Merge branch 'for-2.6.32' into for-2.6.33
[deliverable/linux.git] / sound / soc / soc-core.c
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 * with code, comments and ideas from :-
9 * Richard Purdie <richard@openedhand.com>
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * TODO:
17 * o Add hw rules to enforce rates, etc.
18 * o More testing with other codecs/machines.
19 * o Add more codecs and platforms to ensure good API coverage.
20 * o Support TDM on PCM and I2S
21 */
22
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/pm.h>
28 #include <linux/bitops.h>
29 #include <linux/debugfs.h>
30 #include <linux/platform_device.h>
31 #include <sound/ac97_codec.h>
32 #include <sound/core.h>
33 #include <sound/pcm.h>
34 #include <sound/pcm_params.h>
35 #include <sound/soc.h>
36 #include <sound/soc-dapm.h>
37 #include <sound/initval.h>
38
39 static DEFINE_MUTEX(pcm_mutex);
40 static DEFINE_MUTEX(io_mutex);
41 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
42
43 #ifdef CONFIG_DEBUG_FS
44 static struct dentry *debugfs_root;
45 #endif
46
47 static DEFINE_MUTEX(client_mutex);
48 static LIST_HEAD(card_list);
49 static LIST_HEAD(dai_list);
50 static LIST_HEAD(platform_list);
51 static LIST_HEAD(codec_list);
52
53 static int snd_soc_register_card(struct snd_soc_card *card);
54 static int snd_soc_unregister_card(struct snd_soc_card *card);
55
56 /*
57 * This is a timeout to do a DAPM powerdown after a stream is closed().
58 * It can be used to eliminate pops between different playback streams, e.g.
59 * between two audio tracks.
60 */
61 static int pmdown_time = 5000;
62 module_param(pmdown_time, int, 0);
63 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
64
65 /*
66 * This function forces any delayed work to be queued and run.
67 */
68 static int run_delayed_work(struct delayed_work *dwork)
69 {
70 int ret;
71
72 /* cancel any work waiting to be queued. */
73 ret = cancel_delayed_work(dwork);
74
75 /* if there was any work waiting then we run it now and
76 * wait for it's completion */
77 if (ret) {
78 schedule_delayed_work(dwork, 0);
79 flush_scheduled_work();
80 }
81 return ret;
82 }
83
84 #ifdef CONFIG_SND_SOC_AC97_BUS
85 /* unregister ac97 codec */
86 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
87 {
88 if (codec->ac97->dev.bus)
89 device_unregister(&codec->ac97->dev);
90 return 0;
91 }
92
93 /* stop no dev release warning */
94 static void soc_ac97_device_release(struct device *dev){}
95
96 /* register ac97 codec to bus */
97 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
98 {
99 int err;
100
101 codec->ac97->dev.bus = &ac97_bus_type;
102 codec->ac97->dev.parent = codec->card->dev;
103 codec->ac97->dev.release = soc_ac97_device_release;
104
105 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
106 codec->card->number, 0, codec->name);
107 err = device_register(&codec->ac97->dev);
108 if (err < 0) {
109 snd_printk(KERN_ERR "Can't register ac97 bus\n");
110 codec->ac97->dev.bus = NULL;
111 return err;
112 }
113 return 0;
114 }
115 #endif
116
117 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
118 {
119 struct snd_soc_pcm_runtime *rtd = substream->private_data;
120 struct snd_soc_device *socdev = rtd->socdev;
121 struct snd_soc_card *card = socdev->card;
122 struct snd_soc_dai_link *machine = rtd->dai;
123 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
124 struct snd_soc_dai *codec_dai = machine->codec_dai;
125 int ret;
126
127 if (codec_dai->symmetric_rates || cpu_dai->symmetric_rates ||
128 machine->symmetric_rates) {
129 dev_dbg(card->dev, "Symmetry forces %dHz rate\n",
130 machine->rate);
131
132 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
133 SNDRV_PCM_HW_PARAM_RATE,
134 machine->rate,
135 machine->rate);
136 if (ret < 0) {
137 dev_err(card->dev,
138 "Unable to apply rate symmetry constraint: %d\n", ret);
139 return ret;
140 }
141 }
142
143 return 0;
144 }
145
146 /*
147 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
148 * then initialized and any private data can be allocated. This also calls
149 * startup for the cpu DAI, platform, machine and codec DAI.
150 */
151 static int soc_pcm_open(struct snd_pcm_substream *substream)
152 {
153 struct snd_soc_pcm_runtime *rtd = substream->private_data;
154 struct snd_soc_device *socdev = rtd->socdev;
155 struct snd_soc_card *card = socdev->card;
156 struct snd_pcm_runtime *runtime = substream->runtime;
157 struct snd_soc_dai_link *machine = rtd->dai;
158 struct snd_soc_platform *platform = card->platform;
159 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
160 struct snd_soc_dai *codec_dai = machine->codec_dai;
161 int ret = 0;
162
163 mutex_lock(&pcm_mutex);
164
165 /* startup the audio subsystem */
166 if (cpu_dai->ops->startup) {
167 ret = cpu_dai->ops->startup(substream, cpu_dai);
168 if (ret < 0) {
169 printk(KERN_ERR "asoc: can't open interface %s\n",
170 cpu_dai->name);
171 goto out;
172 }
173 }
174
175 if (platform->pcm_ops->open) {
176 ret = platform->pcm_ops->open(substream);
177 if (ret < 0) {
178 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
179 goto platform_err;
180 }
181 }
182
183 if (codec_dai->ops->startup) {
184 ret = codec_dai->ops->startup(substream, codec_dai);
185 if (ret < 0) {
186 printk(KERN_ERR "asoc: can't open codec %s\n",
187 codec_dai->name);
188 goto codec_dai_err;
189 }
190 }
191
192 if (machine->ops && machine->ops->startup) {
193 ret = machine->ops->startup(substream);
194 if (ret < 0) {
195 printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
196 goto machine_err;
197 }
198 }
199
200 /* Check that the codec and cpu DAI's are compatible */
201 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
202 runtime->hw.rate_min =
203 max(codec_dai->playback.rate_min,
204 cpu_dai->playback.rate_min);
205 runtime->hw.rate_max =
206 min(codec_dai->playback.rate_max,
207 cpu_dai->playback.rate_max);
208 runtime->hw.channels_min =
209 max(codec_dai->playback.channels_min,
210 cpu_dai->playback.channels_min);
211 runtime->hw.channels_max =
212 min(codec_dai->playback.channels_max,
213 cpu_dai->playback.channels_max);
214 runtime->hw.formats =
215 codec_dai->playback.formats & cpu_dai->playback.formats;
216 runtime->hw.rates =
217 codec_dai->playback.rates & cpu_dai->playback.rates;
218 } else {
219 runtime->hw.rate_min =
220 max(codec_dai->capture.rate_min,
221 cpu_dai->capture.rate_min);
222 runtime->hw.rate_max =
223 min(codec_dai->capture.rate_max,
224 cpu_dai->capture.rate_max);
225 runtime->hw.channels_min =
226 max(codec_dai->capture.channels_min,
227 cpu_dai->capture.channels_min);
228 runtime->hw.channels_max =
229 min(codec_dai->capture.channels_max,
230 cpu_dai->capture.channels_max);
231 runtime->hw.formats =
232 codec_dai->capture.formats & cpu_dai->capture.formats;
233 runtime->hw.rates =
234 codec_dai->capture.rates & cpu_dai->capture.rates;
235 }
236
237 snd_pcm_limit_hw_rates(runtime);
238 if (!runtime->hw.rates) {
239 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
240 codec_dai->name, cpu_dai->name);
241 goto machine_err;
242 }
243 if (!runtime->hw.formats) {
244 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
245 codec_dai->name, cpu_dai->name);
246 goto machine_err;
247 }
248 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
249 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
250 codec_dai->name, cpu_dai->name);
251 goto machine_err;
252 }
253
254 /* Symmetry only applies if we've already got an active stream. */
255 if (cpu_dai->active || codec_dai->active) {
256 ret = soc_pcm_apply_symmetry(substream);
257 if (ret != 0)
258 goto machine_err;
259 }
260
261 pr_debug("asoc: %s <-> %s info:\n", codec_dai->name, cpu_dai->name);
262 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
263 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
264 runtime->hw.channels_max);
265 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
266 runtime->hw.rate_max);
267
268 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
269 cpu_dai->playback.active = codec_dai->playback.active = 1;
270 else
271 cpu_dai->capture.active = codec_dai->capture.active = 1;
272 cpu_dai->active = codec_dai->active = 1;
273 cpu_dai->runtime = runtime;
274 card->codec->active++;
275 mutex_unlock(&pcm_mutex);
276 return 0;
277
278 machine_err:
279 if (machine->ops && machine->ops->shutdown)
280 machine->ops->shutdown(substream);
281
282 codec_dai_err:
283 if (platform->pcm_ops->close)
284 platform->pcm_ops->close(substream);
285
286 platform_err:
287 if (cpu_dai->ops->shutdown)
288 cpu_dai->ops->shutdown(substream, cpu_dai);
289 out:
290 mutex_unlock(&pcm_mutex);
291 return ret;
292 }
293
294 /*
295 * Power down the audio subsystem pmdown_time msecs after close is called.
296 * This is to ensure there are no pops or clicks in between any music tracks
297 * due to DAPM power cycling.
298 */
299 static void close_delayed_work(struct work_struct *work)
300 {
301 struct snd_soc_card *card = container_of(work, struct snd_soc_card,
302 delayed_work.work);
303 struct snd_soc_codec *codec = card->codec;
304 struct snd_soc_dai *codec_dai;
305 int i;
306
307 mutex_lock(&pcm_mutex);
308 for (i = 0; i < codec->num_dai; i++) {
309 codec_dai = &codec->dai[i];
310
311 pr_debug("pop wq checking: %s status: %s waiting: %s\n",
312 codec_dai->playback.stream_name,
313 codec_dai->playback.active ? "active" : "inactive",
314 codec_dai->pop_wait ? "yes" : "no");
315
316 /* are we waiting on this codec DAI stream */
317 if (codec_dai->pop_wait == 1) {
318 codec_dai->pop_wait = 0;
319 snd_soc_dapm_stream_event(codec,
320 codec_dai->playback.stream_name,
321 SND_SOC_DAPM_STREAM_STOP);
322 }
323 }
324 mutex_unlock(&pcm_mutex);
325 }
326
327 /*
328 * Called by ALSA when a PCM substream is closed. Private data can be
329 * freed here. The cpu DAI, codec DAI, machine and platform are also
330 * shutdown.
331 */
332 static int soc_codec_close(struct snd_pcm_substream *substream)
333 {
334 struct snd_soc_pcm_runtime *rtd = substream->private_data;
335 struct snd_soc_device *socdev = rtd->socdev;
336 struct snd_soc_card *card = socdev->card;
337 struct snd_soc_dai_link *machine = rtd->dai;
338 struct snd_soc_platform *platform = card->platform;
339 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
340 struct snd_soc_dai *codec_dai = machine->codec_dai;
341 struct snd_soc_codec *codec = card->codec;
342
343 mutex_lock(&pcm_mutex);
344
345 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
346 cpu_dai->playback.active = codec_dai->playback.active = 0;
347 else
348 cpu_dai->capture.active = codec_dai->capture.active = 0;
349
350 if (codec_dai->playback.active == 0 &&
351 codec_dai->capture.active == 0) {
352 cpu_dai->active = codec_dai->active = 0;
353 }
354 codec->active--;
355
356 /* Muting the DAC suppresses artifacts caused during digital
357 * shutdown, for example from stopping clocks.
358 */
359 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
360 snd_soc_dai_digital_mute(codec_dai, 1);
361
362 if (cpu_dai->ops->shutdown)
363 cpu_dai->ops->shutdown(substream, cpu_dai);
364
365 if (codec_dai->ops->shutdown)
366 codec_dai->ops->shutdown(substream, codec_dai);
367
368 if (machine->ops && machine->ops->shutdown)
369 machine->ops->shutdown(substream);
370
371 if (platform->pcm_ops->close)
372 platform->pcm_ops->close(substream);
373 cpu_dai->runtime = NULL;
374
375 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
376 /* start delayed pop wq here for playback streams */
377 codec_dai->pop_wait = 1;
378 schedule_delayed_work(&card->delayed_work,
379 msecs_to_jiffies(pmdown_time));
380 } else {
381 /* capture streams can be powered down now */
382 snd_soc_dapm_stream_event(codec,
383 codec_dai->capture.stream_name,
384 SND_SOC_DAPM_STREAM_STOP);
385 }
386
387 mutex_unlock(&pcm_mutex);
388 return 0;
389 }
390
391 /*
392 * Called by ALSA when the PCM substream is prepared, can set format, sample
393 * rate, etc. This function is non atomic and can be called multiple times,
394 * it can refer to the runtime info.
395 */
396 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
397 {
398 struct snd_soc_pcm_runtime *rtd = substream->private_data;
399 struct snd_soc_device *socdev = rtd->socdev;
400 struct snd_soc_card *card = socdev->card;
401 struct snd_soc_dai_link *machine = rtd->dai;
402 struct snd_soc_platform *platform = card->platform;
403 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
404 struct snd_soc_dai *codec_dai = machine->codec_dai;
405 struct snd_soc_codec *codec = card->codec;
406 int ret = 0;
407
408 mutex_lock(&pcm_mutex);
409
410 if (machine->ops && machine->ops->prepare) {
411 ret = machine->ops->prepare(substream);
412 if (ret < 0) {
413 printk(KERN_ERR "asoc: machine prepare error\n");
414 goto out;
415 }
416 }
417
418 if (platform->pcm_ops->prepare) {
419 ret = platform->pcm_ops->prepare(substream);
420 if (ret < 0) {
421 printk(KERN_ERR "asoc: platform prepare error\n");
422 goto out;
423 }
424 }
425
426 if (codec_dai->ops->prepare) {
427 ret = codec_dai->ops->prepare(substream, codec_dai);
428 if (ret < 0) {
429 printk(KERN_ERR "asoc: codec DAI prepare error\n");
430 goto out;
431 }
432 }
433
434 if (cpu_dai->ops->prepare) {
435 ret = cpu_dai->ops->prepare(substream, cpu_dai);
436 if (ret < 0) {
437 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
438 goto out;
439 }
440 }
441
442 /* cancel any delayed stream shutdown that is pending */
443 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
444 codec_dai->pop_wait) {
445 codec_dai->pop_wait = 0;
446 cancel_delayed_work(&card->delayed_work);
447 }
448
449 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
450 snd_soc_dapm_stream_event(codec,
451 codec_dai->playback.stream_name,
452 SND_SOC_DAPM_STREAM_START);
453 else
454 snd_soc_dapm_stream_event(codec,
455 codec_dai->capture.stream_name,
456 SND_SOC_DAPM_STREAM_START);
457
458 snd_soc_dai_digital_mute(codec_dai, 0);
459
460 out:
461 mutex_unlock(&pcm_mutex);
462 return ret;
463 }
464
465 /*
466 * Called by ALSA when the hardware params are set by application. This
467 * function can also be called multiple times and can allocate buffers
468 * (using snd_pcm_lib_* ). It's non-atomic.
469 */
470 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
471 struct snd_pcm_hw_params *params)
472 {
473 struct snd_soc_pcm_runtime *rtd = substream->private_data;
474 struct snd_soc_device *socdev = rtd->socdev;
475 struct snd_soc_dai_link *machine = rtd->dai;
476 struct snd_soc_card *card = socdev->card;
477 struct snd_soc_platform *platform = card->platform;
478 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
479 struct snd_soc_dai *codec_dai = machine->codec_dai;
480 int ret = 0;
481
482 mutex_lock(&pcm_mutex);
483
484 if (machine->ops && machine->ops->hw_params) {
485 ret = machine->ops->hw_params(substream, params);
486 if (ret < 0) {
487 printk(KERN_ERR "asoc: machine hw_params failed\n");
488 goto out;
489 }
490 }
491
492 if (codec_dai->ops->hw_params) {
493 ret = codec_dai->ops->hw_params(substream, params, codec_dai);
494 if (ret < 0) {
495 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
496 codec_dai->name);
497 goto codec_err;
498 }
499 }
500
501 if (cpu_dai->ops->hw_params) {
502 ret = cpu_dai->ops->hw_params(substream, params, cpu_dai);
503 if (ret < 0) {
504 printk(KERN_ERR "asoc: interface %s hw params failed\n",
505 cpu_dai->name);
506 goto interface_err;
507 }
508 }
509
510 if (platform->pcm_ops->hw_params) {
511 ret = platform->pcm_ops->hw_params(substream, params);
512 if (ret < 0) {
513 printk(KERN_ERR "asoc: platform %s hw params failed\n",
514 platform->name);
515 goto platform_err;
516 }
517 }
518
519 machine->rate = params_rate(params);
520
521 out:
522 mutex_unlock(&pcm_mutex);
523 return ret;
524
525 platform_err:
526 if (cpu_dai->ops->hw_free)
527 cpu_dai->ops->hw_free(substream, cpu_dai);
528
529 interface_err:
530 if (codec_dai->ops->hw_free)
531 codec_dai->ops->hw_free(substream, codec_dai);
532
533 codec_err:
534 if (machine->ops && machine->ops->hw_free)
535 machine->ops->hw_free(substream);
536
537 mutex_unlock(&pcm_mutex);
538 return ret;
539 }
540
541 /*
542 * Free's resources allocated by hw_params, can be called multiple times
543 */
544 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
545 {
546 struct snd_soc_pcm_runtime *rtd = substream->private_data;
547 struct snd_soc_device *socdev = rtd->socdev;
548 struct snd_soc_dai_link *machine = rtd->dai;
549 struct snd_soc_card *card = socdev->card;
550 struct snd_soc_platform *platform = card->platform;
551 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
552 struct snd_soc_dai *codec_dai = machine->codec_dai;
553 struct snd_soc_codec *codec = card->codec;
554
555 mutex_lock(&pcm_mutex);
556
557 /* apply codec digital mute */
558 if (!codec->active)
559 snd_soc_dai_digital_mute(codec_dai, 1);
560
561 /* free any machine hw params */
562 if (machine->ops && machine->ops->hw_free)
563 machine->ops->hw_free(substream);
564
565 /* free any DMA resources */
566 if (platform->pcm_ops->hw_free)
567 platform->pcm_ops->hw_free(substream);
568
569 /* now free hw params for the DAI's */
570 if (codec_dai->ops->hw_free)
571 codec_dai->ops->hw_free(substream, codec_dai);
572
573 if (cpu_dai->ops->hw_free)
574 cpu_dai->ops->hw_free(substream, cpu_dai);
575
576 mutex_unlock(&pcm_mutex);
577 return 0;
578 }
579
580 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
581 {
582 struct snd_soc_pcm_runtime *rtd = substream->private_data;
583 struct snd_soc_device *socdev = rtd->socdev;
584 struct snd_soc_card *card= socdev->card;
585 struct snd_soc_dai_link *machine = rtd->dai;
586 struct snd_soc_platform *platform = card->platform;
587 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
588 struct snd_soc_dai *codec_dai = machine->codec_dai;
589 int ret;
590
591 if (codec_dai->ops->trigger) {
592 ret = codec_dai->ops->trigger(substream, cmd, codec_dai);
593 if (ret < 0)
594 return ret;
595 }
596
597 if (platform->pcm_ops->trigger) {
598 ret = platform->pcm_ops->trigger(substream, cmd);
599 if (ret < 0)
600 return ret;
601 }
602
603 if (cpu_dai->ops->trigger) {
604 ret = cpu_dai->ops->trigger(substream, cmd, cpu_dai);
605 if (ret < 0)
606 return ret;
607 }
608 return 0;
609 }
610
611 /* ASoC PCM operations */
612 static struct snd_pcm_ops soc_pcm_ops = {
613 .open = soc_pcm_open,
614 .close = soc_codec_close,
615 .hw_params = soc_pcm_hw_params,
616 .hw_free = soc_pcm_hw_free,
617 .prepare = soc_pcm_prepare,
618 .trigger = soc_pcm_trigger,
619 };
620
621 #ifdef CONFIG_PM
622 /* powers down audio subsystem for suspend */
623 static int soc_suspend(struct device *dev)
624 {
625 struct platform_device *pdev = to_platform_device(dev);
626 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
627 struct snd_soc_card *card = socdev->card;
628 struct snd_soc_platform *platform = card->platform;
629 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
630 struct snd_soc_codec *codec = card->codec;
631 int i;
632
633 /* If the initialization of this soc device failed, there is no codec
634 * associated with it. Just bail out in this case.
635 */
636 if (!codec)
637 return 0;
638
639 /* Due to the resume being scheduled into a workqueue we could
640 * suspend before that's finished - wait for it to complete.
641 */
642 snd_power_lock(codec->card);
643 snd_power_wait(codec->card, SNDRV_CTL_POWER_D0);
644 snd_power_unlock(codec->card);
645
646 /* we're going to block userspace touching us until resume completes */
647 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D3hot);
648
649 /* mute any active DAC's */
650 for (i = 0; i < card->num_links; i++) {
651 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
652 if (dai->ops->digital_mute && dai->playback.active)
653 dai->ops->digital_mute(dai, 1);
654 }
655
656 /* suspend all pcms */
657 for (i = 0; i < card->num_links; i++)
658 snd_pcm_suspend_all(card->dai_link[i].pcm);
659
660 if (card->suspend_pre)
661 card->suspend_pre(pdev, PMSG_SUSPEND);
662
663 for (i = 0; i < card->num_links; i++) {
664 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
665 if (cpu_dai->suspend && !cpu_dai->ac97_control)
666 cpu_dai->suspend(cpu_dai);
667 if (platform->suspend)
668 platform->suspend(cpu_dai);
669 }
670
671 /* close any waiting streams and save state */
672 run_delayed_work(&card->delayed_work);
673 codec->suspend_bias_level = codec->bias_level;
674
675 for (i = 0; i < codec->num_dai; i++) {
676 char *stream = codec->dai[i].playback.stream_name;
677 if (stream != NULL)
678 snd_soc_dapm_stream_event(codec, stream,
679 SND_SOC_DAPM_STREAM_SUSPEND);
680 stream = codec->dai[i].capture.stream_name;
681 if (stream != NULL)
682 snd_soc_dapm_stream_event(codec, stream,
683 SND_SOC_DAPM_STREAM_SUSPEND);
684 }
685
686 if (codec_dev->suspend)
687 codec_dev->suspend(pdev, PMSG_SUSPEND);
688
689 for (i = 0; i < card->num_links; i++) {
690 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
691 if (cpu_dai->suspend && cpu_dai->ac97_control)
692 cpu_dai->suspend(cpu_dai);
693 }
694
695 if (card->suspend_post)
696 card->suspend_post(pdev, PMSG_SUSPEND);
697
698 return 0;
699 }
700
701 /* deferred resume work, so resume can complete before we finished
702 * setting our codec back up, which can be very slow on I2C
703 */
704 static void soc_resume_deferred(struct work_struct *work)
705 {
706 struct snd_soc_card *card = container_of(work,
707 struct snd_soc_card,
708 deferred_resume_work);
709 struct snd_soc_device *socdev = card->socdev;
710 struct snd_soc_platform *platform = card->platform;
711 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
712 struct snd_soc_codec *codec = card->codec;
713 struct platform_device *pdev = to_platform_device(socdev->dev);
714 int i;
715
716 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
717 * so userspace apps are blocked from touching us
718 */
719
720 dev_dbg(socdev->dev, "starting resume work\n");
721
722 if (card->resume_pre)
723 card->resume_pre(pdev);
724
725 for (i = 0; i < card->num_links; i++) {
726 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
727 if (cpu_dai->resume && cpu_dai->ac97_control)
728 cpu_dai->resume(cpu_dai);
729 }
730
731 if (codec_dev->resume)
732 codec_dev->resume(pdev);
733
734 for (i = 0; i < codec->num_dai; i++) {
735 char *stream = codec->dai[i].playback.stream_name;
736 if (stream != NULL)
737 snd_soc_dapm_stream_event(codec, stream,
738 SND_SOC_DAPM_STREAM_RESUME);
739 stream = codec->dai[i].capture.stream_name;
740 if (stream != NULL)
741 snd_soc_dapm_stream_event(codec, stream,
742 SND_SOC_DAPM_STREAM_RESUME);
743 }
744
745 /* unmute any active DACs */
746 for (i = 0; i < card->num_links; i++) {
747 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
748 if (dai->ops->digital_mute && dai->playback.active)
749 dai->ops->digital_mute(dai, 0);
750 }
751
752 for (i = 0; i < card->num_links; i++) {
753 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
754 if (cpu_dai->resume && !cpu_dai->ac97_control)
755 cpu_dai->resume(cpu_dai);
756 if (platform->resume)
757 platform->resume(cpu_dai);
758 }
759
760 if (card->resume_post)
761 card->resume_post(pdev);
762
763 dev_dbg(socdev->dev, "resume work completed\n");
764
765 /* userspace can access us now we are back as we were before */
766 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D0);
767 }
768
769 /* powers up audio subsystem after a suspend */
770 static int soc_resume(struct device *dev)
771 {
772 struct platform_device *pdev = to_platform_device(dev);
773 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
774 struct snd_soc_card *card = socdev->card;
775 struct snd_soc_dai *cpu_dai = card->dai_link[0].cpu_dai;
776
777 /* AC97 devices might have other drivers hanging off them so
778 * need to resume immediately. Other drivers don't have that
779 * problem and may take a substantial amount of time to resume
780 * due to I/O costs and anti-pop so handle them out of line.
781 */
782 if (cpu_dai->ac97_control) {
783 dev_dbg(socdev->dev, "Resuming AC97 immediately\n");
784 soc_resume_deferred(&card->deferred_resume_work);
785 } else {
786 dev_dbg(socdev->dev, "Scheduling resume work\n");
787 if (!schedule_work(&card->deferred_resume_work))
788 dev_err(socdev->dev, "resume work item may be lost\n");
789 }
790
791 return 0;
792 }
793
794 /**
795 * snd_soc_suspend_device: Notify core of device suspend
796 *
797 * @dev: Device being suspended.
798 *
799 * In order to ensure that the entire audio subsystem is suspended in a
800 * coordinated fashion ASoC devices should suspend themselves when
801 * called by ASoC. When the standard kernel suspend process asks the
802 * device to suspend it should call this function to initiate a suspend
803 * of the entire ASoC card.
804 *
805 * \note Currently this function is stubbed out.
806 */
807 int snd_soc_suspend_device(struct device *dev)
808 {
809 return 0;
810 }
811 EXPORT_SYMBOL_GPL(snd_soc_suspend_device);
812
813 /**
814 * snd_soc_resume_device: Notify core of device resume
815 *
816 * @dev: Device being resumed.
817 *
818 * In order to ensure that the entire audio subsystem is resumed in a
819 * coordinated fashion ASoC devices should resume themselves when called
820 * by ASoC. When the standard kernel resume process asks the device
821 * to resume it should call this function. Once all the components of
822 * the card have notified that they are ready to be resumed the card
823 * will be resumed.
824 *
825 * \note Currently this function is stubbed out.
826 */
827 int snd_soc_resume_device(struct device *dev)
828 {
829 return 0;
830 }
831 EXPORT_SYMBOL_GPL(snd_soc_resume_device);
832 #else
833 #define soc_suspend NULL
834 #define soc_resume NULL
835 #endif
836
837 static void snd_soc_instantiate_card(struct snd_soc_card *card)
838 {
839 struct platform_device *pdev = container_of(card->dev,
840 struct platform_device,
841 dev);
842 struct snd_soc_codec_device *codec_dev = card->socdev->codec_dev;
843 struct snd_soc_platform *platform;
844 struct snd_soc_dai *dai;
845 int i, found, ret, ac97;
846
847 if (card->instantiated)
848 return;
849
850 found = 0;
851 list_for_each_entry(platform, &platform_list, list)
852 if (card->platform == platform) {
853 found = 1;
854 break;
855 }
856 if (!found) {
857 dev_dbg(card->dev, "Platform %s not registered\n",
858 card->platform->name);
859 return;
860 }
861
862 ac97 = 0;
863 for (i = 0; i < card->num_links; i++) {
864 found = 0;
865 list_for_each_entry(dai, &dai_list, list)
866 if (card->dai_link[i].cpu_dai == dai) {
867 found = 1;
868 break;
869 }
870 if (!found) {
871 dev_dbg(card->dev, "DAI %s not registered\n",
872 card->dai_link[i].cpu_dai->name);
873 return;
874 }
875
876 if (card->dai_link[i].cpu_dai->ac97_control)
877 ac97 = 1;
878 }
879
880 /* If we have AC97 in the system then don't wait for the
881 * codec. This will need revisiting if we have to handle
882 * systems with mixed AC97 and non-AC97 parts. Only check for
883 * DAIs currently; we can't do this per link since some AC97
884 * codecs have non-AC97 DAIs.
885 */
886 if (!ac97)
887 for (i = 0; i < card->num_links; i++) {
888 found = 0;
889 list_for_each_entry(dai, &dai_list, list)
890 if (card->dai_link[i].codec_dai == dai) {
891 found = 1;
892 break;
893 }
894 if (!found) {
895 dev_dbg(card->dev, "DAI %s not registered\n",
896 card->dai_link[i].codec_dai->name);
897 return;
898 }
899 }
900
901 /* Note that we do not current check for codec components */
902
903 dev_dbg(card->dev, "All components present, instantiating\n");
904
905 /* Found everything, bring it up */
906 if (card->probe) {
907 ret = card->probe(pdev);
908 if (ret < 0)
909 return;
910 }
911
912 for (i = 0; i < card->num_links; i++) {
913 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
914 if (cpu_dai->probe) {
915 ret = cpu_dai->probe(pdev, cpu_dai);
916 if (ret < 0)
917 goto cpu_dai_err;
918 }
919 }
920
921 if (codec_dev->probe) {
922 ret = codec_dev->probe(pdev);
923 if (ret < 0)
924 goto cpu_dai_err;
925 }
926
927 if (platform->probe) {
928 ret = platform->probe(pdev);
929 if (ret < 0)
930 goto platform_err;
931 }
932
933 /* DAPM stream work */
934 INIT_DELAYED_WORK(&card->delayed_work, close_delayed_work);
935 #ifdef CONFIG_PM
936 /* deferred resume work */
937 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
938 #endif
939
940 card->instantiated = 1;
941
942 return;
943
944 platform_err:
945 if (codec_dev->remove)
946 codec_dev->remove(pdev);
947
948 cpu_dai_err:
949 for (i--; i >= 0; i--) {
950 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
951 if (cpu_dai->remove)
952 cpu_dai->remove(pdev, cpu_dai);
953 }
954
955 if (card->remove)
956 card->remove(pdev);
957 }
958
959 /*
960 * Attempt to initialise any uninitalised cards. Must be called with
961 * client_mutex.
962 */
963 static void snd_soc_instantiate_cards(void)
964 {
965 struct snd_soc_card *card;
966 list_for_each_entry(card, &card_list, list)
967 snd_soc_instantiate_card(card);
968 }
969
970 /* probes a new socdev */
971 static int soc_probe(struct platform_device *pdev)
972 {
973 int ret = 0;
974 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
975 struct snd_soc_card *card = socdev->card;
976
977 /* Bodge while we push things out of socdev */
978 card->socdev = socdev;
979
980 /* Bodge while we unpick instantiation */
981 card->dev = &pdev->dev;
982 ret = snd_soc_register_card(card);
983 if (ret != 0) {
984 dev_err(&pdev->dev, "Failed to register card\n");
985 return ret;
986 }
987
988 return 0;
989 }
990
991 /* removes a socdev */
992 static int soc_remove(struct platform_device *pdev)
993 {
994 int i;
995 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
996 struct snd_soc_card *card = socdev->card;
997 struct snd_soc_platform *platform = card->platform;
998 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
999
1000 if (!card->instantiated)
1001 return 0;
1002
1003 run_delayed_work(&card->delayed_work);
1004
1005 if (platform->remove)
1006 platform->remove(pdev);
1007
1008 if (codec_dev->remove)
1009 codec_dev->remove(pdev);
1010
1011 for (i = 0; i < card->num_links; i++) {
1012 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
1013 if (cpu_dai->remove)
1014 cpu_dai->remove(pdev, cpu_dai);
1015 }
1016
1017 if (card->remove)
1018 card->remove(pdev);
1019
1020 snd_soc_unregister_card(card);
1021
1022 return 0;
1023 }
1024
1025 static int soc_poweroff(struct device *dev)
1026 {
1027 struct platform_device *pdev = to_platform_device(dev);
1028 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1029 struct snd_soc_card *card = socdev->card;
1030
1031 if (!card->instantiated)
1032 return 0;
1033
1034 /* Flush out pmdown_time work - we actually do want to run it
1035 * now, we're shutting down so no imminent restart. */
1036 run_delayed_work(&card->delayed_work);
1037
1038 snd_soc_dapm_shutdown(socdev);
1039
1040 return 0;
1041 }
1042
1043 static struct dev_pm_ops soc_pm_ops = {
1044 .suspend = soc_suspend,
1045 .resume = soc_resume,
1046 .poweroff = soc_poweroff,
1047 };
1048
1049 /* ASoC platform driver */
1050 static struct platform_driver soc_driver = {
1051 .driver = {
1052 .name = "soc-audio",
1053 .owner = THIS_MODULE,
1054 .pm = &soc_pm_ops,
1055 },
1056 .probe = soc_probe,
1057 .remove = soc_remove,
1058 };
1059
1060 /* create a new pcm */
1061 static int soc_new_pcm(struct snd_soc_device *socdev,
1062 struct snd_soc_dai_link *dai_link, int num)
1063 {
1064 struct snd_soc_card *card = socdev->card;
1065 struct snd_soc_codec *codec = card->codec;
1066 struct snd_soc_platform *platform = card->platform;
1067 struct snd_soc_dai *codec_dai = dai_link->codec_dai;
1068 struct snd_soc_dai *cpu_dai = dai_link->cpu_dai;
1069 struct snd_soc_pcm_runtime *rtd;
1070 struct snd_pcm *pcm;
1071 char new_name[64];
1072 int ret = 0, playback = 0, capture = 0;
1073
1074 rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
1075 if (rtd == NULL)
1076 return -ENOMEM;
1077
1078 rtd->dai = dai_link;
1079 rtd->socdev = socdev;
1080 codec_dai->codec = card->codec;
1081
1082 /* check client and interface hw capabilities */
1083 sprintf(new_name, "%s %s-%d", dai_link->stream_name, codec_dai->name,
1084 num);
1085
1086 if (codec_dai->playback.channels_min)
1087 playback = 1;
1088 if (codec_dai->capture.channels_min)
1089 capture = 1;
1090
1091 ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
1092 capture, &pcm);
1093 if (ret < 0) {
1094 printk(KERN_ERR "asoc: can't create pcm for codec %s\n",
1095 codec->name);
1096 kfree(rtd);
1097 return ret;
1098 }
1099
1100 dai_link->pcm = pcm;
1101 pcm->private_data = rtd;
1102 soc_pcm_ops.mmap = platform->pcm_ops->mmap;
1103 soc_pcm_ops.pointer = platform->pcm_ops->pointer;
1104 soc_pcm_ops.ioctl = platform->pcm_ops->ioctl;
1105 soc_pcm_ops.copy = platform->pcm_ops->copy;
1106 soc_pcm_ops.silence = platform->pcm_ops->silence;
1107 soc_pcm_ops.ack = platform->pcm_ops->ack;
1108 soc_pcm_ops.page = platform->pcm_ops->page;
1109
1110 if (playback)
1111 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1112
1113 if (capture)
1114 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1115
1116 ret = platform->pcm_new(codec->card, codec_dai, pcm);
1117 if (ret < 0) {
1118 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1119 kfree(rtd);
1120 return ret;
1121 }
1122
1123 pcm->private_free = platform->pcm_free;
1124 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1125 cpu_dai->name);
1126 return ret;
1127 }
1128
1129 /**
1130 * snd_soc_codec_volatile_register: Report if a register is volatile.
1131 *
1132 * @codec: CODEC to query.
1133 * @reg: Register to query.
1134 *
1135 * Boolean function indiciating if a CODEC register is volatile.
1136 */
1137 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
1138 {
1139 if (codec->volatile_register)
1140 return codec->volatile_register(reg);
1141 else
1142 return 0;
1143 }
1144 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
1145
1146 /* codec register dump */
1147 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
1148 {
1149 int i, step = 1, count = 0;
1150
1151 if (!codec->reg_cache_size)
1152 return 0;
1153
1154 if (codec->reg_cache_step)
1155 step = codec->reg_cache_step;
1156
1157 count += sprintf(buf, "%s registers\n", codec->name);
1158 for (i = 0; i < codec->reg_cache_size; i += step) {
1159 if (codec->readable_register && !codec->readable_register(i))
1160 continue;
1161
1162 count += sprintf(buf + count, "%2x: ", i);
1163 if (count >= PAGE_SIZE - 1)
1164 break;
1165
1166 if (codec->display_register)
1167 count += codec->display_register(codec, buf + count,
1168 PAGE_SIZE - count, i);
1169 else
1170 count += snprintf(buf + count, PAGE_SIZE - count,
1171 "%4x", codec->read(codec, i));
1172
1173 if (count >= PAGE_SIZE - 1)
1174 break;
1175
1176 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
1177 if (count >= PAGE_SIZE - 1)
1178 break;
1179 }
1180
1181 /* Truncate count; min() would cause a warning */
1182 if (count >= PAGE_SIZE)
1183 count = PAGE_SIZE - 1;
1184
1185 return count;
1186 }
1187 static ssize_t codec_reg_show(struct device *dev,
1188 struct device_attribute *attr, char *buf)
1189 {
1190 struct snd_soc_device *devdata = dev_get_drvdata(dev);
1191 return soc_codec_reg_show(devdata->card->codec, buf);
1192 }
1193
1194 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
1195
1196 #ifdef CONFIG_DEBUG_FS
1197 static int codec_reg_open_file(struct inode *inode, struct file *file)
1198 {
1199 file->private_data = inode->i_private;
1200 return 0;
1201 }
1202
1203 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
1204 size_t count, loff_t *ppos)
1205 {
1206 ssize_t ret;
1207 struct snd_soc_codec *codec = file->private_data;
1208 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1209 if (!buf)
1210 return -ENOMEM;
1211 ret = soc_codec_reg_show(codec, buf);
1212 if (ret >= 0)
1213 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1214 kfree(buf);
1215 return ret;
1216 }
1217
1218 static ssize_t codec_reg_write_file(struct file *file,
1219 const char __user *user_buf, size_t count, loff_t *ppos)
1220 {
1221 char buf[32];
1222 int buf_size;
1223 char *start = buf;
1224 unsigned long reg, value;
1225 int step = 1;
1226 struct snd_soc_codec *codec = file->private_data;
1227
1228 buf_size = min(count, (sizeof(buf)-1));
1229 if (copy_from_user(buf, user_buf, buf_size))
1230 return -EFAULT;
1231 buf[buf_size] = 0;
1232
1233 if (codec->reg_cache_step)
1234 step = codec->reg_cache_step;
1235
1236 while (*start == ' ')
1237 start++;
1238 reg = simple_strtoul(start, &start, 16);
1239 if ((reg >= codec->reg_cache_size) || (reg % step))
1240 return -EINVAL;
1241 while (*start == ' ')
1242 start++;
1243 if (strict_strtoul(start, 16, &value))
1244 return -EINVAL;
1245 codec->write(codec, reg, value);
1246 return buf_size;
1247 }
1248
1249 static const struct file_operations codec_reg_fops = {
1250 .open = codec_reg_open_file,
1251 .read = codec_reg_read_file,
1252 .write = codec_reg_write_file,
1253 };
1254
1255 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
1256 {
1257 char codec_root[128];
1258
1259 if (codec->dev)
1260 snprintf(codec_root, sizeof(codec_root),
1261 "%s.%s", codec->name, dev_name(codec->dev));
1262 else
1263 snprintf(codec_root, sizeof(codec_root),
1264 "%s", codec->name);
1265
1266 codec->debugfs_codec_root = debugfs_create_dir(codec_root,
1267 debugfs_root);
1268 if (!codec->debugfs_codec_root) {
1269 printk(KERN_WARNING
1270 "ASoC: Failed to create codec debugfs directory\n");
1271 return;
1272 }
1273
1274 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
1275 codec->debugfs_codec_root,
1276 codec, &codec_reg_fops);
1277 if (!codec->debugfs_reg)
1278 printk(KERN_WARNING
1279 "ASoC: Failed to create codec register debugfs file\n");
1280
1281 codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0744,
1282 codec->debugfs_codec_root,
1283 &codec->pop_time);
1284 if (!codec->debugfs_pop_time)
1285 printk(KERN_WARNING
1286 "Failed to create pop time debugfs file\n");
1287
1288 codec->debugfs_dapm = debugfs_create_dir("dapm",
1289 codec->debugfs_codec_root);
1290 if (!codec->debugfs_dapm)
1291 printk(KERN_WARNING
1292 "Failed to create DAPM debugfs directory\n");
1293
1294 snd_soc_dapm_debugfs_init(codec);
1295 }
1296
1297 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
1298 {
1299 debugfs_remove_recursive(codec->debugfs_codec_root);
1300 }
1301
1302 #else
1303
1304 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
1305 {
1306 }
1307
1308 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
1309 {
1310 }
1311 #endif
1312
1313 /**
1314 * snd_soc_new_ac97_codec - initailise AC97 device
1315 * @codec: audio codec
1316 * @ops: AC97 bus operations
1317 * @num: AC97 codec number
1318 *
1319 * Initialises AC97 codec resources for use by ad-hoc devices only.
1320 */
1321 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1322 struct snd_ac97_bus_ops *ops, int num)
1323 {
1324 mutex_lock(&codec->mutex);
1325
1326 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1327 if (codec->ac97 == NULL) {
1328 mutex_unlock(&codec->mutex);
1329 return -ENOMEM;
1330 }
1331
1332 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1333 if (codec->ac97->bus == NULL) {
1334 kfree(codec->ac97);
1335 codec->ac97 = NULL;
1336 mutex_unlock(&codec->mutex);
1337 return -ENOMEM;
1338 }
1339
1340 codec->ac97->bus->ops = ops;
1341 codec->ac97->num = num;
1342 mutex_unlock(&codec->mutex);
1343 return 0;
1344 }
1345 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1346
1347 /**
1348 * snd_soc_free_ac97_codec - free AC97 codec device
1349 * @codec: audio codec
1350 *
1351 * Frees AC97 codec device resources.
1352 */
1353 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1354 {
1355 mutex_lock(&codec->mutex);
1356 kfree(codec->ac97->bus);
1357 kfree(codec->ac97);
1358 codec->ac97 = NULL;
1359 mutex_unlock(&codec->mutex);
1360 }
1361 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1362
1363 /**
1364 * snd_soc_update_bits - update codec register bits
1365 * @codec: audio codec
1366 * @reg: codec register
1367 * @mask: register mask
1368 * @value: new value
1369 *
1370 * Writes new register value.
1371 *
1372 * Returns 1 for change else 0.
1373 */
1374 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1375 unsigned int mask, unsigned int value)
1376 {
1377 int change;
1378 unsigned int old, new;
1379
1380 mutex_lock(&io_mutex);
1381 old = snd_soc_read(codec, reg);
1382 new = (old & ~mask) | value;
1383 change = old != new;
1384 if (change)
1385 snd_soc_write(codec, reg, new);
1386
1387 mutex_unlock(&io_mutex);
1388 return change;
1389 }
1390 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1391
1392 /**
1393 * snd_soc_test_bits - test register for change
1394 * @codec: audio codec
1395 * @reg: codec register
1396 * @mask: register mask
1397 * @value: new value
1398 *
1399 * Tests a register with a new value and checks if the new value is
1400 * different from the old value.
1401 *
1402 * Returns 1 for change else 0.
1403 */
1404 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1405 unsigned int mask, unsigned int value)
1406 {
1407 int change;
1408 unsigned int old, new;
1409
1410 mutex_lock(&io_mutex);
1411 old = snd_soc_read(codec, reg);
1412 new = (old & ~mask) | value;
1413 change = old != new;
1414 mutex_unlock(&io_mutex);
1415
1416 return change;
1417 }
1418 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1419
1420 /**
1421 * snd_soc_new_pcms - create new sound card and pcms
1422 * @socdev: the SoC audio device
1423 * @idx: ALSA card index
1424 * @xid: card identification
1425 *
1426 * Create a new sound card based upon the codec and interface pcms.
1427 *
1428 * Returns 0 for success, else error.
1429 */
1430 int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
1431 {
1432 struct snd_soc_card *card = socdev->card;
1433 struct snd_soc_codec *codec = card->codec;
1434 int ret, i;
1435
1436 mutex_lock(&codec->mutex);
1437
1438 /* register a sound card */
1439 ret = snd_card_create(idx, xid, codec->owner, 0, &codec->card);
1440 if (ret < 0) {
1441 printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
1442 codec->name);
1443 mutex_unlock(&codec->mutex);
1444 return ret;
1445 }
1446
1447 codec->socdev = socdev;
1448 codec->card->dev = socdev->dev;
1449 codec->card->private_data = codec;
1450 strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
1451
1452 /* create the pcms */
1453 for (i = 0; i < card->num_links; i++) {
1454 ret = soc_new_pcm(socdev, &card->dai_link[i], i);
1455 if (ret < 0) {
1456 printk(KERN_ERR "asoc: can't create pcm %s\n",
1457 card->dai_link[i].stream_name);
1458 mutex_unlock(&codec->mutex);
1459 return ret;
1460 }
1461 }
1462
1463 mutex_unlock(&codec->mutex);
1464 return ret;
1465 }
1466 EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
1467
1468 /**
1469 * snd_soc_init_card - register sound card
1470 * @socdev: the SoC audio device
1471 *
1472 * Register a SoC sound card. Also registers an AC97 device if the
1473 * codec is AC97 for ad hoc devices.
1474 *
1475 * Returns 0 for success, else error.
1476 */
1477 int snd_soc_init_card(struct snd_soc_device *socdev)
1478 {
1479 struct snd_soc_card *card = socdev->card;
1480 struct snd_soc_codec *codec = card->codec;
1481 int ret = 0, i, ac97 = 0, err = 0;
1482
1483 for (i = 0; i < card->num_links; i++) {
1484 if (card->dai_link[i].init) {
1485 err = card->dai_link[i].init(codec);
1486 if (err < 0) {
1487 printk(KERN_ERR "asoc: failed to init %s\n",
1488 card->dai_link[i].stream_name);
1489 continue;
1490 }
1491 }
1492 if (card->dai_link[i].codec_dai->ac97_control) {
1493 ac97 = 1;
1494 snd_ac97_dev_add_pdata(codec->ac97,
1495 card->dai_link[i].cpu_dai->ac97_pdata);
1496 }
1497 }
1498 snprintf(codec->card->shortname, sizeof(codec->card->shortname),
1499 "%s", card->name);
1500 snprintf(codec->card->longname, sizeof(codec->card->longname),
1501 "%s (%s)", card->name, codec->name);
1502
1503 /* Make sure all DAPM widgets are instantiated */
1504 snd_soc_dapm_new_widgets(codec);
1505
1506 ret = snd_card_register(codec->card);
1507 if (ret < 0) {
1508 printk(KERN_ERR "asoc: failed to register soundcard for %s\n",
1509 codec->name);
1510 goto out;
1511 }
1512
1513 mutex_lock(&codec->mutex);
1514 #ifdef CONFIG_SND_SOC_AC97_BUS
1515 /* Only instantiate AC97 if not already done by the adaptor
1516 * for the generic AC97 subsystem.
1517 */
1518 if (ac97 && strcmp(codec->name, "AC97") != 0) {
1519 ret = soc_ac97_dev_register(codec);
1520 if (ret < 0) {
1521 printk(KERN_ERR "asoc: AC97 device register failed\n");
1522 snd_card_free(codec->card);
1523 mutex_unlock(&codec->mutex);
1524 goto out;
1525 }
1526 }
1527 #endif
1528
1529 err = snd_soc_dapm_sys_add(socdev->dev);
1530 if (err < 0)
1531 printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
1532
1533 err = device_create_file(socdev->dev, &dev_attr_codec_reg);
1534 if (err < 0)
1535 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1536
1537 soc_init_codec_debugfs(codec);
1538 mutex_unlock(&codec->mutex);
1539
1540 out:
1541 return ret;
1542 }
1543 EXPORT_SYMBOL_GPL(snd_soc_init_card);
1544
1545 /**
1546 * snd_soc_free_pcms - free sound card and pcms
1547 * @socdev: the SoC audio device
1548 *
1549 * Frees sound card and pcms associated with the socdev.
1550 * Also unregister the codec if it is an AC97 device.
1551 */
1552 void snd_soc_free_pcms(struct snd_soc_device *socdev)
1553 {
1554 struct snd_soc_codec *codec = socdev->card->codec;
1555 #ifdef CONFIG_SND_SOC_AC97_BUS
1556 struct snd_soc_dai *codec_dai;
1557 int i;
1558 #endif
1559
1560 mutex_lock(&codec->mutex);
1561 soc_cleanup_codec_debugfs(codec);
1562 #ifdef CONFIG_SND_SOC_AC97_BUS
1563 for (i = 0; i < codec->num_dai; i++) {
1564 codec_dai = &codec->dai[i];
1565 if (codec_dai->ac97_control && codec->ac97 &&
1566 strcmp(codec->name, "AC97") != 0) {
1567 soc_ac97_dev_unregister(codec);
1568 goto free_card;
1569 }
1570 }
1571 free_card:
1572 #endif
1573
1574 if (codec->card)
1575 snd_card_free(codec->card);
1576 device_remove_file(socdev->dev, &dev_attr_codec_reg);
1577 mutex_unlock(&codec->mutex);
1578 }
1579 EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
1580
1581 /**
1582 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1583 * @substream: the pcm substream
1584 * @hw: the hardware parameters
1585 *
1586 * Sets the substream runtime hardware parameters.
1587 */
1588 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1589 const struct snd_pcm_hardware *hw)
1590 {
1591 struct snd_pcm_runtime *runtime = substream->runtime;
1592 runtime->hw.info = hw->info;
1593 runtime->hw.formats = hw->formats;
1594 runtime->hw.period_bytes_min = hw->period_bytes_min;
1595 runtime->hw.period_bytes_max = hw->period_bytes_max;
1596 runtime->hw.periods_min = hw->periods_min;
1597 runtime->hw.periods_max = hw->periods_max;
1598 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1599 runtime->hw.fifo_size = hw->fifo_size;
1600 return 0;
1601 }
1602 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1603
1604 /**
1605 * snd_soc_cnew - create new control
1606 * @_template: control template
1607 * @data: control private data
1608 * @long_name: control long name
1609 *
1610 * Create a new mixer control from a template control.
1611 *
1612 * Returns 0 for success, else error.
1613 */
1614 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1615 void *data, char *long_name)
1616 {
1617 struct snd_kcontrol_new template;
1618
1619 memcpy(&template, _template, sizeof(template));
1620 if (long_name)
1621 template.name = long_name;
1622 template.index = 0;
1623
1624 return snd_ctl_new1(&template, data);
1625 }
1626 EXPORT_SYMBOL_GPL(snd_soc_cnew);
1627
1628 /**
1629 * snd_soc_add_controls - add an array of controls to a codec.
1630 * Convienience function to add a list of controls. Many codecs were
1631 * duplicating this code.
1632 *
1633 * @codec: codec to add controls to
1634 * @controls: array of controls to add
1635 * @num_controls: number of elements in the array
1636 *
1637 * Return 0 for success, else error.
1638 */
1639 int snd_soc_add_controls(struct snd_soc_codec *codec,
1640 const struct snd_kcontrol_new *controls, int num_controls)
1641 {
1642 struct snd_card *card = codec->card;
1643 int err, i;
1644
1645 for (i = 0; i < num_controls; i++) {
1646 const struct snd_kcontrol_new *control = &controls[i];
1647 err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
1648 if (err < 0) {
1649 dev_err(codec->dev, "%s: Failed to add %s\n",
1650 codec->name, control->name);
1651 return err;
1652 }
1653 }
1654
1655 return 0;
1656 }
1657 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
1658
1659 /**
1660 * snd_soc_info_enum_double - enumerated double mixer info callback
1661 * @kcontrol: mixer control
1662 * @uinfo: control element information
1663 *
1664 * Callback to provide information about a double enumerated
1665 * mixer control.
1666 *
1667 * Returns 0 for success.
1668 */
1669 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1670 struct snd_ctl_elem_info *uinfo)
1671 {
1672 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1673
1674 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1675 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1676 uinfo->value.enumerated.items = e->max;
1677
1678 if (uinfo->value.enumerated.item > e->max - 1)
1679 uinfo->value.enumerated.item = e->max - 1;
1680 strcpy(uinfo->value.enumerated.name,
1681 e->texts[uinfo->value.enumerated.item]);
1682 return 0;
1683 }
1684 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1685
1686 /**
1687 * snd_soc_get_enum_double - enumerated double mixer get callback
1688 * @kcontrol: mixer control
1689 * @ucontrol: control element information
1690 *
1691 * Callback to get the value of a double enumerated mixer.
1692 *
1693 * Returns 0 for success.
1694 */
1695 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1696 struct snd_ctl_elem_value *ucontrol)
1697 {
1698 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1699 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1700 unsigned int val, bitmask;
1701
1702 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1703 ;
1704 val = snd_soc_read(codec, e->reg);
1705 ucontrol->value.enumerated.item[0]
1706 = (val >> e->shift_l) & (bitmask - 1);
1707 if (e->shift_l != e->shift_r)
1708 ucontrol->value.enumerated.item[1] =
1709 (val >> e->shift_r) & (bitmask - 1);
1710
1711 return 0;
1712 }
1713 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1714
1715 /**
1716 * snd_soc_put_enum_double - enumerated double mixer put callback
1717 * @kcontrol: mixer control
1718 * @ucontrol: control element information
1719 *
1720 * Callback to set the value of a double enumerated mixer.
1721 *
1722 * Returns 0 for success.
1723 */
1724 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1725 struct snd_ctl_elem_value *ucontrol)
1726 {
1727 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1728 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1729 unsigned int val;
1730 unsigned int mask, bitmask;
1731
1732 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1733 ;
1734 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1735 return -EINVAL;
1736 val = ucontrol->value.enumerated.item[0] << e->shift_l;
1737 mask = (bitmask - 1) << e->shift_l;
1738 if (e->shift_l != e->shift_r) {
1739 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1740 return -EINVAL;
1741 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1742 mask |= (bitmask - 1) << e->shift_r;
1743 }
1744
1745 return snd_soc_update_bits(codec, e->reg, mask, val);
1746 }
1747 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
1748
1749 /**
1750 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
1751 * @kcontrol: mixer control
1752 * @ucontrol: control element information
1753 *
1754 * Callback to get the value of a double semi enumerated mixer.
1755 *
1756 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1757 * used for handling bitfield coded enumeration for example.
1758 *
1759 * Returns 0 for success.
1760 */
1761 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
1762 struct snd_ctl_elem_value *ucontrol)
1763 {
1764 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1765 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1766 unsigned int reg_val, val, mux;
1767
1768 reg_val = snd_soc_read(codec, e->reg);
1769 val = (reg_val >> e->shift_l) & e->mask;
1770 for (mux = 0; mux < e->max; mux++) {
1771 if (val == e->values[mux])
1772 break;
1773 }
1774 ucontrol->value.enumerated.item[0] = mux;
1775 if (e->shift_l != e->shift_r) {
1776 val = (reg_val >> e->shift_r) & e->mask;
1777 for (mux = 0; mux < e->max; mux++) {
1778 if (val == e->values[mux])
1779 break;
1780 }
1781 ucontrol->value.enumerated.item[1] = mux;
1782 }
1783
1784 return 0;
1785 }
1786 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
1787
1788 /**
1789 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
1790 * @kcontrol: mixer control
1791 * @ucontrol: control element information
1792 *
1793 * Callback to set the value of a double semi enumerated mixer.
1794 *
1795 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1796 * used for handling bitfield coded enumeration for example.
1797 *
1798 * Returns 0 for success.
1799 */
1800 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
1801 struct snd_ctl_elem_value *ucontrol)
1802 {
1803 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1804 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1805 unsigned int val;
1806 unsigned int mask;
1807
1808 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1809 return -EINVAL;
1810 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
1811 mask = e->mask << e->shift_l;
1812 if (e->shift_l != e->shift_r) {
1813 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1814 return -EINVAL;
1815 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
1816 mask |= e->mask << e->shift_r;
1817 }
1818
1819 return snd_soc_update_bits(codec, e->reg, mask, val);
1820 }
1821 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
1822
1823 /**
1824 * snd_soc_info_enum_ext - external enumerated single mixer info callback
1825 * @kcontrol: mixer control
1826 * @uinfo: control element information
1827 *
1828 * Callback to provide information about an external enumerated
1829 * single mixer.
1830 *
1831 * Returns 0 for success.
1832 */
1833 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
1834 struct snd_ctl_elem_info *uinfo)
1835 {
1836 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1837
1838 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1839 uinfo->count = 1;
1840 uinfo->value.enumerated.items = e->max;
1841
1842 if (uinfo->value.enumerated.item > e->max - 1)
1843 uinfo->value.enumerated.item = e->max - 1;
1844 strcpy(uinfo->value.enumerated.name,
1845 e->texts[uinfo->value.enumerated.item]);
1846 return 0;
1847 }
1848 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
1849
1850 /**
1851 * snd_soc_info_volsw_ext - external single mixer info callback
1852 * @kcontrol: mixer control
1853 * @uinfo: control element information
1854 *
1855 * Callback to provide information about a single external mixer control.
1856 *
1857 * Returns 0 for success.
1858 */
1859 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
1860 struct snd_ctl_elem_info *uinfo)
1861 {
1862 int max = kcontrol->private_value;
1863
1864 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1865 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1866 else
1867 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1868
1869 uinfo->count = 1;
1870 uinfo->value.integer.min = 0;
1871 uinfo->value.integer.max = max;
1872 return 0;
1873 }
1874 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
1875
1876 /**
1877 * snd_soc_info_volsw - single mixer info callback
1878 * @kcontrol: mixer control
1879 * @uinfo: control element information
1880 *
1881 * Callback to provide information about a single mixer control.
1882 *
1883 * Returns 0 for success.
1884 */
1885 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
1886 struct snd_ctl_elem_info *uinfo)
1887 {
1888 struct soc_mixer_control *mc =
1889 (struct soc_mixer_control *)kcontrol->private_value;
1890 int max = mc->max;
1891 unsigned int shift = mc->shift;
1892 unsigned int rshift = mc->rshift;
1893
1894 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1895 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1896 else
1897 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1898
1899 uinfo->count = shift == rshift ? 1 : 2;
1900 uinfo->value.integer.min = 0;
1901 uinfo->value.integer.max = max;
1902 return 0;
1903 }
1904 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
1905
1906 /**
1907 * snd_soc_get_volsw - single mixer get callback
1908 * @kcontrol: mixer control
1909 * @ucontrol: control element information
1910 *
1911 * Callback to get the value of a single mixer control.
1912 *
1913 * Returns 0 for success.
1914 */
1915 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
1916 struct snd_ctl_elem_value *ucontrol)
1917 {
1918 struct soc_mixer_control *mc =
1919 (struct soc_mixer_control *)kcontrol->private_value;
1920 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1921 unsigned int reg = mc->reg;
1922 unsigned int shift = mc->shift;
1923 unsigned int rshift = mc->rshift;
1924 int max = mc->max;
1925 unsigned int mask = (1 << fls(max)) - 1;
1926 unsigned int invert = mc->invert;
1927
1928 ucontrol->value.integer.value[0] =
1929 (snd_soc_read(codec, reg) >> shift) & mask;
1930 if (shift != rshift)
1931 ucontrol->value.integer.value[1] =
1932 (snd_soc_read(codec, reg) >> rshift) & mask;
1933 if (invert) {
1934 ucontrol->value.integer.value[0] =
1935 max - ucontrol->value.integer.value[0];
1936 if (shift != rshift)
1937 ucontrol->value.integer.value[1] =
1938 max - ucontrol->value.integer.value[1];
1939 }
1940
1941 return 0;
1942 }
1943 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
1944
1945 /**
1946 * snd_soc_put_volsw - single mixer put callback
1947 * @kcontrol: mixer control
1948 * @ucontrol: control element information
1949 *
1950 * Callback to set the value of a single mixer control.
1951 *
1952 * Returns 0 for success.
1953 */
1954 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
1955 struct snd_ctl_elem_value *ucontrol)
1956 {
1957 struct soc_mixer_control *mc =
1958 (struct soc_mixer_control *)kcontrol->private_value;
1959 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1960 unsigned int reg = mc->reg;
1961 unsigned int shift = mc->shift;
1962 unsigned int rshift = mc->rshift;
1963 int max = mc->max;
1964 unsigned int mask = (1 << fls(max)) - 1;
1965 unsigned int invert = mc->invert;
1966 unsigned int val, val2, val_mask;
1967
1968 val = (ucontrol->value.integer.value[0] & mask);
1969 if (invert)
1970 val = max - val;
1971 val_mask = mask << shift;
1972 val = val << shift;
1973 if (shift != rshift) {
1974 val2 = (ucontrol->value.integer.value[1] & mask);
1975 if (invert)
1976 val2 = max - val2;
1977 val_mask |= mask << rshift;
1978 val |= val2 << rshift;
1979 }
1980 return snd_soc_update_bits(codec, reg, val_mask, val);
1981 }
1982 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
1983
1984 /**
1985 * snd_soc_info_volsw_2r - double mixer info callback
1986 * @kcontrol: mixer control
1987 * @uinfo: control element information
1988 *
1989 * Callback to provide information about a double mixer control that
1990 * spans 2 codec registers.
1991 *
1992 * Returns 0 for success.
1993 */
1994 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
1995 struct snd_ctl_elem_info *uinfo)
1996 {
1997 struct soc_mixer_control *mc =
1998 (struct soc_mixer_control *)kcontrol->private_value;
1999 int max = mc->max;
2000
2001 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2002 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2003 else
2004 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2005
2006 uinfo->count = 2;
2007 uinfo->value.integer.min = 0;
2008 uinfo->value.integer.max = max;
2009 return 0;
2010 }
2011 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2012
2013 /**
2014 * snd_soc_get_volsw_2r - double mixer get callback
2015 * @kcontrol: mixer control
2016 * @ucontrol: control element information
2017 *
2018 * Callback to get the value of a double mixer control that spans 2 registers.
2019 *
2020 * Returns 0 for success.
2021 */
2022 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2023 struct snd_ctl_elem_value *ucontrol)
2024 {
2025 struct soc_mixer_control *mc =
2026 (struct soc_mixer_control *)kcontrol->private_value;
2027 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2028 unsigned int reg = mc->reg;
2029 unsigned int reg2 = mc->rreg;
2030 unsigned int shift = mc->shift;
2031 int max = mc->max;
2032 unsigned int mask = (1 << fls(max)) - 1;
2033 unsigned int invert = mc->invert;
2034
2035 ucontrol->value.integer.value[0] =
2036 (snd_soc_read(codec, reg) >> shift) & mask;
2037 ucontrol->value.integer.value[1] =
2038 (snd_soc_read(codec, reg2) >> shift) & mask;
2039 if (invert) {
2040 ucontrol->value.integer.value[0] =
2041 max - ucontrol->value.integer.value[0];
2042 ucontrol->value.integer.value[1] =
2043 max - ucontrol->value.integer.value[1];
2044 }
2045
2046 return 0;
2047 }
2048 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2049
2050 /**
2051 * snd_soc_put_volsw_2r - double mixer set callback
2052 * @kcontrol: mixer control
2053 * @ucontrol: control element information
2054 *
2055 * Callback to set the value of a double mixer control that spans 2 registers.
2056 *
2057 * Returns 0 for success.
2058 */
2059 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2060 struct snd_ctl_elem_value *ucontrol)
2061 {
2062 struct soc_mixer_control *mc =
2063 (struct soc_mixer_control *)kcontrol->private_value;
2064 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2065 unsigned int reg = mc->reg;
2066 unsigned int reg2 = mc->rreg;
2067 unsigned int shift = mc->shift;
2068 int max = mc->max;
2069 unsigned int mask = (1 << fls(max)) - 1;
2070 unsigned int invert = mc->invert;
2071 int err;
2072 unsigned int val, val2, val_mask;
2073
2074 val_mask = mask << shift;
2075 val = (ucontrol->value.integer.value[0] & mask);
2076 val2 = (ucontrol->value.integer.value[1] & mask);
2077
2078 if (invert) {
2079 val = max - val;
2080 val2 = max - val2;
2081 }
2082
2083 val = val << shift;
2084 val2 = val2 << shift;
2085
2086 err = snd_soc_update_bits(codec, reg, val_mask, val);
2087 if (err < 0)
2088 return err;
2089
2090 err = snd_soc_update_bits(codec, reg2, val_mask, val2);
2091 return err;
2092 }
2093 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2094
2095 /**
2096 * snd_soc_info_volsw_s8 - signed mixer info callback
2097 * @kcontrol: mixer control
2098 * @uinfo: control element information
2099 *
2100 * Callback to provide information about a signed mixer control.
2101 *
2102 * Returns 0 for success.
2103 */
2104 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2105 struct snd_ctl_elem_info *uinfo)
2106 {
2107 struct soc_mixer_control *mc =
2108 (struct soc_mixer_control *)kcontrol->private_value;
2109 int max = mc->max;
2110 int min = mc->min;
2111
2112 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2113 uinfo->count = 2;
2114 uinfo->value.integer.min = 0;
2115 uinfo->value.integer.max = max-min;
2116 return 0;
2117 }
2118 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2119
2120 /**
2121 * snd_soc_get_volsw_s8 - signed mixer get callback
2122 * @kcontrol: mixer control
2123 * @ucontrol: control element information
2124 *
2125 * Callback to get the value of a signed mixer control.
2126 *
2127 * Returns 0 for success.
2128 */
2129 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2130 struct snd_ctl_elem_value *ucontrol)
2131 {
2132 struct soc_mixer_control *mc =
2133 (struct soc_mixer_control *)kcontrol->private_value;
2134 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2135 unsigned int reg = mc->reg;
2136 int min = mc->min;
2137 int val = snd_soc_read(codec, reg);
2138
2139 ucontrol->value.integer.value[0] =
2140 ((signed char)(val & 0xff))-min;
2141 ucontrol->value.integer.value[1] =
2142 ((signed char)((val >> 8) & 0xff))-min;
2143 return 0;
2144 }
2145 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2146
2147 /**
2148 * snd_soc_put_volsw_sgn - signed mixer put callback
2149 * @kcontrol: mixer control
2150 * @ucontrol: control element information
2151 *
2152 * Callback to set the value of a signed mixer control.
2153 *
2154 * Returns 0 for success.
2155 */
2156 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2157 struct snd_ctl_elem_value *ucontrol)
2158 {
2159 struct soc_mixer_control *mc =
2160 (struct soc_mixer_control *)kcontrol->private_value;
2161 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2162 unsigned int reg = mc->reg;
2163 int min = mc->min;
2164 unsigned int val;
2165
2166 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2167 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2168
2169 return snd_soc_update_bits(codec, reg, 0xffff, val);
2170 }
2171 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2172
2173 /**
2174 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2175 * @dai: DAI
2176 * @clk_id: DAI specific clock ID
2177 * @freq: new clock frequency in Hz
2178 * @dir: new clock direction - input/output.
2179 *
2180 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2181 */
2182 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2183 unsigned int freq, int dir)
2184 {
2185 if (dai->ops && dai->ops->set_sysclk)
2186 return dai->ops->set_sysclk(dai, clk_id, freq, dir);
2187 else
2188 return -EINVAL;
2189 }
2190 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2191
2192 /**
2193 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2194 * @dai: DAI
2195 * @div_id: DAI specific clock divider ID
2196 * @div: new clock divisor.
2197 *
2198 * Configures the clock dividers. This is used to derive the best DAI bit and
2199 * frame clocks from the system or master clock. It's best to set the DAI bit
2200 * and frame clocks as low as possible to save system power.
2201 */
2202 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2203 int div_id, int div)
2204 {
2205 if (dai->ops && dai->ops->set_clkdiv)
2206 return dai->ops->set_clkdiv(dai, div_id, div);
2207 else
2208 return -EINVAL;
2209 }
2210 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2211
2212 /**
2213 * snd_soc_dai_set_pll - configure DAI PLL.
2214 * @dai: DAI
2215 * @pll_id: DAI specific PLL ID
2216 * @source: DAI specific source for the PLL
2217 * @freq_in: PLL input clock frequency in Hz
2218 * @freq_out: requested PLL output clock frequency in Hz
2219 *
2220 * Configures and enables PLL to generate output clock based on input clock.
2221 */
2222 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
2223 unsigned int freq_in, unsigned int freq_out)
2224 {
2225 if (dai->ops && dai->ops->set_pll)
2226 return dai->ops->set_pll(dai, pll_id, source,
2227 freq_in, freq_out);
2228 else
2229 return -EINVAL;
2230 }
2231 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2232
2233 /**
2234 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2235 * @dai: DAI
2236 * @fmt: SND_SOC_DAIFMT_ format value.
2237 *
2238 * Configures the DAI hardware format and clocking.
2239 */
2240 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2241 {
2242 if (dai->ops && dai->ops->set_fmt)
2243 return dai->ops->set_fmt(dai, fmt);
2244 else
2245 return -EINVAL;
2246 }
2247 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2248
2249 /**
2250 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2251 * @dai: DAI
2252 * @tx_mask: bitmask representing active TX slots.
2253 * @rx_mask: bitmask representing active RX slots.
2254 * @slots: Number of slots in use.
2255 * @slot_width: Width in bits for each slot.
2256 *
2257 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2258 * specific.
2259 */
2260 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2261 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
2262 {
2263 if (dai->ops && dai->ops->set_tdm_slot)
2264 return dai->ops->set_tdm_slot(dai, tx_mask, rx_mask,
2265 slots, slot_width);
2266 else
2267 return -EINVAL;
2268 }
2269 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2270
2271 /**
2272 * snd_soc_dai_set_channel_map - configure DAI audio channel map
2273 * @dai: DAI
2274 * @tx_num: how many TX channels
2275 * @tx_slot: pointer to an array which imply the TX slot number channel
2276 * 0~num-1 uses
2277 * @rx_num: how many RX channels
2278 * @rx_slot: pointer to an array which imply the RX slot number channel
2279 * 0~num-1 uses
2280 *
2281 * configure the relationship between channel number and TDM slot number.
2282 */
2283 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
2284 unsigned int tx_num, unsigned int *tx_slot,
2285 unsigned int rx_num, unsigned int *rx_slot)
2286 {
2287 if (dai->ops && dai->ops->set_channel_map)
2288 return dai->ops->set_channel_map(dai, tx_num, tx_slot,
2289 rx_num, rx_slot);
2290 else
2291 return -EINVAL;
2292 }
2293 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
2294
2295 /**
2296 * snd_soc_dai_set_tristate - configure DAI system or master clock.
2297 * @dai: DAI
2298 * @tristate: tristate enable
2299 *
2300 * Tristates the DAI so that others can use it.
2301 */
2302 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2303 {
2304 if (dai->ops && dai->ops->set_tristate)
2305 return dai->ops->set_tristate(dai, tristate);
2306 else
2307 return -EINVAL;
2308 }
2309 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2310
2311 /**
2312 * snd_soc_dai_digital_mute - configure DAI system or master clock.
2313 * @dai: DAI
2314 * @mute: mute enable
2315 *
2316 * Mutes the DAI DAC.
2317 */
2318 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2319 {
2320 if (dai->ops && dai->ops->digital_mute)
2321 return dai->ops->digital_mute(dai, mute);
2322 else
2323 return -EINVAL;
2324 }
2325 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2326
2327 /**
2328 * snd_soc_register_card - Register a card with the ASoC core
2329 *
2330 * @card: Card to register
2331 *
2332 * Note that currently this is an internal only function: it will be
2333 * exposed to machine drivers after further backporting of ASoC v2
2334 * registration APIs.
2335 */
2336 static int snd_soc_register_card(struct snd_soc_card *card)
2337 {
2338 if (!card->name || !card->dev)
2339 return -EINVAL;
2340
2341 INIT_LIST_HEAD(&card->list);
2342 card->instantiated = 0;
2343
2344 mutex_lock(&client_mutex);
2345 list_add(&card->list, &card_list);
2346 snd_soc_instantiate_cards();
2347 mutex_unlock(&client_mutex);
2348
2349 dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2350
2351 return 0;
2352 }
2353
2354 /**
2355 * snd_soc_unregister_card - Unregister a card with the ASoC core
2356 *
2357 * @card: Card to unregister
2358 *
2359 * Note that currently this is an internal only function: it will be
2360 * exposed to machine drivers after further backporting of ASoC v2
2361 * registration APIs.
2362 */
2363 static int snd_soc_unregister_card(struct snd_soc_card *card)
2364 {
2365 mutex_lock(&client_mutex);
2366 list_del(&card->list);
2367 mutex_unlock(&client_mutex);
2368
2369 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2370
2371 return 0;
2372 }
2373
2374 static struct snd_soc_dai_ops null_dai_ops = {
2375 };
2376
2377 /**
2378 * snd_soc_register_dai - Register a DAI with the ASoC core
2379 *
2380 * @dai: DAI to register
2381 */
2382 int snd_soc_register_dai(struct snd_soc_dai *dai)
2383 {
2384 if (!dai->name)
2385 return -EINVAL;
2386
2387 /* The device should become mandatory over time */
2388 if (!dai->dev)
2389 printk(KERN_WARNING "No device for DAI %s\n", dai->name);
2390
2391 if (!dai->ops)
2392 dai->ops = &null_dai_ops;
2393
2394 INIT_LIST_HEAD(&dai->list);
2395
2396 mutex_lock(&client_mutex);
2397 list_add(&dai->list, &dai_list);
2398 snd_soc_instantiate_cards();
2399 mutex_unlock(&client_mutex);
2400
2401 pr_debug("Registered DAI '%s'\n", dai->name);
2402
2403 return 0;
2404 }
2405 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
2406
2407 /**
2408 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
2409 *
2410 * @dai: DAI to unregister
2411 */
2412 void snd_soc_unregister_dai(struct snd_soc_dai *dai)
2413 {
2414 mutex_lock(&client_mutex);
2415 list_del(&dai->list);
2416 mutex_unlock(&client_mutex);
2417
2418 pr_debug("Unregistered DAI '%s'\n", dai->name);
2419 }
2420 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
2421
2422 /**
2423 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
2424 *
2425 * @dai: Array of DAIs to register
2426 * @count: Number of DAIs
2427 */
2428 int snd_soc_register_dais(struct snd_soc_dai *dai, size_t count)
2429 {
2430 int i, ret;
2431
2432 for (i = 0; i < count; i++) {
2433 ret = snd_soc_register_dai(&dai[i]);
2434 if (ret != 0)
2435 goto err;
2436 }
2437
2438 return 0;
2439
2440 err:
2441 for (i--; i >= 0; i--)
2442 snd_soc_unregister_dai(&dai[i]);
2443
2444 return ret;
2445 }
2446 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
2447
2448 /**
2449 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
2450 *
2451 * @dai: Array of DAIs to unregister
2452 * @count: Number of DAIs
2453 */
2454 void snd_soc_unregister_dais(struct snd_soc_dai *dai, size_t count)
2455 {
2456 int i;
2457
2458 for (i = 0; i < count; i++)
2459 snd_soc_unregister_dai(&dai[i]);
2460 }
2461 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
2462
2463 /**
2464 * snd_soc_register_platform - Register a platform with the ASoC core
2465 *
2466 * @platform: platform to register
2467 */
2468 int snd_soc_register_platform(struct snd_soc_platform *platform)
2469 {
2470 if (!platform->name)
2471 return -EINVAL;
2472
2473 INIT_LIST_HEAD(&platform->list);
2474
2475 mutex_lock(&client_mutex);
2476 list_add(&platform->list, &platform_list);
2477 snd_soc_instantiate_cards();
2478 mutex_unlock(&client_mutex);
2479
2480 pr_debug("Registered platform '%s'\n", platform->name);
2481
2482 return 0;
2483 }
2484 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
2485
2486 /**
2487 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
2488 *
2489 * @platform: platform to unregister
2490 */
2491 void snd_soc_unregister_platform(struct snd_soc_platform *platform)
2492 {
2493 mutex_lock(&client_mutex);
2494 list_del(&platform->list);
2495 mutex_unlock(&client_mutex);
2496
2497 pr_debug("Unregistered platform '%s'\n", platform->name);
2498 }
2499 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
2500
2501 static u64 codec_format_map[] = {
2502 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
2503 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
2504 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
2505 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
2506 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
2507 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
2508 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
2509 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
2510 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
2511 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
2512 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
2513 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
2514 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
2515 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
2516 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
2517 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
2518 };
2519
2520 /* Fix up the DAI formats for endianness: codecs don't actually see
2521 * the endianness of the data but we're using the CPU format
2522 * definitions which do need to include endianness so we ensure that
2523 * codec DAIs always have both big and little endian variants set.
2524 */
2525 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
2526 {
2527 int i;
2528
2529 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
2530 if (stream->formats & codec_format_map[i])
2531 stream->formats |= codec_format_map[i];
2532 }
2533
2534 /**
2535 * snd_soc_register_codec - Register a codec with the ASoC core
2536 *
2537 * @codec: codec to register
2538 */
2539 int snd_soc_register_codec(struct snd_soc_codec *codec)
2540 {
2541 int i;
2542
2543 if (!codec->name)
2544 return -EINVAL;
2545
2546 /* The device should become mandatory over time */
2547 if (!codec->dev)
2548 printk(KERN_WARNING "No device for codec %s\n", codec->name);
2549
2550 INIT_LIST_HEAD(&codec->list);
2551
2552 for (i = 0; i < codec->num_dai; i++) {
2553 fixup_codec_formats(&codec->dai[i].playback);
2554 fixup_codec_formats(&codec->dai[i].capture);
2555 }
2556
2557 mutex_lock(&client_mutex);
2558 list_add(&codec->list, &codec_list);
2559 snd_soc_instantiate_cards();
2560 mutex_unlock(&client_mutex);
2561
2562 pr_debug("Registered codec '%s'\n", codec->name);
2563
2564 return 0;
2565 }
2566 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
2567
2568 /**
2569 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
2570 *
2571 * @codec: codec to unregister
2572 */
2573 void snd_soc_unregister_codec(struct snd_soc_codec *codec)
2574 {
2575 mutex_lock(&client_mutex);
2576 list_del(&codec->list);
2577 mutex_unlock(&client_mutex);
2578
2579 pr_debug("Unregistered codec '%s'\n", codec->name);
2580 }
2581 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
2582
2583 static int __init snd_soc_init(void)
2584 {
2585 #ifdef CONFIG_DEBUG_FS
2586 debugfs_root = debugfs_create_dir("asoc", NULL);
2587 if (IS_ERR(debugfs_root) || !debugfs_root) {
2588 printk(KERN_WARNING
2589 "ASoC: Failed to create debugfs directory\n");
2590 debugfs_root = NULL;
2591 }
2592 #endif
2593
2594 return platform_driver_register(&soc_driver);
2595 }
2596
2597 static void __exit snd_soc_exit(void)
2598 {
2599 #ifdef CONFIG_DEBUG_FS
2600 debugfs_remove_recursive(debugfs_root);
2601 #endif
2602 platform_driver_unregister(&soc_driver);
2603 }
2604
2605 module_init(snd_soc_init);
2606 module_exit(snd_soc_exit);
2607
2608 /* Module information */
2609 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
2610 MODULE_DESCRIPTION("ALSA SoC Core");
2611 MODULE_LICENSE("GPL");
2612 MODULE_ALIAS("platform:soc-audio");
This page took 0.083015 seconds and 6 git commands to generate.