Merge branch 'for-2.6.37' into for-2.6.38
[deliverable/linux.git] / sound / soc / soc-core.c
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
6 * Copyright (C) 2010 Slimlogic Ltd.
7 * Copyright (C) 2010 Texas Instruments Inc.
8 *
9 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10 * with code, comments and ideas from :-
11 * Richard Purdie <richard@openedhand.com>
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 *
18 * TODO:
19 * o Add hw rules to enforce rates, etc.
20 * o More testing with other codecs/machines.
21 * o Add more codecs and platforms to ensure good API coverage.
22 * o Support TDM on PCM and I2S
23 */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h>
35 #include <sound/core.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/soc.h>
39 #include <sound/soc-dapm.h>
40 #include <sound/initval.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/asoc.h>
44
45 #define NAME_SIZE 32
46
47 static DEFINE_MUTEX(pcm_mutex);
48 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
49
50 #ifdef CONFIG_DEBUG_FS
51 static struct dentry *debugfs_root;
52 #endif
53
54 static DEFINE_MUTEX(client_mutex);
55 static LIST_HEAD(card_list);
56 static LIST_HEAD(dai_list);
57 static LIST_HEAD(platform_list);
58 static LIST_HEAD(codec_list);
59
60 static int snd_soc_register_card(struct snd_soc_card *card);
61 static int snd_soc_unregister_card(struct snd_soc_card *card);
62 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
63
64 /*
65 * This is a timeout to do a DAPM powerdown after a stream is closed().
66 * It can be used to eliminate pops between different playback streams, e.g.
67 * between two audio tracks.
68 */
69 static int pmdown_time = 5000;
70 module_param(pmdown_time, int, 0);
71 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
72
73 /*
74 * This function forces any delayed work to be queued and run.
75 */
76 static int run_delayed_work(struct delayed_work *dwork)
77 {
78 int ret;
79
80 /* cancel any work waiting to be queued. */
81 ret = cancel_delayed_work(dwork);
82
83 /* if there was any work waiting then we run it now and
84 * wait for it's completion */
85 if (ret) {
86 schedule_delayed_work(dwork, 0);
87 flush_scheduled_work();
88 }
89 return ret;
90 }
91
92 /* codec register dump */
93 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
94 {
95 int ret, i, step = 1, count = 0;
96
97 if (!codec->driver->reg_cache_size)
98 return 0;
99
100 if (codec->driver->reg_cache_step)
101 step = codec->driver->reg_cache_step;
102
103 count += sprintf(buf, "%s registers\n", codec->name);
104 for (i = 0; i < codec->driver->reg_cache_size; i += step) {
105 if (codec->driver->readable_register && !codec->driver->readable_register(i))
106 continue;
107
108 count += sprintf(buf + count, "%2x: ", i);
109 if (count >= PAGE_SIZE - 1)
110 break;
111
112 if (codec->driver->display_register) {
113 count += codec->driver->display_register(codec, buf + count,
114 PAGE_SIZE - count, i);
115 } else {
116 /* If the read fails it's almost certainly due to
117 * the register being volatile and the device being
118 * powered off.
119 */
120 ret = codec->driver->read(codec, i);
121 if (ret >= 0)
122 count += snprintf(buf + count,
123 PAGE_SIZE - count,
124 "%4x", ret);
125 else
126 count += snprintf(buf + count,
127 PAGE_SIZE - count,
128 "<no data: %d>", ret);
129 }
130
131 if (count >= PAGE_SIZE - 1)
132 break;
133
134 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
135 if (count >= PAGE_SIZE - 1)
136 break;
137 }
138
139 /* Truncate count; min() would cause a warning */
140 if (count >= PAGE_SIZE)
141 count = PAGE_SIZE - 1;
142
143 return count;
144 }
145 static ssize_t codec_reg_show(struct device *dev,
146 struct device_attribute *attr, char *buf)
147 {
148 struct snd_soc_pcm_runtime *rtd =
149 container_of(dev, struct snd_soc_pcm_runtime, dev);
150
151 return soc_codec_reg_show(rtd->codec, buf);
152 }
153
154 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
155
156 static ssize_t pmdown_time_show(struct device *dev,
157 struct device_attribute *attr, char *buf)
158 {
159 struct snd_soc_pcm_runtime *rtd =
160 container_of(dev, struct snd_soc_pcm_runtime, dev);
161
162 return sprintf(buf, "%ld\n", rtd->pmdown_time);
163 }
164
165 static ssize_t pmdown_time_set(struct device *dev,
166 struct device_attribute *attr,
167 const char *buf, size_t count)
168 {
169 struct snd_soc_pcm_runtime *rtd =
170 container_of(dev, struct snd_soc_pcm_runtime, dev);
171 int ret;
172
173 ret = strict_strtol(buf, 10, &rtd->pmdown_time);
174 if (ret)
175 return ret;
176
177 return count;
178 }
179
180 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
181
182 #ifdef CONFIG_DEBUG_FS
183 static int codec_reg_open_file(struct inode *inode, struct file *file)
184 {
185 file->private_data = inode->i_private;
186 return 0;
187 }
188
189 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
190 size_t count, loff_t *ppos)
191 {
192 ssize_t ret;
193 struct snd_soc_codec *codec = file->private_data;
194 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
195 if (!buf)
196 return -ENOMEM;
197 ret = soc_codec_reg_show(codec, buf);
198 if (ret >= 0)
199 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
200 kfree(buf);
201 return ret;
202 }
203
204 static ssize_t codec_reg_write_file(struct file *file,
205 const char __user *user_buf, size_t count, loff_t *ppos)
206 {
207 char buf[32];
208 int buf_size;
209 char *start = buf;
210 unsigned long reg, value;
211 int step = 1;
212 struct snd_soc_codec *codec = file->private_data;
213
214 buf_size = min(count, (sizeof(buf)-1));
215 if (copy_from_user(buf, user_buf, buf_size))
216 return -EFAULT;
217 buf[buf_size] = 0;
218
219 if (codec->driver->reg_cache_step)
220 step = codec->driver->reg_cache_step;
221
222 while (*start == ' ')
223 start++;
224 reg = simple_strtoul(start, &start, 16);
225 if ((reg >= codec->driver->reg_cache_size) || (reg % step))
226 return -EINVAL;
227 while (*start == ' ')
228 start++;
229 if (strict_strtoul(start, 16, &value))
230 return -EINVAL;
231 codec->driver->write(codec, reg, value);
232 return buf_size;
233 }
234
235 static const struct file_operations codec_reg_fops = {
236 .open = codec_reg_open_file,
237 .read = codec_reg_read_file,
238 .write = codec_reg_write_file,
239 .llseek = default_llseek,
240 };
241
242 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
243 {
244 struct dentry *debugfs_card_root = codec->card->debugfs_card_root;
245
246 codec->debugfs_codec_root = debugfs_create_dir(codec->name,
247 debugfs_card_root);
248 if (!codec->debugfs_codec_root) {
249 printk(KERN_WARNING
250 "ASoC: Failed to create codec debugfs directory\n");
251 return;
252 }
253
254 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
255 codec->debugfs_codec_root,
256 codec, &codec_reg_fops);
257 if (!codec->debugfs_reg)
258 printk(KERN_WARNING
259 "ASoC: Failed to create codec register debugfs file\n");
260
261 codec->dapm.debugfs_dapm = debugfs_create_dir("dapm",
262 codec->debugfs_codec_root);
263 if (!codec->dapm.debugfs_dapm)
264 printk(KERN_WARNING
265 "Failed to create DAPM debugfs directory\n");
266
267 snd_soc_dapm_debugfs_init(&codec->dapm);
268 }
269
270 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
271 {
272 debugfs_remove_recursive(codec->debugfs_codec_root);
273 }
274
275 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
276 size_t count, loff_t *ppos)
277 {
278 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
279 ssize_t len, ret = 0;
280 struct snd_soc_codec *codec;
281
282 if (!buf)
283 return -ENOMEM;
284
285 list_for_each_entry(codec, &codec_list, list) {
286 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
287 codec->name);
288 if (len >= 0)
289 ret += len;
290 if (ret > PAGE_SIZE) {
291 ret = PAGE_SIZE;
292 break;
293 }
294 }
295
296 if (ret >= 0)
297 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
298
299 kfree(buf);
300
301 return ret;
302 }
303
304 static const struct file_operations codec_list_fops = {
305 .read = codec_list_read_file,
306 .llseek = default_llseek,/* read accesses f_pos */
307 };
308
309 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
310 size_t count, loff_t *ppos)
311 {
312 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
313 ssize_t len, ret = 0;
314 struct snd_soc_dai *dai;
315
316 if (!buf)
317 return -ENOMEM;
318
319 list_for_each_entry(dai, &dai_list, list) {
320 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
321 if (len >= 0)
322 ret += len;
323 if (ret > PAGE_SIZE) {
324 ret = PAGE_SIZE;
325 break;
326 }
327 }
328
329 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
330
331 kfree(buf);
332
333 return ret;
334 }
335
336 static const struct file_operations dai_list_fops = {
337 .read = dai_list_read_file,
338 .llseek = default_llseek,/* read accesses f_pos */
339 };
340
341 static ssize_t platform_list_read_file(struct file *file,
342 char __user *user_buf,
343 size_t count, loff_t *ppos)
344 {
345 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
346 ssize_t len, ret = 0;
347 struct snd_soc_platform *platform;
348
349 if (!buf)
350 return -ENOMEM;
351
352 list_for_each_entry(platform, &platform_list, list) {
353 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
354 platform->name);
355 if (len >= 0)
356 ret += len;
357 if (ret > PAGE_SIZE) {
358 ret = PAGE_SIZE;
359 break;
360 }
361 }
362
363 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
364
365 kfree(buf);
366
367 return ret;
368 }
369
370 static const struct file_operations platform_list_fops = {
371 .read = platform_list_read_file,
372 .llseek = default_llseek,/* read accesses f_pos */
373 };
374
375 static void soc_init_card_debugfs(struct snd_soc_card *card)
376 {
377 card->debugfs_card_root = debugfs_create_dir(card->name,
378 debugfs_root);
379 if (!card->debugfs_card_root) {
380 dev_warn(card->dev,
381 "ASoC: Failed to create codec debugfs directory\n");
382 return;
383 }
384
385 card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
386 card->debugfs_card_root,
387 &card->pop_time);
388 if (!card->debugfs_pop_time)
389 dev_warn(card->dev,
390 "Failed to create pop time debugfs file\n");
391 }
392
393 static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
394 {
395 debugfs_remove_recursive(card->debugfs_card_root);
396 }
397
398 #else
399
400 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
401 {
402 }
403
404 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
405 {
406 }
407
408 static inline void soc_init_card_debugfs(struct snd_soc_card *card)
409 {
410 }
411
412 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
413 {
414 }
415 #endif
416
417 #ifdef CONFIG_SND_SOC_AC97_BUS
418 /* unregister ac97 codec */
419 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
420 {
421 if (codec->ac97->dev.bus)
422 device_unregister(&codec->ac97->dev);
423 return 0;
424 }
425
426 /* stop no dev release warning */
427 static void soc_ac97_device_release(struct device *dev){}
428
429 /* register ac97 codec to bus */
430 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
431 {
432 int err;
433
434 codec->ac97->dev.bus = &ac97_bus_type;
435 codec->ac97->dev.parent = codec->card->dev;
436 codec->ac97->dev.release = soc_ac97_device_release;
437
438 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
439 codec->card->snd_card->number, 0, codec->name);
440 err = device_register(&codec->ac97->dev);
441 if (err < 0) {
442 snd_printk(KERN_ERR "Can't register ac97 bus\n");
443 codec->ac97->dev.bus = NULL;
444 return err;
445 }
446 return 0;
447 }
448 #endif
449
450 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
451 {
452 struct snd_soc_pcm_runtime *rtd = substream->private_data;
453 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
454 struct snd_soc_dai *codec_dai = rtd->codec_dai;
455 int ret;
456
457 if (codec_dai->driver->symmetric_rates || cpu_dai->driver->symmetric_rates ||
458 rtd->dai_link->symmetric_rates) {
459 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n",
460 rtd->rate);
461
462 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
463 SNDRV_PCM_HW_PARAM_RATE,
464 rtd->rate,
465 rtd->rate);
466 if (ret < 0) {
467 dev_err(&rtd->dev,
468 "Unable to apply rate symmetry constraint: %d\n", ret);
469 return ret;
470 }
471 }
472
473 return 0;
474 }
475
476 /*
477 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
478 * then initialized and any private data can be allocated. This also calls
479 * startup for the cpu DAI, platform, machine and codec DAI.
480 */
481 static int soc_pcm_open(struct snd_pcm_substream *substream)
482 {
483 struct snd_soc_pcm_runtime *rtd = substream->private_data;
484 struct snd_pcm_runtime *runtime = substream->runtime;
485 struct snd_soc_platform *platform = rtd->platform;
486 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
487 struct snd_soc_dai *codec_dai = rtd->codec_dai;
488 struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
489 struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
490 int ret = 0;
491
492 mutex_lock(&pcm_mutex);
493
494 /* startup the audio subsystem */
495 if (cpu_dai->driver->ops->startup) {
496 ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
497 if (ret < 0) {
498 printk(KERN_ERR "asoc: can't open interface %s\n",
499 cpu_dai->name);
500 goto out;
501 }
502 }
503
504 if (platform->driver->ops->open) {
505 ret = platform->driver->ops->open(substream);
506 if (ret < 0) {
507 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
508 goto platform_err;
509 }
510 }
511
512 if (codec_dai->driver->ops->startup) {
513 ret = codec_dai->driver->ops->startup(substream, codec_dai);
514 if (ret < 0) {
515 printk(KERN_ERR "asoc: can't open codec %s\n",
516 codec_dai->name);
517 goto codec_dai_err;
518 }
519 }
520
521 if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
522 ret = rtd->dai_link->ops->startup(substream);
523 if (ret < 0) {
524 printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
525 goto machine_err;
526 }
527 }
528
529 /* Check that the codec and cpu DAI's are compatible */
530 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
531 runtime->hw.rate_min =
532 max(codec_dai_drv->playback.rate_min,
533 cpu_dai_drv->playback.rate_min);
534 runtime->hw.rate_max =
535 min(codec_dai_drv->playback.rate_max,
536 cpu_dai_drv->playback.rate_max);
537 runtime->hw.channels_min =
538 max(codec_dai_drv->playback.channels_min,
539 cpu_dai_drv->playback.channels_min);
540 runtime->hw.channels_max =
541 min(codec_dai_drv->playback.channels_max,
542 cpu_dai_drv->playback.channels_max);
543 runtime->hw.formats =
544 codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
545 runtime->hw.rates =
546 codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
547 if (codec_dai_drv->playback.rates
548 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
549 runtime->hw.rates |= cpu_dai_drv->playback.rates;
550 if (cpu_dai_drv->playback.rates
551 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
552 runtime->hw.rates |= codec_dai_drv->playback.rates;
553 } else {
554 runtime->hw.rate_min =
555 max(codec_dai_drv->capture.rate_min,
556 cpu_dai_drv->capture.rate_min);
557 runtime->hw.rate_max =
558 min(codec_dai_drv->capture.rate_max,
559 cpu_dai_drv->capture.rate_max);
560 runtime->hw.channels_min =
561 max(codec_dai_drv->capture.channels_min,
562 cpu_dai_drv->capture.channels_min);
563 runtime->hw.channels_max =
564 min(codec_dai_drv->capture.channels_max,
565 cpu_dai_drv->capture.channels_max);
566 runtime->hw.formats =
567 codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
568 runtime->hw.rates =
569 codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
570 if (codec_dai_drv->capture.rates
571 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
572 runtime->hw.rates |= cpu_dai_drv->capture.rates;
573 if (cpu_dai_drv->capture.rates
574 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
575 runtime->hw.rates |= codec_dai_drv->capture.rates;
576 }
577
578 snd_pcm_limit_hw_rates(runtime);
579 if (!runtime->hw.rates) {
580 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
581 codec_dai->name, cpu_dai->name);
582 goto config_err;
583 }
584 if (!runtime->hw.formats) {
585 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
586 codec_dai->name, cpu_dai->name);
587 goto config_err;
588 }
589 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
590 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
591 codec_dai->name, cpu_dai->name);
592 goto config_err;
593 }
594
595 /* Symmetry only applies if we've already got an active stream. */
596 if (cpu_dai->active || codec_dai->active) {
597 ret = soc_pcm_apply_symmetry(substream);
598 if (ret != 0)
599 goto config_err;
600 }
601
602 pr_debug("asoc: %s <-> %s info:\n",
603 codec_dai->name, cpu_dai->name);
604 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
605 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
606 runtime->hw.channels_max);
607 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
608 runtime->hw.rate_max);
609
610 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
611 cpu_dai->playback_active++;
612 codec_dai->playback_active++;
613 } else {
614 cpu_dai->capture_active++;
615 codec_dai->capture_active++;
616 }
617 cpu_dai->active++;
618 codec_dai->active++;
619 rtd->codec->active++;
620 mutex_unlock(&pcm_mutex);
621 return 0;
622
623 config_err:
624 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
625 rtd->dai_link->ops->shutdown(substream);
626
627 machine_err:
628 if (codec_dai->driver->ops->shutdown)
629 codec_dai->driver->ops->shutdown(substream, codec_dai);
630
631 codec_dai_err:
632 if (platform->driver->ops->close)
633 platform->driver->ops->close(substream);
634
635 platform_err:
636 if (cpu_dai->driver->ops->shutdown)
637 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
638 out:
639 mutex_unlock(&pcm_mutex);
640 return ret;
641 }
642
643 /*
644 * Power down the audio subsystem pmdown_time msecs after close is called.
645 * This is to ensure there are no pops or clicks in between any music tracks
646 * due to DAPM power cycling.
647 */
648 static void close_delayed_work(struct work_struct *work)
649 {
650 struct snd_soc_pcm_runtime *rtd =
651 container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
652 struct snd_soc_dai *codec_dai = rtd->codec_dai;
653
654 mutex_lock(&pcm_mutex);
655
656 pr_debug("pop wq checking: %s status: %s waiting: %s\n",
657 codec_dai->driver->playback.stream_name,
658 codec_dai->playback_active ? "active" : "inactive",
659 codec_dai->pop_wait ? "yes" : "no");
660
661 /* are we waiting on this codec DAI stream */
662 if (codec_dai->pop_wait == 1) {
663 codec_dai->pop_wait = 0;
664 snd_soc_dapm_stream_event(rtd,
665 codec_dai->driver->playback.stream_name,
666 SND_SOC_DAPM_STREAM_STOP);
667 }
668
669 mutex_unlock(&pcm_mutex);
670 }
671
672 /*
673 * Called by ALSA when a PCM substream is closed. Private data can be
674 * freed here. The cpu DAI, codec DAI, machine and platform are also
675 * shutdown.
676 */
677 static int soc_codec_close(struct snd_pcm_substream *substream)
678 {
679 struct snd_soc_pcm_runtime *rtd = substream->private_data;
680 struct snd_soc_platform *platform = rtd->platform;
681 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
682 struct snd_soc_dai *codec_dai = rtd->codec_dai;
683 struct snd_soc_codec *codec = rtd->codec;
684
685 mutex_lock(&pcm_mutex);
686
687 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
688 cpu_dai->playback_active--;
689 codec_dai->playback_active--;
690 } else {
691 cpu_dai->capture_active--;
692 codec_dai->capture_active--;
693 }
694
695 cpu_dai->active--;
696 codec_dai->active--;
697 codec->active--;
698
699 /* Muting the DAC suppresses artifacts caused during digital
700 * shutdown, for example from stopping clocks.
701 */
702 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
703 snd_soc_dai_digital_mute(codec_dai, 1);
704
705 if (cpu_dai->driver->ops->shutdown)
706 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
707
708 if (codec_dai->driver->ops->shutdown)
709 codec_dai->driver->ops->shutdown(substream, codec_dai);
710
711 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
712 rtd->dai_link->ops->shutdown(substream);
713
714 if (platform->driver->ops->close)
715 platform->driver->ops->close(substream);
716 cpu_dai->runtime = NULL;
717
718 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
719 /* start delayed pop wq here for playback streams */
720 codec_dai->pop_wait = 1;
721 schedule_delayed_work(&rtd->delayed_work,
722 msecs_to_jiffies(rtd->pmdown_time));
723 } else {
724 /* capture streams can be powered down now */
725 snd_soc_dapm_stream_event(rtd,
726 codec_dai->driver->capture.stream_name,
727 SND_SOC_DAPM_STREAM_STOP);
728 }
729
730 mutex_unlock(&pcm_mutex);
731 return 0;
732 }
733
734 /*
735 * Called by ALSA when the PCM substream is prepared, can set format, sample
736 * rate, etc. This function is non atomic and can be called multiple times,
737 * it can refer to the runtime info.
738 */
739 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
740 {
741 struct snd_soc_pcm_runtime *rtd = substream->private_data;
742 struct snd_soc_platform *platform = rtd->platform;
743 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
744 struct snd_soc_dai *codec_dai = rtd->codec_dai;
745 int ret = 0;
746
747 mutex_lock(&pcm_mutex);
748
749 if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
750 ret = rtd->dai_link->ops->prepare(substream);
751 if (ret < 0) {
752 printk(KERN_ERR "asoc: machine prepare error\n");
753 goto out;
754 }
755 }
756
757 if (platform->driver->ops->prepare) {
758 ret = platform->driver->ops->prepare(substream);
759 if (ret < 0) {
760 printk(KERN_ERR "asoc: platform prepare error\n");
761 goto out;
762 }
763 }
764
765 if (codec_dai->driver->ops->prepare) {
766 ret = codec_dai->driver->ops->prepare(substream, codec_dai);
767 if (ret < 0) {
768 printk(KERN_ERR "asoc: codec DAI prepare error\n");
769 goto out;
770 }
771 }
772
773 if (cpu_dai->driver->ops->prepare) {
774 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
775 if (ret < 0) {
776 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
777 goto out;
778 }
779 }
780
781 /* cancel any delayed stream shutdown that is pending */
782 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
783 codec_dai->pop_wait) {
784 codec_dai->pop_wait = 0;
785 cancel_delayed_work(&rtd->delayed_work);
786 }
787
788 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
789 snd_soc_dapm_stream_event(rtd,
790 codec_dai->driver->playback.stream_name,
791 SND_SOC_DAPM_STREAM_START);
792 else
793 snd_soc_dapm_stream_event(rtd,
794 codec_dai->driver->capture.stream_name,
795 SND_SOC_DAPM_STREAM_START);
796
797 snd_soc_dai_digital_mute(codec_dai, 0);
798
799 out:
800 mutex_unlock(&pcm_mutex);
801 return ret;
802 }
803
804 /*
805 * Called by ALSA when the hardware params are set by application. This
806 * function can also be called multiple times and can allocate buffers
807 * (using snd_pcm_lib_* ). It's non-atomic.
808 */
809 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
810 struct snd_pcm_hw_params *params)
811 {
812 struct snd_soc_pcm_runtime *rtd = substream->private_data;
813 struct snd_soc_platform *platform = rtd->platform;
814 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
815 struct snd_soc_dai *codec_dai = rtd->codec_dai;
816 int ret = 0;
817
818 mutex_lock(&pcm_mutex);
819
820 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
821 ret = rtd->dai_link->ops->hw_params(substream, params);
822 if (ret < 0) {
823 printk(KERN_ERR "asoc: machine hw_params failed\n");
824 goto out;
825 }
826 }
827
828 if (codec_dai->driver->ops->hw_params) {
829 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
830 if (ret < 0) {
831 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
832 codec_dai->name);
833 goto codec_err;
834 }
835 }
836
837 if (cpu_dai->driver->ops->hw_params) {
838 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
839 if (ret < 0) {
840 printk(KERN_ERR "asoc: interface %s hw params failed\n",
841 cpu_dai->name);
842 goto interface_err;
843 }
844 }
845
846 if (platform->driver->ops->hw_params) {
847 ret = platform->driver->ops->hw_params(substream, params);
848 if (ret < 0) {
849 printk(KERN_ERR "asoc: platform %s hw params failed\n",
850 platform->name);
851 goto platform_err;
852 }
853 }
854
855 rtd->rate = params_rate(params);
856
857 out:
858 mutex_unlock(&pcm_mutex);
859 return ret;
860
861 platform_err:
862 if (cpu_dai->driver->ops->hw_free)
863 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
864
865 interface_err:
866 if (codec_dai->driver->ops->hw_free)
867 codec_dai->driver->ops->hw_free(substream, codec_dai);
868
869 codec_err:
870 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
871 rtd->dai_link->ops->hw_free(substream);
872
873 mutex_unlock(&pcm_mutex);
874 return ret;
875 }
876
877 /*
878 * Free's resources allocated by hw_params, can be called multiple times
879 */
880 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
881 {
882 struct snd_soc_pcm_runtime *rtd = substream->private_data;
883 struct snd_soc_platform *platform = rtd->platform;
884 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
885 struct snd_soc_dai *codec_dai = rtd->codec_dai;
886 struct snd_soc_codec *codec = rtd->codec;
887
888 mutex_lock(&pcm_mutex);
889
890 /* apply codec digital mute */
891 if (!codec->active)
892 snd_soc_dai_digital_mute(codec_dai, 1);
893
894 /* free any machine hw params */
895 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
896 rtd->dai_link->ops->hw_free(substream);
897
898 /* free any DMA resources */
899 if (platform->driver->ops->hw_free)
900 platform->driver->ops->hw_free(substream);
901
902 /* now free hw params for the DAI's */
903 if (codec_dai->driver->ops->hw_free)
904 codec_dai->driver->ops->hw_free(substream, codec_dai);
905
906 if (cpu_dai->driver->ops->hw_free)
907 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
908
909 mutex_unlock(&pcm_mutex);
910 return 0;
911 }
912
913 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
914 {
915 struct snd_soc_pcm_runtime *rtd = substream->private_data;
916 struct snd_soc_platform *platform = rtd->platform;
917 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
918 struct snd_soc_dai *codec_dai = rtd->codec_dai;
919 int ret;
920
921 if (codec_dai->driver->ops->trigger) {
922 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
923 if (ret < 0)
924 return ret;
925 }
926
927 if (platform->driver->ops->trigger) {
928 ret = platform->driver->ops->trigger(substream, cmd);
929 if (ret < 0)
930 return ret;
931 }
932
933 if (cpu_dai->driver->ops->trigger) {
934 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
935 if (ret < 0)
936 return ret;
937 }
938 return 0;
939 }
940
941 /*
942 * soc level wrapper for pointer callback
943 * If cpu_dai, codec_dai, platform driver has the delay callback, than
944 * the runtime->delay will be updated accordingly.
945 */
946 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
947 {
948 struct snd_soc_pcm_runtime *rtd = substream->private_data;
949 struct snd_soc_platform *platform = rtd->platform;
950 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
951 struct snd_soc_dai *codec_dai = rtd->codec_dai;
952 struct snd_pcm_runtime *runtime = substream->runtime;
953 snd_pcm_uframes_t offset = 0;
954 snd_pcm_sframes_t delay = 0;
955
956 if (platform->driver->ops->pointer)
957 offset = platform->driver->ops->pointer(substream);
958
959 if (cpu_dai->driver->ops->delay)
960 delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
961
962 if (codec_dai->driver->ops->delay)
963 delay += codec_dai->driver->ops->delay(substream, codec_dai);
964
965 if (platform->driver->delay)
966 delay += platform->driver->delay(substream, codec_dai);
967
968 runtime->delay = delay;
969
970 return offset;
971 }
972
973 /* ASoC PCM operations */
974 static struct snd_pcm_ops soc_pcm_ops = {
975 .open = soc_pcm_open,
976 .close = soc_codec_close,
977 .hw_params = soc_pcm_hw_params,
978 .hw_free = soc_pcm_hw_free,
979 .prepare = soc_pcm_prepare,
980 .trigger = soc_pcm_trigger,
981 .pointer = soc_pcm_pointer,
982 };
983
984 #ifdef CONFIG_PM
985 /* powers down audio subsystem for suspend */
986 static int soc_suspend(struct device *dev)
987 {
988 struct platform_device *pdev = to_platform_device(dev);
989 struct snd_soc_card *card = platform_get_drvdata(pdev);
990 int i;
991
992 /* If the initialization of this soc device failed, there is no codec
993 * associated with it. Just bail out in this case.
994 */
995 if (list_empty(&card->codec_dev_list))
996 return 0;
997
998 /* Due to the resume being scheduled into a workqueue we could
999 * suspend before that's finished - wait for it to complete.
1000 */
1001 snd_power_lock(card->snd_card);
1002 snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
1003 snd_power_unlock(card->snd_card);
1004
1005 /* we're going to block userspace touching us until resume completes */
1006 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
1007
1008 /* mute any active DAC's */
1009 for (i = 0; i < card->num_rtd; i++) {
1010 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1011 struct snd_soc_dai_driver *drv = dai->driver;
1012
1013 if (card->rtd[i].dai_link->ignore_suspend)
1014 continue;
1015
1016 if (drv->ops->digital_mute && dai->playback_active)
1017 drv->ops->digital_mute(dai, 1);
1018 }
1019
1020 /* suspend all pcms */
1021 for (i = 0; i < card->num_rtd; i++) {
1022 if (card->rtd[i].dai_link->ignore_suspend)
1023 continue;
1024
1025 snd_pcm_suspend_all(card->rtd[i].pcm);
1026 }
1027
1028 if (card->suspend_pre)
1029 card->suspend_pre(pdev, PMSG_SUSPEND);
1030
1031 for (i = 0; i < card->num_rtd; i++) {
1032 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1033 struct snd_soc_platform *platform = card->rtd[i].platform;
1034
1035 if (card->rtd[i].dai_link->ignore_suspend)
1036 continue;
1037
1038 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
1039 cpu_dai->driver->suspend(cpu_dai);
1040 if (platform->driver->suspend && !platform->suspended) {
1041 platform->driver->suspend(cpu_dai);
1042 platform->suspended = 1;
1043 }
1044 }
1045
1046 /* close any waiting streams and save state */
1047 for (i = 0; i < card->num_rtd; i++) {
1048 run_delayed_work(&card->rtd[i].delayed_work);
1049 card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level;
1050 }
1051
1052 for (i = 0; i < card->num_rtd; i++) {
1053 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1054
1055 if (card->rtd[i].dai_link->ignore_suspend)
1056 continue;
1057
1058 if (driver->playback.stream_name != NULL)
1059 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1060 SND_SOC_DAPM_STREAM_SUSPEND);
1061
1062 if (driver->capture.stream_name != NULL)
1063 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1064 SND_SOC_DAPM_STREAM_SUSPEND);
1065 }
1066
1067 /* suspend all CODECs */
1068 for (i = 0; i < card->num_rtd; i++) {
1069 struct snd_soc_codec *codec = card->rtd[i].codec;
1070 /* If there are paths active then the CODEC will be held with
1071 * bias _ON and should not be suspended. */
1072 if (!codec->suspended && codec->driver->suspend) {
1073 switch (codec->dapm.bias_level) {
1074 case SND_SOC_BIAS_STANDBY:
1075 case SND_SOC_BIAS_OFF:
1076 codec->driver->suspend(codec, PMSG_SUSPEND);
1077 codec->suspended = 1;
1078 break;
1079 default:
1080 dev_dbg(codec->dev, "CODEC is on over suspend\n");
1081 break;
1082 }
1083 }
1084 }
1085
1086 for (i = 0; i < card->num_rtd; i++) {
1087 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1088
1089 if (card->rtd[i].dai_link->ignore_suspend)
1090 continue;
1091
1092 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
1093 cpu_dai->driver->suspend(cpu_dai);
1094 }
1095
1096 if (card->suspend_post)
1097 card->suspend_post(pdev, PMSG_SUSPEND);
1098
1099 return 0;
1100 }
1101
1102 /* deferred resume work, so resume can complete before we finished
1103 * setting our codec back up, which can be very slow on I2C
1104 */
1105 static void soc_resume_deferred(struct work_struct *work)
1106 {
1107 struct snd_soc_card *card =
1108 container_of(work, struct snd_soc_card, deferred_resume_work);
1109 struct platform_device *pdev = to_platform_device(card->dev);
1110 int i;
1111
1112 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
1113 * so userspace apps are blocked from touching us
1114 */
1115
1116 dev_dbg(card->dev, "starting resume work\n");
1117
1118 /* Bring us up into D2 so that DAPM starts enabling things */
1119 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
1120
1121 if (card->resume_pre)
1122 card->resume_pre(pdev);
1123
1124 /* resume AC97 DAIs */
1125 for (i = 0; i < card->num_rtd; i++) {
1126 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1127
1128 if (card->rtd[i].dai_link->ignore_suspend)
1129 continue;
1130
1131 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
1132 cpu_dai->driver->resume(cpu_dai);
1133 }
1134
1135 for (i = 0; i < card->num_rtd; i++) {
1136 struct snd_soc_codec *codec = card->rtd[i].codec;
1137 /* If the CODEC was idle over suspend then it will have been
1138 * left with bias OFF or STANDBY and suspended so we must now
1139 * resume. Otherwise the suspend was suppressed.
1140 */
1141 if (codec->driver->resume && codec->suspended) {
1142 switch (codec->dapm.bias_level) {
1143 case SND_SOC_BIAS_STANDBY:
1144 case SND_SOC_BIAS_OFF:
1145 codec->driver->resume(codec);
1146 codec->suspended = 0;
1147 break;
1148 default:
1149 dev_dbg(codec->dev, "CODEC was on over suspend\n");
1150 break;
1151 }
1152 }
1153 }
1154
1155 for (i = 0; i < card->num_rtd; i++) {
1156 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1157
1158 if (card->rtd[i].dai_link->ignore_suspend)
1159 continue;
1160
1161 if (driver->playback.stream_name != NULL)
1162 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1163 SND_SOC_DAPM_STREAM_RESUME);
1164
1165 if (driver->capture.stream_name != NULL)
1166 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1167 SND_SOC_DAPM_STREAM_RESUME);
1168 }
1169
1170 /* unmute any active DACs */
1171 for (i = 0; i < card->num_rtd; i++) {
1172 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1173 struct snd_soc_dai_driver *drv = dai->driver;
1174
1175 if (card->rtd[i].dai_link->ignore_suspend)
1176 continue;
1177
1178 if (drv->ops->digital_mute && dai->playback_active)
1179 drv->ops->digital_mute(dai, 0);
1180 }
1181
1182 for (i = 0; i < card->num_rtd; i++) {
1183 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1184 struct snd_soc_platform *platform = card->rtd[i].platform;
1185
1186 if (card->rtd[i].dai_link->ignore_suspend)
1187 continue;
1188
1189 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1190 cpu_dai->driver->resume(cpu_dai);
1191 if (platform->driver->resume && platform->suspended) {
1192 platform->driver->resume(cpu_dai);
1193 platform->suspended = 0;
1194 }
1195 }
1196
1197 if (card->resume_post)
1198 card->resume_post(pdev);
1199
1200 dev_dbg(card->dev, "resume work completed\n");
1201
1202 /* userspace can access us now we are back as we were before */
1203 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1204 }
1205
1206 /* powers up audio subsystem after a suspend */
1207 static int soc_resume(struct device *dev)
1208 {
1209 struct platform_device *pdev = to_platform_device(dev);
1210 struct snd_soc_card *card = platform_get_drvdata(pdev);
1211 int i;
1212
1213 /* AC97 devices might have other drivers hanging off them so
1214 * need to resume immediately. Other drivers don't have that
1215 * problem and may take a substantial amount of time to resume
1216 * due to I/O costs and anti-pop so handle them out of line.
1217 */
1218 for (i = 0; i < card->num_rtd; i++) {
1219 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1220 if (cpu_dai->driver->ac97_control) {
1221 dev_dbg(dev, "Resuming AC97 immediately\n");
1222 soc_resume_deferred(&card->deferred_resume_work);
1223 } else {
1224 dev_dbg(dev, "Scheduling resume work\n");
1225 if (!schedule_work(&card->deferred_resume_work))
1226 dev_err(dev, "resume work item may be lost\n");
1227 }
1228 }
1229
1230 return 0;
1231 }
1232 #else
1233 #define soc_suspend NULL
1234 #define soc_resume NULL
1235 #endif
1236
1237 static struct snd_soc_dai_ops null_dai_ops = {
1238 };
1239
1240 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1241 {
1242 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1243 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1244 struct snd_soc_codec *codec;
1245 struct snd_soc_platform *platform;
1246 struct snd_soc_dai *codec_dai, *cpu_dai;
1247
1248 if (rtd->complete)
1249 return 1;
1250 dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1251
1252 /* do we already have the CPU DAI for this link ? */
1253 if (rtd->cpu_dai) {
1254 goto find_codec;
1255 }
1256 /* no, then find CPU DAI from registered DAIs*/
1257 list_for_each_entry(cpu_dai, &dai_list, list) {
1258 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1259
1260 if (!try_module_get(cpu_dai->dev->driver->owner))
1261 return -ENODEV;
1262
1263 rtd->cpu_dai = cpu_dai;
1264 goto find_codec;
1265 }
1266 }
1267 dev_dbg(card->dev, "CPU DAI %s not registered\n",
1268 dai_link->cpu_dai_name);
1269
1270 find_codec:
1271 /* do we already have the CODEC for this link ? */
1272 if (rtd->codec) {
1273 goto find_platform;
1274 }
1275
1276 /* no, then find CODEC from registered CODECs*/
1277 list_for_each_entry(codec, &codec_list, list) {
1278 if (!strcmp(codec->name, dai_link->codec_name)) {
1279 rtd->codec = codec;
1280
1281 if (!try_module_get(codec->dev->driver->owner))
1282 return -ENODEV;
1283
1284 /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1285 list_for_each_entry(codec_dai, &dai_list, list) {
1286 if (codec->dev == codec_dai->dev &&
1287 !strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1288 rtd->codec_dai = codec_dai;
1289 goto find_platform;
1290 }
1291 }
1292 dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1293 dai_link->codec_dai_name);
1294
1295 goto find_platform;
1296 }
1297 }
1298 dev_dbg(card->dev, "CODEC %s not registered\n",
1299 dai_link->codec_name);
1300
1301 find_platform:
1302 /* do we already have the CODEC DAI for this link ? */
1303 if (rtd->platform) {
1304 goto out;
1305 }
1306 /* no, then find CPU DAI from registered DAIs*/
1307 list_for_each_entry(platform, &platform_list, list) {
1308 if (!strcmp(platform->name, dai_link->platform_name)) {
1309
1310 if (!try_module_get(platform->dev->driver->owner))
1311 return -ENODEV;
1312
1313 rtd->platform = platform;
1314 goto out;
1315 }
1316 }
1317
1318 dev_dbg(card->dev, "platform %s not registered\n",
1319 dai_link->platform_name);
1320 return 0;
1321
1322 out:
1323 /* mark rtd as complete if we found all 4 of our client devices */
1324 if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1325 rtd->complete = 1;
1326 card->num_rtd++;
1327 }
1328 return 1;
1329 }
1330
1331 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1332 {
1333 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1334 struct snd_soc_codec *codec = rtd->codec;
1335 struct snd_soc_platform *platform = rtd->platform;
1336 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1337 int err;
1338
1339 /* unregister the rtd device */
1340 if (rtd->dev_registered) {
1341 device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1342 device_unregister(&rtd->dev);
1343 rtd->dev_registered = 0;
1344 }
1345
1346 /* remove the CODEC DAI */
1347 if (codec_dai && codec_dai->probed) {
1348 if (codec_dai->driver->remove) {
1349 err = codec_dai->driver->remove(codec_dai);
1350 if (err < 0)
1351 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1352 }
1353 codec_dai->probed = 0;
1354 list_del(&codec_dai->card_list);
1355 }
1356
1357 /* remove the platform */
1358 if (platform && platform->probed) {
1359 if (platform->driver->remove) {
1360 err = platform->driver->remove(platform);
1361 if (err < 0)
1362 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1363 }
1364 platform->probed = 0;
1365 list_del(&platform->card_list);
1366 module_put(platform->dev->driver->owner);
1367 }
1368
1369 /* remove the CODEC */
1370 if (codec && codec->probed) {
1371 if (codec->driver->remove) {
1372 err = codec->driver->remove(codec);
1373 if (err < 0)
1374 printk(KERN_ERR "asoc: failed to remove %s\n", codec->name);
1375 }
1376
1377 /* Make sure all DAPM widgets are freed */
1378 snd_soc_dapm_free(&codec->dapm);
1379
1380 soc_cleanup_codec_debugfs(codec);
1381 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1382 codec->probed = 0;
1383 list_del(&codec->card_list);
1384 module_put(codec->dev->driver->owner);
1385 }
1386
1387 /* remove the cpu_dai */
1388 if (cpu_dai && cpu_dai->probed) {
1389 if (cpu_dai->driver->remove) {
1390 err = cpu_dai->driver->remove(cpu_dai);
1391 if (err < 0)
1392 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1393 }
1394 cpu_dai->probed = 0;
1395 list_del(&cpu_dai->card_list);
1396 module_put(cpu_dai->dev->driver->owner);
1397 }
1398 }
1399
1400 static void rtd_release(struct device *dev) {}
1401
1402 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1403 {
1404 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1405 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1406 struct snd_soc_codec *codec = rtd->codec;
1407 struct snd_soc_platform *platform = rtd->platform;
1408 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1409 int ret;
1410
1411 dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1412
1413 /* config components */
1414 codec_dai->codec = codec;
1415 codec->card = card;
1416 cpu_dai->platform = platform;
1417 rtd->card = card;
1418 rtd->dev.parent = card->dev;
1419 codec_dai->card = card;
1420 cpu_dai->card = card;
1421
1422 /* set default power off timeout */
1423 rtd->pmdown_time = pmdown_time;
1424
1425 /* probe the cpu_dai */
1426 if (!cpu_dai->probed) {
1427 if (cpu_dai->driver->probe) {
1428 ret = cpu_dai->driver->probe(cpu_dai);
1429 if (ret < 0) {
1430 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1431 cpu_dai->name);
1432 return ret;
1433 }
1434 }
1435 cpu_dai->probed = 1;
1436 /* mark cpu_dai as probed and add to card cpu_dai list */
1437 list_add(&cpu_dai->card_list, &card->dai_dev_list);
1438 }
1439
1440 /* probe the CODEC */
1441 if (!codec->probed) {
1442 codec->dapm.card = card;
1443 if (codec->driver->probe) {
1444 ret = codec->driver->probe(codec);
1445 if (ret < 0) {
1446 printk(KERN_ERR "asoc: failed to probe CODEC %s\n",
1447 codec->name);
1448 return ret;
1449 }
1450 }
1451
1452 soc_init_codec_debugfs(codec);
1453
1454 /* mark codec as probed and add to card codec list */
1455 codec->probed = 1;
1456 list_add(&codec->card_list, &card->codec_dev_list);
1457 }
1458
1459 /* probe the platform */
1460 if (!platform->probed) {
1461 if (platform->driver->probe) {
1462 ret = platform->driver->probe(platform);
1463 if (ret < 0) {
1464 printk(KERN_ERR "asoc: failed to probe platform %s\n",
1465 platform->name);
1466 return ret;
1467 }
1468 }
1469 /* mark platform as probed and add to card platform list */
1470 platform->probed = 1;
1471 list_add(&platform->card_list, &card->platform_dev_list);
1472 }
1473
1474 /* probe the CODEC DAI */
1475 if (!codec_dai->probed) {
1476 if (codec_dai->driver->probe) {
1477 ret = codec_dai->driver->probe(codec_dai);
1478 if (ret < 0) {
1479 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1480 codec_dai->name);
1481 return ret;
1482 }
1483 }
1484
1485 /* mark cpu_dai as probed and add to card cpu_dai list */
1486 codec_dai->probed = 1;
1487 list_add(&codec_dai->card_list, &card->dai_dev_list);
1488 }
1489
1490 /* DAPM dai link stream work */
1491 INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1492
1493 /* now that all clients have probed, initialise the DAI link */
1494 if (dai_link->init) {
1495 ret = dai_link->init(rtd);
1496 if (ret < 0) {
1497 printk(KERN_ERR "asoc: failed to init %s\n", dai_link->stream_name);
1498 return ret;
1499 }
1500 }
1501
1502 /* Make sure all DAPM widgets are instantiated */
1503 snd_soc_dapm_new_widgets(&codec->dapm);
1504 snd_soc_dapm_sync(&codec->dapm);
1505
1506 /* register the rtd device */
1507 rtd->dev.release = rtd_release;
1508 rtd->dev.init_name = dai_link->name;
1509 ret = device_register(&rtd->dev);
1510 if (ret < 0) {
1511 printk(KERN_ERR "asoc: failed to register DAI runtime device %d\n", ret);
1512 return ret;
1513 }
1514
1515 rtd->dev_registered = 1;
1516 ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1517 if (ret < 0)
1518 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1519
1520 /* add DAPM sysfs entries for this codec */
1521 ret = snd_soc_dapm_sys_add(&rtd->dev);
1522 if (ret < 0)
1523 printk(KERN_WARNING "asoc: failed to add codec dapm sysfs entries\n");
1524
1525 /* add codec sysfs entries */
1526 ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1527 if (ret < 0)
1528 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1529
1530 /* create the pcm */
1531 ret = soc_new_pcm(rtd, num);
1532 if (ret < 0) {
1533 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1534 return ret;
1535 }
1536
1537 /* add platform data for AC97 devices */
1538 if (rtd->codec_dai->driver->ac97_control)
1539 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1540
1541 return 0;
1542 }
1543
1544 #ifdef CONFIG_SND_SOC_AC97_BUS
1545 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1546 {
1547 int ret;
1548
1549 /* Only instantiate AC97 if not already done by the adaptor
1550 * for the generic AC97 subsystem.
1551 */
1552 if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1553 /*
1554 * It is possible that the AC97 device is already registered to
1555 * the device subsystem. This happens when the device is created
1556 * via snd_ac97_mixer(). Currently only SoC codec that does so
1557 * is the generic AC97 glue but others migh emerge.
1558 *
1559 * In those cases we don't try to register the device again.
1560 */
1561 if (!rtd->codec->ac97_created)
1562 return 0;
1563
1564 ret = soc_ac97_dev_register(rtd->codec);
1565 if (ret < 0) {
1566 printk(KERN_ERR "asoc: AC97 device register failed\n");
1567 return ret;
1568 }
1569
1570 rtd->codec->ac97_registered = 1;
1571 }
1572 return 0;
1573 }
1574
1575 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1576 {
1577 if (codec->ac97_registered) {
1578 soc_ac97_dev_unregister(codec);
1579 codec->ac97_registered = 0;
1580 }
1581 }
1582 #endif
1583
1584 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1585 {
1586 struct platform_device *pdev = to_platform_device(card->dev);
1587 int ret, i;
1588
1589 mutex_lock(&card->mutex);
1590
1591 if (card->instantiated) {
1592 mutex_unlock(&card->mutex);
1593 return;
1594 }
1595
1596 /* bind DAIs */
1597 for (i = 0; i < card->num_links; i++)
1598 soc_bind_dai_link(card, i);
1599
1600 /* bind completed ? */
1601 if (card->num_rtd != card->num_links) {
1602 mutex_unlock(&card->mutex);
1603 return;
1604 }
1605
1606 /* card bind complete so register a sound card */
1607 ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1608 card->owner, 0, &card->snd_card);
1609 if (ret < 0) {
1610 printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1611 card->name);
1612 mutex_unlock(&card->mutex);
1613 return;
1614 }
1615 card->snd_card->dev = card->dev;
1616
1617 #ifdef CONFIG_PM
1618 /* deferred resume work */
1619 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1620 #endif
1621
1622 /* initialise the sound card only once */
1623 if (card->probe) {
1624 ret = card->probe(pdev);
1625 if (ret < 0)
1626 goto card_probe_error;
1627 }
1628
1629 for (i = 0; i < card->num_links; i++) {
1630 ret = soc_probe_dai_link(card, i);
1631 if (ret < 0) {
1632 pr_err("asoc: failed to instantiate card %s: %d\n",
1633 card->name, ret);
1634 goto probe_dai_err;
1635 }
1636 }
1637
1638 snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1639 "%s", card->name);
1640 snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1641 "%s", card->name);
1642
1643 ret = snd_card_register(card->snd_card);
1644 if (ret < 0) {
1645 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1646 goto probe_dai_err;
1647 }
1648
1649 #ifdef CONFIG_SND_SOC_AC97_BUS
1650 /* register any AC97 codecs */
1651 for (i = 0; i < card->num_rtd; i++) {
1652 ret = soc_register_ac97_dai_link(&card->rtd[i]);
1653 if (ret < 0) {
1654 printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1655 goto probe_dai_err;
1656 }
1657 }
1658 #endif
1659
1660 card->instantiated = 1;
1661 mutex_unlock(&card->mutex);
1662 return;
1663
1664 probe_dai_err:
1665 for (i = 0; i < card->num_links; i++)
1666 soc_remove_dai_link(card, i);
1667
1668 card_probe_error:
1669 if (card->remove)
1670 card->remove(pdev);
1671
1672 snd_card_free(card->snd_card);
1673
1674 mutex_unlock(&card->mutex);
1675 }
1676
1677 /*
1678 * Attempt to initialise any uninitialised cards. Must be called with
1679 * client_mutex.
1680 */
1681 static void snd_soc_instantiate_cards(void)
1682 {
1683 struct snd_soc_card *card;
1684 list_for_each_entry(card, &card_list, list)
1685 snd_soc_instantiate_card(card);
1686 }
1687
1688 /* probes a new socdev */
1689 static int soc_probe(struct platform_device *pdev)
1690 {
1691 struct snd_soc_card *card = platform_get_drvdata(pdev);
1692 int ret = 0;
1693
1694 /* Bodge while we unpick instantiation */
1695 card->dev = &pdev->dev;
1696 INIT_LIST_HEAD(&card->dai_dev_list);
1697 INIT_LIST_HEAD(&card->codec_dev_list);
1698 INIT_LIST_HEAD(&card->platform_dev_list);
1699
1700 soc_init_card_debugfs(card);
1701
1702 ret = snd_soc_register_card(card);
1703 if (ret != 0) {
1704 dev_err(&pdev->dev, "Failed to register card\n");
1705 return ret;
1706 }
1707
1708 return 0;
1709 }
1710
1711 /* removes a socdev */
1712 static int soc_remove(struct platform_device *pdev)
1713 {
1714 struct snd_soc_card *card = platform_get_drvdata(pdev);
1715 int i;
1716
1717 if (card->instantiated) {
1718
1719 /* make sure any delayed work runs */
1720 for (i = 0; i < card->num_rtd; i++) {
1721 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1722 run_delayed_work(&rtd->delayed_work);
1723 }
1724
1725 /* remove and free each DAI */
1726 for (i = 0; i < card->num_rtd; i++)
1727 soc_remove_dai_link(card, i);
1728
1729 soc_cleanup_card_debugfs(card);
1730
1731 /* remove the card */
1732 if (card->remove)
1733 card->remove(pdev);
1734
1735 kfree(card->rtd);
1736 snd_card_free(card->snd_card);
1737 }
1738 snd_soc_unregister_card(card);
1739 return 0;
1740 }
1741
1742 static int soc_poweroff(struct device *dev)
1743 {
1744 struct platform_device *pdev = to_platform_device(dev);
1745 struct snd_soc_card *card = platform_get_drvdata(pdev);
1746 int i;
1747
1748 if (!card->instantiated)
1749 return 0;
1750
1751 /* Flush out pmdown_time work - we actually do want to run it
1752 * now, we're shutting down so no imminent restart. */
1753 for (i = 0; i < card->num_rtd; i++) {
1754 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1755 run_delayed_work(&rtd->delayed_work);
1756 }
1757
1758 snd_soc_dapm_shutdown(card);
1759
1760 return 0;
1761 }
1762
1763 static const struct dev_pm_ops soc_pm_ops = {
1764 .suspend = soc_suspend,
1765 .resume = soc_resume,
1766 .poweroff = soc_poweroff,
1767 };
1768
1769 /* ASoC platform driver */
1770 static struct platform_driver soc_driver = {
1771 .driver = {
1772 .name = "soc-audio",
1773 .owner = THIS_MODULE,
1774 .pm = &soc_pm_ops,
1775 },
1776 .probe = soc_probe,
1777 .remove = soc_remove,
1778 };
1779
1780 /* create a new pcm */
1781 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
1782 {
1783 struct snd_soc_codec *codec = rtd->codec;
1784 struct snd_soc_platform *platform = rtd->platform;
1785 struct snd_soc_dai *codec_dai = rtd->codec_dai;
1786 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1787 struct snd_pcm *pcm;
1788 char new_name[64];
1789 int ret = 0, playback = 0, capture = 0;
1790
1791 /* check client and interface hw capabilities */
1792 snprintf(new_name, sizeof(new_name), "%s %s-%d",
1793 rtd->dai_link->stream_name, codec_dai->name, num);
1794
1795 if (codec_dai->driver->playback.channels_min)
1796 playback = 1;
1797 if (codec_dai->driver->capture.channels_min)
1798 capture = 1;
1799
1800 dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
1801 ret = snd_pcm_new(rtd->card->snd_card, new_name,
1802 num, playback, capture, &pcm);
1803 if (ret < 0) {
1804 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
1805 return ret;
1806 }
1807
1808 rtd->pcm = pcm;
1809 pcm->private_data = rtd;
1810 soc_pcm_ops.mmap = platform->driver->ops->mmap;
1811 soc_pcm_ops.pointer = platform->driver->ops->pointer;
1812 soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
1813 soc_pcm_ops.copy = platform->driver->ops->copy;
1814 soc_pcm_ops.silence = platform->driver->ops->silence;
1815 soc_pcm_ops.ack = platform->driver->ops->ack;
1816 soc_pcm_ops.page = platform->driver->ops->page;
1817
1818 if (playback)
1819 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1820
1821 if (capture)
1822 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1823
1824 ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm);
1825 if (ret < 0) {
1826 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1827 return ret;
1828 }
1829
1830 pcm->private_free = platform->driver->pcm_free;
1831 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1832 cpu_dai->name);
1833 return ret;
1834 }
1835
1836 /**
1837 * snd_soc_codec_volatile_register: Report if a register is volatile.
1838 *
1839 * @codec: CODEC to query.
1840 * @reg: Register to query.
1841 *
1842 * Boolean function indiciating if a CODEC register is volatile.
1843 */
1844 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
1845 {
1846 if (codec->driver->volatile_register)
1847 return codec->driver->volatile_register(reg);
1848 else
1849 return 0;
1850 }
1851 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
1852
1853 /**
1854 * snd_soc_new_ac97_codec - initailise AC97 device
1855 * @codec: audio codec
1856 * @ops: AC97 bus operations
1857 * @num: AC97 codec number
1858 *
1859 * Initialises AC97 codec resources for use by ad-hoc devices only.
1860 */
1861 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1862 struct snd_ac97_bus_ops *ops, int num)
1863 {
1864 mutex_lock(&codec->mutex);
1865
1866 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1867 if (codec->ac97 == NULL) {
1868 mutex_unlock(&codec->mutex);
1869 return -ENOMEM;
1870 }
1871
1872 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1873 if (codec->ac97->bus == NULL) {
1874 kfree(codec->ac97);
1875 codec->ac97 = NULL;
1876 mutex_unlock(&codec->mutex);
1877 return -ENOMEM;
1878 }
1879
1880 codec->ac97->bus->ops = ops;
1881 codec->ac97->num = num;
1882
1883 /*
1884 * Mark the AC97 device to be created by us. This way we ensure that the
1885 * device will be registered with the device subsystem later on.
1886 */
1887 codec->ac97_created = 1;
1888
1889 mutex_unlock(&codec->mutex);
1890 return 0;
1891 }
1892 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1893
1894 /**
1895 * snd_soc_free_ac97_codec - free AC97 codec device
1896 * @codec: audio codec
1897 *
1898 * Frees AC97 codec device resources.
1899 */
1900 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1901 {
1902 mutex_lock(&codec->mutex);
1903 #ifdef CONFIG_SND_SOC_AC97_BUS
1904 soc_unregister_ac97_dai_link(codec);
1905 #endif
1906 kfree(codec->ac97->bus);
1907 kfree(codec->ac97);
1908 codec->ac97 = NULL;
1909 codec->ac97_created = 0;
1910 mutex_unlock(&codec->mutex);
1911 }
1912 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1913
1914 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg)
1915 {
1916 unsigned int ret;
1917
1918 ret = codec->driver->read(codec, reg);
1919 dev_dbg(codec->dev, "read %x => %x\n", reg, ret);
1920 trace_snd_soc_reg_read(codec, reg, ret);
1921
1922 return ret;
1923 }
1924 EXPORT_SYMBOL_GPL(snd_soc_read);
1925
1926 unsigned int snd_soc_write(struct snd_soc_codec *codec,
1927 unsigned int reg, unsigned int val)
1928 {
1929 dev_dbg(codec->dev, "write %x = %x\n", reg, val);
1930 trace_snd_soc_reg_write(codec, reg, val);
1931 return codec->driver->write(codec, reg, val);
1932 }
1933 EXPORT_SYMBOL_GPL(snd_soc_write);
1934
1935 /**
1936 * snd_soc_update_bits - update codec register bits
1937 * @codec: audio codec
1938 * @reg: codec register
1939 * @mask: register mask
1940 * @value: new value
1941 *
1942 * Writes new register value.
1943 *
1944 * Returns 1 for change else 0.
1945 */
1946 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1947 unsigned int mask, unsigned int value)
1948 {
1949 int change;
1950 unsigned int old, new;
1951
1952 old = snd_soc_read(codec, reg);
1953 new = (old & ~mask) | value;
1954 change = old != new;
1955 if (change)
1956 snd_soc_write(codec, reg, new);
1957
1958 return change;
1959 }
1960 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1961
1962 /**
1963 * snd_soc_update_bits_locked - update codec register bits
1964 * @codec: audio codec
1965 * @reg: codec register
1966 * @mask: register mask
1967 * @value: new value
1968 *
1969 * Writes new register value, and takes the codec mutex.
1970 *
1971 * Returns 1 for change else 0.
1972 */
1973 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
1974 unsigned short reg, unsigned int mask,
1975 unsigned int value)
1976 {
1977 int change;
1978
1979 mutex_lock(&codec->mutex);
1980 change = snd_soc_update_bits(codec, reg, mask, value);
1981 mutex_unlock(&codec->mutex);
1982
1983 return change;
1984 }
1985 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
1986
1987 /**
1988 * snd_soc_test_bits - test register for change
1989 * @codec: audio codec
1990 * @reg: codec register
1991 * @mask: register mask
1992 * @value: new value
1993 *
1994 * Tests a register with a new value and checks if the new value is
1995 * different from the old value.
1996 *
1997 * Returns 1 for change else 0.
1998 */
1999 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
2000 unsigned int mask, unsigned int value)
2001 {
2002 int change;
2003 unsigned int old, new;
2004
2005 old = snd_soc_read(codec, reg);
2006 new = (old & ~mask) | value;
2007 change = old != new;
2008
2009 return change;
2010 }
2011 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
2012
2013 /**
2014 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
2015 * @substream: the pcm substream
2016 * @hw: the hardware parameters
2017 *
2018 * Sets the substream runtime hardware parameters.
2019 */
2020 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
2021 const struct snd_pcm_hardware *hw)
2022 {
2023 struct snd_pcm_runtime *runtime = substream->runtime;
2024 runtime->hw.info = hw->info;
2025 runtime->hw.formats = hw->formats;
2026 runtime->hw.period_bytes_min = hw->period_bytes_min;
2027 runtime->hw.period_bytes_max = hw->period_bytes_max;
2028 runtime->hw.periods_min = hw->periods_min;
2029 runtime->hw.periods_max = hw->periods_max;
2030 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
2031 runtime->hw.fifo_size = hw->fifo_size;
2032 return 0;
2033 }
2034 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
2035
2036 /**
2037 * snd_soc_cnew - create new control
2038 * @_template: control template
2039 * @data: control private data
2040 * @long_name: control long name
2041 *
2042 * Create a new mixer control from a template control.
2043 *
2044 * Returns 0 for success, else error.
2045 */
2046 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2047 void *data, char *long_name)
2048 {
2049 struct snd_kcontrol_new template;
2050
2051 memcpy(&template, _template, sizeof(template));
2052 if (long_name)
2053 template.name = long_name;
2054 template.index = 0;
2055
2056 return snd_ctl_new1(&template, data);
2057 }
2058 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2059
2060 /**
2061 * snd_soc_add_controls - add an array of controls to a codec.
2062 * Convienience function to add a list of controls. Many codecs were
2063 * duplicating this code.
2064 *
2065 * @codec: codec to add controls to
2066 * @controls: array of controls to add
2067 * @num_controls: number of elements in the array
2068 *
2069 * Return 0 for success, else error.
2070 */
2071 int snd_soc_add_controls(struct snd_soc_codec *codec,
2072 const struct snd_kcontrol_new *controls, int num_controls)
2073 {
2074 struct snd_card *card = codec->card->snd_card;
2075 int err, i;
2076
2077 for (i = 0; i < num_controls; i++) {
2078 const struct snd_kcontrol_new *control = &controls[i];
2079 err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
2080 if (err < 0) {
2081 dev_err(codec->dev, "%s: Failed to add %s: %d\n",
2082 codec->name, control->name, err);
2083 return err;
2084 }
2085 }
2086
2087 return 0;
2088 }
2089 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
2090
2091 /**
2092 * snd_soc_info_enum_double - enumerated double mixer info callback
2093 * @kcontrol: mixer control
2094 * @uinfo: control element information
2095 *
2096 * Callback to provide information about a double enumerated
2097 * mixer control.
2098 *
2099 * Returns 0 for success.
2100 */
2101 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2102 struct snd_ctl_elem_info *uinfo)
2103 {
2104 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2105
2106 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2107 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2108 uinfo->value.enumerated.items = e->max;
2109
2110 if (uinfo->value.enumerated.item > e->max - 1)
2111 uinfo->value.enumerated.item = e->max - 1;
2112 strcpy(uinfo->value.enumerated.name,
2113 e->texts[uinfo->value.enumerated.item]);
2114 return 0;
2115 }
2116 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2117
2118 /**
2119 * snd_soc_get_enum_double - enumerated double mixer get callback
2120 * @kcontrol: mixer control
2121 * @ucontrol: control element information
2122 *
2123 * Callback to get the value of a double enumerated mixer.
2124 *
2125 * Returns 0 for success.
2126 */
2127 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2128 struct snd_ctl_elem_value *ucontrol)
2129 {
2130 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2131 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2132 unsigned int val, bitmask;
2133
2134 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2135 ;
2136 val = snd_soc_read(codec, e->reg);
2137 ucontrol->value.enumerated.item[0]
2138 = (val >> e->shift_l) & (bitmask - 1);
2139 if (e->shift_l != e->shift_r)
2140 ucontrol->value.enumerated.item[1] =
2141 (val >> e->shift_r) & (bitmask - 1);
2142
2143 return 0;
2144 }
2145 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2146
2147 /**
2148 * snd_soc_put_enum_double - enumerated double mixer put callback
2149 * @kcontrol: mixer control
2150 * @ucontrol: control element information
2151 *
2152 * Callback to set the value of a double enumerated mixer.
2153 *
2154 * Returns 0 for success.
2155 */
2156 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2157 struct snd_ctl_elem_value *ucontrol)
2158 {
2159 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2160 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2161 unsigned int val;
2162 unsigned int mask, bitmask;
2163
2164 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2165 ;
2166 if (ucontrol->value.enumerated.item[0] > e->max - 1)
2167 return -EINVAL;
2168 val = ucontrol->value.enumerated.item[0] << e->shift_l;
2169 mask = (bitmask - 1) << e->shift_l;
2170 if (e->shift_l != e->shift_r) {
2171 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2172 return -EINVAL;
2173 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2174 mask |= (bitmask - 1) << e->shift_r;
2175 }
2176
2177 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2178 }
2179 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2180
2181 /**
2182 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2183 * @kcontrol: mixer control
2184 * @ucontrol: control element information
2185 *
2186 * Callback to get the value of a double semi enumerated mixer.
2187 *
2188 * Semi enumerated mixer: the enumerated items are referred as values. Can be
2189 * used for handling bitfield coded enumeration for example.
2190 *
2191 * Returns 0 for success.
2192 */
2193 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2194 struct snd_ctl_elem_value *ucontrol)
2195 {
2196 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2197 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2198 unsigned int reg_val, val, mux;
2199
2200 reg_val = snd_soc_read(codec, e->reg);
2201 val = (reg_val >> e->shift_l) & e->mask;
2202 for (mux = 0; mux < e->max; mux++) {
2203 if (val == e->values[mux])
2204 break;
2205 }
2206 ucontrol->value.enumerated.item[0] = mux;
2207 if (e->shift_l != e->shift_r) {
2208 val = (reg_val >> e->shift_r) & e->mask;
2209 for (mux = 0; mux < e->max; mux++) {
2210 if (val == e->values[mux])
2211 break;
2212 }
2213 ucontrol->value.enumerated.item[1] = mux;
2214 }
2215
2216 return 0;
2217 }
2218 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2219
2220 /**
2221 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2222 * @kcontrol: mixer control
2223 * @ucontrol: control element information
2224 *
2225 * Callback to set the value of a double semi enumerated mixer.
2226 *
2227 * Semi enumerated mixer: the enumerated items are referred as values. Can be
2228 * used for handling bitfield coded enumeration for example.
2229 *
2230 * Returns 0 for success.
2231 */
2232 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2233 struct snd_ctl_elem_value *ucontrol)
2234 {
2235 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2236 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2237 unsigned int val;
2238 unsigned int mask;
2239
2240 if (ucontrol->value.enumerated.item[0] > e->max - 1)
2241 return -EINVAL;
2242 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2243 mask = e->mask << e->shift_l;
2244 if (e->shift_l != e->shift_r) {
2245 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2246 return -EINVAL;
2247 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2248 mask |= e->mask << e->shift_r;
2249 }
2250
2251 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2252 }
2253 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2254
2255 /**
2256 * snd_soc_info_enum_ext - external enumerated single mixer info callback
2257 * @kcontrol: mixer control
2258 * @uinfo: control element information
2259 *
2260 * Callback to provide information about an external enumerated
2261 * single mixer.
2262 *
2263 * Returns 0 for success.
2264 */
2265 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2266 struct snd_ctl_elem_info *uinfo)
2267 {
2268 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2269
2270 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2271 uinfo->count = 1;
2272 uinfo->value.enumerated.items = e->max;
2273
2274 if (uinfo->value.enumerated.item > e->max - 1)
2275 uinfo->value.enumerated.item = e->max - 1;
2276 strcpy(uinfo->value.enumerated.name,
2277 e->texts[uinfo->value.enumerated.item]);
2278 return 0;
2279 }
2280 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2281
2282 /**
2283 * snd_soc_info_volsw_ext - external single mixer info callback
2284 * @kcontrol: mixer control
2285 * @uinfo: control element information
2286 *
2287 * Callback to provide information about a single external mixer control.
2288 *
2289 * Returns 0 for success.
2290 */
2291 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2292 struct snd_ctl_elem_info *uinfo)
2293 {
2294 int max = kcontrol->private_value;
2295
2296 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2297 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2298 else
2299 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2300
2301 uinfo->count = 1;
2302 uinfo->value.integer.min = 0;
2303 uinfo->value.integer.max = max;
2304 return 0;
2305 }
2306 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2307
2308 /**
2309 * snd_soc_info_volsw - single mixer info callback
2310 * @kcontrol: mixer control
2311 * @uinfo: control element information
2312 *
2313 * Callback to provide information about a single mixer control.
2314 *
2315 * Returns 0 for success.
2316 */
2317 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2318 struct snd_ctl_elem_info *uinfo)
2319 {
2320 struct soc_mixer_control *mc =
2321 (struct soc_mixer_control *)kcontrol->private_value;
2322 int platform_max;
2323 unsigned int shift = mc->shift;
2324 unsigned int rshift = mc->rshift;
2325
2326 if (!mc->platform_max)
2327 mc->platform_max = mc->max;
2328 platform_max = mc->platform_max;
2329
2330 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2331 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2332 else
2333 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2334
2335 uinfo->count = shift == rshift ? 1 : 2;
2336 uinfo->value.integer.min = 0;
2337 uinfo->value.integer.max = platform_max;
2338 return 0;
2339 }
2340 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2341
2342 /**
2343 * snd_soc_get_volsw - single mixer get callback
2344 * @kcontrol: mixer control
2345 * @ucontrol: control element information
2346 *
2347 * Callback to get the value of a single mixer control.
2348 *
2349 * Returns 0 for success.
2350 */
2351 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2352 struct snd_ctl_elem_value *ucontrol)
2353 {
2354 struct soc_mixer_control *mc =
2355 (struct soc_mixer_control *)kcontrol->private_value;
2356 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2357 unsigned int reg = mc->reg;
2358 unsigned int shift = mc->shift;
2359 unsigned int rshift = mc->rshift;
2360 int max = mc->max;
2361 unsigned int mask = (1 << fls(max)) - 1;
2362 unsigned int invert = mc->invert;
2363
2364 ucontrol->value.integer.value[0] =
2365 (snd_soc_read(codec, reg) >> shift) & mask;
2366 if (shift != rshift)
2367 ucontrol->value.integer.value[1] =
2368 (snd_soc_read(codec, reg) >> rshift) & mask;
2369 if (invert) {
2370 ucontrol->value.integer.value[0] =
2371 max - ucontrol->value.integer.value[0];
2372 if (shift != rshift)
2373 ucontrol->value.integer.value[1] =
2374 max - ucontrol->value.integer.value[1];
2375 }
2376
2377 return 0;
2378 }
2379 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2380
2381 /**
2382 * snd_soc_put_volsw - single mixer put callback
2383 * @kcontrol: mixer control
2384 * @ucontrol: control element information
2385 *
2386 * Callback to set the value of a single mixer control.
2387 *
2388 * Returns 0 for success.
2389 */
2390 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2391 struct snd_ctl_elem_value *ucontrol)
2392 {
2393 struct soc_mixer_control *mc =
2394 (struct soc_mixer_control *)kcontrol->private_value;
2395 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2396 unsigned int reg = mc->reg;
2397 unsigned int shift = mc->shift;
2398 unsigned int rshift = mc->rshift;
2399 int max = mc->max;
2400 unsigned int mask = (1 << fls(max)) - 1;
2401 unsigned int invert = mc->invert;
2402 unsigned int val, val2, val_mask;
2403
2404 val = (ucontrol->value.integer.value[0] & mask);
2405 if (invert)
2406 val = max - val;
2407 val_mask = mask << shift;
2408 val = val << shift;
2409 if (shift != rshift) {
2410 val2 = (ucontrol->value.integer.value[1] & mask);
2411 if (invert)
2412 val2 = max - val2;
2413 val_mask |= mask << rshift;
2414 val |= val2 << rshift;
2415 }
2416 return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2417 }
2418 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2419
2420 /**
2421 * snd_soc_info_volsw_2r - double mixer info callback
2422 * @kcontrol: mixer control
2423 * @uinfo: control element information
2424 *
2425 * Callback to provide information about a double mixer control that
2426 * spans 2 codec registers.
2427 *
2428 * Returns 0 for success.
2429 */
2430 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2431 struct snd_ctl_elem_info *uinfo)
2432 {
2433 struct soc_mixer_control *mc =
2434 (struct soc_mixer_control *)kcontrol->private_value;
2435 int platform_max;
2436
2437 if (!mc->platform_max)
2438 mc->platform_max = mc->max;
2439 platform_max = mc->platform_max;
2440
2441 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2442 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2443 else
2444 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2445
2446 uinfo->count = 2;
2447 uinfo->value.integer.min = 0;
2448 uinfo->value.integer.max = platform_max;
2449 return 0;
2450 }
2451 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2452
2453 /**
2454 * snd_soc_get_volsw_2r - double mixer get callback
2455 * @kcontrol: mixer control
2456 * @ucontrol: control element information
2457 *
2458 * Callback to get the value of a double mixer control that spans 2 registers.
2459 *
2460 * Returns 0 for success.
2461 */
2462 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2463 struct snd_ctl_elem_value *ucontrol)
2464 {
2465 struct soc_mixer_control *mc =
2466 (struct soc_mixer_control *)kcontrol->private_value;
2467 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2468 unsigned int reg = mc->reg;
2469 unsigned int reg2 = mc->rreg;
2470 unsigned int shift = mc->shift;
2471 int max = mc->max;
2472 unsigned int mask = (1 << fls(max)) - 1;
2473 unsigned int invert = mc->invert;
2474
2475 ucontrol->value.integer.value[0] =
2476 (snd_soc_read(codec, reg) >> shift) & mask;
2477 ucontrol->value.integer.value[1] =
2478 (snd_soc_read(codec, reg2) >> shift) & mask;
2479 if (invert) {
2480 ucontrol->value.integer.value[0] =
2481 max - ucontrol->value.integer.value[0];
2482 ucontrol->value.integer.value[1] =
2483 max - ucontrol->value.integer.value[1];
2484 }
2485
2486 return 0;
2487 }
2488 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2489
2490 /**
2491 * snd_soc_put_volsw_2r - double mixer set callback
2492 * @kcontrol: mixer control
2493 * @ucontrol: control element information
2494 *
2495 * Callback to set the value of a double mixer control that spans 2 registers.
2496 *
2497 * Returns 0 for success.
2498 */
2499 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2500 struct snd_ctl_elem_value *ucontrol)
2501 {
2502 struct soc_mixer_control *mc =
2503 (struct soc_mixer_control *)kcontrol->private_value;
2504 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2505 unsigned int reg = mc->reg;
2506 unsigned int reg2 = mc->rreg;
2507 unsigned int shift = mc->shift;
2508 int max = mc->max;
2509 unsigned int mask = (1 << fls(max)) - 1;
2510 unsigned int invert = mc->invert;
2511 int err;
2512 unsigned int val, val2, val_mask;
2513
2514 val_mask = mask << shift;
2515 val = (ucontrol->value.integer.value[0] & mask);
2516 val2 = (ucontrol->value.integer.value[1] & mask);
2517
2518 if (invert) {
2519 val = max - val;
2520 val2 = max - val2;
2521 }
2522
2523 val = val << shift;
2524 val2 = val2 << shift;
2525
2526 err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2527 if (err < 0)
2528 return err;
2529
2530 err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2531 return err;
2532 }
2533 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2534
2535 /**
2536 * snd_soc_info_volsw_s8 - signed mixer info callback
2537 * @kcontrol: mixer control
2538 * @uinfo: control element information
2539 *
2540 * Callback to provide information about a signed mixer control.
2541 *
2542 * Returns 0 for success.
2543 */
2544 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2545 struct snd_ctl_elem_info *uinfo)
2546 {
2547 struct soc_mixer_control *mc =
2548 (struct soc_mixer_control *)kcontrol->private_value;
2549 int platform_max;
2550 int min = mc->min;
2551
2552 if (!mc->platform_max)
2553 mc->platform_max = mc->max;
2554 platform_max = mc->platform_max;
2555
2556 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2557 uinfo->count = 2;
2558 uinfo->value.integer.min = 0;
2559 uinfo->value.integer.max = platform_max - min;
2560 return 0;
2561 }
2562 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2563
2564 /**
2565 * snd_soc_get_volsw_s8 - signed mixer get callback
2566 * @kcontrol: mixer control
2567 * @ucontrol: control element information
2568 *
2569 * Callback to get the value of a signed mixer control.
2570 *
2571 * Returns 0 for success.
2572 */
2573 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2574 struct snd_ctl_elem_value *ucontrol)
2575 {
2576 struct soc_mixer_control *mc =
2577 (struct soc_mixer_control *)kcontrol->private_value;
2578 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2579 unsigned int reg = mc->reg;
2580 int min = mc->min;
2581 int val = snd_soc_read(codec, reg);
2582
2583 ucontrol->value.integer.value[0] =
2584 ((signed char)(val & 0xff))-min;
2585 ucontrol->value.integer.value[1] =
2586 ((signed char)((val >> 8) & 0xff))-min;
2587 return 0;
2588 }
2589 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2590
2591 /**
2592 * snd_soc_put_volsw_sgn - signed mixer put callback
2593 * @kcontrol: mixer control
2594 * @ucontrol: control element information
2595 *
2596 * Callback to set the value of a signed mixer control.
2597 *
2598 * Returns 0 for success.
2599 */
2600 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2601 struct snd_ctl_elem_value *ucontrol)
2602 {
2603 struct soc_mixer_control *mc =
2604 (struct soc_mixer_control *)kcontrol->private_value;
2605 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2606 unsigned int reg = mc->reg;
2607 int min = mc->min;
2608 unsigned int val;
2609
2610 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2611 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2612
2613 return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2614 }
2615 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2616
2617 /**
2618 * snd_soc_limit_volume - Set new limit to an existing volume control.
2619 *
2620 * @codec: where to look for the control
2621 * @name: Name of the control
2622 * @max: new maximum limit
2623 *
2624 * Return 0 for success, else error.
2625 */
2626 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2627 const char *name, int max)
2628 {
2629 struct snd_card *card = codec->card->snd_card;
2630 struct snd_kcontrol *kctl;
2631 struct soc_mixer_control *mc;
2632 int found = 0;
2633 int ret = -EINVAL;
2634
2635 /* Sanity check for name and max */
2636 if (unlikely(!name || max <= 0))
2637 return -EINVAL;
2638
2639 list_for_each_entry(kctl, &card->controls, list) {
2640 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2641 found = 1;
2642 break;
2643 }
2644 }
2645 if (found) {
2646 mc = (struct soc_mixer_control *)kctl->private_value;
2647 if (max <= mc->max) {
2648 mc->platform_max = max;
2649 ret = 0;
2650 }
2651 }
2652 return ret;
2653 }
2654 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2655
2656 /**
2657 * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
2658 * mixer info callback
2659 * @kcontrol: mixer control
2660 * @uinfo: control element information
2661 *
2662 * Returns 0 for success.
2663 */
2664 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2665 struct snd_ctl_elem_info *uinfo)
2666 {
2667 struct soc_mixer_control *mc =
2668 (struct soc_mixer_control *)kcontrol->private_value;
2669 int max = mc->max;
2670 int min = mc->min;
2671
2672 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2673 uinfo->count = 2;
2674 uinfo->value.integer.min = 0;
2675 uinfo->value.integer.max = max-min;
2676
2677 return 0;
2678 }
2679 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
2680
2681 /**
2682 * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
2683 * mixer get callback
2684 * @kcontrol: mixer control
2685 * @uinfo: control element information
2686 *
2687 * Returns 0 for success.
2688 */
2689 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2690 struct snd_ctl_elem_value *ucontrol)
2691 {
2692 struct soc_mixer_control *mc =
2693 (struct soc_mixer_control *)kcontrol->private_value;
2694 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2695 unsigned int mask = (1<<mc->shift)-1;
2696 int min = mc->min;
2697 int val = snd_soc_read(codec, mc->reg) & mask;
2698 int valr = snd_soc_read(codec, mc->rreg) & mask;
2699
2700 ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
2701 ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
2702 return 0;
2703 }
2704 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
2705
2706 /**
2707 * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
2708 * mixer put callback
2709 * @kcontrol: mixer control
2710 * @uinfo: control element information
2711 *
2712 * Returns 0 for success.
2713 */
2714 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2715 struct snd_ctl_elem_value *ucontrol)
2716 {
2717 struct soc_mixer_control *mc =
2718 (struct soc_mixer_control *)kcontrol->private_value;
2719 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2720 unsigned int mask = (1<<mc->shift)-1;
2721 int min = mc->min;
2722 int ret;
2723 unsigned int val, valr, oval, ovalr;
2724
2725 val = ((ucontrol->value.integer.value[0]+min) & 0xff);
2726 val &= mask;
2727 valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
2728 valr &= mask;
2729
2730 oval = snd_soc_read(codec, mc->reg) & mask;
2731 ovalr = snd_soc_read(codec, mc->rreg) & mask;
2732
2733 ret = 0;
2734 if (oval != val) {
2735 ret = snd_soc_write(codec, mc->reg, val);
2736 if (ret < 0)
2737 return ret;
2738 }
2739 if (ovalr != valr) {
2740 ret = snd_soc_write(codec, mc->rreg, valr);
2741 if (ret < 0)
2742 return ret;
2743 }
2744
2745 return 0;
2746 }
2747 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
2748
2749 /**
2750 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2751 * @dai: DAI
2752 * @clk_id: DAI specific clock ID
2753 * @freq: new clock frequency in Hz
2754 * @dir: new clock direction - input/output.
2755 *
2756 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2757 */
2758 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2759 unsigned int freq, int dir)
2760 {
2761 if (dai->driver && dai->driver->ops->set_sysclk)
2762 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
2763 else
2764 return -EINVAL;
2765 }
2766 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2767
2768 /**
2769 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2770 * @dai: DAI
2771 * @div_id: DAI specific clock divider ID
2772 * @div: new clock divisor.
2773 *
2774 * Configures the clock dividers. This is used to derive the best DAI bit and
2775 * frame clocks from the system or master clock. It's best to set the DAI bit
2776 * and frame clocks as low as possible to save system power.
2777 */
2778 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2779 int div_id, int div)
2780 {
2781 if (dai->driver && dai->driver->ops->set_clkdiv)
2782 return dai->driver->ops->set_clkdiv(dai, div_id, div);
2783 else
2784 return -EINVAL;
2785 }
2786 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2787
2788 /**
2789 * snd_soc_dai_set_pll - configure DAI PLL.
2790 * @dai: DAI
2791 * @pll_id: DAI specific PLL ID
2792 * @source: DAI specific source for the PLL
2793 * @freq_in: PLL input clock frequency in Hz
2794 * @freq_out: requested PLL output clock frequency in Hz
2795 *
2796 * Configures and enables PLL to generate output clock based on input clock.
2797 */
2798 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
2799 unsigned int freq_in, unsigned int freq_out)
2800 {
2801 if (dai->driver && dai->driver->ops->set_pll)
2802 return dai->driver->ops->set_pll(dai, pll_id, source,
2803 freq_in, freq_out);
2804 else
2805 return -EINVAL;
2806 }
2807 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2808
2809 /**
2810 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2811 * @dai: DAI
2812 * @fmt: SND_SOC_DAIFMT_ format value.
2813 *
2814 * Configures the DAI hardware format and clocking.
2815 */
2816 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2817 {
2818 if (dai->driver && dai->driver->ops->set_fmt)
2819 return dai->driver->ops->set_fmt(dai, fmt);
2820 else
2821 return -EINVAL;
2822 }
2823 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2824
2825 /**
2826 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2827 * @dai: DAI
2828 * @tx_mask: bitmask representing active TX slots.
2829 * @rx_mask: bitmask representing active RX slots.
2830 * @slots: Number of slots in use.
2831 * @slot_width: Width in bits for each slot.
2832 *
2833 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2834 * specific.
2835 */
2836 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2837 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
2838 {
2839 if (dai->driver && dai->driver->ops->set_tdm_slot)
2840 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
2841 slots, slot_width);
2842 else
2843 return -EINVAL;
2844 }
2845 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2846
2847 /**
2848 * snd_soc_dai_set_channel_map - configure DAI audio channel map
2849 * @dai: DAI
2850 * @tx_num: how many TX channels
2851 * @tx_slot: pointer to an array which imply the TX slot number channel
2852 * 0~num-1 uses
2853 * @rx_num: how many RX channels
2854 * @rx_slot: pointer to an array which imply the RX slot number channel
2855 * 0~num-1 uses
2856 *
2857 * configure the relationship between channel number and TDM slot number.
2858 */
2859 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
2860 unsigned int tx_num, unsigned int *tx_slot,
2861 unsigned int rx_num, unsigned int *rx_slot)
2862 {
2863 if (dai->driver && dai->driver->ops->set_channel_map)
2864 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
2865 rx_num, rx_slot);
2866 else
2867 return -EINVAL;
2868 }
2869 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
2870
2871 /**
2872 * snd_soc_dai_set_tristate - configure DAI system or master clock.
2873 * @dai: DAI
2874 * @tristate: tristate enable
2875 *
2876 * Tristates the DAI so that others can use it.
2877 */
2878 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2879 {
2880 if (dai->driver && dai->driver->ops->set_tristate)
2881 return dai->driver->ops->set_tristate(dai, tristate);
2882 else
2883 return -EINVAL;
2884 }
2885 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2886
2887 /**
2888 * snd_soc_dai_digital_mute - configure DAI system or master clock.
2889 * @dai: DAI
2890 * @mute: mute enable
2891 *
2892 * Mutes the DAI DAC.
2893 */
2894 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2895 {
2896 if (dai->driver && dai->driver->ops->digital_mute)
2897 return dai->driver->ops->digital_mute(dai, mute);
2898 else
2899 return -EINVAL;
2900 }
2901 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2902
2903 /**
2904 * snd_soc_register_card - Register a card with the ASoC core
2905 *
2906 * @card: Card to register
2907 *
2908 * Note that currently this is an internal only function: it will be
2909 * exposed to machine drivers after further backporting of ASoC v2
2910 * registration APIs.
2911 */
2912 static int snd_soc_register_card(struct snd_soc_card *card)
2913 {
2914 int i;
2915
2916 if (!card->name || !card->dev)
2917 return -EINVAL;
2918
2919 card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) * card->num_links,
2920 GFP_KERNEL);
2921 if (card->rtd == NULL)
2922 return -ENOMEM;
2923
2924 for (i = 0; i < card->num_links; i++)
2925 card->rtd[i].dai_link = &card->dai_link[i];
2926
2927 INIT_LIST_HEAD(&card->list);
2928 card->instantiated = 0;
2929 mutex_init(&card->mutex);
2930
2931 mutex_lock(&client_mutex);
2932 list_add(&card->list, &card_list);
2933 snd_soc_instantiate_cards();
2934 mutex_unlock(&client_mutex);
2935
2936 dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2937
2938 return 0;
2939 }
2940
2941 /**
2942 * snd_soc_unregister_card - Unregister a card with the ASoC core
2943 *
2944 * @card: Card to unregister
2945 *
2946 * Note that currently this is an internal only function: it will be
2947 * exposed to machine drivers after further backporting of ASoC v2
2948 * registration APIs.
2949 */
2950 static int snd_soc_unregister_card(struct snd_soc_card *card)
2951 {
2952 mutex_lock(&client_mutex);
2953 list_del(&card->list);
2954 mutex_unlock(&client_mutex);
2955 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2956
2957 return 0;
2958 }
2959
2960 /*
2961 * Simplify DAI link configuration by removing ".-1" from device names
2962 * and sanitizing names.
2963 */
2964 static inline char *fmt_single_name(struct device *dev, int *id)
2965 {
2966 char *found, name[NAME_SIZE];
2967 int id1, id2;
2968
2969 if (dev_name(dev) == NULL)
2970 return NULL;
2971
2972 strncpy(name, dev_name(dev), NAME_SIZE);
2973
2974 /* are we a "%s.%d" name (platform and SPI components) */
2975 found = strstr(name, dev->driver->name);
2976 if (found) {
2977 /* get ID */
2978 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
2979
2980 /* discard ID from name if ID == -1 */
2981 if (*id == -1)
2982 found[strlen(dev->driver->name)] = '\0';
2983 }
2984
2985 } else {
2986 /* I2C component devices are named "bus-addr" */
2987 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
2988 char tmp[NAME_SIZE];
2989
2990 /* create unique ID number from I2C addr and bus */
2991 *id = ((id1 & 0xffff) << 16) + id2;
2992
2993 /* sanitize component name for DAI link creation */
2994 snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
2995 strncpy(name, tmp, NAME_SIZE);
2996 } else
2997 *id = 0;
2998 }
2999
3000 return kstrdup(name, GFP_KERNEL);
3001 }
3002
3003 /*
3004 * Simplify DAI link naming for single devices with multiple DAIs by removing
3005 * any ".-1" and using the DAI name (instead of device name).
3006 */
3007 static inline char *fmt_multiple_name(struct device *dev,
3008 struct snd_soc_dai_driver *dai_drv)
3009 {
3010 if (dai_drv->name == NULL) {
3011 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
3012 dev_name(dev));
3013 return NULL;
3014 }
3015
3016 return kstrdup(dai_drv->name, GFP_KERNEL);
3017 }
3018
3019 /**
3020 * snd_soc_register_dai - Register a DAI with the ASoC core
3021 *
3022 * @dai: DAI to register
3023 */
3024 int snd_soc_register_dai(struct device *dev,
3025 struct snd_soc_dai_driver *dai_drv)
3026 {
3027 struct snd_soc_dai *dai;
3028
3029 dev_dbg(dev, "dai register %s\n", dev_name(dev));
3030
3031 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3032 if (dai == NULL)
3033 return -ENOMEM;
3034
3035 /* create DAI component name */
3036 dai->name = fmt_single_name(dev, &dai->id);
3037 if (dai->name == NULL) {
3038 kfree(dai);
3039 return -ENOMEM;
3040 }
3041
3042 dai->dev = dev;
3043 dai->driver = dai_drv;
3044 if (!dai->driver->ops)
3045 dai->driver->ops = &null_dai_ops;
3046
3047 mutex_lock(&client_mutex);
3048 list_add(&dai->list, &dai_list);
3049 snd_soc_instantiate_cards();
3050 mutex_unlock(&client_mutex);
3051
3052 pr_debug("Registered DAI '%s'\n", dai->name);
3053
3054 return 0;
3055 }
3056 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
3057
3058 /**
3059 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
3060 *
3061 * @dai: DAI to unregister
3062 */
3063 void snd_soc_unregister_dai(struct device *dev)
3064 {
3065 struct snd_soc_dai *dai;
3066
3067 list_for_each_entry(dai, &dai_list, list) {
3068 if (dev == dai->dev)
3069 goto found;
3070 }
3071 return;
3072
3073 found:
3074 mutex_lock(&client_mutex);
3075 list_del(&dai->list);
3076 mutex_unlock(&client_mutex);
3077
3078 pr_debug("Unregistered DAI '%s'\n", dai->name);
3079 kfree(dai->name);
3080 kfree(dai);
3081 }
3082 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
3083
3084 /**
3085 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
3086 *
3087 * @dai: Array of DAIs to register
3088 * @count: Number of DAIs
3089 */
3090 int snd_soc_register_dais(struct device *dev,
3091 struct snd_soc_dai_driver *dai_drv, size_t count)
3092 {
3093 struct snd_soc_dai *dai;
3094 int i, ret = 0;
3095
3096 dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count);
3097
3098 for (i = 0; i < count; i++) {
3099
3100 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3101 if (dai == NULL) {
3102 ret = -ENOMEM;
3103 goto err;
3104 }
3105
3106 /* create DAI component name */
3107 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3108 if (dai->name == NULL) {
3109 kfree(dai);
3110 ret = -EINVAL;
3111 goto err;
3112 }
3113
3114 dai->dev = dev;
3115 dai->driver = &dai_drv[i];
3116 if (dai->driver->id)
3117 dai->id = dai->driver->id;
3118 else
3119 dai->id = i;
3120 if (!dai->driver->ops)
3121 dai->driver->ops = &null_dai_ops;
3122
3123 mutex_lock(&client_mutex);
3124 list_add(&dai->list, &dai_list);
3125 mutex_unlock(&client_mutex);
3126
3127 pr_debug("Registered DAI '%s'\n", dai->name);
3128 }
3129
3130 snd_soc_instantiate_cards();
3131 return 0;
3132
3133 err:
3134 for (i--; i >= 0; i--)
3135 snd_soc_unregister_dai(dev);
3136
3137 return ret;
3138 }
3139 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
3140
3141 /**
3142 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
3143 *
3144 * @dai: Array of DAIs to unregister
3145 * @count: Number of DAIs
3146 */
3147 void snd_soc_unregister_dais(struct device *dev, size_t count)
3148 {
3149 int i;
3150
3151 for (i = 0; i < count; i++)
3152 snd_soc_unregister_dai(dev);
3153 }
3154 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
3155
3156 /**
3157 * snd_soc_register_platform - Register a platform with the ASoC core
3158 *
3159 * @platform: platform to register
3160 */
3161 int snd_soc_register_platform(struct device *dev,
3162 struct snd_soc_platform_driver *platform_drv)
3163 {
3164 struct snd_soc_platform *platform;
3165
3166 dev_dbg(dev, "platform register %s\n", dev_name(dev));
3167
3168 platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
3169 if (platform == NULL)
3170 return -ENOMEM;
3171
3172 /* create platform component name */
3173 platform->name = fmt_single_name(dev, &platform->id);
3174 if (platform->name == NULL) {
3175 kfree(platform);
3176 return -ENOMEM;
3177 }
3178
3179 platform->dev = dev;
3180 platform->driver = platform_drv;
3181
3182 mutex_lock(&client_mutex);
3183 list_add(&platform->list, &platform_list);
3184 snd_soc_instantiate_cards();
3185 mutex_unlock(&client_mutex);
3186
3187 pr_debug("Registered platform '%s'\n", platform->name);
3188
3189 return 0;
3190 }
3191 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
3192
3193 /**
3194 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
3195 *
3196 * @platform: platform to unregister
3197 */
3198 void snd_soc_unregister_platform(struct device *dev)
3199 {
3200 struct snd_soc_platform *platform;
3201
3202 list_for_each_entry(platform, &platform_list, list) {
3203 if (dev == platform->dev)
3204 goto found;
3205 }
3206 return;
3207
3208 found:
3209 mutex_lock(&client_mutex);
3210 list_del(&platform->list);
3211 mutex_unlock(&client_mutex);
3212
3213 pr_debug("Unregistered platform '%s'\n", platform->name);
3214 kfree(platform->name);
3215 kfree(platform);
3216 }
3217 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
3218
3219 static u64 codec_format_map[] = {
3220 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
3221 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
3222 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
3223 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
3224 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
3225 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
3226 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3227 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3228 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
3229 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
3230 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
3231 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
3232 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
3233 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
3234 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
3235 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
3236 };
3237
3238 /* Fix up the DAI formats for endianness: codecs don't actually see
3239 * the endianness of the data but we're using the CPU format
3240 * definitions which do need to include endianness so we ensure that
3241 * codec DAIs always have both big and little endian variants set.
3242 */
3243 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
3244 {
3245 int i;
3246
3247 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
3248 if (stream->formats & codec_format_map[i])
3249 stream->formats |= codec_format_map[i];
3250 }
3251
3252 /**
3253 * snd_soc_register_codec - Register a codec with the ASoC core
3254 *
3255 * @codec: codec to register
3256 */
3257 int snd_soc_register_codec(struct device *dev,
3258 struct snd_soc_codec_driver *codec_drv,
3259 struct snd_soc_dai_driver *dai_drv, int num_dai)
3260 {
3261 struct snd_soc_codec *codec;
3262 int ret, i;
3263
3264 dev_dbg(dev, "codec register %s\n", dev_name(dev));
3265
3266 codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
3267 if (codec == NULL)
3268 return -ENOMEM;
3269
3270 /* create CODEC component name */
3271 codec->name = fmt_single_name(dev, &codec->id);
3272 if (codec->name == NULL) {
3273 kfree(codec);
3274 return -ENOMEM;
3275 }
3276
3277 INIT_LIST_HEAD(&codec->dapm.widgets);
3278 INIT_LIST_HEAD(&codec->dapm.paths);
3279 codec->dapm.bias_level = SND_SOC_BIAS_OFF;
3280 codec->dapm.dev = dev;
3281 codec->dapm.codec = codec;
3282 codec->dev = dev;
3283 codec->driver = codec_drv;
3284 codec->num_dai = num_dai;
3285 mutex_init(&codec->mutex);
3286
3287 /* allocate CODEC register cache */
3288 if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
3289 ret = snd_soc_cache_init(codec);
3290 if (ret < 0) {
3291 dev_err(codec->dev, "Failed to set cache compression type: %d\n",
3292 ret);
3293 goto error_cache;
3294 }
3295 }
3296
3297 for (i = 0; i < num_dai; i++) {
3298 fixup_codec_formats(&dai_drv[i].playback);
3299 fixup_codec_formats(&dai_drv[i].capture);
3300 }
3301
3302 /* register any DAIs */
3303 if (num_dai) {
3304 ret = snd_soc_register_dais(dev, dai_drv, num_dai);
3305 if (ret < 0)
3306 goto error_dais;
3307 }
3308
3309 mutex_lock(&client_mutex);
3310 list_add(&codec->list, &codec_list);
3311 snd_soc_instantiate_cards();
3312 mutex_unlock(&client_mutex);
3313
3314 pr_debug("Registered codec '%s'\n", codec->name);
3315 return 0;
3316
3317 error_dais:
3318 snd_soc_cache_exit(codec);
3319 error_cache:
3320 kfree(codec->name);
3321 kfree(codec);
3322 return ret;
3323 }
3324 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
3325
3326 /**
3327 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
3328 *
3329 * @codec: codec to unregister
3330 */
3331 void snd_soc_unregister_codec(struct device *dev)
3332 {
3333 struct snd_soc_codec *codec;
3334 int i;
3335
3336 list_for_each_entry(codec, &codec_list, list) {
3337 if (dev == codec->dev)
3338 goto found;
3339 }
3340 return;
3341
3342 found:
3343 if (codec->num_dai)
3344 for (i = 0; i < codec->num_dai; i++)
3345 snd_soc_unregister_dai(dev);
3346
3347 mutex_lock(&client_mutex);
3348 list_del(&codec->list);
3349 mutex_unlock(&client_mutex);
3350
3351 pr_debug("Unregistered codec '%s'\n", codec->name);
3352
3353 snd_soc_cache_exit(codec);
3354 kfree(codec->name);
3355 kfree(codec);
3356 }
3357 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
3358
3359 static int __init snd_soc_init(void)
3360 {
3361 #ifdef CONFIG_DEBUG_FS
3362 debugfs_root = debugfs_create_dir("asoc", NULL);
3363 if (IS_ERR(debugfs_root) || !debugfs_root) {
3364 printk(KERN_WARNING
3365 "ASoC: Failed to create debugfs directory\n");
3366 debugfs_root = NULL;
3367 }
3368
3369 if (!debugfs_create_file("codecs", 0444, debugfs_root, NULL,
3370 &codec_list_fops))
3371 pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
3372
3373 if (!debugfs_create_file("dais", 0444, debugfs_root, NULL,
3374 &dai_list_fops))
3375 pr_warn("ASoC: Failed to create DAI list debugfs file\n");
3376
3377 if (!debugfs_create_file("platforms", 0444, debugfs_root, NULL,
3378 &platform_list_fops))
3379 pr_warn("ASoC: Failed to create platform list debugfs file\n");
3380 #endif
3381
3382 return platform_driver_register(&soc_driver);
3383 }
3384 module_init(snd_soc_init);
3385
3386 static void __exit snd_soc_exit(void)
3387 {
3388 #ifdef CONFIG_DEBUG_FS
3389 debugfs_remove_recursive(debugfs_root);
3390 #endif
3391 platform_driver_unregister(&soc_driver);
3392 }
3393 module_exit(snd_soc_exit);
3394
3395 /* Module information */
3396 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
3397 MODULE_DESCRIPTION("ALSA SoC Core");
3398 MODULE_LICENSE("GPL");
3399 MODULE_ALIAS("platform:soc-audio");
This page took 0.236636 seconds and 6 git commands to generate.