the enumerated items are referred as values. Can be
2220 * used for handling bitfield coded enumeration for example.
2221 *
2222 * Returns 0 for success.
2223 */
2224 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2225 struct snd_ctl_elem_value *ucontrol)
2226 {
2227 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2228 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2229 unsigned int reg_val, val, mux;
2230
2231 reg_val = snd_soc_read(codec, e->reg);
2232 val = (reg_val >> e->shift_l) & e->mask;
2233 for (mux = 0; mux < e->max; mux++) {
2234 if (val == e->values[mux])
2235 break;
2236 }
2237 ucontrol->value.enumerated.item[0] = mux;
2238 if (e->shift_l != e->shift_r) {
2239 val = (reg_val >> e->shift_r) & e->mask;
2240 for (mux = 0; mux < e->max; mux++) {
2241 if (val == e->values[mux])
2242 break;
2243 }
2244 ucontrol->value.enumerated.item[1] = mux;
2245 }
2246
2247 return 0;
2248 }
2249 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2250
2251 /**
2252 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2253 * @kcontrol: mixer control
2254 * @ucontrol: control element information
2255 *
2256 * Callback to set the value of a double semi enumerated mixer.
2257 *
2258 * Semi enumerated mixer: the enumerated items are referred as values. Can be
2259 * used for handling bitfield coded enumeration for example.
2260 *
2261 * Returns 0 for success.
2262 */
2263 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2264 struct snd_ctl_elem_value *ucontrol)
2265 {
2266 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2267 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2268 unsigned int val;
2269 unsigned int mask;
2270
2271 if (ucontrol->value.enumerated.item[0] > e->max - 1)
2272 return -EINVAL;
2273 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2274 mask = e->mask << e->shift_l;
2275 if (e->shift_l != e->shift_r) {
2276 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2277 return -EINVAL;
2278 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2279 mask |= e->mask << e->shift_r;
2280 }
2281
2282 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2283 }
2284 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2285
2286 /**
2287 * snd_soc_info_enum_ext - external enumerated single mixer info callback
2288 * @kcontrol: mixer control
2289 * @uinfo: control element information
2290 *
2291 * Callback to provide information about an external enumerated
2292 * single mixer.
2293 *
2294 * Returns 0 for success.
2295 */
2296 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2297 struct snd_ctl_elem_info *uinfo)
2298 {
2299 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2300
2301 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2302 uinfo->count = 1;
2303 uinfo->value.enumerated.items = e->max;
2304
2305 if (uinfo->value.enumerated.item > e->max - 1)
2306 uinfo->value.enumerated.item = e->max - 1;
2307 strcpy(uinfo->value.enumerated.name,
2308 e->texts[uinfo->value.enumerated.item]);
2309 return 0;
2310 }
2311 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2312
2313 /**
2314 * snd_soc_info_volsw_ext - external single mixer info callback
2315 * @kcontrol: mixer control
2316 * @uinfo: control element information
2317 *
2318 * Callback to provide information about a single external mixer control.
2319 *
2320 * Returns 0 for success.
2321 */
2322 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2323 struct snd_ctl_elem_info *uinfo)
2324 {
2325 int max = kcontrol->private_value;
2326
2327 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2328 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2329 else
2330 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2331
2332 uinfo->count = 1;
2333 uinfo->value.integer.min = 0;
2334 uinfo->value.integer.max = max;
2335 return 0;
2336 }
2337 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2338
2339 /**
2340 * snd_soc_info_volsw - single mixer info callback
2341 * @kcontrol: mixer control
2342 * @uinfo: control element information
2343 *
2344 * Callback to provide information about a single mixer control.
2345 *
2346 * Returns 0 for success.
2347 */
2348 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2349 struct snd_ctl_elem_info *uinfo)
2350 {
2351 struct soc_mixer_control *mc =
2352 (struct soc_mixer_control *)kcontrol->private_value;
2353 int platform_max;
2354 unsigned int shift = mc->shift;
2355 unsigned int rshift = mc->rshift;
2356
2357 if (!mc->platform_max)
2358 mc->platform_max = mc->max;
2359 platform_max = mc->platform_max;
2360
2361 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2362 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2363 else
2364 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2365
2366 uinfo->count = shift == rshift ? 1 : 2;
2367 uinfo->value.integer.min = 0;
2368 uinfo->value.integer.max = platform_max;
2369 return 0;
2370 }
2371 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2372
2373 /**
2374 * snd_soc_get_volsw - single mixer get callback
2375 * @kcontrol: mixer control
2376 * @ucontrol: control element information
2377 *
2378 * Callback to get the value of a single mixer control.
2379 *
2380 * Returns 0 for success.
2381 */
2382 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2383 struct snd_ctl_elem_value *ucontrol)
2384 {
2385 struct soc_mixer_control *mc =
2386 (struct soc_mixer_control *)kcontrol->private_value;
2387 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2388 unsigned int reg = mc->reg;
2389 unsigned int shift = mc->shift;
2390 unsigned int rshift = mc->rshift;
2391 int max = mc->max;
2392 unsigned int mask = (1 << fls(max)) - 1;
2393 unsigned int invert = mc->invert;
2394
2395 ucontrol->value.integer.value[0] =
2396 (snd_soc_read(codec, reg) >> shift) & mask;
2397 if (shift != rshift)
2398 ucontrol->value.integer.value[1] =
2399 (snd_soc_read(codec, reg) >> rshift) & mask;
2400 if (invert) {
2401 ucontrol->value.integer.value[0] =
2402 max - ucontrol->value.integer.value[0];
2403 if (shift != rshift)
2404 ucontrol->value.integer.value[1] =
2405 max - ucontrol->value.integer.value[1];
2406 }
2407
2408 return 0;
2409 }
2410 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2411
2412 /**
2413 * snd_soc_put_volsw - single mixer put callback
2414 * @kcontrol: mixer control
2415 * @ucontrol: control element information
2416 *
2417 * Callback to set the value of a single mixer control.
2418 *
2419 * Returns 0 for success.
2420 */
2421 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2422 struct snd_ctl_elem_value *ucontrol)
2423 {
2424 struct soc_mixer_control *mc =
2425 (struct soc_mixer_control *)kcontrol->private_value;
2426 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2427 unsigned int reg = mc->reg;
2428 unsigned int shift = mc->shift;
2429 unsigned int rshift = mc->rshift;
2430 int max = mc->max;
2431 unsigned int mask = (1 << fls(max)) - 1;
2432 unsigned int invert = mc->invert;
2433 unsigned int val, val2, val_mask;
2434
2435 val = (ucontrol->value.integer.value[0] & mask);
2436 if (invert)
2437 val = max - val;
2438 val_mask = mask << shift;
2439 val = val << shift;
2440 if (shift != rshift) {
2441 val2 = (ucontrol->value.integer.value[1] & mask);
2442 if (invert)
2443 val2 = max - val2;
2444 val_mask |= mask << rshift;
2445 val |= val2 << rshift;
2446 }
2447 return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2448 }
2449 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2450
2451 /**
2452 * snd_soc_info_volsw_2r - double mixer info callback
2453 * @kcontrol: mixer control
2454 * @uinfo: control element information
2455 *
2456 * Callback to provide information about a double mixer control that
2457 * spans 2 codec registers.
2458 *
2459 * Returns 0 for success.
2460 */
2461 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2462 struct snd_ctl_elem_info *uinfo)
2463 {
2464 struct soc_mixer_control *mc =
2465 (struct soc_mixer_control *)kcontrol->private_value;
2466 int platform_max;
2467
2468 if (!mc->platform_max)
2469 mc->platform_max = mc->max;
2470 platform_max = mc->platform_max;
2471
2472 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2473 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2474 else
2475 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2476
2477 uinfo->count = 2;
2478 uinfo->value.integer.min = 0;
2479 uinfo->value.integer.max = platform_max;
2480 return 0;
2481 }
2482 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2483
2484 /**
2485 * snd_soc_get_volsw_2r - double mixer get callback
2486 * @kcontrol: mixer control
2487 * @ucontrol: control element information
2488 *
2489 * Callback to get the value of a double mixer control that spans 2 registers.
2490 *
2491 * Returns 0 for success.
2492 */
2493 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2494 struct snd_ctl_elem_value *ucontrol)
2495 {
2496 struct soc_mixer_control *mc =
2497 (struct soc_mixer_control *)kcontrol->private_value;
2498 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2499 unsigned int reg = mc->reg;
2500 unsigned int reg2 = mc->rreg;
2501 unsigned int shift = mc->shift;
2502 int max = mc->max;
2503 unsigned int mask = (1 << fls(max)) - 1;
2504 unsigned int invert = mc->invert;
2505
2506 ucontrol->value.integer.value[0] =
2507 (snd_soc_read(codec, reg) >> shift) & mask;
2508 ucontrol->value.integer.value[1] =
2509 (snd_soc_read(codec, reg2) >> shift) & mask;
2510 if (invert) {
2511 ucontrol->value.integer.value[0] =
2512 max - ucontrol->value.integer.value[0];
2513 ucontrol->value.integer.value[1] =
2514 max - ucontrol->value.integer.value[1];
2515 }
2516
2517 return 0;
2518 }
2519 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2520
2521 /**
2522 * snd_soc_put_volsw_2r - double mixer set callback
2523 * @kcontrol: mixer control
2524 * @ucontrol: control element information
2525 *
2526 * Callback to set the value of a double mixer control that spans 2 registers.
2527 *
2528 * Returns 0 for success.
2529 */
2530 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2531 struct snd_ctl_elem_value *ucontrol)
2532 {
2533 struct soc_mixer_control *mc =
2534 (struct soc_mixer_control *)kcontrol->private_value;
2535 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2536 unsigned int reg = mc->reg;
2537 unsigned int reg2 = mc->rreg;
2538 unsigned int shift = mc->shift;
2539 int max = mc->max;
2540 unsigned int mask = (1 << fls(max)) - 1;
2541 unsigned int invert = mc->invert;
2542 int err;
2543 unsigned int val, val2, val_mask;
2544
2545 val_mask = mask << shift;
2546 val = (ucontrol->value.integer.value[0] & mask);
2547 val2 = (ucontrol->value.integer.value[1] & mask);
2548
2549 if (invert) {
2550 val = max - val;
2551 val2 = max - val2;
2552 }
2553
2554 val = val << shift;
2555 val2 = val2 << shift;
2556
2557 err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2558 if (err < 0)
2559 return err;
2560
2561 err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2562 return err;
2563 }
2564 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2565
2566 /**
2567 * snd_soc_info_volsw_s8 - signed mixer info callback
2568 * @kcontrol: mixer control
2569 * @uinfo: control element information
2570 *
2571 * Callback to provide information about a signed mixer control.
2572 *
2573 * Returns 0 for success.
2574 */
2575 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2576 struct snd_ctl_elem_info *uinfo)
2577 {
2578 struct soc_mixer_control *mc =
2579 (struct soc_mixer_control *)kcontrol->private_value;
2580 int platform_max;
2581 int min = mc->min;
2582
2583 if (!mc->platform_max)
2584 mc->platform_max = mc->max;
2585 platform_max = mc->platform_max;
2586
2587 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2588 uinfo->count = 2;
2589 uinfo->value.integer.min = 0;
2590 uinfo->value.integer.max = platform_max - min;
2591 return 0;
2592 }
2593 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2594
2595 /**
2596 * snd_soc_get_volsw_s8 - signed mixer get callback
2597 * @kcontrol: mixer control
2598 * @ucontrol: control element information
2599 *
2600 * Callback to get the value of a signed mixer control.
2601 *
2602 * Returns 0 for success.
2603 */
2604 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2605 struct snd_ctl_elem_value *ucontrol)
2606 {
2607 struct soc_mixer_control *mc =
2608 (struct soc_mixer_control *)kcontrol->private_value;
2609 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2610 unsigned int reg = mc->reg;
2611 int min = mc->min;
2612 int val = snd_soc_read(codec, reg);
2613
2614 ucontrol->value.integer.value[0] =
2615 ((signed char)(val & 0xff))-min;
2616 ucontrol->value.integer.value[1] =
2617 ((signed char)((val >> 8) & 0xff))-min;
2618 return 0;
2619 }
2620 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2621
2622 /**
2623 * snd_soc_put_volsw_sgn - signed mixer put callback
2624 * @kcontrol: mixer control
2625 * @ucontrol: control element information
2626 *
2627 * Callback to set the value of a signed mixer control.
2628 *
2629 * Returns 0 for success.
2630 */
2631 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2632 struct snd_ctl_elem_value *ucontrol)
2633 {
2634 struct soc_mixer_control *mc =
2635 (struct soc_mixer_control *)kcontrol->private_value;
2636 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2637 unsigned int reg = mc->reg;
2638 int min = mc->min;
2639 unsigned int val;
2640
2641 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2642 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2643
2644 return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2645 }
2646 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2647
2648 /**
2649 * snd_soc_limit_volume - Set new limit to an existing volume control.
2650 *
2651 * @codec: where to look for the control
2652 * @name: Name of the control
2653 * @max: new maximum limit
2654 *
2655 * Return 0 for success, else error.
2656 */
2657 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2658 const char *name, int max)
2659 {
2660 struct snd_card *card = codec->card->snd_card;
2661 struct snd_kcontrol *kctl;
2662 struct soc_mixer_control *mc;
2663 int found = 0;
2664 int ret = -EINVAL;
2665
2666 /* Sanity check for name and max */
2667 if (unlikely(!name || max <= 0))
2668 return -EINVAL;
2669
2670 list_for_each_entry(kctl, &card->controls, list) {
2671 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2672 found = 1;
2673 break;
2674 }
2675 }
2676 if (found) {
2677 mc = (struct soc_mixer_control *)kctl->private_value;
2678 if (max <= mc->max) {
2679 mc->platform_max = max;
2680 ret = 0;
2681 }
2682 }
2683 return ret;
2684 }
2685 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2686
2687 /**
2688 * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
2689 * mixer info callback
2690 * @kcontrol: mixer control
2691 * @uinfo: control element information
2692 *
2693 * Returns 0 for success.
2694 */
2695 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2696 struct snd_ctl_elem_info *uinfo)
2697 {
2698 struct soc_mixer_control *mc =
2699 (struct soc_mixer_control *)kcontrol->private_value;
2700 int max = mc->max;
2701 int min = mc->min;
2702
2703 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2704 uinfo->count = 2;
2705 uinfo->value.integer.min = 0;
2706 uinfo->value.integer.max = max-min;
2707
2708 return 0;
2709 }
2710 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
2711
2712 /**
2713 * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
2714 * mixer get callback
2715 * @kcontrol: mixer control
2716 * @uinfo: control element information
2717 *
2718 * Returns 0 for success.
2719 */
2720 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2721 struct snd_ctl_elem_value *ucontrol)
2722 {
2723 struct soc_mixer_control *mc =
2724 (struct soc_mixer_control *)kcontrol->private_value;
2725 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2726 unsigned int mask = (1<<mc->shift)-1;
2727 int min = mc->min;
2728 int val = snd_soc_read(codec, mc->reg) & mask;
2729 int valr = snd_soc_read(codec, mc->rreg) & mask;
2730
2731 ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
2732 ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
2733 return 0;
2734 }
2735 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
2736
2737 /**
2738 * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
2739 * mixer put callback
2740 * @kcontrol: mixer control
2741 * @uinfo: control element information
2742 *
2743 * Returns 0 for success.
2744 */
2745 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2746 struct snd_ctl_elem_value *ucontrol)
2747 {
2748 struct soc_mixer_control *mc =
2749 (struct soc_mixer_control *)kcontrol->private_value;
2750 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2751 unsigned int mask = (1<<mc->shift)-1;
2752 int min = mc->min;
2753 int ret;
2754 unsigned int val, valr, oval, ovalr;
2755
2756 val = ((ucontrol->value.integer.value[0]+min) & 0xff);
2757 val &= mask;
2758 valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
2759 valr &= mask;
2760
2761 oval = snd_soc_read(codec, mc->reg) & mask;
2762 ovalr = snd_soc_read(codec, mc->rreg) & mask;
2763
2764 ret = 0;
2765 if (oval != val) {
2766 ret = snd_soc_write(codec, mc->reg, val);
2767 if (ret < 0)
2768 return ret;
2769 }
2770 if (ovalr != valr) {
2771 ret = snd_soc_write(codec, mc->rreg, valr);
2772 if (ret < 0)
2773 return ret;
2774 }
2775
2776 return 0;
2777 }
2778 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
2779
2780 /**
2781 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2782 * @dai: DAI
2783 * @clk_id: DAI specific clock ID
2784 * @freq: new clock frequency in Hz
2785 * @dir: new clock direction - input/output.
2786 *
2787 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2788 */
2789 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2790 unsigned int freq, int dir)
2791 {
2792 if (dai->driver && dai->driver->ops->set_sysclk)
2793 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
2794 else
2795 return -EINVAL;
2796 }
2797 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2798
2799 /**
2800 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2801 * @dai: DAI
2802 * @div_id: DAI specific clock divider ID
2803 * @div: new clock divisor.
2804 *
2805 * Configures the clock dividers. This is used to derive the best DAI bit and
2806 * frame clocks from the system or master clock. It's best to set the DAI bit
2807 * and frame clocks as low as possible to save system power.
2808 */
2809 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2810 int div_id, int div)
2811 {
2812 if (dai->driver && dai->driver->ops->set_clkdiv)
2813 return dai->driver->ops->set_clkdiv(dai, div_id, div);
2814 else
2815 return -EINVAL;
2816 }
2817 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2818
2819 /**
2820 * snd_soc_dai_set_pll - configure DAI PLL.
2821 * @dai: DAI
2822 * @pll_id: DAI specific PLL ID
2823 * @source: DAI specific source for the PLL
2824 * @freq_in: PLL input clock frequency in Hz
2825 * @freq_out: requested PLL output clock frequency in Hz
2826 *
2827 * Configures and enables PLL to generate output clock based on input clock.
2828 */
2829 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
2830 unsigned int freq_in, unsigned int freq_out)
2831 {
2832 if (dai->driver && dai->driver->ops->set_pll)
2833 return dai->driver->ops->set_pll(dai, pll_id, source,
2834 freq_in, freq_out);
2835 else
2836 return -EINVAL;
2837 }
2838 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2839
2840 /**
2841 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2842 * @dai: DAI
2843 * @fmt: SND_SOC_DAIFMT_ format value.
2844 *
2845 * Configures the DAI hardware format and clocking.
2846 */
2847 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2848 {
2849 if (dai->driver && dai->driver->ops->set_fmt)
2850 return dai->driver->ops->set_fmt(dai, fmt);
2851 else
2852 return -EINVAL;
2853 }
2854 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2855
2856 /**
2857 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2858 * @dai: DAI
2859 * @tx_mask: bitmask representing active TX slots.
2860 * @rx_mask: bitmask representing active RX slots.
2861 * @slots: Number of slots in use.
2862 * @slot_width: Width in bits for each slot.
2863 *
2864 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2865 * specific.
2866 */
2867 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2868 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
2869 {
2870 if (dai->driver && dai->driver->ops->set_tdm_slot)
2871 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
2872 slots, slot_width);
2873 else
2874 return -EINVAL;
2875 }
2876 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2877
2878 /**
2879 * snd_soc_dai_set_channel_map - configure DAI audio channel map
2880 * @dai: DAI
2881 * @tx_num: how many TX channels
2882 * @tx_slot: pointer to an array which imply the TX slot number channel
2883 * 0~num-1 uses
2884 * @rx_num: how many RX channels
2885 * @rx_slot: pointer to an array which imply the RX slot number channel
2886 * 0~num-1 uses
2887 *
2888 * configure the relationship between channel number and TDM slot number.
2889 */
2890 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
2891 unsigned int tx_num, unsigned int *tx_slot,
2892 unsigned int rx_num, unsigned int *rx_slot)
2893 {
2894 if (dai->driver && dai->driver->ops->set_channel_map)
2895 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
2896 rx_num, rx_slot);
2897 else
2898 return -EINVAL;
2899 }
2900 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
2901
2902 /**
2903 * snd_soc_dai_set_tristate - configure DAI system or master clock.
2904 * @dai: DAI
2905 * @tristate: tristate enable
2906 *
2907 * Tristates the DAI so that others can use it.
2908 */
2909 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2910 {
2911 if (dai->driver && dai->driver->ops->set_tristate)
2912 return dai->driver->ops->set_tristate(dai, tristate);
2913 else
2914 return -EINVAL;
2915 }
2916 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2917
2918 /**
2919 * snd_soc_dai_digital_mute - configure DAI system or master clock.
2920 * @dai: DAI
2921 * @mute: mute enable
2922 *
2923 * Mutes the DAI DAC.
2924 */
2925 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2926 {
2927 if (dai->driver && dai->driver->ops->digital_mute)
2928 return dai->driver->ops->digital_mute(dai, mute);
2929 else
2930 return -EINVAL;
2931 }
2932 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2933
2934 /**
2935 * snd_soc_register_card - Register a card with the ASoC core
2936 *
2937 * @card: Card to register
2938 *
2939 * Note that currently this is an internal only function: it will be
2940 * exposed to machine drivers after further backporting of ASoC v2
2941 * registration APIs.
2942 */
2943 static int snd_soc_register_card(struct snd_soc_card *card)
2944 {
2945 int i;
2946
2947 if (!card->name || !card->dev)
2948 return -EINVAL;
2949
2950 card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) * card->num_links,
2951 GFP_KERNEL);
2952 if (card->rtd == NULL)
2953 return -ENOMEM;
2954
2955 for (i = 0; i < card->num_links; i++)
2956 card->rtd[i].dai_link = &card->dai_link[i];
2957
2958 INIT_LIST_HEAD(&card->list);
2959 card->instantiated = 0;
2960 mutex_init(&card->mutex);
2961
2962 mutex_lock(&client_mutex);
2963 list_add(&card->list, &card_list);
2964 snd_soc_instantiate_cards();
2965 mutex_unlock(&client_mutex);
2966
2967 dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2968
2969 return 0;
2970 }
2971
2972 /**
2973 * snd_soc_unregister_card - Unregister a card with the ASoC core
2974 *
2975 * @card: Card to unregister
2976 *
2977 * Note that currently this is an internal only function: it will be
2978 * exposed to machine drivers after further backporting of ASoC v2
2979 * registration APIs.
2980 */
2981 static int snd_soc_unregister_card(struct snd_soc_card *card)
2982 {
2983 mutex_lock(&client_mutex);
2984 list_del(&card->list);
2985 mutex_unlock(&client_mutex);
2986 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2987
2988 return 0;
2989 }
2990
2991 /*
2992 * Simplify DAI link configuration by removing ".-1" from device names
2993 * and sanitizing names.
2994 */
2995 static inline char *fmt_single_name(struct device *dev, int *id)
2996 {
2997 char *found, name[NAME_SIZE];
2998 int id1, id2;
2999
3000 if (dev_name(dev) == NULL)
3001 return NULL;
3002
3003 strncpy(name, dev_name(dev), NAME_SIZE);
3004
3005 /* are we a "%s.%d" name (platform and SPI components) */
3006 found = strstr(name, dev->driver->name);
3007 if (found) {
3008 /* get ID */
3009 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
3010
3011 /* discard ID from name if ID == -1 */
3012 if (*id == -1)
3013 found[strlen(dev->driver->name)] = '\0';
3014 }
3015
3016 } else {
3017 /* I2C component devices are named "bus-addr" */
3018 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
3019 char tmp[NAME_SIZE];
3020
3021 /* create unique ID number from I2C addr and bus */
3022 *id = ((id1 & 0xffff) << 16) + id2;
3023
3024 /* sanitize component name for DAI link creation */
3025 snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
3026 strncpy(name, tmp, NAME_SIZE);
3027 } else
3028 *id = 0;
3029 }
3030
3031 return kstrdup(name, GFP_KERNEL);
3032 }
3033
3034 /*
3035 * Simplify DAI link naming for single devices with multiple DAIs by removing
3036 * any ".-1" and using the DAI name (instead of device name).
3037 */
3038 static inline char *fmt_multiple_name(struct device *dev,
3039 struct snd_soc_dai_driver *dai_drv)
3040 {
3041 if (dai_drv->name == NULL) {
3042 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
3043 dev_name(dev));
3044 return NULL;
3045 }
3046
3047 return kstrdup(dai_drv->name, GFP_KERNEL);
3048 }
3049
3050 /**
3051 * snd_soc_register_dai - Register a DAI with the ASoC core
3052 *
3053 * @dai: DAI to register
3054 */
3055 int snd_soc_register_dai(struct device *dev,
3056 struct snd_soc_dai_driver *dai_drv)
3057 {
3058 struct snd_soc_dai *dai;
3059
3060 dev_dbg(dev, "dai register %s\n", dev_name(dev));
3061
3062 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3063 if (dai == NULL)
3064 return -ENOMEM;
3065
3066 /* create DAI component name */
3067 dai->name = fmt_single_name(dev, &dai->id);
3068 if (dai->name == NULL) {
3069 kfree(dai);
3070 return -ENOMEM;
3071 }
3072
3073 dai->dev = dev;
3074 dai->driver = dai_drv;
3075 if (!dai->driver->ops)
3076 dai->driver->ops = &null_dai_ops;
3077
3078 mutex_lock(&client_mutex);
3079 list_add(&dai->list, &dai_list);
3080 snd_soc_instantiate_cards();
3081 mutex_unlock(&client_mutex);
3082
3083 pr_debug("Registered DAI '%s'\n", dai->name);
3084
3085 return 0;
3086 }
3087 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
3088
3089 /**
3090 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
3091 *
3092 * @dai: DAI to unregister
3093 */
3094 void snd_soc_unregister_dai(struct device *dev)
3095 {
3096 struct snd_soc_dai *dai;
3097
3098 list_for_each_entry(dai, &dai_list, list) {
3099 if (dev == dai->dev)
3100 goto found;
3101 }
3102 return;
3103
3104 found:
3105 mutex_lock(&client_mutex);
3106 list_del(&dai->list);
3107 mutex_unlock(&client_mutex);
3108
3109 pr_debug("Unregistered DAI '%s'\n", dai->name);
3110 kfree(dai->name);
3111 kfree(dai);
3112 }
3113 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
3114
3115 /**
3116 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
3117 *
3118 * @dai: Array of DAIs to register
3119 * @count: Number of DAIs
3120 */
3121 int snd_soc_register_dais(struct device *dev,
3122 struct snd_soc_dai_driver *dai_drv, size_t count)
3123 {
3124 struct snd_soc_dai *dai;
3125 int i, ret = 0;
3126
3127 dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count);
3128
3129 for (i = 0; i < count; i++) {
3130
3131 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3132 if (dai == NULL) {
3133 ret = -ENOMEM;
3134 goto err;
3135 }
3136
3137 /* create DAI component name */
3138 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3139 if (dai->name == NULL) {
3140 kfree(dai);
3141 ret = -EINVAL;
3142 goto err;
3143 }
3144
3145 dai->dev = dev;
3146 dai->driver = &dai_drv[i];
3147 if (dai->driver->id)
3148 dai->id = dai->driver->id;
3149 else
3150 dai->id = i;
3151 if (!dai->driver->ops)
3152 dai->driver->ops = &null_dai_ops;
3153
3154 mutex_lock(&client_mutex);
3155 list_add(&dai->list, &dai_list);
3156 mutex_unlock(&client_mutex);
3157
3158 pr_debug("Registered DAI '%s'\n", dai->name);
3159 }
3160
3161 snd_soc_instantiate_cards();
3162 return 0;
3163
3164 err:
3165 for (i--; i >= 0; i--)
3166 snd_soc_unregister_dai(dev);
3167
3168 return ret;
3169 }
3170 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
3171
3172 /**
3173 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
3174 *
3175 * @dai: Array of DAIs to unregister
3176 * @count: Number of DAIs
3177 */
3178 void snd_soc_unregister_dais(struct device *dev, size_t count)
3179 {
3180 int i;
3181
3182 for (i = 0; i < count; i++)
3183 snd_soc_unregister_dai(dev);
3184 }
3185 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
3186
3187 /**
3188 * snd_soc_register_platform - Register a platform with the ASoC core
3189 *
3190 * @platform: platform to register
3191 */
3192 int snd_soc_register_platform(struct device *dev,
3193 struct snd_soc_platform_driver *platform_drv)
3194 {
3195 struct snd_soc_platform *platform;
3196
3197 dev_dbg(dev, "platform register %s\n", dev_name(dev));
3198
3199 platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
3200 if (platform == NULL)
3201 return -ENOMEM;
3202
3203 /* create platform component name */
3204 platform->name = fmt_single_name(dev, &platform->id);
3205 if (platform->name == NULL) {
3206 kfree(platform);
3207 return -ENOMEM;
3208 }
3209
3210 platform->dev = dev;
3211 platform->driver = platform_drv;
3212
3213 mutex_lock(&client_mutex);
3214 list_add(&platform->list, &platform_list);
3215 snd_soc_instantiate_cards();
3216 mutex_unlock(&client_mutex);
3217
3218 pr_debug("Registered platform '%s'\n", platform->name);
3219
3220 return 0;
3221 }
3222 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
3223
3224 /**
3225 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
3226 *
3227 * @platform: platform to unregister
3228 */
3229 void snd_soc_unregister_platform(struct device *dev)
3230 {
3231 struct snd_soc_platform *platform;
3232
3233 list_for_each_entry(platform, &platform_list, list) {
3234 if (dev == platform->dev)
3235 goto found;
3236 }
3237 return;
3238
3239 found:
3240 mutex_lock(&client_mutex);
3241 list_del(&platform->list);
3242 mutex_unlock(&client_mutex);
3243
3244 pr_debug("Unregistered platform '%s'\n", platform->name);
3245 kfree(platform->name);
3246 kfree(platform);
3247 }
3248 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
3249
3250 static u64 codec_format_map[] = {
3251 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
3252 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
3253 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
3254 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
3255 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
3256 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
3257 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3258 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3259 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
3260 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
3261 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
3262 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
3263 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
3264 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
3265 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
3266 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
3267 };
3268
3269 /* Fix up the DAI formats for endianness: codecs don't actually see
3270 * the endianness of the data but we're using the CPU format
3271 * definitions which do need to include endianness so we ensure that
3272 * codec DAIs always have both big and little endian variants set.
3273 */
3274 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
3275 {
3276 int i;
3277
3278 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
3279 if (stream->formats & codec_format_map[i])
3280 stream->formats |= codec_format_map[i];
3281 }
3282
3283 /**
3284 * snd_soc_register_codec - Register a codec with the ASoC core
3285 *
3286 * @codec: codec to register
3287 */
3288 int snd_soc_register_codec(struct device *dev,
3289 struct snd_soc_codec_driver *codec_drv,
3290 struct snd_soc_dai_driver *dai_drv, int num_dai)
3291 {
3292 struct snd_soc_codec *codec;
3293 int ret, i;
3294
3295 dev_dbg(dev, "codec register %s\n", dev_name(dev));
3296
3297 codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
3298 if (codec == NULL)
3299 return -ENOMEM;
3300
3301 /* create CODEC component name */
3302 codec->name = fmt_single_name(dev, &codec->id);
3303 if (codec->name == NULL) {
3304 kfree(codec);
3305 return -ENOMEM;
3306 }
3307
3308 INIT_LIST_HEAD(&codec->dapm.widgets);
3309 INIT_LIST_HEAD(&codec->dapm.paths);
3310 codec->dapm.bias_level = SND_SOC_BIAS_OFF;
3311 codec->dapm.dev = dev;
3312 codec->dapm.codec = codec;
3313 codec->dev = dev;
3314 codec->driver = codec_drv;
3315 codec->num_dai = num_dai;
3316 mutex_init(&codec->mutex);
3317
3318 /* allocate CODEC register cache */
3319 if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
3320 ret = snd_soc_cache_init(codec);
3321 if (ret < 0) {
3322 dev_err(codec->dev, "Failed to set cache compression type: %d\n",
3323 ret);
3324 goto error_cache;
3325 }
3326 }
3327
3328 for (i = 0; i < num_dai; i++) {
3329 fixup_codec_formats(&dai_drv[i].playback);
3330 fixup_codec_formats(&dai_drv[i].capture);
3331 }
3332
3333 /* register any DAIs */
3334 if (num_dai) {
3335 ret = snd_soc_register_dais(dev, dai_drv, num_dai);
3336 if (ret < 0)
3337 goto error_dais;
3338 }
3339
3340 mutex_lock(&client_mutex);
3341 list_add(&codec->list, &codec_list);
3342 snd_soc_instantiate_cards();
3343 mutex_unlock(&client_mutex);
3344
3345 pr_debug("Registered codec '%s'\n", codec->name);
3346 return 0;
3347
3348 error_dais:
3349 snd_soc_cache_exit(codec);
3350 error_cache:
3351 kfree(codec->name);
3352 kfree(codec);
3353 return ret;
3354 }
3355 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
3356
3357 /**
3358 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
3359 *
3360 * @codec: codec to unregister
3361 */
3362 void snd_soc_unregister_codec(struct device *dev)
3363 {
3364 struct snd_soc_codec *codec;
3365 int i;
3366
3367 list_for_each_entry(codec, &codec_list, list) {
3368 if (dev == codec->dev)
3369 goto found;
3370 }
3371 return;
3372
3373 found:
3374 if (codec->num_dai)
3375 for (i = 0; i < codec->num_dai; i++)
3376 snd_soc_unregister_dai(dev);
3377
3378 mutex_lock(&client_mutex);
3379 list_del(&codec->list);
3380 mutex_unlock(&client_mutex);
3381
3382 pr_debug("Unregistered codec '%s'\n", codec->name);
3383
3384 snd_soc_cache_exit(codec);
3385 kfree(codec->name);
3386 kfree(codec);
3387 }
3388 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
3389
3390 static int __init snd_soc_init(void)
3391 {
3392 #ifdef CONFIG_DEBUG_FS
3393 debugfs_root = debugfs_create_dir("asoc", NULL);
3394 if (IS_ERR(debugfs_root) || !debugfs_root) {
3395 printk(KERN_WARNING
3396 "ASoC: Failed to create debugfs directory\n");
3397 debugfs_root = NULL;
3398 }
3399
3400 if (!debugfs_create_file("codecs", 0444, debugfs_root, NULL,
3401 &codec_list_fops))
3402 pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
3403
3404 if (!debugfs_create_file("dais", 0444, debugfs_root, NULL,
3405 &dai_list_fops))
3406 pr_warn("ASoC: Failed to create DAI list debugfs file\n");
3407
3408 if (!debugfs_create_file("platforms", 0444, debugfs_root, NULL,
3409 &platform_list_fops))
3410 pr_warn("ASoC: Failed to create platform list debugfs file\n");
3411 #endif
3412
3413 return platform_driver_register(&soc_driver);
3414 }
3415 module_init(snd_soc_init);
3416
3417 static void __exit snd_soc_exit(void)
3418 {
3419 #ifdef CONFIG_DEBUG_FS
3420 debugfs_remove_recursive(debugfs_root);
3421 #endif
3422 platform_driver_unregister(&soc_driver);
3423 }
3424 module_exit(snd_soc_exit);
3425
3426 /* Module information */
3427 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
3428 MODULE_DESCRIPTION("ALSA SoC Core");
3429 MODULE_LICENSE("GPL");
3430 MODULE_ALIAS("platform:soc-audio");
This page took 0.220246 seconds and 6 git commands to generate.