Merge branch 'topic/asoc' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[deliverable/linux.git] / sound / soc / soc-core.c
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
6 * Copyright (C) 2010 Slimlogic Ltd.
7 * Copyright (C) 2010 Texas Instruments Inc.
8 *
9 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10 * with code, comments and ideas from :-
11 * Richard Purdie <richard@openedhand.com>
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 *
18 * TODO:
19 * o Add hw rules to enforce rates, etc.
20 * o More testing with other codecs/machines.
21 * o Add more codecs and platforms to ensure good API coverage.
22 * o Support TDM on PCM and I2S
23 */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h>
35 #include <sound/core.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/soc.h>
39 #include <sound/initval.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/asoc.h>
43
44 #define NAME_SIZE 32
45
46 static DEFINE_MUTEX(pcm_mutex);
47 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
48
49 #ifdef CONFIG_DEBUG_FS
50 static struct dentry *debugfs_root;
51 #endif
52
53 static DEFINE_MUTEX(client_mutex);
54 static LIST_HEAD(card_list);
55 static LIST_HEAD(dai_list);
56 static LIST_HEAD(platform_list);
57 static LIST_HEAD(codec_list);
58
59 static int snd_soc_register_card(struct snd_soc_card *card);
60 static int snd_soc_unregister_card(struct snd_soc_card *card);
61 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
62
63 /*
64 * This is a timeout to do a DAPM powerdown after a stream is closed().
65 * It can be used to eliminate pops between different playback streams, e.g.
66 * between two audio tracks.
67 */
68 static int pmdown_time = 5000;
69 module_param(pmdown_time, int, 0);
70 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
71
72 /*
73 * This function forces any delayed work to be queued and run.
74 */
75 static int run_delayed_work(struct delayed_work *dwork)
76 {
77 int ret;
78
79 /* cancel any work waiting to be queued. */
80 ret = cancel_delayed_work(dwork);
81
82 /* if there was any work waiting then we run it now and
83 * wait for it's completion */
84 if (ret) {
85 schedule_delayed_work(dwork, 0);
86 flush_scheduled_work();
87 }
88 return ret;
89 }
90
91 /* codec register dump */
92 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
93 {
94 int ret, i, step = 1, count = 0;
95
96 if (!codec->driver->reg_cache_size)
97 return 0;
98
99 if (codec->driver->reg_cache_step)
100 step = codec->driver->reg_cache_step;
101
102 count += sprintf(buf, "%s registers\n", codec->name);
103 for (i = 0; i < codec->driver->reg_cache_size; i += step) {
104 if (codec->driver->readable_register && !codec->driver->readable_register(i))
105 continue;
106
107 count += sprintf(buf + count, "%2x: ", i);
108 if (count >= PAGE_SIZE - 1)
109 break;
110
111 if (codec->driver->display_register) {
112 count += codec->driver->display_register(codec, buf + count,
113 PAGE_SIZE - count, i);
114 } else {
115 /* If the read fails it's almost certainly due to
116 * the register being volatile and the device being
117 * powered off.
118 */
119 ret = codec->driver->read(codec, i);
120 if (ret >= 0)
121 count += snprintf(buf + count,
122 PAGE_SIZE - count,
123 "%4x", ret);
124 else
125 count += snprintf(buf + count,
126 PAGE_SIZE - count,
127 "<no data: %d>", ret);
128 }
129
130 if (count >= PAGE_SIZE - 1)
131 break;
132
133 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
134 if (count >= PAGE_SIZE - 1)
135 break;
136 }
137
138 /* Truncate count; min() would cause a warning */
139 if (count >= PAGE_SIZE)
140 count = PAGE_SIZE - 1;
141
142 return count;
143 }
144 static ssize_t codec_reg_show(struct device *dev,
145 struct device_attribute *attr, char *buf)
146 {
147 struct snd_soc_pcm_runtime *rtd =
148 container_of(dev, struct snd_soc_pcm_runtime, dev);
149
150 return soc_codec_reg_show(rtd->codec, buf);
151 }
152
153 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
154
155 static ssize_t pmdown_time_show(struct device *dev,
156 struct device_attribute *attr, char *buf)
157 {
158 struct snd_soc_pcm_runtime *rtd =
159 container_of(dev, struct snd_soc_pcm_runtime, dev);
160
161 return sprintf(buf, "%ld\n", rtd->pmdown_time);
162 }
163
164 static ssize_t pmdown_time_set(struct device *dev,
165 struct device_attribute *attr,
166 const char *buf, size_t count)
167 {
168 struct snd_soc_pcm_runtime *rtd =
169 container_of(dev, struct snd_soc_pcm_runtime, dev);
170 int ret;
171
172 ret = strict_strtol(buf, 10, &rtd->pmdown_time);
173 if (ret)
174 return ret;
175
176 return count;
177 }
178
179 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
180
181 #ifdef CONFIG_DEBUG_FS
182 static int codec_reg_open_file(struct inode *inode, struct file *file)
183 {
184 file->private_data = inode->i_private;
185 return 0;
186 }
187
188 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
189 size_t count, loff_t *ppos)
190 {
191 ssize_t ret;
192 struct snd_soc_codec *codec = file->private_data;
193 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
194 if (!buf)
195 return -ENOMEM;
196 ret = soc_codec_reg_show(codec, buf);
197 if (ret >= 0)
198 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
199 kfree(buf);
200 return ret;
201 }
202
203 static ssize_t codec_reg_write_file(struct file *file,
204 const char __user *user_buf, size_t count, loff_t *ppos)
205 {
206 char buf[32];
207 int buf_size;
208 char *start = buf;
209 unsigned long reg, value;
210 int step = 1;
211 struct snd_soc_codec *codec = file->private_data;
212
213 buf_size = min(count, (sizeof(buf)-1));
214 if (copy_from_user(buf, user_buf, buf_size))
215 return -EFAULT;
216 buf[buf_size] = 0;
217
218 if (codec->driver->reg_cache_step)
219 step = codec->driver->reg_cache_step;
220
221 while (*start == ' ')
222 start++;
223 reg = simple_strtoul(start, &start, 16);
224 if ((reg >= codec->driver->reg_cache_size) || (reg % step))
225 return -EINVAL;
226 while (*start == ' ')
227 start++;
228 if (strict_strtoul(start, 16, &value))
229 return -EINVAL;
230 codec->driver->write(codec, reg, value);
231 return buf_size;
232 }
233
234 static const struct file_operations codec_reg_fops = {
235 .open = codec_reg_open_file,
236 .read = codec_reg_read_file,
237 .write = codec_reg_write_file,
238 .llseek = default_llseek,
239 };
240
241 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
242 {
243 struct dentry *debugfs_card_root = codec->card->debugfs_card_root;
244
245 codec->debugfs_codec_root = debugfs_create_dir(codec->name,
246 debugfs_card_root);
247 if (!codec->debugfs_codec_root) {
248 printk(KERN_WARNING
249 "ASoC: Failed to create codec debugfs directory\n");
250 return;
251 }
252
253 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
254 codec->debugfs_codec_root,
255 codec, &codec_reg_fops);
256 if (!codec->debugfs_reg)
257 printk(KERN_WARNING
258 "ASoC: Failed to create codec register debugfs file\n");
259
260 codec->dapm.debugfs_dapm = debugfs_create_dir("dapm",
261 codec->debugfs_codec_root);
262 if (!codec->dapm.debugfs_dapm)
263 printk(KERN_WARNING
264 "Failed to create DAPM debugfs directory\n");
265
266 snd_soc_dapm_debugfs_init(&codec->dapm);
267 }
268
269 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
270 {
271 debugfs_remove_recursive(codec->debugfs_codec_root);
272 }
273
274 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
275 size_t count, loff_t *ppos)
276 {
277 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
278 ssize_t len, ret = 0;
279 struct snd_soc_codec *codec;
280
281 if (!buf)
282 return -ENOMEM;
283
284 list_for_each_entry(codec, &codec_list, list) {
285 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
286 codec->name);
287 if (len >= 0)
288 ret += len;
289 if (ret > PAGE_SIZE) {
290 ret = PAGE_SIZE;
291 break;
292 }
293 }
294
295 if (ret >= 0)
296 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
297
298 kfree(buf);
299
300 return ret;
301 }
302
303 static const struct file_operations codec_list_fops = {
304 .read = codec_list_read_file,
305 .llseek = default_llseek,/* read accesses f_pos */
306 };
307
308 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
309 size_t count, loff_t *ppos)
310 {
311 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
312 ssize_t len, ret = 0;
313 struct snd_soc_dai *dai;
314
315 if (!buf)
316 return -ENOMEM;
317
318 list_for_each_entry(dai, &dai_list, list) {
319 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
320 if (len >= 0)
321 ret += len;
322 if (ret > PAGE_SIZE) {
323 ret = PAGE_SIZE;
324 break;
325 }
326 }
327
328 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
329
330 kfree(buf);
331
332 return ret;
333 }
334
335 static const struct file_operations dai_list_fops = {
336 .read = dai_list_read_file,
337 .llseek = default_llseek,/* read accesses f_pos */
338 };
339
340 static ssize_t platform_list_read_file(struct file *file,
341 char __user *user_buf,
342 size_t count, loff_t *ppos)
343 {
344 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
345 ssize_t len, ret = 0;
346 struct snd_soc_platform *platform;
347
348 if (!buf)
349 return -ENOMEM;
350
351 list_for_each_entry(platform, &platform_list, list) {
352 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
353 platform->name);
354 if (len >= 0)
355 ret += len;
356 if (ret > PAGE_SIZE) {
357 ret = PAGE_SIZE;
358 break;
359 }
360 }
361
362 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
363
364 kfree(buf);
365
366 return ret;
367 }
368
369 static const struct file_operations platform_list_fops = {
370 .read = platform_list_read_file,
371 .llseek = default_llseek,/* read accesses f_pos */
372 };
373
374 static void soc_init_card_debugfs(struct snd_soc_card *card)
375 {
376 card->debugfs_card_root = debugfs_create_dir(card->name,
377 debugfs_root);
378 if (!card->debugfs_card_root) {
379 dev_warn(card->dev,
380 "ASoC: Failed to create codec debugfs directory\n");
381 return;
382 }
383
384 card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
385 card->debugfs_card_root,
386 &card->pop_time);
387 if (!card->debugfs_pop_time)
388 dev_warn(card->dev,
389 "Failed to create pop time debugfs file\n");
390 }
391
392 static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
393 {
394 debugfs_remove_recursive(card->debugfs_card_root);
395 }
396
397 #else
398
399 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
400 {
401 }
402
403 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
404 {
405 }
406
407 static inline void soc_init_card_debugfs(struct snd_soc_card *card)
408 {
409 }
410
411 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
412 {
413 }
414 #endif
415
416 #ifdef CONFIG_SND_SOC_AC97_BUS
417 /* unregister ac97 codec */
418 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
419 {
420 if (codec->ac97->dev.bus)
421 device_unregister(&codec->ac97->dev);
422 return 0;
423 }
424
425 /* stop no dev release warning */
426 static void soc_ac97_device_release(struct device *dev){}
427
428 /* register ac97 codec to bus */
429 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
430 {
431 int err;
432
433 codec->ac97->dev.bus = &ac97_bus_type;
434 codec->ac97->dev.parent = codec->card->dev;
435 codec->ac97->dev.release = soc_ac97_device_release;
436
437 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
438 codec->card->snd_card->number, 0, codec->name);
439 err = device_register(&codec->ac97->dev);
440 if (err < 0) {
441 snd_printk(KERN_ERR "Can't register ac97 bus\n");
442 codec->ac97->dev.bus = NULL;
443 return err;
444 }
445 return 0;
446 }
447 #endif
448
449 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
450 {
451 struct snd_soc_pcm_runtime *rtd = substream->private_data;
452 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
453 struct snd_soc_dai *codec_dai = rtd->codec_dai;
454 int ret;
455
456 if (codec_dai->driver->symmetric_rates || cpu_dai->driver->symmetric_rates ||
457 rtd->dai_link->symmetric_rates) {
458 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n",
459 rtd->rate);
460
461 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
462 SNDRV_PCM_HW_PARAM_RATE,
463 rtd->rate,
464 rtd->rate);
465 if (ret < 0) {
466 dev_err(&rtd->dev,
467 "Unable to apply rate symmetry constraint: %d\n", ret);
468 return ret;
469 }
470 }
471
472 return 0;
473 }
474
475 /*
476 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
477 * then initialized and any private data can be allocated. This also calls
478 * startup for the cpu DAI, platform, machine and codec DAI.
479 */
480 static int soc_pcm_open(struct snd_pcm_substream *substream)
481 {
482 struct snd_soc_pcm_runtime *rtd = substream->private_data;
483 struct snd_pcm_runtime *runtime = substream->runtime;
484 struct snd_soc_platform *platform = rtd->platform;
485 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
486 struct snd_soc_dai *codec_dai = rtd->codec_dai;
487 struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
488 struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
489 int ret = 0;
490
491 mutex_lock(&pcm_mutex);
492
493 /* startup the audio subsystem */
494 if (cpu_dai->driver->ops->startup) {
495 ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
496 if (ret < 0) {
497 printk(KERN_ERR "asoc: can't open interface %s\n",
498 cpu_dai->name);
499 goto out;
500 }
501 }
502
503 if (platform->driver->ops->open) {
504 ret = platform->driver->ops->open(substream);
505 if (ret < 0) {
506 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
507 goto platform_err;
508 }
509 }
510
511 if (codec_dai->driver->ops->startup) {
512 ret = codec_dai->driver->ops->startup(substream, codec_dai);
513 if (ret < 0) {
514 printk(KERN_ERR "asoc: can't open codec %s\n",
515 codec_dai->name);
516 goto codec_dai_err;
517 }
518 }
519
520 if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
521 ret = rtd->dai_link->ops->startup(substream);
522 if (ret < 0) {
523 printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
524 goto machine_err;
525 }
526 }
527
528 /* Check that the codec and cpu DAI's are compatible */
529 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
530 runtime->hw.rate_min =
531 max(codec_dai_drv->playback.rate_min,
532 cpu_dai_drv->playback.rate_min);
533 runtime->hw.rate_max =
534 min(codec_dai_drv->playback.rate_max,
535 cpu_dai_drv->playback.rate_max);
536 runtime->hw.channels_min =
537 max(codec_dai_drv->playback.channels_min,
538 cpu_dai_drv->playback.channels_min);
539 runtime->hw.channels_max =
540 min(codec_dai_drv->playback.channels_max,
541 cpu_dai_drv->playback.channels_max);
542 runtime->hw.formats =
543 codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
544 runtime->hw.rates =
545 codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
546 if (codec_dai_drv->playback.rates
547 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
548 runtime->hw.rates |= cpu_dai_drv->playback.rates;
549 if (cpu_dai_drv->playback.rates
550 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
551 runtime->hw.rates |= codec_dai_drv->playback.rates;
552 } else {
553 runtime->hw.rate_min =
554 max(codec_dai_drv->capture.rate_min,
555 cpu_dai_drv->capture.rate_min);
556 runtime->hw.rate_max =
557 min(codec_dai_drv->capture.rate_max,
558 cpu_dai_drv->capture.rate_max);
559 runtime->hw.channels_min =
560 max(codec_dai_drv->capture.channels_min,
561 cpu_dai_drv->capture.channels_min);
562 runtime->hw.channels_max =
563 min(codec_dai_drv->capture.channels_max,
564 cpu_dai_drv->capture.channels_max);
565 runtime->hw.formats =
566 codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
567 runtime->hw.rates =
568 codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
569 if (codec_dai_drv->capture.rates
570 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
571 runtime->hw.rates |= cpu_dai_drv->capture.rates;
572 if (cpu_dai_drv->capture.rates
573 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
574 runtime->hw.rates |= codec_dai_drv->capture.rates;
575 }
576
577 snd_pcm_limit_hw_rates(runtime);
578 if (!runtime->hw.rates) {
579 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
580 codec_dai->name, cpu_dai->name);
581 goto config_err;
582 }
583 if (!runtime->hw.formats) {
584 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
585 codec_dai->name, cpu_dai->name);
586 goto config_err;
587 }
588 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
589 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
590 codec_dai->name, cpu_dai->name);
591 goto config_err;
592 }
593
594 /* Symmetry only applies if we've already got an active stream. */
595 if (cpu_dai->active || codec_dai->active) {
596 ret = soc_pcm_apply_symmetry(substream);
597 if (ret != 0)
598 goto config_err;
599 }
600
601 pr_debug("asoc: %s <-> %s info:\n",
602 codec_dai->name, cpu_dai->name);
603 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
604 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
605 runtime->hw.channels_max);
606 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
607 runtime->hw.rate_max);
608
609 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
610 cpu_dai->playback_active++;
611 codec_dai->playback_active++;
612 } else {
613 cpu_dai->capture_active++;
614 codec_dai->capture_active++;
615 }
616 cpu_dai->active++;
617 codec_dai->active++;
618 rtd->codec->active++;
619 mutex_unlock(&pcm_mutex);
620 return 0;
621
622 config_err:
623 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
624 rtd->dai_link->ops->shutdown(substream);
625
626 machine_err:
627 if (codec_dai->driver->ops->shutdown)
628 codec_dai->driver->ops->shutdown(substream, codec_dai);
629
630 codec_dai_err:
631 if (platform->driver->ops->close)
632 platform->driver->ops->close(substream);
633
634 platform_err:
635 if (cpu_dai->driver->ops->shutdown)
636 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
637 out:
638 mutex_unlock(&pcm_mutex);
639 return ret;
640 }
641
642 /*
643 * Power down the audio subsystem pmdown_time msecs after close is called.
644 * This is to ensure there are no pops or clicks in between any music tracks
645 * due to DAPM power cycling.
646 */
647 static void close_delayed_work(struct work_struct *work)
648 {
649 struct snd_soc_pcm_runtime *rtd =
650 container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
651 struct snd_soc_dai *codec_dai = rtd->codec_dai;
652
653 mutex_lock(&pcm_mutex);
654
655 pr_debug("pop wq checking: %s status: %s waiting: %s\n",
656 codec_dai->driver->playback.stream_name,
657 codec_dai->playback_active ? "active" : "inactive",
658 codec_dai->pop_wait ? "yes" : "no");
659
660 /* are we waiting on this codec DAI stream */
661 if (codec_dai->pop_wait == 1) {
662 codec_dai->pop_wait = 0;
663 snd_soc_dapm_stream_event(rtd,
664 codec_dai->driver->playback.stream_name,
665 SND_SOC_DAPM_STREAM_STOP);
666 }
667
668 mutex_unlock(&pcm_mutex);
669 }
670
671 /*
672 * Called by ALSA when a PCM substream is closed. Private data can be
673 * freed here. The cpu DAI, codec DAI, machine and platform are also
674 * shutdown.
675 */
676 static int soc_codec_close(struct snd_pcm_substream *substream)
677 {
678 struct snd_soc_pcm_runtime *rtd = substream->private_data;
679 struct snd_soc_platform *platform = rtd->platform;
680 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
681 struct snd_soc_dai *codec_dai = rtd->codec_dai;
682 struct snd_soc_codec *codec = rtd->codec;
683
684 mutex_lock(&pcm_mutex);
685
686 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
687 cpu_dai->playback_active--;
688 codec_dai->playback_active--;
689 } else {
690 cpu_dai->capture_active--;
691 codec_dai->capture_active--;
692 }
693
694 cpu_dai->active--;
695 codec_dai->active--;
696 codec->active--;
697
698 /* Muting the DAC suppresses artifacts caused during digital
699 * shutdown, for example from stopping clocks.
700 */
701 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
702 snd_soc_dai_digital_mute(codec_dai, 1);
703
704 if (cpu_dai->driver->ops->shutdown)
705 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
706
707 if (codec_dai->driver->ops->shutdown)
708 codec_dai->driver->ops->shutdown(substream, codec_dai);
709
710 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
711 rtd->dai_link->ops->shutdown(substream);
712
713 if (platform->driver->ops->close)
714 platform->driver->ops->close(substream);
715 cpu_dai->runtime = NULL;
716
717 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
718 /* start delayed pop wq here for playback streams */
719 codec_dai->pop_wait = 1;
720 schedule_delayed_work(&rtd->delayed_work,
721 msecs_to_jiffies(rtd->pmdown_time));
722 } else {
723 /* capture streams can be powered down now */
724 snd_soc_dapm_stream_event(rtd,
725 codec_dai->driver->capture.stream_name,
726 SND_SOC_DAPM_STREAM_STOP);
727 }
728
729 mutex_unlock(&pcm_mutex);
730 return 0;
731 }
732
733 /*
734 * Called by ALSA when the PCM substream is prepared, can set format, sample
735 * rate, etc. This function is non atomic and can be called multiple times,
736 * it can refer to the runtime info.
737 */
738 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
739 {
740 struct snd_soc_pcm_runtime *rtd = substream->private_data;
741 struct snd_soc_platform *platform = rtd->platform;
742 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
743 struct snd_soc_dai *codec_dai = rtd->codec_dai;
744 int ret = 0;
745
746 mutex_lock(&pcm_mutex);
747
748 if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
749 ret = rtd->dai_link->ops->prepare(substream);
750 if (ret < 0) {
751 printk(KERN_ERR "asoc: machine prepare error\n");
752 goto out;
753 }
754 }
755
756 if (platform->driver->ops->prepare) {
757 ret = platform->driver->ops->prepare(substream);
758 if (ret < 0) {
759 printk(KERN_ERR "asoc: platform prepare error\n");
760 goto out;
761 }
762 }
763
764 if (codec_dai->driver->ops->prepare) {
765 ret = codec_dai->driver->ops->prepare(substream, codec_dai);
766 if (ret < 0) {
767 printk(KERN_ERR "asoc: codec DAI prepare error\n");
768 goto out;
769 }
770 }
771
772 if (cpu_dai->driver->ops->prepare) {
773 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
774 if (ret < 0) {
775 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
776 goto out;
777 }
778 }
779
780 /* cancel any delayed stream shutdown that is pending */
781 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
782 codec_dai->pop_wait) {
783 codec_dai->pop_wait = 0;
784 cancel_delayed_work(&rtd->delayed_work);
785 }
786
787 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
788 snd_soc_dapm_stream_event(rtd,
789 codec_dai->driver->playback.stream_name,
790 SND_SOC_DAPM_STREAM_START);
791 else
792 snd_soc_dapm_stream_event(rtd,
793 codec_dai->driver->capture.stream_name,
794 SND_SOC_DAPM_STREAM_START);
795
796 snd_soc_dai_digital_mute(codec_dai, 0);
797
798 out:
799 mutex_unlock(&pcm_mutex);
800 return ret;
801 }
802
803 /*
804 * Called by ALSA when the hardware params are set by application. This
805 * function can also be called multiple times and can allocate buffers
806 * (using snd_pcm_lib_* ). It's non-atomic.
807 */
808 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
809 struct snd_pcm_hw_params *params)
810 {
811 struct snd_soc_pcm_runtime *rtd = substream->private_data;
812 struct snd_soc_platform *platform = rtd->platform;
813 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
814 struct snd_soc_dai *codec_dai = rtd->codec_dai;
815 int ret = 0;
816
817 mutex_lock(&pcm_mutex);
818
819 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
820 ret = rtd->dai_link->ops->hw_params(substream, params);
821 if (ret < 0) {
822 printk(KERN_ERR "asoc: machine hw_params failed\n");
823 goto out;
824 }
825 }
826
827 if (codec_dai->driver->ops->hw_params) {
828 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
829 if (ret < 0) {
830 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
831 codec_dai->name);
832 goto codec_err;
833 }
834 }
835
836 if (cpu_dai->driver->ops->hw_params) {
837 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
838 if (ret < 0) {
839 printk(KERN_ERR "asoc: interface %s hw params failed\n",
840 cpu_dai->name);
841 goto interface_err;
842 }
843 }
844
845 if (platform->driver->ops->hw_params) {
846 ret = platform->driver->ops->hw_params(substream, params);
847 if (ret < 0) {
848 printk(KERN_ERR "asoc: platform %s hw params failed\n",
849 platform->name);
850 goto platform_err;
851 }
852 }
853
854 rtd->rate = params_rate(params);
855
856 out:
857 mutex_unlock(&pcm_mutex);
858 return ret;
859
860 platform_err:
861 if (cpu_dai->driver->ops->hw_free)
862 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
863
864 interface_err:
865 if (codec_dai->driver->ops->hw_free)
866 codec_dai->driver->ops->hw_free(substream, codec_dai);
867
868 codec_err:
869 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
870 rtd->dai_link->ops->hw_free(substream);
871
872 mutex_unlock(&pcm_mutex);
873 return ret;
874 }
875
876 /*
877 * Free's resources allocated by hw_params, can be called multiple times
878 */
879 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
880 {
881 struct snd_soc_pcm_runtime *rtd = substream->private_data;
882 struct snd_soc_platform *platform = rtd->platform;
883 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
884 struct snd_soc_dai *codec_dai = rtd->codec_dai;
885 struct snd_soc_codec *codec = rtd->codec;
886
887 mutex_lock(&pcm_mutex);
888
889 /* apply codec digital mute */
890 if (!codec->active)
891 snd_soc_dai_digital_mute(codec_dai, 1);
892
893 /* free any machine hw params */
894 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
895 rtd->dai_link->ops->hw_free(substream);
896
897 /* free any DMA resources */
898 if (platform->driver->ops->hw_free)
899 platform->driver->ops->hw_free(substream);
900
901 /* now free hw params for the DAI's */
902 if (codec_dai->driver->ops->hw_free)
903 codec_dai->driver->ops->hw_free(substream, codec_dai);
904
905 if (cpu_dai->driver->ops->hw_free)
906 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
907
908 mutex_unlock(&pcm_mutex);
909 return 0;
910 }
911
912 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
913 {
914 struct snd_soc_pcm_runtime *rtd = substream->private_data;
915 struct snd_soc_platform *platform = rtd->platform;
916 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
917 struct snd_soc_dai *codec_dai = rtd->codec_dai;
918 int ret;
919
920 if (codec_dai->driver->ops->trigger) {
921 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
922 if (ret < 0)
923 return ret;
924 }
925
926 if (platform->driver->ops->trigger) {
927 ret = platform->driver->ops->trigger(substream, cmd);
928 if (ret < 0)
929 return ret;
930 }
931
932 if (cpu_dai->driver->ops->trigger) {
933 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
934 if (ret < 0)
935 return ret;
936 }
937 return 0;
938 }
939
940 /*
941 * soc level wrapper for pointer callback
942 * If cpu_dai, codec_dai, platform driver has the delay callback, than
943 * the runtime->delay will be updated accordingly.
944 */
945 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
946 {
947 struct snd_soc_pcm_runtime *rtd = substream->private_data;
948 struct snd_soc_platform *platform = rtd->platform;
949 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
950 struct snd_soc_dai *codec_dai = rtd->codec_dai;
951 struct snd_pcm_runtime *runtime = substream->runtime;
952 snd_pcm_uframes_t offset = 0;
953 snd_pcm_sframes_t delay = 0;
954
955 if (platform->driver->ops->pointer)
956 offset = platform->driver->ops->pointer(substream);
957
958 if (cpu_dai->driver->ops->delay)
959 delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
960
961 if (codec_dai->driver->ops->delay)
962 delay += codec_dai->driver->ops->delay(substream, codec_dai);
963
964 if (platform->driver->delay)
965 delay += platform->driver->delay(substream, codec_dai);
966
967 runtime->delay = delay;
968
969 return offset;
970 }
971
972 /* ASoC PCM operations */
973 static struct snd_pcm_ops soc_pcm_ops = {
974 .open = soc_pcm_open,
975 .close = soc_codec_close,
976 .hw_params = soc_pcm_hw_params,
977 .hw_free = soc_pcm_hw_free,
978 .prepare = soc_pcm_prepare,
979 .trigger = soc_pcm_trigger,
980 .pointer = soc_pcm_pointer,
981 };
982
983 #ifdef CONFIG_PM
984 /* powers down audio subsystem for suspend */
985 static int soc_suspend(struct device *dev)
986 {
987 struct platform_device *pdev = to_platform_device(dev);
988 struct snd_soc_card *card = platform_get_drvdata(pdev);
989 int i;
990
991 /* If the initialization of this soc device failed, there is no codec
992 * associated with it. Just bail out in this case.
993 */
994 if (list_empty(&card->codec_dev_list))
995 return 0;
996
997 /* Due to the resume being scheduled into a workqueue we could
998 * suspend before that's finished - wait for it to complete.
999 */
1000 snd_power_lock(card->snd_card);
1001 snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
1002 snd_power_unlock(card->snd_card);
1003
1004 /* we're going to block userspace touching us until resume completes */
1005 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
1006
1007 /* mute any active DAC's */
1008 for (i = 0; i < card->num_rtd; i++) {
1009 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1010 struct snd_soc_dai_driver *drv = dai->driver;
1011
1012 if (card->rtd[i].dai_link->ignore_suspend)
1013 continue;
1014
1015 if (drv->ops->digital_mute && dai->playback_active)
1016 drv->ops->digital_mute(dai, 1);
1017 }
1018
1019 /* suspend all pcms */
1020 for (i = 0; i < card->num_rtd; i++) {
1021 if (card->rtd[i].dai_link->ignore_suspend)
1022 continue;
1023
1024 snd_pcm_suspend_all(card->rtd[i].pcm);
1025 }
1026
1027 if (card->suspend_pre)
1028 card->suspend_pre(pdev, PMSG_SUSPEND);
1029
1030 for (i = 0; i < card->num_rtd; i++) {
1031 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1032 struct snd_soc_platform *platform = card->rtd[i].platform;
1033
1034 if (card->rtd[i].dai_link->ignore_suspend)
1035 continue;
1036
1037 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
1038 cpu_dai->driver->suspend(cpu_dai);
1039 if (platform->driver->suspend && !platform->suspended) {
1040 platform->driver->suspend(cpu_dai);
1041 platform->suspended = 1;
1042 }
1043 }
1044
1045 /* close any waiting streams and save state */
1046 for (i = 0; i < card->num_rtd; i++) {
1047 run_delayed_work(&card->rtd[i].delayed_work);
1048 card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level;
1049 }
1050
1051 for (i = 0; i < card->num_rtd; i++) {
1052 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1053
1054 if (card->rtd[i].dai_link->ignore_suspend)
1055 continue;
1056
1057 if (driver->playback.stream_name != NULL)
1058 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1059 SND_SOC_DAPM_STREAM_SUSPEND);
1060
1061 if (driver->capture.stream_name != NULL)
1062 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1063 SND_SOC_DAPM_STREAM_SUSPEND);
1064 }
1065
1066 /* suspend all CODECs */
1067 for (i = 0; i < card->num_rtd; i++) {
1068 struct snd_soc_codec *codec = card->rtd[i].codec;
1069 /* If there are paths active then the CODEC will be held with
1070 * bias _ON and should not be suspended. */
1071 if (!codec->suspended && codec->driver->suspend) {
1072 switch (codec->dapm.bias_level) {
1073 case SND_SOC_BIAS_STANDBY:
1074 case SND_SOC_BIAS_OFF:
1075 codec->driver->suspend(codec, PMSG_SUSPEND);
1076 codec->suspended = 1;
1077 break;
1078 default:
1079 dev_dbg(codec->dev, "CODEC is on over suspend\n");
1080 break;
1081 }
1082 }
1083 }
1084
1085 for (i = 0; i < card->num_rtd; i++) {
1086 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1087
1088 if (card->rtd[i].dai_link->ignore_suspend)
1089 continue;
1090
1091 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
1092 cpu_dai->driver->suspend(cpu_dai);
1093 }
1094
1095 if (card->suspend_post)
1096 card->suspend_post(pdev, PMSG_SUSPEND);
1097
1098 return 0;
1099 }
1100
1101 /* deferred resume work, so resume can complete before we finished
1102 * setting our codec back up, which can be very slow on I2C
1103 */
1104 static void soc_resume_deferred(struct work_struct *work)
1105 {
1106 struct snd_soc_card *card =
1107 container_of(work, struct snd_soc_card, deferred_resume_work);
1108 struct platform_device *pdev = to_platform_device(card->dev);
1109 int i;
1110
1111 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
1112 * so userspace apps are blocked from touching us
1113 */
1114
1115 dev_dbg(card->dev, "starting resume work\n");
1116
1117 /* Bring us up into D2 so that DAPM starts enabling things */
1118 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
1119
1120 if (card->resume_pre)
1121 card->resume_pre(pdev);
1122
1123 /* resume AC97 DAIs */
1124 for (i = 0; i < card->num_rtd; i++) {
1125 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1126
1127 if (card->rtd[i].dai_link->ignore_suspend)
1128 continue;
1129
1130 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
1131 cpu_dai->driver->resume(cpu_dai);
1132 }
1133
1134 for (i = 0; i < card->num_rtd; i++) {
1135 struct snd_soc_codec *codec = card->rtd[i].codec;
1136 /* If the CODEC was idle over suspend then it will have been
1137 * left with bias OFF or STANDBY and suspended so we must now
1138 * resume. Otherwise the suspend was suppressed.
1139 */
1140 if (codec->driver->resume && codec->suspended) {
1141 switch (codec->dapm.bias_level) {
1142 case SND_SOC_BIAS_STANDBY:
1143 case SND_SOC_BIAS_OFF:
1144 codec->driver->resume(codec);
1145 codec->suspended = 0;
1146 break;
1147 default:
1148 dev_dbg(codec->dev, "CODEC was on over suspend\n");
1149 break;
1150 }
1151 }
1152 }
1153
1154 for (i = 0; i < card->num_rtd; i++) {
1155 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1156
1157 if (card->rtd[i].dai_link->ignore_suspend)
1158 continue;
1159
1160 if (driver->playback.stream_name != NULL)
1161 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1162 SND_SOC_DAPM_STREAM_RESUME);
1163
1164 if (driver->capture.stream_name != NULL)
1165 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1166 SND_SOC_DAPM_STREAM_RESUME);
1167 }
1168
1169 /* unmute any active DACs */
1170 for (i = 0; i < card->num_rtd; i++) {
1171 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1172 struct snd_soc_dai_driver *drv = dai->driver;
1173
1174 if (card->rtd[i].dai_link->ignore_suspend)
1175 continue;
1176
1177 if (drv->ops->digital_mute && dai->playback_active)
1178 drv->ops->digital_mute(dai, 0);
1179 }
1180
1181 for (i = 0; i < card->num_rtd; i++) {
1182 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1183 struct snd_soc_platform *platform = card->rtd[i].platform;
1184
1185 if (card->rtd[i].dai_link->ignore_suspend)
1186 continue;
1187
1188 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1189 cpu_dai->driver->resume(cpu_dai);
1190 if (platform->driver->resume && platform->suspended) {
1191 platform->driver->resume(cpu_dai);
1192 platform->suspended = 0;
1193 }
1194 }
1195
1196 if (card->resume_post)
1197 card->resume_post(pdev);
1198
1199 dev_dbg(card->dev, "resume work completed\n");
1200
1201 /* userspace can access us now we are back as we were before */
1202 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1203 }
1204
1205 /* powers up audio subsystem after a suspend */
1206 static int soc_resume(struct device *dev)
1207 {
1208 struct platform_device *pdev = to_platform_device(dev);
1209 struct snd_soc_card *card = platform_get_drvdata(pdev);
1210 int i;
1211
1212 /* AC97 devices might have other drivers hanging off them so
1213 * need to resume immediately. Other drivers don't have that
1214 * problem and may take a substantial amount of time to resume
1215 * due to I/O costs and anti-pop so handle them out of line.
1216 */
1217 for (i = 0; i < card->num_rtd; i++) {
1218 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1219 if (cpu_dai->driver->ac97_control) {
1220 dev_dbg(dev, "Resuming AC97 immediately\n");
1221 soc_resume_deferred(&card->deferred_resume_work);
1222 } else {
1223 dev_dbg(dev, "Scheduling resume work\n");
1224 if (!schedule_work(&card->deferred_resume_work))
1225 dev_err(dev, "resume work item may be lost\n");
1226 }
1227 }
1228
1229 return 0;
1230 }
1231 #else
1232 #define soc_suspend NULL
1233 #define soc_resume NULL
1234 #endif
1235
1236 static struct snd_soc_dai_ops null_dai_ops = {
1237 };
1238
1239 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1240 {
1241 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1242 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1243 struct snd_soc_codec *codec;
1244 struct snd_soc_platform *platform;
1245 struct snd_soc_dai *codec_dai, *cpu_dai;
1246
1247 if (rtd->complete)
1248 return 1;
1249 dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1250
1251 /* do we already have the CPU DAI for this link ? */
1252 if (rtd->cpu_dai) {
1253 goto find_codec;
1254 }
1255 /* no, then find CPU DAI from registered DAIs*/
1256 list_for_each_entry(cpu_dai, &dai_list, list) {
1257 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1258
1259 if (!try_module_get(cpu_dai->dev->driver->owner))
1260 return -ENODEV;
1261
1262 rtd->cpu_dai = cpu_dai;
1263 goto find_codec;
1264 }
1265 }
1266 dev_dbg(card->dev, "CPU DAI %s not registered\n",
1267 dai_link->cpu_dai_name);
1268
1269 find_codec:
1270 /* do we already have the CODEC for this link ? */
1271 if (rtd->codec) {
1272 goto find_platform;
1273 }
1274
1275 /* no, then find CODEC from registered CODECs*/
1276 list_for_each_entry(codec, &codec_list, list) {
1277 if (!strcmp(codec->name, dai_link->codec_name)) {
1278 rtd->codec = codec;
1279
1280 if (!try_module_get(codec->dev->driver->owner))
1281 return -ENODEV;
1282
1283 /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1284 list_for_each_entry(codec_dai, &dai_list, list) {
1285 if (codec->dev == codec_dai->dev &&
1286 !strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1287 rtd->codec_dai = codec_dai;
1288 goto find_platform;
1289 }
1290 }
1291 dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1292 dai_link->codec_dai_name);
1293
1294 goto find_platform;
1295 }
1296 }
1297 dev_dbg(card->dev, "CODEC %s not registered\n",
1298 dai_link->codec_name);
1299
1300 find_platform:
1301 /* do we already have the CODEC DAI for this link ? */
1302 if (rtd->platform) {
1303 goto out;
1304 }
1305 /* no, then find CPU DAI from registered DAIs*/
1306 list_for_each_entry(platform, &platform_list, list) {
1307 if (!strcmp(platform->name, dai_link->platform_name)) {
1308
1309 if (!try_module_get(platform->dev->driver->owner))
1310 return -ENODEV;
1311
1312 rtd->platform = platform;
1313 goto out;
1314 }
1315 }
1316
1317 dev_dbg(card->dev, "platform %s not registered\n",
1318 dai_link->platform_name);
1319 return 0;
1320
1321 out:
1322 /* mark rtd as complete if we found all 4 of our client devices */
1323 if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1324 rtd->complete = 1;
1325 card->num_rtd++;
1326 }
1327 return 1;
1328 }
1329
1330 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1331 {
1332 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1333 struct snd_soc_codec *codec = rtd->codec;
1334 struct snd_soc_platform *platform = rtd->platform;
1335 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1336 int err;
1337
1338 /* unregister the rtd device */
1339 if (rtd->dev_registered) {
1340 device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1341 device_unregister(&rtd->dev);
1342 rtd->dev_registered = 0;
1343 }
1344
1345 /* remove the CODEC DAI */
1346 if (codec_dai && codec_dai->probed) {
1347 if (codec_dai->driver->remove) {
1348 err = codec_dai->driver->remove(codec_dai);
1349 if (err < 0)
1350 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1351 }
1352 codec_dai->probed = 0;
1353 list_del(&codec_dai->card_list);
1354 }
1355
1356 /* remove the platform */
1357 if (platform && platform->probed) {
1358 if (platform->driver->remove) {
1359 err = platform->driver->remove(platform);
1360 if (err < 0)
1361 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1362 }
1363 platform->probed = 0;
1364 list_del(&platform->card_list);
1365 module_put(platform->dev->driver->owner);
1366 }
1367
1368 /* remove the CODEC */
1369 if (codec && codec->probed) {
1370 if (codec->driver->remove) {
1371 err = codec->driver->remove(codec);
1372 if (err < 0)
1373 printk(KERN_ERR "asoc: failed to remove %s\n", codec->name);
1374 }
1375
1376 /* Make sure all DAPM widgets are freed */
1377 snd_soc_dapm_free(&codec->dapm);
1378
1379 soc_cleanup_codec_debugfs(codec);
1380 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1381 codec->probed = 0;
1382 list_del(&codec->card_list);
1383 module_put(codec->dev->driver->owner);
1384 }
1385
1386 /* remove the cpu_dai */
1387 if (cpu_dai && cpu_dai->probed) {
1388 if (cpu_dai->driver->remove) {
1389 err = cpu_dai->driver->remove(cpu_dai);
1390 if (err < 0)
1391 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1392 }
1393 cpu_dai->probed = 0;
1394 list_del(&cpu_dai->card_list);
1395 module_put(cpu_dai->dev->driver->owner);
1396 }
1397 }
1398
1399 static void soc_set_name_prefix(struct snd_soc_card *card,
1400 struct snd_soc_codec *codec)
1401 {
1402 int i;
1403
1404 if (card->prefix_map == NULL)
1405 return;
1406
1407 for (i = 0; i < card->num_prefixes; i++) {
1408 struct snd_soc_prefix_map *map = &card->prefix_map[i];
1409 if (map->dev_name && !strcmp(codec->name, map->dev_name)) {
1410 codec->name_prefix = map->name_prefix;
1411 break;
1412 }
1413 }
1414 }
1415
1416 static void rtd_release(struct device *dev) {}
1417
1418 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1419 {
1420 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1421 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1422 struct snd_soc_codec *codec = rtd->codec;
1423 struct snd_soc_platform *platform = rtd->platform;
1424 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1425 const char *temp;
1426 int ret;
1427
1428 dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1429
1430 /* config components */
1431 codec_dai->codec = codec;
1432 codec->card = card;
1433 cpu_dai->platform = platform;
1434 rtd->card = card;
1435 rtd->dev.parent = card->dev;
1436 codec_dai->card = card;
1437 cpu_dai->card = card;
1438
1439 /* set default power off timeout */
1440 rtd->pmdown_time = pmdown_time;
1441
1442 /* probe the cpu_dai */
1443 if (!cpu_dai->probed) {
1444 if (cpu_dai->driver->probe) {
1445 ret = cpu_dai->driver->probe(cpu_dai);
1446 if (ret < 0) {
1447 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1448 cpu_dai->name);
1449 return ret;
1450 }
1451 }
1452 cpu_dai->probed = 1;
1453 /* mark cpu_dai as probed and add to card cpu_dai list */
1454 list_add(&cpu_dai->card_list, &card->dai_dev_list);
1455 }
1456
1457 /* probe the CODEC */
1458 if (!codec->probed) {
1459 codec->dapm.card = card;
1460 soc_set_name_prefix(card, codec);
1461 if (codec->driver->probe) {
1462 ret = codec->driver->probe(codec);
1463 if (ret < 0) {
1464 printk(KERN_ERR "asoc: failed to probe CODEC %s\n",
1465 codec->name);
1466 return ret;
1467 }
1468 }
1469
1470 soc_init_codec_debugfs(codec);
1471
1472 /* mark codec as probed and add to card codec list */
1473 codec->probed = 1;
1474 list_add(&codec->card_list, &card->codec_dev_list);
1475 }
1476
1477 /* probe the platform */
1478 if (!platform->probed) {
1479 if (platform->driver->probe) {
1480 ret = platform->driver->probe(platform);
1481 if (ret < 0) {
1482 printk(KERN_ERR "asoc: failed to probe platform %s\n",
1483 platform->name);
1484 return ret;
1485 }
1486 }
1487 /* mark platform as probed and add to card platform list */
1488 platform->probed = 1;
1489 list_add(&platform->card_list, &card->platform_dev_list);
1490 }
1491
1492 /* probe the CODEC DAI */
1493 if (!codec_dai->probed) {
1494 if (codec_dai->driver->probe) {
1495 ret = codec_dai->driver->probe(codec_dai);
1496 if (ret < 0) {
1497 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1498 codec_dai->name);
1499 return ret;
1500 }
1501 }
1502
1503 /* mark cpu_dai as probed and add to card cpu_dai list */
1504 codec_dai->probed = 1;
1505 list_add(&codec_dai->card_list, &card->dai_dev_list);
1506 }
1507
1508 /* DAPM dai link stream work */
1509 INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1510
1511 /* now that all clients have probed, initialise the DAI link */
1512 if (dai_link->init) {
1513 /* machine controls, routes and widgets are not prefixed */
1514 temp = rtd->codec->name_prefix;
1515 rtd->codec->name_prefix = NULL;
1516 ret = dai_link->init(rtd);
1517 if (ret < 0) {
1518 printk(KERN_ERR "asoc: failed to init %s\n", dai_link->stream_name);
1519 return ret;
1520 }
1521 rtd->codec->name_prefix = temp;
1522 }
1523
1524 /* Make sure all DAPM widgets are instantiated */
1525 snd_soc_dapm_new_widgets(&codec->dapm);
1526 snd_soc_dapm_sync(&codec->dapm);
1527
1528 /* register the rtd device */
1529 rtd->dev.release = rtd_release;
1530 rtd->dev.init_name = dai_link->name;
1531 ret = device_register(&rtd->dev);
1532 if (ret < 0) {
1533 printk(KERN_ERR "asoc: failed to register DAI runtime device %d\n", ret);
1534 return ret;
1535 }
1536
1537 rtd->dev_registered = 1;
1538 ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1539 if (ret < 0)
1540 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1541
1542 /* add DAPM sysfs entries for this codec */
1543 ret = snd_soc_dapm_sys_add(&rtd->dev);
1544 if (ret < 0)
1545 printk(KERN_WARNING "asoc: failed to add codec dapm sysfs entries\n");
1546
1547 /* add codec sysfs entries */
1548 ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1549 if (ret < 0)
1550 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1551
1552 /* create the pcm */
1553 ret = soc_new_pcm(rtd, num);
1554 if (ret < 0) {
1555 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1556 return ret;
1557 }
1558
1559 /* add platform data for AC97 devices */
1560 if (rtd->codec_dai->driver->ac97_control)
1561 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1562
1563 return 0;
1564 }
1565
1566 #ifdef CONFIG_SND_SOC_AC97_BUS
1567 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1568 {
1569 int ret;
1570
1571 /* Only instantiate AC97 if not already done by the adaptor
1572 * for the generic AC97 subsystem.
1573 */
1574 if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1575 /*
1576 * It is possible that the AC97 device is already registered to
1577 * the device subsystem. This happens when the device is created
1578 * via snd_ac97_mixer(). Currently only SoC codec that does so
1579 * is the generic AC97 glue but others migh emerge.
1580 *
1581 * In those cases we don't try to register the device again.
1582 */
1583 if (!rtd->codec->ac97_created)
1584 return 0;
1585
1586 ret = soc_ac97_dev_register(rtd->codec);
1587 if (ret < 0) {
1588 printk(KERN_ERR "asoc: AC97 device register failed\n");
1589 return ret;
1590 }
1591
1592 rtd->codec->ac97_registered = 1;
1593 }
1594 return 0;
1595 }
1596
1597 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1598 {
1599 if (codec->ac97_registered) {
1600 soc_ac97_dev_unregister(codec);
1601 codec->ac97_registered = 0;
1602 }
1603 }
1604 #endif
1605
1606 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1607 {
1608 struct platform_device *pdev = to_platform_device(card->dev);
1609 int ret, i;
1610
1611 mutex_lock(&card->mutex);
1612
1613 if (card->instantiated) {
1614 mutex_unlock(&card->mutex);
1615 return;
1616 }
1617
1618 /* bind DAIs */
1619 for (i = 0; i < card->num_links; i++)
1620 soc_bind_dai_link(card, i);
1621
1622 /* bind completed ? */
1623 if (card->num_rtd != card->num_links) {
1624 mutex_unlock(&card->mutex);
1625 return;
1626 }
1627
1628 /* card bind complete so register a sound card */
1629 ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1630 card->owner, 0, &card->snd_card);
1631 if (ret < 0) {
1632 printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1633 card->name);
1634 mutex_unlock(&card->mutex);
1635 return;
1636 }
1637 card->snd_card->dev = card->dev;
1638
1639 #ifdef CONFIG_PM
1640 /* deferred resume work */
1641 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1642 #endif
1643
1644 /* initialise the sound card only once */
1645 if (card->probe) {
1646 ret = card->probe(pdev);
1647 if (ret < 0)
1648 goto card_probe_error;
1649 }
1650
1651 for (i = 0; i < card->num_links; i++) {
1652 ret = soc_probe_dai_link(card, i);
1653 if (ret < 0) {
1654 pr_err("asoc: failed to instantiate card %s: %d\n",
1655 card->name, ret);
1656 goto probe_dai_err;
1657 }
1658 }
1659
1660 snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1661 "%s", card->name);
1662 snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1663 "%s", card->name);
1664
1665 ret = snd_card_register(card->snd_card);
1666 if (ret < 0) {
1667 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1668 goto probe_dai_err;
1669 }
1670
1671 #ifdef CONFIG_SND_SOC_AC97_BUS
1672 /* register any AC97 codecs */
1673 for (i = 0; i < card->num_rtd; i++) {
1674 ret = soc_register_ac97_dai_link(&card->rtd[i]);
1675 if (ret < 0) {
1676 printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1677 goto probe_dai_err;
1678 }
1679 }
1680 #endif
1681
1682 card->instantiated = 1;
1683 mutex_unlock(&card->mutex);
1684 return;
1685
1686 probe_dai_err:
1687 for (i = 0; i < card->num_links; i++)
1688 soc_remove_dai_link(card, i);
1689
1690 card_probe_error:
1691 if (card->remove)
1692 card->remove(pdev);
1693
1694 snd_card_free(card->snd_card);
1695
1696 mutex_unlock(&card->mutex);
1697 }
1698
1699 /*
1700 * Attempt to initialise any uninitialised cards. Must be called with
1701 * client_mutex.
1702 */
1703 static void snd_soc_instantiate_cards(void)
1704 {
1705 struct snd_soc_card *card;
1706 list_for_each_entry(card, &card_list, list)
1707 snd_soc_instantiate_card(card);
1708 }
1709
1710 /* probes a new socdev */
1711 static int soc_probe(struct platform_device *pdev)
1712 {
1713 struct snd_soc_card *card = platform_get_drvdata(pdev);
1714 int ret = 0;
1715
1716 /* Bodge while we unpick instantiation */
1717 card->dev = &pdev->dev;
1718 INIT_LIST_HEAD(&card->dai_dev_list);
1719 INIT_LIST_HEAD(&card->codec_dev_list);
1720 INIT_LIST_HEAD(&card->platform_dev_list);
1721
1722 soc_init_card_debugfs(card);
1723
1724 ret = snd_soc_register_card(card);
1725 if (ret != 0) {
1726 dev_err(&pdev->dev, "Failed to register card\n");
1727 return ret;
1728 }
1729
1730 return 0;
1731 }
1732
1733 /* removes a socdev */
1734 static int soc_remove(struct platform_device *pdev)
1735 {
1736 struct snd_soc_card *card = platform_get_drvdata(pdev);
1737 int i;
1738
1739 if (card->instantiated) {
1740
1741 /* make sure any delayed work runs */
1742 for (i = 0; i < card->num_rtd; i++) {
1743 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1744 run_delayed_work(&rtd->delayed_work);
1745 }
1746
1747 /* remove and free each DAI */
1748 for (i = 0; i < card->num_rtd; i++)
1749 soc_remove_dai_link(card, i);
1750
1751 soc_cleanup_card_debugfs(card);
1752
1753 /* remove the card */
1754 if (card->remove)
1755 card->remove(pdev);
1756
1757 kfree(card->rtd);
1758 snd_card_free(card->snd_card);
1759 }
1760 snd_soc_unregister_card(card);
1761 return 0;
1762 }
1763
1764 static int soc_poweroff(struct device *dev)
1765 {
1766 struct platform_device *pdev = to_platform_device(dev);
1767 struct snd_soc_card *card = platform_get_drvdata(pdev);
1768 int i;
1769
1770 if (!card->instantiated)
1771 return 0;
1772
1773 /* Flush out pmdown_time work - we actually do want to run it
1774 * now, we're shutting down so no imminent restart. */
1775 for (i = 0; i < card->num_rtd; i++) {
1776 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1777 run_delayed_work(&rtd->delayed_work);
1778 }
1779
1780 snd_soc_dapm_shutdown(card);
1781
1782 return 0;
1783 }
1784
1785 static const struct dev_pm_ops soc_pm_ops = {
1786 .suspend = soc_suspend,
1787 .resume = soc_resume,
1788 .poweroff = soc_poweroff,
1789 };
1790
1791 /* ASoC platform driver */
1792 static struct platform_driver soc_driver = {
1793 .driver = {
1794 .name = "soc-audio",
1795 .owner = THIS_MODULE,
1796 .pm = &soc_pm_ops,
1797 },
1798 .probe = soc_probe,
1799 .remove = soc_remove,
1800 };
1801
1802 /* create a new pcm */
1803 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
1804 {
1805 struct snd_soc_codec *codec = rtd->codec;
1806 struct snd_soc_platform *platform = rtd->platform;
1807 struct snd_soc_dai *codec_dai = rtd->codec_dai;
1808 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1809 struct snd_pcm *pcm;
1810 char new_name[64];
1811 int ret = 0, playback = 0, capture = 0;
1812
1813 /* check client and interface hw capabilities */
1814 snprintf(new_name, sizeof(new_name), "%s %s-%d",
1815 rtd->dai_link->stream_name, codec_dai->name, num);
1816
1817 if (codec_dai->driver->playback.channels_min)
1818 playback = 1;
1819 if (codec_dai->driver->capture.channels_min)
1820 capture = 1;
1821
1822 dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
1823 ret = snd_pcm_new(rtd->card->snd_card, new_name,
1824 num, playback, capture, &pcm);
1825 if (ret < 0) {
1826 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
1827 return ret;
1828 }
1829
1830 rtd->pcm = pcm;
1831 pcm->private_data = rtd;
1832 soc_pcm_ops.mmap = platform->driver->ops->mmap;
1833 soc_pcm_ops.pointer = platform->driver->ops->pointer;
1834 soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
1835 soc_pcm_ops.copy = platform->driver->ops->copy;
1836 soc_pcm_ops.silence = platform->driver->ops->silence;
1837 soc_pcm_ops.ack = platform->driver->ops->ack;
1838 soc_pcm_ops.page = platform->driver->ops->page;
1839
1840 if (playback)
1841 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1842
1843 if (capture)
1844 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1845
1846 ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm);
1847 if (ret < 0) {
1848 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1849 return ret;
1850 }
1851
1852 pcm->private_free = platform->driver->pcm_free;
1853 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1854 cpu_dai->name);
1855 return ret;
1856 }
1857
1858 /**
1859 * snd_soc_codec_volatile_register: Report if a register is volatile.
1860 *
1861 * @codec: CODEC to query.
1862 * @reg: Register to query.
1863 *
1864 * Boolean function indiciating if a CODEC register is volatile.
1865 */
1866 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
1867 {
1868 if (codec->driver->volatile_register)
1869 return codec->driver->volatile_register(reg);
1870 else
1871 return 0;
1872 }
1873 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
1874
1875 /**
1876 * snd_soc_new_ac97_codec - initailise AC97 device
1877 * @codec: audio codec
1878 * @ops: AC97 bus operations
1879 * @num: AC97 codec number
1880 *
1881 * Initialises AC97 codec resources for use by ad-hoc devices only.
1882 */
1883 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1884 struct snd_ac97_bus_ops *ops, int num)
1885 {
1886 mutex_lock(&codec->mutex);
1887
1888 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1889 if (codec->ac97 == NULL) {
1890 mutex_unlock(&codec->mutex);
1891 return -ENOMEM;
1892 }
1893
1894 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1895 if (codec->ac97->bus == NULL) {
1896 kfree(codec->ac97);
1897 codec->ac97 = NULL;
1898 mutex_unlock(&codec->mutex);
1899 return -ENOMEM;
1900 }
1901
1902 codec->ac97->bus->ops = ops;
1903 codec->ac97->num = num;
1904
1905 /*
1906 * Mark the AC97 device to be created by us. This way we ensure that the
1907 * device will be registered with the device subsystem later on.
1908 */
1909 codec->ac97_created = 1;
1910
1911 mutex_unlock(&codec->mutex);
1912 return 0;
1913 }
1914 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1915
1916 /**
1917 * snd_soc_free_ac97_codec - free AC97 codec device
1918 * @codec: audio codec
1919 *
1920 * Frees AC97 codec device resources.
1921 */
1922 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1923 {
1924 mutex_lock(&codec->mutex);
1925 #ifdef CONFIG_SND_SOC_AC97_BUS
1926 soc_unregister_ac97_dai_link(codec);
1927 #endif
1928 kfree(codec->ac97->bus);
1929 kfree(codec->ac97);
1930 codec->ac97 = NULL;
1931 codec->ac97_created = 0;
1932 mutex_unlock(&codec->mutex);
1933 }
1934 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1935
1936 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg)
1937 {
1938 unsigned int ret;
1939
1940 ret = codec->driver->read(codec, reg);
1941 dev_dbg(codec->dev, "read %x => %x\n", reg, ret);
1942 trace_snd_soc_reg_read(codec, reg, ret);
1943
1944 return ret;
1945 }
1946 EXPORT_SYMBOL_GPL(snd_soc_read);
1947
1948 unsigned int snd_soc_write(struct snd_soc_codec *codec,
1949 unsigned int reg, unsigned int val)
1950 {
1951 dev_dbg(codec->dev, "write %x = %x\n", reg, val);
1952 trace_snd_soc_reg_write(codec, reg, val);
1953 return codec->driver->write(codec, reg, val);
1954 }
1955 EXPORT_SYMBOL_GPL(snd_soc_write);
1956
1957 /**
1958 * snd_soc_update_bits - update codec register bits
1959 * @codec: audio codec
1960 * @reg: codec register
1961 * @mask: register mask
1962 * @value: new value
1963 *
1964 * Writes new register value.
1965 *
1966 * Returns 1 for change else 0.
1967 */
1968 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1969 unsigned int mask, unsigned int value)
1970 {
1971 int change;
1972 unsigned int old, new;
1973
1974 old = snd_soc_read(codec, reg);
1975 new = (old & ~mask) | value;
1976 change = old != new;
1977 if (change)
1978 snd_soc_write(codec, reg, new);
1979
1980 return change;
1981 }
1982 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1983
1984 /**
1985 * snd_soc_update_bits_locked - update codec register bits
1986 * @codec: audio codec
1987 * @reg: codec register
1988 * @mask: register mask
1989 * @value: new value
1990 *
1991 * Writes new register value, and takes the codec mutex.
1992 *
1993 * Returns 1 for change else 0.
1994 */
1995 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
1996 unsigned short reg, unsigned int mask,
1997 unsigned int value)
1998 {
1999 int change;
2000
2001 mutex_lock(&codec->mutex);
2002 change = snd_soc_update_bits(codec, reg, mask, value);
2003 mutex_unlock(&codec->mutex);
2004
2005 return change;
2006 }
2007 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
2008
2009 /**
2010 * snd_soc_test_bits - test register for change
2011 * @codec: audio codec
2012 * @reg: codec register
2013 * @mask: register mask
2014 * @value: new value
2015 *
2016 * Tests a register with a new value and checks if the new value is
2017 * different from the old value.
2018 *
2019 * Returns 1 for change else 0.
2020 */
2021 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
2022 unsigned int mask, unsigned int value)
2023 {
2024 int change;
2025 unsigned int old, new;
2026
2027 old = snd_soc_read(codec, reg);
2028 new = (old & ~mask) | value;
2029 change = old != new;
2030
2031 return change;
2032 }
2033 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
2034
2035 /**
2036 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
2037 * @substream: the pcm substream
2038 * @hw: the hardware parameters
2039 *
2040 * Sets the substream runtime hardware parameters.
2041 */
2042 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
2043 const struct snd_pcm_hardware *hw)
2044 {
2045 struct snd_pcm_runtime *runtime = substream->runtime;
2046 runtime->hw.info = hw->info;
2047 runtime->hw.formats = hw->formats;
2048 runtime->hw.period_bytes_min = hw->period_bytes_min;
2049 runtime->hw.period_bytes_max = hw->period_bytes_max;
2050 runtime->hw.periods_min = hw->periods_min;
2051 runtime->hw.periods_max = hw->periods_max;
2052 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
2053 runtime->hw.fifo_size = hw->fifo_size;
2054 return 0;
2055 }
2056 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
2057
2058 /**
2059 * snd_soc_cnew - create new control
2060 * @_template: control template
2061 * @data: control private data
2062 * @long_name: control long name
2063 *
2064 * Create a new mixer control from a template control.
2065 *
2066 * Returns 0 for success, else error.
2067 */
2068 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2069 void *data, char *long_name)
2070 {
2071 struct snd_kcontrol_new template;
2072
2073 memcpy(&template, _template, sizeof(template));
2074 if (long_name)
2075 template.name = long_name;
2076 template.index = 0;
2077
2078 return snd_ctl_new1(&template, data);
2079 }
2080 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2081
2082 /**
2083 * snd_soc_add_controls - add an array of controls to a codec.
2084 * Convienience function to add a list of controls. Many codecs were
2085 * duplicating this code.
2086 *
2087 * @codec: codec to add controls to
2088 * @controls: array of controls to add
2089 * @num_controls: number of elements in the array
2090 *
2091 * Return 0 for success, else error.
2092 */
2093 int snd_soc_add_controls(struct snd_soc_codec *codec,
2094 const struct snd_kcontrol_new *controls, int num_controls)
2095 {
2096 struct snd_card *card = codec->card->snd_card;
2097 char prefixed_name[44], *name;
2098 int err, i;
2099
2100 for (i = 0; i < num_controls; i++) {
2101 const struct snd_kcontrol_new *control = &controls[i];
2102 if (codec->name_prefix) {
2103 snprintf(prefixed_name, sizeof(prefixed_name), "%s %s",
2104 codec->name_prefix, control->name);
2105 name = prefixed_name;
2106 } else {
2107 name = control->name;
2108 }
2109 err = snd_ctl_add(card, snd_soc_cnew(control, codec, name));
2110 if (err < 0) {
2111 dev_err(codec->dev, "%s: Failed to add %s: %d\n",
2112 codec->name, name, err);
2113 return err;
2114 }
2115 }
2116
2117 return 0;
2118 }
2119 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
2120
2121 /**
2122 * snd_soc_info_enum_double - enumerated double mixer info callback
2123 * @kcontrol: mixer control
2124 * @uinfo: control element information
2125 *
2126 * Callback to provide information about a double enumerated
2127 * mixer control.
2128 *
2129 * Returns 0 for success.
2130 */
2131 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2132 struct snd_ctl_elem_info *uinfo)
2133 {
2134 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2135
2136 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2137 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2138 uinfo->value.enumerated.items = e->max;
2139
2140 if (uinfo->value.enumerated.item > e->max - 1)
2141 uinfo->value.enumerated.item = e->max - 1;
2142 strcpy(uinfo->value.enumerated.name,
2143 e->texts[uinfo->value.enumerated.item]);
2144 return 0;
2145 }
2146 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2147
2148 /**
2149 * snd_soc_get_enum_double - enumerated double mixer get callback
2150 * @kcontrol: mixer control
2151 * @ucontrol: control element information
2152 *
2153 * Callback to get the value of a double enumerated mixer.
2154 *
2155 * Returns 0 for success.
2156 */
2157 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2158 struct snd_ctl_elem_value *ucontrol)
2159 {
2160 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2161 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2162 unsigned int val, bitmask;
2163
2164 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2165 ;
2166 val = snd_soc_read(codec, e->reg);
2167 ucontrol->value.enumerated.item[0]
2168 = (val >> e->shift_l) & (bitmask - 1);
2169 if (e->shift_l != e->shift_r)
2170 ucontrol->value.enumerated.item[1] =
2171 (val >> e->shift_r) & (bitmask - 1);
2172
2173 return 0;
2174 }
2175 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2176
2177 /**
2178 * snd_soc_put_enum_double - enumerated double mixer put callback
2179 * @kcontrol: mixer control
2180 * @ucontrol: control element information
2181 *
2182 * Callback to set the value of a double enumerated mixer.
2183 *
2184 * Returns 0 for success.
2185 */
2186 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2187 struct snd_ctl_elem_value *ucontrol)
2188 {
2189 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2190 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2191 unsigned int val;
2192 unsigned int mask, bitmask;
2193
2194 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2195 ;
2196 if (ucontrol->value.enumerated.item[0] > e->max - 1)
2197 return -EINVAL;
2198 val = ucontrol->value.enumerated.item[0] << e->shift_l;
2199 mask = (bitmask - 1) << e->shift_l;
2200 if (e->shift_l != e->shift_r) {
2201 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2202 return -EINVAL;
2203 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2204 mask |= (bitmask - 1) << e->shift_r;
2205 }
2206
2207 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2208 }
2209 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2210
2211 /**
2212 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2213 * @kcontrol: mixer control
2214 * @ucontrol: control element information
2215 *
2216 * Callback to get the value of a double semi enumerated mixer.
2217 *
2218 * Semi enumerated mixer: the enumerated items are referred as values. Can be
2219 * used for handling bitfield coded enumeration for example.
2220 *
2221 * Returns 0 for success.
2222 */
2223 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2224 struct snd_ctl_elem_value *ucontrol)
2225 {
2226 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2227 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2228 unsigned int reg_val, val, mux;
2229
2230 reg_val = snd_soc_read(codec, e->reg);
2231 val = (reg_val >> e->shift_l) & e->mask;
2232 for (mux = 0; mux < e->max; mux++) {
2233 if (val == e->values[mux])
2234 break;
2235 }
2236 ucontrol->value.enumerated.item[0] = mux;
2237 if (e->shift_l != e->shift_r) {
2238 val = (reg_val >> e->shift_r) & e->mask;
2239 for (mux = 0; mux < e->max; mux++) {
2240 if (val == e->values[mux])
2241 break;
2242 }
2243 ucontrol->value.enumerated.item[1] = mux;
2244 }
2245
2246 return 0;
2247 }
2248 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2249
2250 /**
2251 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2252 * @kcontrol: mixer control
2253 * @ucontrol: control element information
2254 *
2255 * Callback to set the value of a double semi enumerated mixer.
2256 *
2257 * Semi enumerated mixer: the enumerated items are referred as values. Can be
2258 * used for handling bitfield coded enumeration for example.
2259 *
2260 * Returns 0 for success.
2261 */
2262 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2263 struct snd_ctl_elem_value *ucontrol)
2264 {
2265 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2266 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2267 unsigned int val;
2268 unsigned int mask;
2269
2270 if (ucontrol->value.enumerated.item[0] > e->max - 1)
2271 return -EINVAL;
2272 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2273 mask = e->mask << e->shift_l;
2274 if (e->shift_l != e->shift_r) {
2275 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2276 return -EINVAL;
2277 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2278 mask |= e->mask << e->shift_r;
2279 }
2280
2281 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2282 }
2283 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2284
2285 /**
2286 * snd_soc_info_enum_ext - external enumerated single mixer info callback
2287 * @kcontrol: mixer control
2288 * @uinfo: control element information
2289 *
2290 * Callback to provide information about an external enumerated
2291 * single mixer.
2292 *
2293 * Returns 0 for success.
2294 */
2295 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2296 struct snd_ctl_elem_info *uinfo)
2297 {
2298 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2299
2300 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2301 uinfo->count = 1;
2302 uinfo->value.enumerated.items = e->max;
2303
2304 if (uinfo->value.enumerated.item > e->max - 1)
2305 uinfo->value.enumerated.item = e->max - 1;
2306 strcpy(uinfo->value.enumerated.name,
2307 e->texts[uinfo->value.enumerated.item]);
2308 return 0;
2309 }
2310 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2311
2312 /**
2313 * snd_soc_info_volsw_ext - external single mixer info callback
2314 * @kcontrol: mixer control
2315 * @uinfo: control element information
2316 *
2317 * Callback to provide information about a single external mixer control.
2318 *
2319 * Returns 0 for success.
2320 */
2321 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2322 struct snd_ctl_elem_info *uinfo)
2323 {
2324 int max = kcontrol->private_value;
2325
2326 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2327 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2328 else
2329 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2330
2331 uinfo->count = 1;
2332 uinfo->value.integer.min = 0;
2333 uinfo->value.integer.max = max;
2334 return 0;
2335 }
2336 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2337
2338 /**
2339 * snd_soc_info_volsw - single mixer info callback
2340 * @kcontrol: mixer control
2341 * @uinfo: control element information
2342 *
2343 * Callback to provide information about a single mixer control.
2344 *
2345 * Returns 0 for success.
2346 */
2347 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2348 struct snd_ctl_elem_info *uinfo)
2349 {
2350 struct soc_mixer_control *mc =
2351 (struct soc_mixer_control *)kcontrol->private_value;
2352 int platform_max;
2353 unsigned int shift = mc->shift;
2354 unsigned int rshift = mc->rshift;
2355
2356 if (!mc->platform_max)
2357 mc->platform_max = mc->max;
2358 platform_max = mc->platform_max;
2359
2360 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2361 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2362 else
2363 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2364
2365 uinfo->count = shift == rshift ? 1 : 2;
2366 uinfo->value.integer.min = 0;
2367 uinfo->value.integer.max = platform_max;
2368 return 0;
2369 }
2370 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2371
2372 /**
2373 * snd_soc_get_volsw - single mixer get callback
2374 * @kcontrol: mixer control
2375 * @ucontrol: control element information
2376 *
2377 * Callback to get the value of a single mixer control.
2378 *
2379 * Returns 0 for success.
2380 */
2381 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2382 struct snd_ctl_elem_value *ucontrol)
2383 {
2384 struct soc_mixer_control *mc =
2385 (struct soc_mixer_control *)kcontrol->private_value;
2386 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2387 unsigned int reg = mc->reg;
2388 unsigned int shift = mc->shift;
2389 unsigned int rshift = mc->rshift;
2390 int max = mc->max;
2391 unsigned int mask = (1 << fls(max)) - 1;
2392 unsigned int invert = mc->invert;
2393
2394 ucontrol->value.integer.value[0] =
2395 (snd_soc_read(codec, reg) >> shift) & mask;
2396 if (shift != rshift)
2397 ucontrol->value.integer.value[1] =
2398 (snd_soc_read(codec, reg) >> rshift) & mask;
2399 if (invert) {
2400 ucontrol->value.integer.value[0] =
2401 max - ucontrol->value.integer.value[0];
2402 if (shift != rshift)
2403 ucontrol->value.integer.value[1] =
2404 max - ucontrol->value.integer.value[1];
2405 }
2406
2407 return 0;
2408 }
2409 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2410
2411 /**
2412 * snd_soc_put_volsw - single mixer put callback
2413 * @kcontrol: mixer control
2414 * @ucontrol: control element information
2415 *
2416 * Callback to set the value of a single mixer control.
2417 *
2418 * Returns 0 for success.
2419 */
2420 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2421 struct snd_ctl_elem_value *ucontrol)
2422 {
2423 struct soc_mixer_control *mc =
2424 (struct soc_mixer_control *)kcontrol->private_value;
2425 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2426 unsigned int reg = mc->reg;
2427 unsigned int shift = mc->shift;
2428 unsigned int rshift = mc->rshift;
2429 int max = mc->max;
2430 unsigned int mask = (1 << fls(max)) - 1;
2431 unsigned int invert = mc->invert;
2432 unsigned int val, val2, val_mask;
2433
2434 val = (ucontrol->value.integer.value[0] & mask);
2435 if (invert)
2436 val = max - val;
2437 val_mask = mask << shift;
2438 val = val << shift;
2439 if (shift != rshift) {
2440 val2 = (ucontrol->value.integer.value[1] & mask);
2441 if (invert)
2442 val2 = max - val2;
2443 val_mask |= mask << rshift;
2444 val |= val2 << rshift;
2445 }
2446 return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2447 }
2448 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2449
2450 /**
2451 * snd_soc_info_volsw_2r - double mixer info callback
2452 * @kcontrol: mixer control
2453 * @uinfo: control element information
2454 *
2455 * Callback to provide information about a double mixer control that
2456 * spans 2 codec registers.
2457 *
2458 * Returns 0 for success.
2459 */
2460 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2461 struct snd_ctl_elem_info *uinfo)
2462 {
2463 struct soc_mixer_control *mc =
2464 (struct soc_mixer_control *)kcontrol->private_value;
2465 int platform_max;
2466
2467 if (!mc->platform_max)
2468 mc->platform_max = mc->max;
2469 platform_max = mc->platform_max;
2470
2471 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2472 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2473 else
2474 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2475
2476 uinfo->count = 2;
2477 uinfo->value.integer.min = 0;
2478 uinfo->value.integer.max = platform_max;
2479 return 0;
2480 }
2481 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2482
2483 /**
2484 * snd_soc_get_volsw_2r - double mixer get callback
2485 * @kcontrol: mixer control
2486 * @ucontrol: control element information
2487 *
2488 * Callback to get the value of a double mixer control that spans 2 registers.
2489 *
2490 * Returns 0 for success.
2491 */
2492 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2493 struct snd_ctl_elem_value *ucontrol)
2494 {
2495 struct soc_mixer_control *mc =
2496 (struct soc_mixer_control *)kcontrol->private_value;
2497 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2498 unsigned int reg = mc->reg;
2499 unsigned int reg2 = mc->rreg;
2500 unsigned int shift = mc->shift;
2501 int max = mc->max;
2502 unsigned int mask = (1 << fls(max)) - 1;
2503 unsigned int invert = mc->invert;
2504
2505 ucontrol->value.integer.value[0] =
2506 (snd_soc_read(codec, reg) >> shift) & mask;
2507 ucontrol->value.integer.value[1] =
2508 (snd_soc_read(codec, reg2) >> shift) & mask;
2509 if (invert) {
2510 ucontrol->value.integer.value[0] =
2511 max - ucontrol->value.integer.value[0];
2512 ucontrol->value.integer.value[1] =
2513 max - ucontrol->value.integer.value[1];
2514 }
2515
2516 return 0;
2517 }
2518 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2519
2520 /**
2521 * snd_soc_put_volsw_2r - double mixer set callback
2522 * @kcontrol: mixer control
2523 * @ucontrol: control element information
2524 *
2525 * Callback to set the value of a double mixer control that spans 2 registers.
2526 *
2527 * Returns 0 for success.
2528 */
2529 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2530 struct snd_ctl_elem_value *ucontrol)
2531 {
2532 struct soc_mixer_control *mc =
2533 (struct soc_mixer_control *)kcontrol->private_value;
2534 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2535 unsigned int reg = mc->reg;
2536 unsigned int reg2 = mc->rreg;
2537 unsigned int shift = mc->shift;
2538 int max = mc->max;
2539 unsigned int mask = (1 << fls(max)) - 1;
2540 unsigned int invert = mc->invert;
2541 int err;
2542 unsigned int val, val2, val_mask;
2543
2544 val_mask = mask << shift;
2545 val = (ucontrol->value.integer.value[0] & mask);
2546 val2 = (ucontrol->value.integer.value[1] & mask);
2547
2548 if (invert) {
2549 val = max - val;
2550 val2 = max - val2;
2551 }
2552
2553 val = val << shift;
2554 val2 = val2 << shift;
2555
2556 err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2557 if (err < 0)
2558 return err;
2559
2560 err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2561 return err;
2562 }
2563 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2564
2565 /**
2566 * snd_soc_info_volsw_s8 - signed mixer info callback
2567 * @kcontrol: mixer control
2568 * @uinfo: control element information
2569 *
2570 * Callback to provide information about a signed mixer control.
2571 *
2572 * Returns 0 for success.
2573 */
2574 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2575 struct snd_ctl_elem_info *uinfo)
2576 {
2577 struct soc_mixer_control *mc =
2578 (struct soc_mixer_control *)kcontrol->private_value;
2579 int platform_max;
2580 int min = mc->min;
2581
2582 if (!mc->platform_max)
2583 mc->platform_max = mc->max;
2584 platform_max = mc->platform_max;
2585
2586 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2587 uinfo->count = 2;
2588 uinfo->value.integer.min = 0;
2589 uinfo->value.integer.max = platform_max - min;
2590 return 0;
2591 }
2592 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2593
2594 /**
2595 * snd_soc_get_volsw_s8 - signed mixer get callback
2596 * @kcontrol: mixer control
2597 * @ucontrol: control element information
2598 *
2599 * Callback to get the value of a signed mixer control.
2600 *
2601 * Returns 0 for success.
2602 */
2603 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2604 struct snd_ctl_elem_value *ucontrol)
2605 {
2606 struct soc_mixer_control *mc =
2607 (struct soc_mixer_control *)kcontrol->private_value;
2608 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2609 unsigned int reg = mc->reg;
2610 int min = mc->min;
2611 int val = snd_soc_read(codec, reg);
2612
2613 ucontrol->value.integer.value[0] =
2614 ((signed char)(val & 0xff))-min;
2615 ucontrol->value.integer.value[1] =
2616 ((signed char)((val >> 8) & 0xff))-min;
2617 return 0;
2618 }
2619 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2620
2621 /**
2622 * snd_soc_put_volsw_sgn - signed mixer put callback
2623 * @kcontrol: mixer control
2624 * @ucontrol: control element information
2625 *
2626 * Callback to set the value of a signed mixer control.
2627 *
2628 * Returns 0 for success.
2629 */
2630 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2631 struct snd_ctl_elem_value *ucontrol)
2632 {
2633 struct soc_mixer_control *mc =
2634 (struct soc_mixer_control *)kcontrol->private_value;
2635 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2636 unsigned int reg = mc->reg;
2637 int min = mc->min;
2638 unsigned int val;
2639
2640 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2641 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2642
2643 return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2644 }
2645 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2646
2647 /**
2648 * snd_soc_limit_volume - Set new limit to an existing volume control.
2649 *
2650 * @codec: where to look for the control
2651 * @name: Name of the control
2652 * @max: new maximum limit
2653 *
2654 * Return 0 for success, else error.
2655 */
2656 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2657 const char *name, int max)
2658 {
2659 struct snd_card *card = codec->card->snd_card;
2660 struct snd_kcontrol *kctl;
2661 struct soc_mixer_control *mc;
2662 int found = 0;
2663 int ret = -EINVAL;
2664
2665 /* Sanity check for name and max */
2666 if (unlikely(!name || max <= 0))
2667 return -EINVAL;
2668
2669 list_for_each_entry(kctl, &card->controls, list) {
2670 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2671 found = 1;
2672 break;
2673 }
2674 }
2675 if (found) {
2676 mc = (struct soc_mixer_control *)kctl->private_value;
2677 if (max <= mc->max) {
2678 mc->platform_max = max;
2679 ret = 0;
2680 }
2681 }
2682 return ret;
2683 }
2684 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2685
2686 /**
2687 * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
2688 * mixer info callback
2689 * @kcontrol: mixer control
2690 * @uinfo: control element information
2691 *
2692 * Returns 0 for success.
2693 */
2694 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2695 struct snd_ctl_elem_info *uinfo)
2696 {
2697 struct soc_mixer_control *mc =
2698 (struct soc_mixer_control *)kcontrol->private_value;
2699 int max = mc->max;
2700 int min = mc->min;
2701
2702 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2703 uinfo->count = 2;
2704 uinfo->value.integer.min = 0;
2705 uinfo->value.integer.max = max-min;
2706
2707 return 0;
2708 }
2709 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
2710
2711 /**
2712 * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
2713 * mixer get callback
2714 * @kcontrol: mixer control
2715 * @uinfo: control element information
2716 *
2717 * Returns 0 for success.
2718 */
2719 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2720 struct snd_ctl_elem_value *ucontrol)
2721 {
2722 struct soc_mixer_control *mc =
2723 (struct soc_mixer_control *)kcontrol->private_value;
2724 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2725 unsigned int mask = (1<<mc->shift)-1;
2726 int min = mc->min;
2727 int val = snd_soc_read(codec, mc->reg) & mask;
2728 int valr = snd_soc_read(codec, mc->rreg) & mask;
2729
2730 ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
2731 ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
2732 return 0;
2733 }
2734 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
2735
2736 /**
2737 * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
2738 * mixer put callback
2739 * @kcontrol: mixer control
2740 * @uinfo: control element information
2741 *
2742 * Returns 0 for success.
2743 */
2744 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2745 struct snd_ctl_elem_value *ucontrol)
2746 {
2747 struct soc_mixer_control *mc =
2748 (struct soc_mixer_control *)kcontrol->private_value;
2749 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2750 unsigned int mask = (1<<mc->shift)-1;
2751 int min = mc->min;
2752 int ret;
2753 unsigned int val, valr, oval, ovalr;
2754
2755 val = ((ucontrol->value.integer.value[0]+min) & 0xff);
2756 val &= mask;
2757 valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
2758 valr &= mask;
2759
2760 oval = snd_soc_read(codec, mc->reg) & mask;
2761 ovalr = snd_soc_read(codec, mc->rreg) & mask;
2762
2763 ret = 0;
2764 if (oval != val) {
2765 ret = snd_soc_write(codec, mc->reg, val);
2766 if (ret < 0)
2767 return ret;
2768 }
2769 if (ovalr != valr) {
2770 ret = snd_soc_write(codec, mc->rreg, valr);
2771 if (ret < 0)
2772 return ret;
2773 }
2774
2775 return 0;
2776 }
2777 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
2778
2779 /**
2780 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2781 * @dai: DAI
2782 * @clk_id: DAI specific clock ID
2783 * @freq: new clock frequency in Hz
2784 * @dir: new clock direction - input/output.
2785 *
2786 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2787 */
2788 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2789 unsigned int freq, int dir)
2790 {
2791 if (dai->driver && dai->driver->ops->set_sysclk)
2792 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
2793 else
2794 return -EINVAL;
2795 }
2796 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2797
2798 /**
2799 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2800 * @dai: DAI
2801 * @div_id: DAI specific clock divider ID
2802 * @div: new clock divisor.
2803 *
2804 * Configures the clock dividers. This is used to derive the best DAI bit and
2805 * frame clocks from the system or master clock. It's best to set the DAI bit
2806 * and frame clocks as low as possible to save system power.
2807 */
2808 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2809 int div_id, int div)
2810 {
2811 if (dai->driver && dai->driver->ops->set_clkdiv)
2812 return dai->driver->ops->set_clkdiv(dai, div_id, div);
2813 else
2814 return -EINVAL;
2815 }
2816 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2817
2818 /**
2819 * snd_soc_dai_set_pll - configure DAI PLL.
2820 * @dai: DAI
2821 * @pll_id: DAI specific PLL ID
2822 * @source: DAI specific source for the PLL
2823 * @freq_in: PLL input clock frequency in Hz
2824 * @freq_out: requested PLL output clock frequency in Hz
2825 *
2826 * Configures and enables PLL to generate output clock based on input clock.
2827 */
2828 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
2829 unsigned int freq_in, unsigned int freq_out)
2830 {
2831 if (dai->driver && dai->driver->ops->set_pll)
2832 return dai->driver->ops->set_pll(dai, pll_id, source,
2833 freq_in, freq_out);
2834 else
2835 return -EINVAL;
2836 }
2837 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2838
2839 /**
2840 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2841 * @dai: DAI
2842 * @fmt: SND_SOC_DAIFMT_ format value.
2843 *
2844 * Configures the DAI hardware format and clocking.
2845 */
2846 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2847 {
2848 if (dai->driver && dai->driver->ops->set_fmt)
2849 return dai->driver->ops->set_fmt(dai, fmt);
2850 else
2851 return -EINVAL;
2852 }
2853 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2854
2855 /**
2856 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2857 * @dai: DAI
2858 * @tx_mask: bitmask representing active TX slots.
2859 * @rx_mask: bitmask representing active RX slots.
2860 * @slots: Number of slots in use.
2861 * @slot_width: Width in bits for each slot.
2862 *
2863 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2864 * specific.
2865 */
2866 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2867 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
2868 {
2869 if (dai->driver && dai->driver->ops->set_tdm_slot)
2870 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
2871 slots, slot_width);
2872 else
2873 return -EINVAL;
2874 }
2875 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2876
2877 /**
2878 * snd_soc_dai_set_channel_map - configure DAI audio channel map
2879 * @dai: DAI
2880 * @tx_num: how many TX channels
2881 * @tx_slot: pointer to an array which imply the TX slot number channel
2882 * 0~num-1 uses
2883 * @rx_num: how many RX channels
2884 * @rx_slot: pointer to an array which imply the RX slot number channel
2885 * 0~num-1 uses
2886 *
2887 * configure the relationship between channel number and TDM slot number.
2888 */
2889 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
2890 unsigned int tx_num, unsigned int *tx_slot,
2891 unsigned int rx_num, unsigned int *rx_slot)
2892 {
2893 if (dai->driver && dai->driver->ops->set_channel_map)
2894 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
2895 rx_num, rx_slot);
2896 else
2897 return -EINVAL;
2898 }
2899 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
2900
2901 /**
2902 * snd_soc_dai_set_tristate - configure DAI system or master clock.
2903 * @dai: DAI
2904 * @tristate: tristate enable
2905 *
2906 * Tristates the DAI so that others can use it.
2907 */
2908 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2909 {
2910 if (dai->driver && dai->driver->ops->set_tristate)
2911 return dai->driver->ops->set_tristate(dai, tristate);
2912 else
2913 return -EINVAL;
2914 }
2915 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2916
2917 /**
2918 * snd_soc_dai_digital_mute - configure DAI system or master clock.
2919 * @dai: DAI
2920 * @mute: mute enable
2921 *
2922 * Mutes the DAI DAC.
2923 */
2924 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2925 {
2926 if (dai->driver && dai->driver->ops->digital_mute)
2927 return dai->driver->ops->digital_mute(dai, mute);
2928 else
2929 return -EINVAL;
2930 }
2931 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2932
2933 /**
2934 * snd_soc_register_card - Register a card with the ASoC core
2935 *
2936 * @card: Card to register
2937 *
2938 * Note that currently this is an internal only function: it will be
2939 * exposed to machine drivers after further backporting of ASoC v2
2940 * registration APIs.
2941 */
2942 static int snd_soc_register_card(struct snd_soc_card *card)
2943 {
2944 int i;
2945
2946 if (!card->name || !card->dev)
2947 return -EINVAL;
2948
2949 card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) * card->num_links,
2950 GFP_KERNEL);
2951 if (card->rtd == NULL)
2952 return -ENOMEM;
2953
2954 for (i = 0; i < card->num_links; i++)
2955 card->rtd[i].dai_link = &card->dai_link[i];
2956
2957 INIT_LIST_HEAD(&card->list);
2958 card->instantiated = 0;
2959 mutex_init(&card->mutex);
2960
2961 mutex_lock(&client_mutex);
2962 list_add(&card->list, &card_list);
2963 snd_soc_instantiate_cards();
2964 mutex_unlock(&client_mutex);
2965
2966 dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2967
2968 return 0;
2969 }
2970
2971 /**
2972 * snd_soc_unregister_card - Unregister a card with the ASoC core
2973 *
2974 * @card: Card to unregister
2975 *
2976 * Note that currently this is an internal only function: it will be
2977 * exposed to machine drivers after further backporting of ASoC v2
2978 * registration APIs.
2979 */
2980 static int snd_soc_unregister_card(struct snd_soc_card *card)
2981 {
2982 mutex_lock(&client_mutex);
2983 list_del(&card->list);
2984 mutex_unlock(&client_mutex);
2985 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2986
2987 return 0;
2988 }
2989
2990 /*
2991 * Simplify DAI link configuration by removing ".-1" from device names
2992 * and sanitizing names.
2993 */
2994 static inline char *fmt_single_name(struct device *dev, int *id)
2995 {
2996 char *found, name[NAME_SIZE];
2997 int id1, id2;
2998
2999 if (dev_name(dev) == NULL)
3000 return NULL;
3001
3002 strncpy(name, dev_name(dev), NAME_SIZE);
3003
3004 /* are we a "%s.%d" name (platform and SPI components) */
3005 found = strstr(name, dev->driver->name);
3006 if (found) {
3007 /* get ID */
3008 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
3009
3010 /* discard ID from name if ID == -1 */
3011 if (*id == -1)
3012 found[strlen(dev->driver->name)] = '\0';
3013 }
3014
3015 } else {
3016 /* I2C component devices are named "bus-addr" */
3017 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
3018 char tmp[NAME_SIZE];
3019
3020 /* create unique ID number from I2C addr and bus */
3021 *id = ((id1 & 0xffff) << 16) + id2;
3022
3023 /* sanitize component name for DAI link creation */
3024 snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
3025 strncpy(name, tmp, NAME_SIZE);
3026 } else
3027 *id = 0;
3028 }
3029
3030 return kstrdup(name, GFP_KERNEL);
3031 }
3032
3033 /*
3034 * Simplify DAI link naming for single devices with multiple DAIs by removing
3035 * any ".-1" and using the DAI name (instead of device name).
3036 */
3037 static inline char *fmt_multiple_name(struct device *dev,
3038 struct snd_soc_dai_driver *dai_drv)
3039 {
3040 if (dai_drv->name == NULL) {
3041 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
3042 dev_name(dev));
3043 return NULL;
3044 }
3045
3046 return kstrdup(dai_drv->name, GFP_KERNEL);
3047 }
3048
3049 /**
3050 * snd_soc_register_dai - Register a DAI with the ASoC core
3051 *
3052 * @dai: DAI to register
3053 */
3054 int snd_soc_register_dai(struct device *dev,
3055 struct snd_soc_dai_driver *dai_drv)
3056 {
3057 struct snd_soc_dai *dai;
3058
3059 dev_dbg(dev, "dai register %s\n", dev_name(dev));
3060
3061 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3062 if (dai == NULL)
3063 return -ENOMEM;
3064
3065 /* create DAI component name */
3066 dai->name = fmt_single_name(dev, &dai->id);
3067 if (dai->name == NULL) {
3068 kfree(dai);
3069 return -ENOMEM;
3070 }
3071
3072 dai->dev = dev;
3073 dai->driver = dai_drv;
3074 if (!dai->driver->ops)
3075 dai->driver->ops = &null_dai_ops;
3076
3077 mutex_lock(&client_mutex);
3078 list_add(&dai->list, &dai_list);
3079 snd_soc_instantiate_cards();
3080 mutex_unlock(&client_mutex);
3081
3082 pr_debug("Registered DAI '%s'\n", dai->name);
3083
3084 return 0;
3085 }
3086 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
3087
3088 /**
3089 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
3090 *
3091 * @dai: DAI to unregister
3092 */
3093 void snd_soc_unregister_dai(struct device *dev)
3094 {
3095 struct snd_soc_dai *dai;
3096
3097 list_for_each_entry(dai, &dai_list, list) {
3098 if (dev == dai->dev)
3099 goto found;
3100 }
3101 return;
3102
3103 found:
3104 mutex_lock(&client_mutex);
3105 list_del(&dai->list);
3106 mutex_unlock(&client_mutex);
3107
3108 pr_debug("Unregistered DAI '%s'\n", dai->name);
3109 kfree(dai->name);
3110 kfree(dai);
3111 }
3112 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
3113
3114 /**
3115 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
3116 *
3117 * @dai: Array of DAIs to register
3118 * @count: Number of DAIs
3119 */
3120 int snd_soc_register_dais(struct device *dev,
3121 struct snd_soc_dai_driver *dai_drv, size_t count)
3122 {
3123 struct snd_soc_dai *dai;
3124 int i, ret = 0;
3125
3126 dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count);
3127
3128 for (i = 0; i < count; i++) {
3129
3130 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3131 if (dai == NULL) {
3132 ret = -ENOMEM;
3133 goto err;
3134 }
3135
3136 /* create DAI component name */
3137 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3138 if (dai->name == NULL) {
3139 kfree(dai);
3140 ret = -EINVAL;
3141 goto err;
3142 }
3143
3144 dai->dev = dev;
3145 dai->driver = &dai_drv[i];
3146 if (dai->driver->id)
3147 dai->id = dai->driver->id;
3148 else
3149 dai->id = i;
3150 if (!dai->driver->ops)
3151 dai->driver->ops = &null_dai_ops;
3152
3153 mutex_lock(&client_mutex);
3154 list_add(&dai->list, &dai_list);
3155 mutex_unlock(&client_mutex);
3156
3157 pr_debug("Registered DAI '%s'\n", dai->name);
3158 }
3159
3160 snd_soc_instantiate_cards();
3161 return 0;
3162
3163 err:
3164 for (i--; i >= 0; i--)
3165 snd_soc_unregister_dai(dev);
3166
3167 return ret;
3168 }
3169 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
3170
3171 /**
3172 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
3173 *
3174 * @dai: Array of DAIs to unregister
3175 * @count: Number of DAIs
3176 */
3177 void snd_soc_unregister_dais(struct device *dev, size_t count)
3178 {
3179 int i;
3180
3181 for (i = 0; i < count; i++)
3182 snd_soc_unregister_dai(dev);
3183 }
3184 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
3185
3186 /**
3187 * snd_soc_register_platform - Register a platform with the ASoC core
3188 *
3189 * @platform: platform to register
3190 */
3191 int snd_soc_register_platform(struct device *dev,
3192 struct snd_soc_platform_driver *platform_drv)
3193 {
3194 struct snd_soc_platform *platform;
3195
3196 dev_dbg(dev, "platform register %s\n", dev_name(dev));
3197
3198 platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
3199 if (platform == NULL)
3200 return -ENOMEM;
3201
3202 /* create platform component name */
3203 platform->name = fmt_single_name(dev, &platform->id);
3204 if (platform->name == NULL) {
3205 kfree(platform);
3206 return -ENOMEM;
3207 }
3208
3209 platform->dev = dev;
3210 platform->driver = platform_drv;
3211
3212 mutex_lock(&client_mutex);
3213 list_add(&platform->list, &platform_list);
3214 snd_soc_instantiate_cards();
3215 mutex_unlock(&client_mutex);
3216
3217 pr_debug("Registered platform '%s'\n", platform->name);
3218
3219 return 0;
3220 }
3221 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
3222
3223 /**
3224 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
3225 *
3226 * @platform: platform to unregister
3227 */
3228 void snd_soc_unregister_platform(struct device *dev)
3229 {
3230 struct snd_soc_platform *platform;
3231
3232 list_for_each_entry(platform, &platform_list, list) {
3233 if (dev == platform->dev)
3234 goto found;
3235 }
3236 return;
3237
3238 found:
3239 mutex_lock(&client_mutex);
3240 list_del(&platform->list);
3241 mutex_unlock(&client_mutex);
3242
3243 pr_debug("Unregistered platform '%s'\n", platform->name);
3244 kfree(platform->name);
3245 kfree(platform);
3246 }
3247 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
3248
3249 static u64 codec_format_map[] = {
3250 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
3251 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
3252 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
3253 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
3254 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
3255 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
3256 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3257 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3258 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
3259 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
3260 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
3261 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
3262 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
3263 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
3264 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
3265 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
3266 };
3267
3268 /* Fix up the DAI formats for endianness: codecs don't actually see
3269 * the endianness of the data but we're using the CPU format
3270 * definitions which do need to include endianness so we ensure that
3271 * codec DAIs always have both big and little endian variants set.
3272 */
3273 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
3274 {
3275 int i;
3276
3277 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
3278 if (stream->formats & codec_format_map[i])
3279 stream->formats |= codec_format_map[i];
3280 }
3281
3282 /**
3283 * snd_soc_register_codec - Register a codec with the ASoC core
3284 *
3285 * @codec: codec to register
3286 */
3287 int snd_soc_register_codec(struct device *dev,
3288 struct snd_soc_codec_driver *codec_drv,
3289 struct snd_soc_dai_driver *dai_drv, int num_dai)
3290 {
3291 struct snd_soc_codec *codec;
3292 int ret, i;
3293
3294 dev_dbg(dev, "codec register %s\n", dev_name(dev));
3295
3296 codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
3297 if (codec == NULL)
3298 return -ENOMEM;
3299
3300 /* create CODEC component name */
3301 codec->name = fmt_single_name(dev, &codec->id);
3302 if (codec->name == NULL) {
3303 kfree(codec);
3304 return -ENOMEM;
3305 }
3306
3307 INIT_LIST_HEAD(&codec->dapm.widgets);
3308 INIT_LIST_HEAD(&codec->dapm.paths);
3309 codec->dapm.bias_level = SND_SOC_BIAS_OFF;
3310 codec->dapm.dev = dev;
3311 codec->dapm.codec = codec;
3312 codec->dev = dev;
3313 codec->driver = codec_drv;
3314 codec->num_dai = num_dai;
3315 mutex_init(&codec->mutex);
3316
3317 /* allocate CODEC register cache */
3318 if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
3319 ret = snd_soc_cache_init(codec);
3320 if (ret < 0) {
3321 dev_err(codec->dev, "Failed to set cache compression type: %d\n",
3322 ret);
3323 goto error_cache;
3324 }
3325 }
3326
3327 for (i = 0; i < num_dai; i++) {
3328 fixup_codec_formats(&dai_drv[i].playback);
3329 fixup_codec_formats(&dai_drv[i].capture);
3330 }
3331
3332 /* register any DAIs */
3333 if (num_dai) {
3334 ret = snd_soc_register_dais(dev, dai_drv, num_dai);
3335 if (ret < 0)
3336 goto error_dais;
3337 }
3338
3339 mutex_lock(&client_mutex);
3340 list_add(&codec->list, &codec_list);
3341 snd_soc_instantiate_cards();
3342 mutex_unlock(&client_mutex);
3343
3344 pr_debug("Registered codec '%s'\n", codec->name);
3345 return 0;
3346
3347 error_dais:
3348 snd_soc_cache_exit(codec);
3349 error_cache:
3350 kfree(codec->name);
3351 kfree(codec);
3352 return ret;
3353 }
3354 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
3355
3356 /**
3357 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
3358 *
3359 * @codec: codec to unregister
3360 */
3361 void snd_soc_unregister_codec(struct device *dev)
3362 {
3363 struct snd_soc_codec *codec;
3364 int i;
3365
3366 list_for_each_entry(codec, &codec_list, list) {
3367 if (dev == codec->dev)
3368 goto found;
3369 }
3370 return;
3371
3372 found:
3373 if (codec->num_dai)
3374 for (i = 0; i < codec->num_dai; i++)
3375 snd_soc_unregister_dai(dev);
3376
3377 mutex_lock(&client_mutex);
3378 list_del(&codec->list);
3379 mutex_unlock(&client_mutex);
3380
3381 pr_debug("Unregistered codec '%s'\n", codec->name);
3382
3383 snd_soc_cache_exit(codec);
3384 kfree(codec->name);
3385 kfree(codec);
3386 }
3387 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
3388
3389 static int __init snd_soc_init(void)
3390 {
3391 #ifdef CONFIG_DEBUG_FS
3392 debugfs_root = debugfs_create_dir("asoc", NULL);
3393 if (IS_ERR(debugfs_root) || !debugfs_root) {
3394 printk(KERN_WARNING
3395 "ASoC: Failed to create debugfs directory\n");
3396 debugfs_root = NULL;
3397 }
3398
3399 if (!debugfs_create_file("codecs", 0444, debugfs_root, NULL,
3400 &codec_list_fops))
3401 pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
3402
3403 if (!debugfs_create_file("dais", 0444, debugfs_root, NULL,
3404 &dai_list_fops))
3405 pr_warn("ASoC: Failed to create DAI list debugfs file\n");
3406
3407 if (!debugfs_create_file("platforms", 0444, debugfs_root, NULL,
3408 &platform_list_fops))
3409 pr_warn("ASoC: Failed to create platform list debugfs file\n");
3410 #endif
3411
3412 return platform_driver_register(&soc_driver);
3413 }
3414 module_init(snd_soc_init);
3415
3416 static void __exit snd_soc_exit(void)
3417 {
3418 #ifdef CONFIG_DEBUG_FS
3419 debugfs_remove_recursive(debugfs_root);
3420 #endif
3421 platform_driver_unregister(&soc_driver);
3422 }
3423 module_exit(snd_soc_exit);
3424
3425 /* Module information */
3426 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
3427 MODULE_DESCRIPTION("ALSA SoC Core");
3428 MODULE_LICENSE("GPL");
3429 MODULE_ALIAS("platform:soc-audio");
This page took 0.106395 seconds and 6 git commands to generate.