ASoC: Decouple DAPM from CODECs
[deliverable/linux.git] / sound / soc / soc-core.c
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
6 * Copyright (C) 2010 Slimlogic Ltd.
7 * Copyright (C) 2010 Texas Instruments Inc.
8 *
9 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10 * with code, comments and ideas from :-
11 * Richard Purdie <richard@openedhand.com>
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 *
18 * TODO:
19 * o Add hw rules to enforce rates, etc.
20 * o More testing with other codecs/machines.
21 * o Add more codecs and platforms to ensure good API coverage.
22 * o Support TDM on PCM and I2S
23 */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h>
35 #include <sound/core.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/soc.h>
39 #include <sound/soc-dapm.h>
40 #include <sound/initval.h>
41
42 #define NAME_SIZE 32
43
44 static DEFINE_MUTEX(pcm_mutex);
45 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
46
47 #ifdef CONFIG_DEBUG_FS
48 static struct dentry *debugfs_root;
49 #endif
50
51 static DEFINE_MUTEX(client_mutex);
52 static LIST_HEAD(card_list);
53 static LIST_HEAD(dai_list);
54 static LIST_HEAD(platform_list);
55 static LIST_HEAD(codec_list);
56
57 static int snd_soc_register_card(struct snd_soc_card *card);
58 static int snd_soc_unregister_card(struct snd_soc_card *card);
59 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
60
61 /*
62 * This is a timeout to do a DAPM powerdown after a stream is closed().
63 * It can be used to eliminate pops between different playback streams, e.g.
64 * between two audio tracks.
65 */
66 static int pmdown_time = 5000;
67 module_param(pmdown_time, int, 0);
68 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
69
70 /*
71 * This function forces any delayed work to be queued and run.
72 */
73 static int run_delayed_work(struct delayed_work *dwork)
74 {
75 int ret;
76
77 /* cancel any work waiting to be queued. */
78 ret = cancel_delayed_work(dwork);
79
80 /* if there was any work waiting then we run it now and
81 * wait for it's completion */
82 if (ret) {
83 schedule_delayed_work(dwork, 0);
84 flush_scheduled_work();
85 }
86 return ret;
87 }
88
89 /* codec register dump */
90 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
91 {
92 int ret, i, step = 1, count = 0;
93
94 if (!codec->driver->reg_cache_size)
95 return 0;
96
97 if (codec->driver->reg_cache_step)
98 step = codec->driver->reg_cache_step;
99
100 count += sprintf(buf, "%s registers\n", codec->name);
101 for (i = 0; i < codec->driver->reg_cache_size; i += step) {
102 if (codec->driver->readable_register && !codec->driver->readable_register(i))
103 continue;
104
105 count += sprintf(buf + count, "%2x: ", i);
106 if (count >= PAGE_SIZE - 1)
107 break;
108
109 if (codec->driver->display_register) {
110 count += codec->driver->display_register(codec, buf + count,
111 PAGE_SIZE - count, i);
112 } else {
113 /* If the read fails it's almost certainly due to
114 * the register being volatile and the device being
115 * powered off.
116 */
117 ret = codec->driver->read(codec, i);
118 if (ret >= 0)
119 count += snprintf(buf + count,
120 PAGE_SIZE - count,
121 "%4x", ret);
122 else
123 count += snprintf(buf + count,
124 PAGE_SIZE - count,
125 "<no data: %d>", ret);
126 }
127
128 if (count >= PAGE_SIZE - 1)
129 break;
130
131 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
132 if (count >= PAGE_SIZE - 1)
133 break;
134 }
135
136 /* Truncate count; min() would cause a warning */
137 if (count >= PAGE_SIZE)
138 count = PAGE_SIZE - 1;
139
140 return count;
141 }
142 static ssize_t codec_reg_show(struct device *dev,
143 struct device_attribute *attr, char *buf)
144 {
145 struct snd_soc_pcm_runtime *rtd =
146 container_of(dev, struct snd_soc_pcm_runtime, dev);
147
148 return soc_codec_reg_show(rtd->codec, buf);
149 }
150
151 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
152
153 static ssize_t pmdown_time_show(struct device *dev,
154 struct device_attribute *attr, char *buf)
155 {
156 struct snd_soc_pcm_runtime *rtd =
157 container_of(dev, struct snd_soc_pcm_runtime, dev);
158
159 return sprintf(buf, "%ld\n", rtd->pmdown_time);
160 }
161
162 static ssize_t pmdown_time_set(struct device *dev,
163 struct device_attribute *attr,
164 const char *buf, size_t count)
165 {
166 struct snd_soc_pcm_runtime *rtd =
167 container_of(dev, struct snd_soc_pcm_runtime, dev);
168 int ret;
169
170 ret = strict_strtol(buf, 10, &rtd->pmdown_time);
171 if (ret)
172 return ret;
173
174 return count;
175 }
176
177 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
178
179 #ifdef CONFIG_DEBUG_FS
180 static int codec_reg_open_file(struct inode *inode, struct file *file)
181 {
182 file->private_data = inode->i_private;
183 return 0;
184 }
185
186 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
187 size_t count, loff_t *ppos)
188 {
189 ssize_t ret;
190 struct snd_soc_codec *codec = file->private_data;
191 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
192 if (!buf)
193 return -ENOMEM;
194 ret = soc_codec_reg_show(codec, buf);
195 if (ret >= 0)
196 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
197 kfree(buf);
198 return ret;
199 }
200
201 static ssize_t codec_reg_write_file(struct file *file,
202 const char __user *user_buf, size_t count, loff_t *ppos)
203 {
204 char buf[32];
205 int buf_size;
206 char *start = buf;
207 unsigned long reg, value;
208 int step = 1;
209 struct snd_soc_codec *codec = file->private_data;
210
211 buf_size = min(count, (sizeof(buf)-1));
212 if (copy_from_user(buf, user_buf, buf_size))
213 return -EFAULT;
214 buf[buf_size] = 0;
215
216 if (codec->driver->reg_cache_step)
217 step = codec->driver->reg_cache_step;
218
219 while (*start == ' ')
220 start++;
221 reg = simple_strtoul(start, &start, 16);
222 if ((reg >= codec->driver->reg_cache_size) || (reg % step))
223 return -EINVAL;
224 while (*start == ' ')
225 start++;
226 if (strict_strtoul(start, 16, &value))
227 return -EINVAL;
228 codec->driver->write(codec, reg, value);
229 return buf_size;
230 }
231
232 static const struct file_operations codec_reg_fops = {
233 .open = codec_reg_open_file,
234 .read = codec_reg_read_file,
235 .write = codec_reg_write_file,
236 .llseek = default_llseek,
237 };
238
239 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
240 {
241 codec->debugfs_codec_root = debugfs_create_dir(codec->name ,
242 debugfs_root);
243 if (!codec->debugfs_codec_root) {
244 printk(KERN_WARNING
245 "ASoC: Failed to create codec debugfs directory\n");
246 return;
247 }
248
249 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
250 codec->debugfs_codec_root,
251 codec, &codec_reg_fops);
252 if (!codec->debugfs_reg)
253 printk(KERN_WARNING
254 "ASoC: Failed to create codec register debugfs file\n");
255
256 codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
257 codec->debugfs_codec_root,
258 &codec->dapm.pop_time);
259 if (!codec->debugfs_pop_time)
260 printk(KERN_WARNING
261 "Failed to create pop time debugfs file\n");
262
263 codec->dapm.debugfs_dapm = debugfs_create_dir("dapm",
264 codec->debugfs_codec_root);
265 if (!codec->dapm.debugfs_dapm)
266 printk(KERN_WARNING
267 "Failed to create DAPM debugfs directory\n");
268
269 snd_soc_dapm_debugfs_init(&codec->dapm);
270 }
271
272 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
273 {
274 debugfs_remove_recursive(codec->debugfs_codec_root);
275 }
276
277 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
278 size_t count, loff_t *ppos)
279 {
280 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
281 ssize_t len, ret = 0;
282 struct snd_soc_codec *codec;
283
284 if (!buf)
285 return -ENOMEM;
286
287 list_for_each_entry(codec, &codec_list, list) {
288 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
289 codec->name);
290 if (len >= 0)
291 ret += len;
292 if (ret > PAGE_SIZE) {
293 ret = PAGE_SIZE;
294 break;
295 }
296 }
297
298 if (ret >= 0)
299 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
300
301 kfree(buf);
302
303 return ret;
304 }
305
306 static const struct file_operations codec_list_fops = {
307 .read = codec_list_read_file,
308 .llseek = default_llseek,/* read accesses f_pos */
309 };
310
311 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
312 size_t count, loff_t *ppos)
313 {
314 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
315 ssize_t len, ret = 0;
316 struct snd_soc_dai *dai;
317
318 if (!buf)
319 return -ENOMEM;
320
321 list_for_each_entry(dai, &dai_list, list) {
322 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
323 if (len >= 0)
324 ret += len;
325 if (ret > PAGE_SIZE) {
326 ret = PAGE_SIZE;
327 break;
328 }
329 }
330
331 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
332
333 kfree(buf);
334
335 return ret;
336 }
337
338 static const struct file_operations dai_list_fops = {
339 .read = dai_list_read_file,
340 .llseek = default_llseek,/* read accesses f_pos */
341 };
342
343 static ssize_t platform_list_read_file(struct file *file,
344 char __user *user_buf,
345 size_t count, loff_t *ppos)
346 {
347 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
348 ssize_t len, ret = 0;
349 struct snd_soc_platform *platform;
350
351 if (!buf)
352 return -ENOMEM;
353
354 list_for_each_entry(platform, &platform_list, list) {
355 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
356 platform->name);
357 if (len >= 0)
358 ret += len;
359 if (ret > PAGE_SIZE) {
360 ret = PAGE_SIZE;
361 break;
362 }
363 }
364
365 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
366
367 kfree(buf);
368
369 return ret;
370 }
371
372 static const struct file_operations platform_list_fops = {
373 .read = platform_list_read_file,
374 .llseek = default_llseek,/* read accesses f_pos */
375 };
376
377 #else
378
379 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
380 {
381 }
382
383 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
384 {
385 }
386 #endif
387
388 #ifdef CONFIG_SND_SOC_AC97_BUS
389 /* unregister ac97 codec */
390 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
391 {
392 if (codec->ac97->dev.bus)
393 device_unregister(&codec->ac97->dev);
394 return 0;
395 }
396
397 /* stop no dev release warning */
398 static void soc_ac97_device_release(struct device *dev){}
399
400 /* register ac97 codec to bus */
401 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
402 {
403 int err;
404
405 codec->ac97->dev.bus = &ac97_bus_type;
406 codec->ac97->dev.parent = codec->card->dev;
407 codec->ac97->dev.release = soc_ac97_device_release;
408
409 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
410 codec->card->snd_card->number, 0, codec->name);
411 err = device_register(&codec->ac97->dev);
412 if (err < 0) {
413 snd_printk(KERN_ERR "Can't register ac97 bus\n");
414 codec->ac97->dev.bus = NULL;
415 return err;
416 }
417 return 0;
418 }
419 #endif
420
421 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
422 {
423 struct snd_soc_pcm_runtime *rtd = substream->private_data;
424 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
425 struct snd_soc_dai *codec_dai = rtd->codec_dai;
426 int ret;
427
428 if (codec_dai->driver->symmetric_rates || cpu_dai->driver->symmetric_rates ||
429 rtd->dai_link->symmetric_rates) {
430 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n",
431 rtd->rate);
432
433 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
434 SNDRV_PCM_HW_PARAM_RATE,
435 rtd->rate,
436 rtd->rate);
437 if (ret < 0) {
438 dev_err(&rtd->dev,
439 "Unable to apply rate symmetry constraint: %d\n", ret);
440 return ret;
441 }
442 }
443
444 return 0;
445 }
446
447 /*
448 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
449 * then initialized and any private data can be allocated. This also calls
450 * startup for the cpu DAI, platform, machine and codec DAI.
451 */
452 static int soc_pcm_open(struct snd_pcm_substream *substream)
453 {
454 struct snd_soc_pcm_runtime *rtd = substream->private_data;
455 struct snd_pcm_runtime *runtime = substream->runtime;
456 struct snd_soc_platform *platform = rtd->platform;
457 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
458 struct snd_soc_dai *codec_dai = rtd->codec_dai;
459 struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
460 struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
461 int ret = 0;
462
463 mutex_lock(&pcm_mutex);
464
465 /* startup the audio subsystem */
466 if (cpu_dai->driver->ops->startup) {
467 ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
468 if (ret < 0) {
469 printk(KERN_ERR "asoc: can't open interface %s\n",
470 cpu_dai->name);
471 goto out;
472 }
473 }
474
475 if (platform->driver->ops->open) {
476 ret = platform->driver->ops->open(substream);
477 if (ret < 0) {
478 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
479 goto platform_err;
480 }
481 }
482
483 if (codec_dai->driver->ops->startup) {
484 ret = codec_dai->driver->ops->startup(substream, codec_dai);
485 if (ret < 0) {
486 printk(KERN_ERR "asoc: can't open codec %s\n",
487 codec_dai->name);
488 goto codec_dai_err;
489 }
490 }
491
492 if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
493 ret = rtd->dai_link->ops->startup(substream);
494 if (ret < 0) {
495 printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
496 goto machine_err;
497 }
498 }
499
500 /* Check that the codec and cpu DAI's are compatible */
501 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
502 runtime->hw.rate_min =
503 max(codec_dai_drv->playback.rate_min,
504 cpu_dai_drv->playback.rate_min);
505 runtime->hw.rate_max =
506 min(codec_dai_drv->playback.rate_max,
507 cpu_dai_drv->playback.rate_max);
508 runtime->hw.channels_min =
509 max(codec_dai_drv->playback.channels_min,
510 cpu_dai_drv->playback.channels_min);
511 runtime->hw.channels_max =
512 min(codec_dai_drv->playback.channels_max,
513 cpu_dai_drv->playback.channels_max);
514 runtime->hw.formats =
515 codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
516 runtime->hw.rates =
517 codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
518 if (codec_dai_drv->playback.rates
519 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
520 runtime->hw.rates |= cpu_dai_drv->playback.rates;
521 if (cpu_dai_drv->playback.rates
522 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
523 runtime->hw.rates |= codec_dai_drv->playback.rates;
524 } else {
525 runtime->hw.rate_min =
526 max(codec_dai_drv->capture.rate_min,
527 cpu_dai_drv->capture.rate_min);
528 runtime->hw.rate_max =
529 min(codec_dai_drv->capture.rate_max,
530 cpu_dai_drv->capture.rate_max);
531 runtime->hw.channels_min =
532 max(codec_dai_drv->capture.channels_min,
533 cpu_dai_drv->capture.channels_min);
534 runtime->hw.channels_max =
535 min(codec_dai_drv->capture.channels_max,
536 cpu_dai_drv->capture.channels_max);
537 runtime->hw.formats =
538 codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
539 runtime->hw.rates =
540 codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
541 if (codec_dai_drv->capture.rates
542 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
543 runtime->hw.rates |= cpu_dai_drv->capture.rates;
544 if (cpu_dai_drv->capture.rates
545 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
546 runtime->hw.rates |= codec_dai_drv->capture.rates;
547 }
548
549 snd_pcm_limit_hw_rates(runtime);
550 if (!runtime->hw.rates) {
551 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
552 codec_dai->name, cpu_dai->name);
553 goto config_err;
554 }
555 if (!runtime->hw.formats) {
556 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
557 codec_dai->name, cpu_dai->name);
558 goto config_err;
559 }
560 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
561 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
562 codec_dai->name, cpu_dai->name);
563 goto config_err;
564 }
565
566 /* Symmetry only applies if we've already got an active stream. */
567 if (cpu_dai->active || codec_dai->active) {
568 ret = soc_pcm_apply_symmetry(substream);
569 if (ret != 0)
570 goto config_err;
571 }
572
573 pr_debug("asoc: %s <-> %s info:\n",
574 codec_dai->name, cpu_dai->name);
575 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
576 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
577 runtime->hw.channels_max);
578 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
579 runtime->hw.rate_max);
580
581 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
582 cpu_dai->playback_active++;
583 codec_dai->playback_active++;
584 } else {
585 cpu_dai->capture_active++;
586 codec_dai->capture_active++;
587 }
588 cpu_dai->active++;
589 codec_dai->active++;
590 rtd->codec->active++;
591 mutex_unlock(&pcm_mutex);
592 return 0;
593
594 config_err:
595 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
596 rtd->dai_link->ops->shutdown(substream);
597
598 machine_err:
599 if (codec_dai->driver->ops->shutdown)
600 codec_dai->driver->ops->shutdown(substream, codec_dai);
601
602 codec_dai_err:
603 if (platform->driver->ops->close)
604 platform->driver->ops->close(substream);
605
606 platform_err:
607 if (cpu_dai->driver->ops->shutdown)
608 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
609 out:
610 mutex_unlock(&pcm_mutex);
611 return ret;
612 }
613
614 /*
615 * Power down the audio subsystem pmdown_time msecs after close is called.
616 * This is to ensure there are no pops or clicks in between any music tracks
617 * due to DAPM power cycling.
618 */
619 static void close_delayed_work(struct work_struct *work)
620 {
621 struct snd_soc_pcm_runtime *rtd =
622 container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
623 struct snd_soc_dai *codec_dai = rtd->codec_dai;
624
625 mutex_lock(&pcm_mutex);
626
627 pr_debug("pop wq checking: %s status: %s waiting: %s\n",
628 codec_dai->driver->playback.stream_name,
629 codec_dai->playback_active ? "active" : "inactive",
630 codec_dai->pop_wait ? "yes" : "no");
631
632 /* are we waiting on this codec DAI stream */
633 if (codec_dai->pop_wait == 1) {
634 codec_dai->pop_wait = 0;
635 snd_soc_dapm_stream_event(rtd,
636 codec_dai->driver->playback.stream_name,
637 SND_SOC_DAPM_STREAM_STOP);
638 }
639
640 mutex_unlock(&pcm_mutex);
641 }
642
643 /*
644 * Called by ALSA when a PCM substream is closed. Private data can be
645 * freed here. The cpu DAI, codec DAI, machine and platform are also
646 * shutdown.
647 */
648 static int soc_codec_close(struct snd_pcm_substream *substream)
649 {
650 struct snd_soc_pcm_runtime *rtd = substream->private_data;
651 struct snd_soc_platform *platform = rtd->platform;
652 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
653 struct snd_soc_dai *codec_dai = rtd->codec_dai;
654 struct snd_soc_codec *codec = rtd->codec;
655
656 mutex_lock(&pcm_mutex);
657
658 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
659 cpu_dai->playback_active--;
660 codec_dai->playback_active--;
661 } else {
662 cpu_dai->capture_active--;
663 codec_dai->capture_active--;
664 }
665
666 cpu_dai->active--;
667 codec_dai->active--;
668 codec->active--;
669
670 /* Muting the DAC suppresses artifacts caused during digital
671 * shutdown, for example from stopping clocks.
672 */
673 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
674 snd_soc_dai_digital_mute(codec_dai, 1);
675
676 if (cpu_dai->driver->ops->shutdown)
677 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
678
679 if (codec_dai->driver->ops->shutdown)
680 codec_dai->driver->ops->shutdown(substream, codec_dai);
681
682 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
683 rtd->dai_link->ops->shutdown(substream);
684
685 if (platform->driver->ops->close)
686 platform->driver->ops->close(substream);
687 cpu_dai->runtime = NULL;
688
689 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
690 /* start delayed pop wq here for playback streams */
691 codec_dai->pop_wait = 1;
692 schedule_delayed_work(&rtd->delayed_work,
693 msecs_to_jiffies(rtd->pmdown_time));
694 } else {
695 /* capture streams can be powered down now */
696 snd_soc_dapm_stream_event(rtd,
697 codec_dai->driver->capture.stream_name,
698 SND_SOC_DAPM_STREAM_STOP);
699 }
700
701 mutex_unlock(&pcm_mutex);
702 return 0;
703 }
704
705 /*
706 * Called by ALSA when the PCM substream is prepared, can set format, sample
707 * rate, etc. This function is non atomic and can be called multiple times,
708 * it can refer to the runtime info.
709 */
710 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
711 {
712 struct snd_soc_pcm_runtime *rtd = substream->private_data;
713 struct snd_soc_platform *platform = rtd->platform;
714 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
715 struct snd_soc_dai *codec_dai = rtd->codec_dai;
716 int ret = 0;
717
718 mutex_lock(&pcm_mutex);
719
720 if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
721 ret = rtd->dai_link->ops->prepare(substream);
722 if (ret < 0) {
723 printk(KERN_ERR "asoc: machine prepare error\n");
724 goto out;
725 }
726 }
727
728 if (platform->driver->ops->prepare) {
729 ret = platform->driver->ops->prepare(substream);
730 if (ret < 0) {
731 printk(KERN_ERR "asoc: platform prepare error\n");
732 goto out;
733 }
734 }
735
736 if (codec_dai->driver->ops->prepare) {
737 ret = codec_dai->driver->ops->prepare(substream, codec_dai);
738 if (ret < 0) {
739 printk(KERN_ERR "asoc: codec DAI prepare error\n");
740 goto out;
741 }
742 }
743
744 if (cpu_dai->driver->ops->prepare) {
745 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
746 if (ret < 0) {
747 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
748 goto out;
749 }
750 }
751
752 /* cancel any delayed stream shutdown that is pending */
753 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
754 codec_dai->pop_wait) {
755 codec_dai->pop_wait = 0;
756 cancel_delayed_work(&rtd->delayed_work);
757 }
758
759 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
760 snd_soc_dapm_stream_event(rtd,
761 codec_dai->driver->playback.stream_name,
762 SND_SOC_DAPM_STREAM_START);
763 else
764 snd_soc_dapm_stream_event(rtd,
765 codec_dai->driver->capture.stream_name,
766 SND_SOC_DAPM_STREAM_START);
767
768 snd_soc_dai_digital_mute(codec_dai, 0);
769
770 out:
771 mutex_unlock(&pcm_mutex);
772 return ret;
773 }
774
775 /*
776 * Called by ALSA when the hardware params are set by application. This
777 * function can also be called multiple times and can allocate buffers
778 * (using snd_pcm_lib_* ). It's non-atomic.
779 */
780 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
781 struct snd_pcm_hw_params *params)
782 {
783 struct snd_soc_pcm_runtime *rtd = substream->private_data;
784 struct snd_soc_platform *platform = rtd->platform;
785 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
786 struct snd_soc_dai *codec_dai = rtd->codec_dai;
787 int ret = 0;
788
789 mutex_lock(&pcm_mutex);
790
791 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
792 ret = rtd->dai_link->ops->hw_params(substream, params);
793 if (ret < 0) {
794 printk(KERN_ERR "asoc: machine hw_params failed\n");
795 goto out;
796 }
797 }
798
799 if (codec_dai->driver->ops->hw_params) {
800 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
801 if (ret < 0) {
802 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
803 codec_dai->name);
804 goto codec_err;
805 }
806 }
807
808 if (cpu_dai->driver->ops->hw_params) {
809 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
810 if (ret < 0) {
811 printk(KERN_ERR "asoc: interface %s hw params failed\n",
812 cpu_dai->name);
813 goto interface_err;
814 }
815 }
816
817 if (platform->driver->ops->hw_params) {
818 ret = platform->driver->ops->hw_params(substream, params);
819 if (ret < 0) {
820 printk(KERN_ERR "asoc: platform %s hw params failed\n",
821 platform->name);
822 goto platform_err;
823 }
824 }
825
826 rtd->rate = params_rate(params);
827
828 out:
829 mutex_unlock(&pcm_mutex);
830 return ret;
831
832 platform_err:
833 if (cpu_dai->driver->ops->hw_free)
834 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
835
836 interface_err:
837 if (codec_dai->driver->ops->hw_free)
838 codec_dai->driver->ops->hw_free(substream, codec_dai);
839
840 codec_err:
841 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
842 rtd->dai_link->ops->hw_free(substream);
843
844 mutex_unlock(&pcm_mutex);
845 return ret;
846 }
847
848 /*
849 * Free's resources allocated by hw_params, can be called multiple times
850 */
851 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
852 {
853 struct snd_soc_pcm_runtime *rtd = substream->private_data;
854 struct snd_soc_platform *platform = rtd->platform;
855 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
856 struct snd_soc_dai *codec_dai = rtd->codec_dai;
857 struct snd_soc_codec *codec = rtd->codec;
858
859 mutex_lock(&pcm_mutex);
860
861 /* apply codec digital mute */
862 if (!codec->active)
863 snd_soc_dai_digital_mute(codec_dai, 1);
864
865 /* free any machine hw params */
866 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
867 rtd->dai_link->ops->hw_free(substream);
868
869 /* free any DMA resources */
870 if (platform->driver->ops->hw_free)
871 platform->driver->ops->hw_free(substream);
872
873 /* now free hw params for the DAI's */
874 if (codec_dai->driver->ops->hw_free)
875 codec_dai->driver->ops->hw_free(substream, codec_dai);
876
877 if (cpu_dai->driver->ops->hw_free)
878 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
879
880 mutex_unlock(&pcm_mutex);
881 return 0;
882 }
883
884 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
885 {
886 struct snd_soc_pcm_runtime *rtd = substream->private_data;
887 struct snd_soc_platform *platform = rtd->platform;
888 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
889 struct snd_soc_dai *codec_dai = rtd->codec_dai;
890 int ret;
891
892 if (codec_dai->driver->ops->trigger) {
893 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
894 if (ret < 0)
895 return ret;
896 }
897
898 if (platform->driver->ops->trigger) {
899 ret = platform->driver->ops->trigger(substream, cmd);
900 if (ret < 0)
901 return ret;
902 }
903
904 if (cpu_dai->driver->ops->trigger) {
905 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
906 if (ret < 0)
907 return ret;
908 }
909 return 0;
910 }
911
912 /*
913 * soc level wrapper for pointer callback
914 * If cpu_dai, codec_dai, platform driver has the delay callback, than
915 * the runtime->delay will be updated accordingly.
916 */
917 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
918 {
919 struct snd_soc_pcm_runtime *rtd = substream->private_data;
920 struct snd_soc_platform *platform = rtd->platform;
921 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
922 struct snd_soc_dai *codec_dai = rtd->codec_dai;
923 struct snd_pcm_runtime *runtime = substream->runtime;
924 snd_pcm_uframes_t offset = 0;
925 snd_pcm_sframes_t delay = 0;
926
927 if (platform->driver->ops->pointer)
928 offset = platform->driver->ops->pointer(substream);
929
930 if (cpu_dai->driver->ops->delay)
931 delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
932
933 if (codec_dai->driver->ops->delay)
934 delay += codec_dai->driver->ops->delay(substream, codec_dai);
935
936 if (platform->driver->delay)
937 delay += platform->driver->delay(substream, codec_dai);
938
939 runtime->delay = delay;
940
941 return offset;
942 }
943
944 /* ASoC PCM operations */
945 static struct snd_pcm_ops soc_pcm_ops = {
946 .open = soc_pcm_open,
947 .close = soc_codec_close,
948 .hw_params = soc_pcm_hw_params,
949 .hw_free = soc_pcm_hw_free,
950 .prepare = soc_pcm_prepare,
951 .trigger = soc_pcm_trigger,
952 .pointer = soc_pcm_pointer,
953 };
954
955 #ifdef CONFIG_PM
956 /* powers down audio subsystem for suspend */
957 static int soc_suspend(struct device *dev)
958 {
959 struct platform_device *pdev = to_platform_device(dev);
960 struct snd_soc_card *card = platform_get_drvdata(pdev);
961 int i;
962
963 /* If the initialization of this soc device failed, there is no codec
964 * associated with it. Just bail out in this case.
965 */
966 if (list_empty(&card->codec_dev_list))
967 return 0;
968
969 /* Due to the resume being scheduled into a workqueue we could
970 * suspend before that's finished - wait for it to complete.
971 */
972 snd_power_lock(card->snd_card);
973 snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
974 snd_power_unlock(card->snd_card);
975
976 /* we're going to block userspace touching us until resume completes */
977 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
978
979 /* mute any active DAC's */
980 for (i = 0; i < card->num_rtd; i++) {
981 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
982 struct snd_soc_dai_driver *drv = dai->driver;
983
984 if (card->rtd[i].dai_link->ignore_suspend)
985 continue;
986
987 if (drv->ops->digital_mute && dai->playback_active)
988 drv->ops->digital_mute(dai, 1);
989 }
990
991 /* suspend all pcms */
992 for (i = 0; i < card->num_rtd; i++) {
993 if (card->rtd[i].dai_link->ignore_suspend)
994 continue;
995
996 snd_pcm_suspend_all(card->rtd[i].pcm);
997 }
998
999 if (card->suspend_pre)
1000 card->suspend_pre(pdev, PMSG_SUSPEND);
1001
1002 for (i = 0; i < card->num_rtd; i++) {
1003 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1004 struct snd_soc_platform *platform = card->rtd[i].platform;
1005
1006 if (card->rtd[i].dai_link->ignore_suspend)
1007 continue;
1008
1009 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
1010 cpu_dai->driver->suspend(cpu_dai);
1011 if (platform->driver->suspend && !platform->suspended) {
1012 platform->driver->suspend(cpu_dai);
1013 platform->suspended = 1;
1014 }
1015 }
1016
1017 /* close any waiting streams and save state */
1018 for (i = 0; i < card->num_rtd; i++) {
1019 run_delayed_work(&card->rtd[i].delayed_work);
1020 card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level;
1021 }
1022
1023 for (i = 0; i < card->num_rtd; i++) {
1024 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1025
1026 if (card->rtd[i].dai_link->ignore_suspend)
1027 continue;
1028
1029 if (driver->playback.stream_name != NULL)
1030 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1031 SND_SOC_DAPM_STREAM_SUSPEND);
1032
1033 if (driver->capture.stream_name != NULL)
1034 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1035 SND_SOC_DAPM_STREAM_SUSPEND);
1036 }
1037
1038 /* suspend all CODECs */
1039 for (i = 0; i < card->num_rtd; i++) {
1040 struct snd_soc_codec *codec = card->rtd[i].codec;
1041 /* If there are paths active then the CODEC will be held with
1042 * bias _ON and should not be suspended. */
1043 if (!codec->suspended && codec->driver->suspend) {
1044 switch (codec->dapm.bias_level) {
1045 case SND_SOC_BIAS_STANDBY:
1046 case SND_SOC_BIAS_OFF:
1047 codec->driver->suspend(codec, PMSG_SUSPEND);
1048 codec->suspended = 1;
1049 break;
1050 default:
1051 dev_dbg(codec->dev, "CODEC is on over suspend\n");
1052 break;
1053 }
1054 }
1055 }
1056
1057 for (i = 0; i < card->num_rtd; i++) {
1058 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1059
1060 if (card->rtd[i].dai_link->ignore_suspend)
1061 continue;
1062
1063 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
1064 cpu_dai->driver->suspend(cpu_dai);
1065 }
1066
1067 if (card->suspend_post)
1068 card->suspend_post(pdev, PMSG_SUSPEND);
1069
1070 return 0;
1071 }
1072
1073 /* deferred resume work, so resume can complete before we finished
1074 * setting our codec back up, which can be very slow on I2C
1075 */
1076 static void soc_resume_deferred(struct work_struct *work)
1077 {
1078 struct snd_soc_card *card =
1079 container_of(work, struct snd_soc_card, deferred_resume_work);
1080 struct platform_device *pdev = to_platform_device(card->dev);
1081 int i;
1082
1083 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
1084 * so userspace apps are blocked from touching us
1085 */
1086
1087 dev_dbg(card->dev, "starting resume work\n");
1088
1089 /* Bring us up into D2 so that DAPM starts enabling things */
1090 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
1091
1092 if (card->resume_pre)
1093 card->resume_pre(pdev);
1094
1095 /* resume AC97 DAIs */
1096 for (i = 0; i < card->num_rtd; i++) {
1097 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1098
1099 if (card->rtd[i].dai_link->ignore_suspend)
1100 continue;
1101
1102 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
1103 cpu_dai->driver->resume(cpu_dai);
1104 }
1105
1106 for (i = 0; i < card->num_rtd; i++) {
1107 struct snd_soc_codec *codec = card->rtd[i].codec;
1108 /* If the CODEC was idle over suspend then it will have been
1109 * left with bias OFF or STANDBY and suspended so we must now
1110 * resume. Otherwise the suspend was suppressed.
1111 */
1112 if (codec->driver->resume && codec->suspended) {
1113 switch (codec->dapm.bias_level) {
1114 case SND_SOC_BIAS_STANDBY:
1115 case SND_SOC_BIAS_OFF:
1116 codec->driver->resume(codec);
1117 codec->suspended = 0;
1118 break;
1119 default:
1120 dev_dbg(codec->dev, "CODEC was on over suspend\n");
1121 break;
1122 }
1123 }
1124 }
1125
1126 for (i = 0; i < card->num_rtd; i++) {
1127 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1128
1129 if (card->rtd[i].dai_link->ignore_suspend)
1130 continue;
1131
1132 if (driver->playback.stream_name != NULL)
1133 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1134 SND_SOC_DAPM_STREAM_RESUME);
1135
1136 if (driver->capture.stream_name != NULL)
1137 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1138 SND_SOC_DAPM_STREAM_RESUME);
1139 }
1140
1141 /* unmute any active DACs */
1142 for (i = 0; i < card->num_rtd; i++) {
1143 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1144 struct snd_soc_dai_driver *drv = dai->driver;
1145
1146 if (card->rtd[i].dai_link->ignore_suspend)
1147 continue;
1148
1149 if (drv->ops->digital_mute && dai->playback_active)
1150 drv->ops->digital_mute(dai, 0);
1151 }
1152
1153 for (i = 0; i < card->num_rtd; i++) {
1154 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1155 struct snd_soc_platform *platform = card->rtd[i].platform;
1156
1157 if (card->rtd[i].dai_link->ignore_suspend)
1158 continue;
1159
1160 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1161 cpu_dai->driver->resume(cpu_dai);
1162 if (platform->driver->resume && platform->suspended) {
1163 platform->driver->resume(cpu_dai);
1164 platform->suspended = 0;
1165 }
1166 }
1167
1168 if (card->resume_post)
1169 card->resume_post(pdev);
1170
1171 dev_dbg(card->dev, "resume work completed\n");
1172
1173 /* userspace can access us now we are back as we were before */
1174 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1175 }
1176
1177 /* powers up audio subsystem after a suspend */
1178 static int soc_resume(struct device *dev)
1179 {
1180 struct platform_device *pdev = to_platform_device(dev);
1181 struct snd_soc_card *card = platform_get_drvdata(pdev);
1182 int i;
1183
1184 /* AC97 devices might have other drivers hanging off them so
1185 * need to resume immediately. Other drivers don't have that
1186 * problem and may take a substantial amount of time to resume
1187 * due to I/O costs and anti-pop so handle them out of line.
1188 */
1189 for (i = 0; i < card->num_rtd; i++) {
1190 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1191 if (cpu_dai->driver->ac97_control) {
1192 dev_dbg(dev, "Resuming AC97 immediately\n");
1193 soc_resume_deferred(&card->deferred_resume_work);
1194 } else {
1195 dev_dbg(dev, "Scheduling resume work\n");
1196 if (!schedule_work(&card->deferred_resume_work))
1197 dev_err(dev, "resume work item may be lost\n");
1198 }
1199 }
1200
1201 return 0;
1202 }
1203 #else
1204 #define soc_suspend NULL
1205 #define soc_resume NULL
1206 #endif
1207
1208 static struct snd_soc_dai_ops null_dai_ops = {
1209 };
1210
1211 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1212 {
1213 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1214 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1215 struct snd_soc_codec *codec;
1216 struct snd_soc_platform *platform;
1217 struct snd_soc_dai *codec_dai, *cpu_dai;
1218
1219 if (rtd->complete)
1220 return 1;
1221 dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1222
1223 /* do we already have the CPU DAI for this link ? */
1224 if (rtd->cpu_dai) {
1225 goto find_codec;
1226 }
1227 /* no, then find CPU DAI from registered DAIs*/
1228 list_for_each_entry(cpu_dai, &dai_list, list) {
1229 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1230
1231 if (!try_module_get(cpu_dai->dev->driver->owner))
1232 return -ENODEV;
1233
1234 rtd->cpu_dai = cpu_dai;
1235 goto find_codec;
1236 }
1237 }
1238 dev_dbg(card->dev, "CPU DAI %s not registered\n",
1239 dai_link->cpu_dai_name);
1240
1241 find_codec:
1242 /* do we already have the CODEC for this link ? */
1243 if (rtd->codec) {
1244 goto find_platform;
1245 }
1246
1247 /* no, then find CODEC from registered CODECs*/
1248 list_for_each_entry(codec, &codec_list, list) {
1249 if (!strcmp(codec->name, dai_link->codec_name)) {
1250 rtd->codec = codec;
1251
1252 if (!try_module_get(codec->dev->driver->owner))
1253 return -ENODEV;
1254
1255 /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1256 list_for_each_entry(codec_dai, &dai_list, list) {
1257 if (codec->dev == codec_dai->dev &&
1258 !strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1259 rtd->codec_dai = codec_dai;
1260 goto find_platform;
1261 }
1262 }
1263 dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1264 dai_link->codec_dai_name);
1265
1266 goto find_platform;
1267 }
1268 }
1269 dev_dbg(card->dev, "CODEC %s not registered\n",
1270 dai_link->codec_name);
1271
1272 find_platform:
1273 /* do we already have the CODEC DAI for this link ? */
1274 if (rtd->platform) {
1275 goto out;
1276 }
1277 /* no, then find CPU DAI from registered DAIs*/
1278 list_for_each_entry(platform, &platform_list, list) {
1279 if (!strcmp(platform->name, dai_link->platform_name)) {
1280
1281 if (!try_module_get(platform->dev->driver->owner))
1282 return -ENODEV;
1283
1284 rtd->platform = platform;
1285 goto out;
1286 }
1287 }
1288
1289 dev_dbg(card->dev, "platform %s not registered\n",
1290 dai_link->platform_name);
1291 return 0;
1292
1293 out:
1294 /* mark rtd as complete if we found all 4 of our client devices */
1295 if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1296 rtd->complete = 1;
1297 card->num_rtd++;
1298 }
1299 return 1;
1300 }
1301
1302 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1303 {
1304 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1305 struct snd_soc_codec *codec = rtd->codec;
1306 struct snd_soc_platform *platform = rtd->platform;
1307 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1308 int err;
1309
1310 /* unregister the rtd device */
1311 if (rtd->dev_registered) {
1312 device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1313 device_unregister(&rtd->dev);
1314 rtd->dev_registered = 0;
1315 }
1316
1317 /* remove the CODEC DAI */
1318 if (codec_dai && codec_dai->probed) {
1319 if (codec_dai->driver->remove) {
1320 err = codec_dai->driver->remove(codec_dai);
1321 if (err < 0)
1322 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1323 }
1324 codec_dai->probed = 0;
1325 list_del(&codec_dai->card_list);
1326 }
1327
1328 /* remove the platform */
1329 if (platform && platform->probed) {
1330 if (platform->driver->remove) {
1331 err = platform->driver->remove(platform);
1332 if (err < 0)
1333 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1334 }
1335 platform->probed = 0;
1336 list_del(&platform->card_list);
1337 module_put(platform->dev->driver->owner);
1338 }
1339
1340 /* remove the CODEC */
1341 if (codec && codec->probed) {
1342 if (codec->driver->remove) {
1343 err = codec->driver->remove(codec);
1344 if (err < 0)
1345 printk(KERN_ERR "asoc: failed to remove %s\n", codec->name);
1346 }
1347
1348 /* Make sure all DAPM widgets are freed */
1349 snd_soc_dapm_free(&codec->dapm);
1350
1351 soc_cleanup_codec_debugfs(codec);
1352 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1353 codec->probed = 0;
1354 list_del(&codec->card_list);
1355 module_put(codec->dev->driver->owner);
1356 }
1357
1358 /* remove the cpu_dai */
1359 if (cpu_dai && cpu_dai->probed) {
1360 if (cpu_dai->driver->remove) {
1361 err = cpu_dai->driver->remove(cpu_dai);
1362 if (err < 0)
1363 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1364 }
1365 cpu_dai->probed = 0;
1366 list_del(&cpu_dai->card_list);
1367 module_put(cpu_dai->dev->driver->owner);
1368 }
1369 }
1370
1371 static void rtd_release(struct device *dev) {}
1372
1373 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1374 {
1375 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1376 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1377 struct snd_soc_codec *codec = rtd->codec;
1378 struct snd_soc_platform *platform = rtd->platform;
1379 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1380 int ret;
1381
1382 dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1383
1384 /* config components */
1385 codec_dai->codec = codec;
1386 codec->card = card;
1387 cpu_dai->platform = platform;
1388 rtd->card = card;
1389 rtd->dev.parent = card->dev;
1390 codec_dai->card = card;
1391 cpu_dai->card = card;
1392
1393 /* set default power off timeout */
1394 rtd->pmdown_time = pmdown_time;
1395
1396 /* probe the cpu_dai */
1397 if (!cpu_dai->probed) {
1398 if (cpu_dai->driver->probe) {
1399 ret = cpu_dai->driver->probe(cpu_dai);
1400 if (ret < 0) {
1401 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1402 cpu_dai->name);
1403 return ret;
1404 }
1405 }
1406 cpu_dai->probed = 1;
1407 /* mark cpu_dai as probed and add to card cpu_dai list */
1408 list_add(&cpu_dai->card_list, &card->dai_dev_list);
1409 }
1410
1411 /* probe the CODEC */
1412 if (!codec->probed) {
1413 if (codec->driver->probe) {
1414 ret = codec->driver->probe(codec);
1415 if (ret < 0) {
1416 printk(KERN_ERR "asoc: failed to probe CODEC %s\n",
1417 codec->name);
1418 return ret;
1419 }
1420 }
1421
1422 soc_init_codec_debugfs(codec);
1423
1424 /* mark codec as probed and add to card codec list */
1425 codec->probed = 1;
1426 list_add(&codec->card_list, &card->codec_dev_list);
1427 }
1428
1429 /* probe the platform */
1430 if (!platform->probed) {
1431 if (platform->driver->probe) {
1432 ret = platform->driver->probe(platform);
1433 if (ret < 0) {
1434 printk(KERN_ERR "asoc: failed to probe platform %s\n",
1435 platform->name);
1436 return ret;
1437 }
1438 }
1439 /* mark platform as probed and add to card platform list */
1440 platform->probed = 1;
1441 list_add(&platform->card_list, &card->platform_dev_list);
1442 }
1443
1444 /* probe the CODEC DAI */
1445 if (!codec_dai->probed) {
1446 if (codec_dai->driver->probe) {
1447 ret = codec_dai->driver->probe(codec_dai);
1448 if (ret < 0) {
1449 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1450 codec_dai->name);
1451 return ret;
1452 }
1453 }
1454
1455 /* mark cpu_dai as probed and add to card cpu_dai list */
1456 codec_dai->probed = 1;
1457 list_add(&codec_dai->card_list, &card->dai_dev_list);
1458 }
1459
1460 /* DAPM dai link stream work */
1461 INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1462
1463 /* now that all clients have probed, initialise the DAI link */
1464 if (dai_link->init) {
1465 ret = dai_link->init(rtd);
1466 if (ret < 0) {
1467 printk(KERN_ERR "asoc: failed to init %s\n", dai_link->stream_name);
1468 return ret;
1469 }
1470 }
1471
1472 /* Make sure all DAPM widgets are instantiated */
1473 snd_soc_dapm_new_widgets(&codec->dapm);
1474 snd_soc_dapm_sync(&codec->dapm);
1475
1476 /* register the rtd device */
1477 rtd->dev.release = rtd_release;
1478 rtd->dev.init_name = dai_link->name;
1479 ret = device_register(&rtd->dev);
1480 if (ret < 0) {
1481 printk(KERN_ERR "asoc: failed to register DAI runtime device %d\n", ret);
1482 return ret;
1483 }
1484
1485 rtd->dev_registered = 1;
1486 ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1487 if (ret < 0)
1488 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1489
1490 /* add DAPM sysfs entries for this codec */
1491 ret = snd_soc_dapm_sys_add(&rtd->dev);
1492 if (ret < 0)
1493 printk(KERN_WARNING "asoc: failed to add codec dapm sysfs entries\n");
1494
1495 /* add codec sysfs entries */
1496 ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1497 if (ret < 0)
1498 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1499
1500 /* create the pcm */
1501 ret = soc_new_pcm(rtd, num);
1502 if (ret < 0) {
1503 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1504 return ret;
1505 }
1506
1507 /* add platform data for AC97 devices */
1508 if (rtd->codec_dai->driver->ac97_control)
1509 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1510
1511 return 0;
1512 }
1513
1514 #ifdef CONFIG_SND_SOC_AC97_BUS
1515 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1516 {
1517 int ret;
1518
1519 /* Only instantiate AC97 if not already done by the adaptor
1520 * for the generic AC97 subsystem.
1521 */
1522 if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1523 /*
1524 * It is possible that the AC97 device is already registered to
1525 * the device subsystem. This happens when the device is created
1526 * via snd_ac97_mixer(). Currently only SoC codec that does so
1527 * is the generic AC97 glue but others migh emerge.
1528 *
1529 * In those cases we don't try to register the device again.
1530 */
1531 if (!rtd->codec->ac97_created)
1532 return 0;
1533
1534 ret = soc_ac97_dev_register(rtd->codec);
1535 if (ret < 0) {
1536 printk(KERN_ERR "asoc: AC97 device register failed\n");
1537 return ret;
1538 }
1539
1540 rtd->codec->ac97_registered = 1;
1541 }
1542 return 0;
1543 }
1544
1545 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1546 {
1547 if (codec->ac97_registered) {
1548 soc_ac97_dev_unregister(codec);
1549 codec->ac97_registered = 0;
1550 }
1551 }
1552 #endif
1553
1554 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1555 {
1556 struct platform_device *pdev = to_platform_device(card->dev);
1557 int ret, i;
1558
1559 mutex_lock(&card->mutex);
1560
1561 if (card->instantiated) {
1562 mutex_unlock(&card->mutex);
1563 return;
1564 }
1565
1566 /* bind DAIs */
1567 for (i = 0; i < card->num_links; i++)
1568 soc_bind_dai_link(card, i);
1569
1570 /* bind completed ? */
1571 if (card->num_rtd != card->num_links) {
1572 mutex_unlock(&card->mutex);
1573 return;
1574 }
1575
1576 /* card bind complete so register a sound card */
1577 ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1578 card->owner, 0, &card->snd_card);
1579 if (ret < 0) {
1580 printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1581 card->name);
1582 mutex_unlock(&card->mutex);
1583 return;
1584 }
1585 card->snd_card->dev = card->dev;
1586
1587 #ifdef CONFIG_PM
1588 /* deferred resume work */
1589 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1590 #endif
1591
1592 /* initialise the sound card only once */
1593 if (card->probe) {
1594 ret = card->probe(pdev);
1595 if (ret < 0)
1596 goto card_probe_error;
1597 }
1598
1599 for (i = 0; i < card->num_links; i++) {
1600 ret = soc_probe_dai_link(card, i);
1601 if (ret < 0) {
1602 pr_err("asoc: failed to instantiate card %s: %d\n",
1603 card->name, ret);
1604 goto probe_dai_err;
1605 }
1606 }
1607
1608 snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1609 "%s", card->name);
1610 snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1611 "%s", card->name);
1612
1613 ret = snd_card_register(card->snd_card);
1614 if (ret < 0) {
1615 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1616 goto probe_dai_err;
1617 }
1618
1619 #ifdef CONFIG_SND_SOC_AC97_BUS
1620 /* register any AC97 codecs */
1621 for (i = 0; i < card->num_rtd; i++) {
1622 ret = soc_register_ac97_dai_link(&card->rtd[i]);
1623 if (ret < 0) {
1624 printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1625 goto probe_dai_err;
1626 }
1627 }
1628 #endif
1629
1630 card->instantiated = 1;
1631 mutex_unlock(&card->mutex);
1632 return;
1633
1634 probe_dai_err:
1635 for (i = 0; i < card->num_links; i++)
1636 soc_remove_dai_link(card, i);
1637
1638 card_probe_error:
1639 if (card->remove)
1640 card->remove(pdev);
1641
1642 snd_card_free(card->snd_card);
1643
1644 mutex_unlock(&card->mutex);
1645 }
1646
1647 /*
1648 * Attempt to initialise any uninitialised cards. Must be called with
1649 * client_mutex.
1650 */
1651 static void snd_soc_instantiate_cards(void)
1652 {
1653 struct snd_soc_card *card;
1654 list_for_each_entry(card, &card_list, list)
1655 snd_soc_instantiate_card(card);
1656 }
1657
1658 /* probes a new socdev */
1659 static int soc_probe(struct platform_device *pdev)
1660 {
1661 struct snd_soc_card *card = platform_get_drvdata(pdev);
1662 int ret = 0;
1663
1664 /* Bodge while we unpick instantiation */
1665 card->dev = &pdev->dev;
1666 INIT_LIST_HEAD(&card->dai_dev_list);
1667 INIT_LIST_HEAD(&card->codec_dev_list);
1668 INIT_LIST_HEAD(&card->platform_dev_list);
1669
1670 ret = snd_soc_register_card(card);
1671 if (ret != 0) {
1672 dev_err(&pdev->dev, "Failed to register card\n");
1673 return ret;
1674 }
1675
1676 return 0;
1677 }
1678
1679 /* removes a socdev */
1680 static int soc_remove(struct platform_device *pdev)
1681 {
1682 struct snd_soc_card *card = platform_get_drvdata(pdev);
1683 int i;
1684
1685 if (card->instantiated) {
1686
1687 /* make sure any delayed work runs */
1688 for (i = 0; i < card->num_rtd; i++) {
1689 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1690 run_delayed_work(&rtd->delayed_work);
1691 }
1692
1693 /* remove and free each DAI */
1694 for (i = 0; i < card->num_rtd; i++)
1695 soc_remove_dai_link(card, i);
1696
1697 /* remove the card */
1698 if (card->remove)
1699 card->remove(pdev);
1700
1701 kfree(card->rtd);
1702 snd_card_free(card->snd_card);
1703 }
1704 snd_soc_unregister_card(card);
1705 return 0;
1706 }
1707
1708 static int soc_poweroff(struct device *dev)
1709 {
1710 struct platform_device *pdev = to_platform_device(dev);
1711 struct snd_soc_card *card = platform_get_drvdata(pdev);
1712 int i;
1713
1714 if (!card->instantiated)
1715 return 0;
1716
1717 /* Flush out pmdown_time work - we actually do want to run it
1718 * now, we're shutting down so no imminent restart. */
1719 for (i = 0; i < card->num_rtd; i++) {
1720 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1721 run_delayed_work(&rtd->delayed_work);
1722 }
1723
1724 snd_soc_dapm_shutdown(card);
1725
1726 return 0;
1727 }
1728
1729 static const struct dev_pm_ops soc_pm_ops = {
1730 .suspend = soc_suspend,
1731 .resume = soc_resume,
1732 .poweroff = soc_poweroff,
1733 };
1734
1735 /* ASoC platform driver */
1736 static struct platform_driver soc_driver = {
1737 .driver = {
1738 .name = "soc-audio",
1739 .owner = THIS_MODULE,
1740 .pm = &soc_pm_ops,
1741 },
1742 .probe = soc_probe,
1743 .remove = soc_remove,
1744 };
1745
1746 /* create a new pcm */
1747 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
1748 {
1749 struct snd_soc_codec *codec = rtd->codec;
1750 struct snd_soc_platform *platform = rtd->platform;
1751 struct snd_soc_dai *codec_dai = rtd->codec_dai;
1752 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1753 struct snd_pcm *pcm;
1754 char new_name[64];
1755 int ret = 0, playback = 0, capture = 0;
1756
1757 /* check client and interface hw capabilities */
1758 snprintf(new_name, sizeof(new_name), "%s %s-%d",
1759 rtd->dai_link->stream_name, codec_dai->name, num);
1760
1761 if (codec_dai->driver->playback.channels_min)
1762 playback = 1;
1763 if (codec_dai->driver->capture.channels_min)
1764 capture = 1;
1765
1766 dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
1767 ret = snd_pcm_new(rtd->card->snd_card, new_name,
1768 num, playback, capture, &pcm);
1769 if (ret < 0) {
1770 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
1771 return ret;
1772 }
1773
1774 rtd->pcm = pcm;
1775 pcm->private_data = rtd;
1776 soc_pcm_ops.mmap = platform->driver->ops->mmap;
1777 soc_pcm_ops.pointer = platform->driver->ops->pointer;
1778 soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
1779 soc_pcm_ops.copy = platform->driver->ops->copy;
1780 soc_pcm_ops.silence = platform->driver->ops->silence;
1781 soc_pcm_ops.ack = platform->driver->ops->ack;
1782 soc_pcm_ops.page = platform->driver->ops->page;
1783
1784 if (playback)
1785 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1786
1787 if (capture)
1788 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1789
1790 ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm);
1791 if (ret < 0) {
1792 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1793 return ret;
1794 }
1795
1796 pcm->private_free = platform->driver->pcm_free;
1797 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1798 cpu_dai->name);
1799 return ret;
1800 }
1801
1802 /**
1803 * snd_soc_codec_volatile_register: Report if a register is volatile.
1804 *
1805 * @codec: CODEC to query.
1806 * @reg: Register to query.
1807 *
1808 * Boolean function indiciating if a CODEC register is volatile.
1809 */
1810 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
1811 {
1812 if (codec->driver->volatile_register)
1813 return codec->driver->volatile_register(reg);
1814 else
1815 return 0;
1816 }
1817 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
1818
1819 /**
1820 * snd_soc_new_ac97_codec - initailise AC97 device
1821 * @codec: audio codec
1822 * @ops: AC97 bus operations
1823 * @num: AC97 codec number
1824 *
1825 * Initialises AC97 codec resources for use by ad-hoc devices only.
1826 */
1827 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1828 struct snd_ac97_bus_ops *ops, int num)
1829 {
1830 mutex_lock(&codec->mutex);
1831
1832 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1833 if (codec->ac97 == NULL) {
1834 mutex_unlock(&codec->mutex);
1835 return -ENOMEM;
1836 }
1837
1838 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1839 if (codec->ac97->bus == NULL) {
1840 kfree(codec->ac97);
1841 codec->ac97 = NULL;
1842 mutex_unlock(&codec->mutex);
1843 return -ENOMEM;
1844 }
1845
1846 codec->ac97->bus->ops = ops;
1847 codec->ac97->num = num;
1848
1849 /*
1850 * Mark the AC97 device to be created by us. This way we ensure that the
1851 * device will be registered with the device subsystem later on.
1852 */
1853 codec->ac97_created = 1;
1854
1855 mutex_unlock(&codec->mutex);
1856 return 0;
1857 }
1858 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1859
1860 /**
1861 * snd_soc_free_ac97_codec - free AC97 codec device
1862 * @codec: audio codec
1863 *
1864 * Frees AC97 codec device resources.
1865 */
1866 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1867 {
1868 mutex_lock(&codec->mutex);
1869 #ifdef CONFIG_SND_SOC_AC97_BUS
1870 soc_unregister_ac97_dai_link(codec);
1871 #endif
1872 kfree(codec->ac97->bus);
1873 kfree(codec->ac97);
1874 codec->ac97 = NULL;
1875 codec->ac97_created = 0;
1876 mutex_unlock(&codec->mutex);
1877 }
1878 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1879
1880 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg)
1881 {
1882 unsigned int ret;
1883
1884 ret = codec->driver->read(codec, reg);
1885 dev_dbg(codec->dev, "read %x => %x\n", reg, ret);
1886
1887 return ret;
1888 }
1889 EXPORT_SYMBOL_GPL(snd_soc_read);
1890
1891 unsigned int snd_soc_write(struct snd_soc_codec *codec,
1892 unsigned int reg, unsigned int val)
1893 {
1894 dev_dbg(codec->dev, "write %x = %x\n", reg, val);
1895 return codec->driver->write(codec, reg, val);
1896 }
1897 EXPORT_SYMBOL_GPL(snd_soc_write);
1898
1899 /**
1900 * snd_soc_update_bits - update codec register bits
1901 * @codec: audio codec
1902 * @reg: codec register
1903 * @mask: register mask
1904 * @value: new value
1905 *
1906 * Writes new register value.
1907 *
1908 * Returns 1 for change else 0.
1909 */
1910 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1911 unsigned int mask, unsigned int value)
1912 {
1913 int change;
1914 unsigned int old, new;
1915
1916 old = snd_soc_read(codec, reg);
1917 new = (old & ~mask) | value;
1918 change = old != new;
1919 if (change)
1920 snd_soc_write(codec, reg, new);
1921
1922 return change;
1923 }
1924 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1925
1926 /**
1927 * snd_soc_update_bits_locked - update codec register bits
1928 * @codec: audio codec
1929 * @reg: codec register
1930 * @mask: register mask
1931 * @value: new value
1932 *
1933 * Writes new register value, and takes the codec mutex.
1934 *
1935 * Returns 1 for change else 0.
1936 */
1937 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
1938 unsigned short reg, unsigned int mask,
1939 unsigned int value)
1940 {
1941 int change;
1942
1943 mutex_lock(&codec->mutex);
1944 change = snd_soc_update_bits(codec, reg, mask, value);
1945 mutex_unlock(&codec->mutex);
1946
1947 return change;
1948 }
1949 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
1950
1951 /**
1952 * snd_soc_test_bits - test register for change
1953 * @codec: audio codec
1954 * @reg: codec register
1955 * @mask: register mask
1956 * @value: new value
1957 *
1958 * Tests a register with a new value and checks if the new value is
1959 * different from the old value.
1960 *
1961 * Returns 1 for change else 0.
1962 */
1963 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1964 unsigned int mask, unsigned int value)
1965 {
1966 int change;
1967 unsigned int old, new;
1968
1969 old = snd_soc_read(codec, reg);
1970 new = (old & ~mask) | value;
1971 change = old != new;
1972
1973 return change;
1974 }
1975 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1976
1977 /**
1978 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1979 * @substream: the pcm substream
1980 * @hw: the hardware parameters
1981 *
1982 * Sets the substream runtime hardware parameters.
1983 */
1984 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1985 const struct snd_pcm_hardware *hw)
1986 {
1987 struct snd_pcm_runtime *runtime = substream->runtime;
1988 runtime->hw.info = hw->info;
1989 runtime->hw.formats = hw->formats;
1990 runtime->hw.period_bytes_min = hw->period_bytes_min;
1991 runtime->hw.period_bytes_max = hw->period_bytes_max;
1992 runtime->hw.periods_min = hw->periods_min;
1993 runtime->hw.periods_max = hw->periods_max;
1994 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1995 runtime->hw.fifo_size = hw->fifo_size;
1996 return 0;
1997 }
1998 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1999
2000 /**
2001 * snd_soc_cnew - create new control
2002 * @_template: control template
2003 * @data: control private data
2004 * @long_name: control long name
2005 *
2006 * Create a new mixer control from a template control.
2007 *
2008 * Returns 0 for success, else error.
2009 */
2010 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2011 void *data, char *long_name)
2012 {
2013 struct snd_kcontrol_new template;
2014
2015 memcpy(&template, _template, sizeof(template));
2016 if (long_name)
2017 template.name = long_name;
2018 template.index = 0;
2019
2020 return snd_ctl_new1(&template, data);
2021 }
2022 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2023
2024 /**
2025 * snd_soc_add_controls - add an array of controls to a codec.
2026 * Convienience function to add a list of controls. Many codecs were
2027 * duplicating this code.
2028 *
2029 * @codec: codec to add controls to
2030 * @controls: array of controls to add
2031 * @num_controls: number of elements in the array
2032 *
2033 * Return 0 for success, else error.
2034 */
2035 int snd_soc_add_controls(struct snd_soc_codec *codec,
2036 const struct snd_kcontrol_new *controls, int num_controls)
2037 {
2038 struct snd_card *card = codec->card->snd_card;
2039 int err, i;
2040
2041 for (i = 0; i < num_controls; i++) {
2042 const struct snd_kcontrol_new *control = &controls[i];
2043 err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
2044 if (err < 0) {
2045 dev_err(codec->dev, "%s: Failed to add %s: %d\n",
2046 codec->name, control->name, err);
2047 return err;
2048 }
2049 }
2050
2051 return 0;
2052 }
2053 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
2054
2055 /**
2056 * snd_soc_info_enum_double - enumerated double mixer info callback
2057 * @kcontrol: mixer control
2058 * @uinfo: control element information
2059 *
2060 * Callback to provide information about a double enumerated
2061 * mixer control.
2062 *
2063 * Returns 0 for success.
2064 */
2065 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2066 struct snd_ctl_elem_info *uinfo)
2067 {
2068 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2069
2070 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2071 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2072 uinfo->value.enumerated.items = e->max;
2073
2074 if (uinfo->value.enumerated.item > e->max - 1)
2075 uinfo->value.enumerated.item = e->max - 1;
2076 strcpy(uinfo->value.enumerated.name,
2077 e->texts[uinfo->value.enumerated.item]);
2078 return 0;
2079 }
2080 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2081
2082 /**
2083 * snd_soc_get_enum_double - enumerated double mixer get callback
2084 * @kcontrol: mixer control
2085 * @ucontrol: control element information
2086 *
2087 * Callback to get the value of a double enumerated mixer.
2088 *
2089 * Returns 0 for success.
2090 */
2091 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2092 struct snd_ctl_elem_value *ucontrol)
2093 {
2094 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2095 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2096 unsigned int val, bitmask;
2097
2098 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2099 ;
2100 val = snd_soc_read(codec, e->reg);
2101 ucontrol->value.enumerated.item[0]
2102 = (val >> e->shift_l) & (bitmask - 1);
2103 if (e->shift_l != e->shift_r)
2104 ucontrol->value.enumerated.item[1] =
2105 (val >> e->shift_r) & (bitmask - 1);
2106
2107 return 0;
2108 }
2109 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2110
2111 /**
2112 * snd_soc_put_enum_double - enumerated double mixer put callback
2113 * @kcontrol: mixer control
2114 * @ucontrol: control element information
2115 *
2116 * Callback to set the value of a double enumerated mixer.
2117 *
2118 * Returns 0 for success.
2119 */
2120 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2121 struct snd_ctl_elem_value *ucontrol)
2122 {
2123 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2124 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2125 unsigned int val;
2126 unsigned int mask, bitmask;
2127
2128 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2129 ;
2130 if (ucontrol->value.enumerated.item[0] > e->max - 1)
2131 return -EINVAL;
2132 val = ucontrol->value.enumerated.item[0] << e->shift_l;
2133 mask = (bitmask - 1) << e->shift_l;
2134 if (e->shift_l != e->shift_r) {
2135 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2136 return -EINVAL;
2137 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2138 mask |= (bitmask - 1) << e->shift_r;
2139 }
2140
2141 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2142 }
2143 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2144
2145 /**
2146 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2147 * @kcontrol: mixer control
2148 * @ucontrol: control element information
2149 *
2150 * Callback to get the value of a double semi enumerated mixer.
2151 *
2152 * Semi enumerated mixer: the enumerated items are referred as values. Can be
2153 * used for handling bitfield coded enumeration for example.
2154 *
2155 * Returns 0 for success.
2156 */
2157 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2158 struct snd_ctl_elem_value *ucontrol)
2159 {
2160 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2161 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2162 unsigned int reg_val, val, mux;
2163
2164 reg_val = snd_soc_read(codec, e->reg);
2165 val = (reg_val >> e->shift_l) & e->mask;
2166 for (mux = 0; mux < e->max; mux++) {
2167 if (val == e->values[mux])
2168 break;
2169 }
2170 ucontrol->value.enumerated.item[0] = mux;
2171 if (e->shift_l != e->shift_r) {
2172 val = (reg_val >> e->shift_r) & e->mask;
2173 for (mux = 0; mux < e->max; mux++) {
2174 if (val == e->values[mux])
2175 break;
2176 }
2177 ucontrol->value.enumerated.item[1] = mux;
2178 }
2179
2180 return 0;
2181 }
2182 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2183
2184 /**
2185 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2186 * @kcontrol: mixer control
2187 * @ucontrol: control element information
2188 *
2189 * Callback to set the value of a double semi enumerated mixer.
2190 *
2191 * Semi enumerated mixer: the enumerated items are referred as values. Can be
2192 * used for handling bitfield coded enumeration for example.
2193 *
2194 * Returns 0 for success.
2195 */
2196 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2197 struct snd_ctl_elem_value *ucontrol)
2198 {
2199 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2200 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2201 unsigned int val;
2202 unsigned int mask;
2203
2204 if (ucontrol->value.enumerated.item[0] > e->max - 1)
2205 return -EINVAL;
2206 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2207 mask = e->mask << e->shift_l;
2208 if (e->shift_l != e->shift_r) {
2209 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2210 return -EINVAL;
2211 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2212 mask |= e->mask << e->shift_r;
2213 }
2214
2215 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2216 }
2217 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2218
2219 /**
2220 * snd_soc_info_enum_ext - external enumerated single mixer info callback
2221 * @kcontrol: mixer control
2222 * @uinfo: control element information
2223 *
2224 * Callback to provide information about an external enumerated
2225 * single mixer.
2226 *
2227 * Returns 0 for success.
2228 */
2229 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2230 struct snd_ctl_elem_info *uinfo)
2231 {
2232 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2233
2234 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2235 uinfo->count = 1;
2236 uinfo->value.enumerated.items = e->max;
2237
2238 if (uinfo->value.enumerated.item > e->max - 1)
2239 uinfo->value.enumerated.item = e->max - 1;
2240 strcpy(uinfo->value.enumerated.name,
2241 e->texts[uinfo->value.enumerated.item]);
2242 return 0;
2243 }
2244 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2245
2246 /**
2247 * snd_soc_info_volsw_ext - external single mixer info callback
2248 * @kcontrol: mixer control
2249 * @uinfo: control element information
2250 *
2251 * Callback to provide information about a single external mixer control.
2252 *
2253 * Returns 0 for success.
2254 */
2255 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2256 struct snd_ctl_elem_info *uinfo)
2257 {
2258 int max = kcontrol->private_value;
2259
2260 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2261 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2262 else
2263 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2264
2265 uinfo->count = 1;
2266 uinfo->value.integer.min = 0;
2267 uinfo->value.integer.max = max;
2268 return 0;
2269 }
2270 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2271
2272 /**
2273 * snd_soc_info_volsw - single mixer info callback
2274 * @kcontrol: mixer control
2275 * @uinfo: control element information
2276 *
2277 * Callback to provide information about a single mixer control.
2278 *
2279 * Returns 0 for success.
2280 */
2281 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2282 struct snd_ctl_elem_info *uinfo)
2283 {
2284 struct soc_mixer_control *mc =
2285 (struct soc_mixer_control *)kcontrol->private_value;
2286 int platform_max;
2287 unsigned int shift = mc->shift;
2288 unsigned int rshift = mc->rshift;
2289
2290 if (!mc->platform_max)
2291 mc->platform_max = mc->max;
2292 platform_max = mc->platform_max;
2293
2294 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2295 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2296 else
2297 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2298
2299 uinfo->count = shift == rshift ? 1 : 2;
2300 uinfo->value.integer.min = 0;
2301 uinfo->value.integer.max = platform_max;
2302 return 0;
2303 }
2304 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2305
2306 /**
2307 * snd_soc_get_volsw - single mixer get callback
2308 * @kcontrol: mixer control
2309 * @ucontrol: control element information
2310 *
2311 * Callback to get the value of a single mixer control.
2312 *
2313 * Returns 0 for success.
2314 */
2315 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2316 struct snd_ctl_elem_value *ucontrol)
2317 {
2318 struct soc_mixer_control *mc =
2319 (struct soc_mixer_control *)kcontrol->private_value;
2320 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2321 unsigned int reg = mc->reg;
2322 unsigned int shift = mc->shift;
2323 unsigned int rshift = mc->rshift;
2324 int max = mc->max;
2325 unsigned int mask = (1 << fls(max)) - 1;
2326 unsigned int invert = mc->invert;
2327
2328 ucontrol->value.integer.value[0] =
2329 (snd_soc_read(codec, reg) >> shift) & mask;
2330 if (shift != rshift)
2331 ucontrol->value.integer.value[1] =
2332 (snd_soc_read(codec, reg) >> rshift) & mask;
2333 if (invert) {
2334 ucontrol->value.integer.value[0] =
2335 max - ucontrol->value.integer.value[0];
2336 if (shift != rshift)
2337 ucontrol->value.integer.value[1] =
2338 max - ucontrol->value.integer.value[1];
2339 }
2340
2341 return 0;
2342 }
2343 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2344
2345 /**
2346 * snd_soc_put_volsw - single mixer put callback
2347 * @kcontrol: mixer control
2348 * @ucontrol: control element information
2349 *
2350 * Callback to set the value of a single mixer control.
2351 *
2352 * Returns 0 for success.
2353 */
2354 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2355 struct snd_ctl_elem_value *ucontrol)
2356 {
2357 struct soc_mixer_control *mc =
2358 (struct soc_mixer_control *)kcontrol->private_value;
2359 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2360 unsigned int reg = mc->reg;
2361 unsigned int shift = mc->shift;
2362 unsigned int rshift = mc->rshift;
2363 int max = mc->max;
2364 unsigned int mask = (1 << fls(max)) - 1;
2365 unsigned int invert = mc->invert;
2366 unsigned int val, val2, val_mask;
2367
2368 val = (ucontrol->value.integer.value[0] & mask);
2369 if (invert)
2370 val = max - val;
2371 val_mask = mask << shift;
2372 val = val << shift;
2373 if (shift != rshift) {
2374 val2 = (ucontrol->value.integer.value[1] & mask);
2375 if (invert)
2376 val2 = max - val2;
2377 val_mask |= mask << rshift;
2378 val |= val2 << rshift;
2379 }
2380 return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2381 }
2382 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2383
2384 /**
2385 * snd_soc_info_volsw_2r - double mixer info callback
2386 * @kcontrol: mixer control
2387 * @uinfo: control element information
2388 *
2389 * Callback to provide information about a double mixer control that
2390 * spans 2 codec registers.
2391 *
2392 * Returns 0 for success.
2393 */
2394 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2395 struct snd_ctl_elem_info *uinfo)
2396 {
2397 struct soc_mixer_control *mc =
2398 (struct soc_mixer_control *)kcontrol->private_value;
2399 int platform_max;
2400
2401 if (!mc->platform_max)
2402 mc->platform_max = mc->max;
2403 platform_max = mc->platform_max;
2404
2405 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2406 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2407 else
2408 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2409
2410 uinfo->count = 2;
2411 uinfo->value.integer.min = 0;
2412 uinfo->value.integer.max = platform_max;
2413 return 0;
2414 }
2415 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2416
2417 /**
2418 * snd_soc_get_volsw_2r - double mixer get callback
2419 * @kcontrol: mixer control
2420 * @ucontrol: control element information
2421 *
2422 * Callback to get the value of a double mixer control that spans 2 registers.
2423 *
2424 * Returns 0 for success.
2425 */
2426 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2427 struct snd_ctl_elem_value *ucontrol)
2428 {
2429 struct soc_mixer_control *mc =
2430 (struct soc_mixer_control *)kcontrol->private_value;
2431 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2432 unsigned int reg = mc->reg;
2433 unsigned int reg2 = mc->rreg;
2434 unsigned int shift = mc->shift;
2435 int max = mc->max;
2436 unsigned int mask = (1 << fls(max)) - 1;
2437 unsigned int invert = mc->invert;
2438
2439 ucontrol->value.integer.value[0] =
2440 (snd_soc_read(codec, reg) >> shift) & mask;
2441 ucontrol->value.integer.value[1] =
2442 (snd_soc_read(codec, reg2) >> shift) & mask;
2443 if (invert) {
2444 ucontrol->value.integer.value[0] =
2445 max - ucontrol->value.integer.value[0];
2446 ucontrol->value.integer.value[1] =
2447 max - ucontrol->value.integer.value[1];
2448 }
2449
2450 return 0;
2451 }
2452 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2453
2454 /**
2455 * snd_soc_put_volsw_2r - double mixer set callback
2456 * @kcontrol: mixer control
2457 * @ucontrol: control element information
2458 *
2459 * Callback to set the value of a double mixer control that spans 2 registers.
2460 *
2461 * Returns 0 for success.
2462 */
2463 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2464 struct snd_ctl_elem_value *ucontrol)
2465 {
2466 struct soc_mixer_control *mc =
2467 (struct soc_mixer_control *)kcontrol->private_value;
2468 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2469 unsigned int reg = mc->reg;
2470 unsigned int reg2 = mc->rreg;
2471 unsigned int shift = mc->shift;
2472 int max = mc->max;
2473 unsigned int mask = (1 << fls(max)) - 1;
2474 unsigned int invert = mc->invert;
2475 int err;
2476 unsigned int val, val2, val_mask;
2477
2478 val_mask = mask << shift;
2479 val = (ucontrol->value.integer.value[0] & mask);
2480 val2 = (ucontrol->value.integer.value[1] & mask);
2481
2482 if (invert) {
2483 val = max - val;
2484 val2 = max - val2;
2485 }
2486
2487 val = val << shift;
2488 val2 = val2 << shift;
2489
2490 err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2491 if (err < 0)
2492 return err;
2493
2494 err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2495 return err;
2496 }
2497 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2498
2499 /**
2500 * snd_soc_info_volsw_s8 - signed mixer info callback
2501 * @kcontrol: mixer control
2502 * @uinfo: control element information
2503 *
2504 * Callback to provide information about a signed mixer control.
2505 *
2506 * Returns 0 for success.
2507 */
2508 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2509 struct snd_ctl_elem_info *uinfo)
2510 {
2511 struct soc_mixer_control *mc =
2512 (struct soc_mixer_control *)kcontrol->private_value;
2513 int platform_max;
2514 int min = mc->min;
2515
2516 if (!mc->platform_max)
2517 mc->platform_max = mc->max;
2518 platform_max = mc->platform_max;
2519
2520 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2521 uinfo->count = 2;
2522 uinfo->value.integer.min = 0;
2523 uinfo->value.integer.max = platform_max - min;
2524 return 0;
2525 }
2526 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2527
2528 /**
2529 * snd_soc_get_volsw_s8 - signed mixer get callback
2530 * @kcontrol: mixer control
2531 * @ucontrol: control element information
2532 *
2533 * Callback to get the value of a signed mixer control.
2534 *
2535 * Returns 0 for success.
2536 */
2537 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2538 struct snd_ctl_elem_value *ucontrol)
2539 {
2540 struct soc_mixer_control *mc =
2541 (struct soc_mixer_control *)kcontrol->private_value;
2542 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2543 unsigned int reg = mc->reg;
2544 int min = mc->min;
2545 int val = snd_soc_read(codec, reg);
2546
2547 ucontrol->value.integer.value[0] =
2548 ((signed char)(val & 0xff))-min;
2549 ucontrol->value.integer.value[1] =
2550 ((signed char)((val >> 8) & 0xff))-min;
2551 return 0;
2552 }
2553 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2554
2555 /**
2556 * snd_soc_put_volsw_sgn - signed mixer put callback
2557 * @kcontrol: mixer control
2558 * @ucontrol: control element information
2559 *
2560 * Callback to set the value of a signed mixer control.
2561 *
2562 * Returns 0 for success.
2563 */
2564 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2565 struct snd_ctl_elem_value *ucontrol)
2566 {
2567 struct soc_mixer_control *mc =
2568 (struct soc_mixer_control *)kcontrol->private_value;
2569 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2570 unsigned int reg = mc->reg;
2571 int min = mc->min;
2572 unsigned int val;
2573
2574 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2575 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2576
2577 return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2578 }
2579 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2580
2581 /**
2582 * snd_soc_limit_volume - Set new limit to an existing volume control.
2583 *
2584 * @codec: where to look for the control
2585 * @name: Name of the control
2586 * @max: new maximum limit
2587 *
2588 * Return 0 for success, else error.
2589 */
2590 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2591 const char *name, int max)
2592 {
2593 struct snd_card *card = codec->card->snd_card;
2594 struct snd_kcontrol *kctl;
2595 struct soc_mixer_control *mc;
2596 int found = 0;
2597 int ret = -EINVAL;
2598
2599 /* Sanity check for name and max */
2600 if (unlikely(!name || max <= 0))
2601 return -EINVAL;
2602
2603 list_for_each_entry(kctl, &card->controls, list) {
2604 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2605 found = 1;
2606 break;
2607 }
2608 }
2609 if (found) {
2610 mc = (struct soc_mixer_control *)kctl->private_value;
2611 if (max <= mc->max) {
2612 mc->platform_max = max;
2613 ret = 0;
2614 }
2615 }
2616 return ret;
2617 }
2618 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2619
2620 /**
2621 * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
2622 * mixer info callback
2623 * @kcontrol: mixer control
2624 * @uinfo: control element information
2625 *
2626 * Returns 0 for success.
2627 */
2628 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2629 struct snd_ctl_elem_info *uinfo)
2630 {
2631 struct soc_mixer_control *mc =
2632 (struct soc_mixer_control *)kcontrol->private_value;
2633 int max = mc->max;
2634 int min = mc->min;
2635
2636 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2637 uinfo->count = 2;
2638 uinfo->value.integer.min = 0;
2639 uinfo->value.integer.max = max-min;
2640
2641 return 0;
2642 }
2643 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
2644
2645 /**
2646 * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
2647 * mixer get callback
2648 * @kcontrol: mixer control
2649 * @uinfo: control element information
2650 *
2651 * Returns 0 for success.
2652 */
2653 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2654 struct snd_ctl_elem_value *ucontrol)
2655 {
2656 struct soc_mixer_control *mc =
2657 (struct soc_mixer_control *)kcontrol->private_value;
2658 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2659 unsigned int mask = (1<<mc->shift)-1;
2660 int min = mc->min;
2661 int val = snd_soc_read(codec, mc->reg) & mask;
2662 int valr = snd_soc_read(codec, mc->rreg) & mask;
2663
2664 ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
2665 ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
2666 return 0;
2667 }
2668 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
2669
2670 /**
2671 * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
2672 * mixer put callback
2673 * @kcontrol: mixer control
2674 * @uinfo: control element information
2675 *
2676 * Returns 0 for success.
2677 */
2678 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2679 struct snd_ctl_elem_value *ucontrol)
2680 {
2681 struct soc_mixer_control *mc =
2682 (struct soc_mixer_control *)kcontrol->private_value;
2683 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2684 unsigned int mask = (1<<mc->shift)-1;
2685 int min = mc->min;
2686 int ret;
2687 unsigned int val, valr, oval, ovalr;
2688
2689 val = ((ucontrol->value.integer.value[0]+min) & 0xff);
2690 val &= mask;
2691 valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
2692 valr &= mask;
2693
2694 oval = snd_soc_read(codec, mc->reg) & mask;
2695 ovalr = snd_soc_read(codec, mc->rreg) & mask;
2696
2697 ret = 0;
2698 if (oval != val) {
2699 ret = snd_soc_write(codec, mc->reg, val);
2700 if (ret < 0)
2701 return ret;
2702 }
2703 if (ovalr != valr) {
2704 ret = snd_soc_write(codec, mc->rreg, valr);
2705 if (ret < 0)
2706 return ret;
2707 }
2708
2709 return 0;
2710 }
2711 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
2712
2713 /**
2714 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2715 * @dai: DAI
2716 * @clk_id: DAI specific clock ID
2717 * @freq: new clock frequency in Hz
2718 * @dir: new clock direction - input/output.
2719 *
2720 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2721 */
2722 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2723 unsigned int freq, int dir)
2724 {
2725 if (dai->driver && dai->driver->ops->set_sysclk)
2726 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
2727 else
2728 return -EINVAL;
2729 }
2730 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2731
2732 /**
2733 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2734 * @dai: DAI
2735 * @div_id: DAI specific clock divider ID
2736 * @div: new clock divisor.
2737 *
2738 * Configures the clock dividers. This is used to derive the best DAI bit and
2739 * frame clocks from the system or master clock. It's best to set the DAI bit
2740 * and frame clocks as low as possible to save system power.
2741 */
2742 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2743 int div_id, int div)
2744 {
2745 if (dai->driver && dai->driver->ops->set_clkdiv)
2746 return dai->driver->ops->set_clkdiv(dai, div_id, div);
2747 else
2748 return -EINVAL;
2749 }
2750 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2751
2752 /**
2753 * snd_soc_dai_set_pll - configure DAI PLL.
2754 * @dai: DAI
2755 * @pll_id: DAI specific PLL ID
2756 * @source: DAI specific source for the PLL
2757 * @freq_in: PLL input clock frequency in Hz
2758 * @freq_out: requested PLL output clock frequency in Hz
2759 *
2760 * Configures and enables PLL to generate output clock based on input clock.
2761 */
2762 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
2763 unsigned int freq_in, unsigned int freq_out)
2764 {
2765 if (dai->driver && dai->driver->ops->set_pll)
2766 return dai->driver->ops->set_pll(dai, pll_id, source,
2767 freq_in, freq_out);
2768 else
2769 return -EINVAL;
2770 }
2771 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2772
2773 /**
2774 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2775 * @dai: DAI
2776 * @fmt: SND_SOC_DAIFMT_ format value.
2777 *
2778 * Configures the DAI hardware format and clocking.
2779 */
2780 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2781 {
2782 if (dai->driver && dai->driver->ops->set_fmt)
2783 return dai->driver->ops->set_fmt(dai, fmt);
2784 else
2785 return -EINVAL;
2786 }
2787 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2788
2789 /**
2790 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2791 * @dai: DAI
2792 * @tx_mask: bitmask representing active TX slots.
2793 * @rx_mask: bitmask representing active RX slots.
2794 * @slots: Number of slots in use.
2795 * @slot_width: Width in bits for each slot.
2796 *
2797 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2798 * specific.
2799 */
2800 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2801 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
2802 {
2803 if (dai->driver && dai->driver->ops->set_tdm_slot)
2804 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
2805 slots, slot_width);
2806 else
2807 return -EINVAL;
2808 }
2809 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2810
2811 /**
2812 * snd_soc_dai_set_channel_map - configure DAI audio channel map
2813 * @dai: DAI
2814 * @tx_num: how many TX channels
2815 * @tx_slot: pointer to an array which imply the TX slot number channel
2816 * 0~num-1 uses
2817 * @rx_num: how many RX channels
2818 * @rx_slot: pointer to an array which imply the RX slot number channel
2819 * 0~num-1 uses
2820 *
2821 * configure the relationship between channel number and TDM slot number.
2822 */
2823 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
2824 unsigned int tx_num, unsigned int *tx_slot,
2825 unsigned int rx_num, unsigned int *rx_slot)
2826 {
2827 if (dai->driver && dai->driver->ops->set_channel_map)
2828 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
2829 rx_num, rx_slot);
2830 else
2831 return -EINVAL;
2832 }
2833 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
2834
2835 /**
2836 * snd_soc_dai_set_tristate - configure DAI system or master clock.
2837 * @dai: DAI
2838 * @tristate: tristate enable
2839 *
2840 * Tristates the DAI so that others can use it.
2841 */
2842 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2843 {
2844 if (dai->driver && dai->driver->ops->set_tristate)
2845 return dai->driver->ops->set_tristate(dai, tristate);
2846 else
2847 return -EINVAL;
2848 }
2849 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2850
2851 /**
2852 * snd_soc_dai_digital_mute - configure DAI system or master clock.
2853 * @dai: DAI
2854 * @mute: mute enable
2855 *
2856 * Mutes the DAI DAC.
2857 */
2858 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2859 {
2860 if (dai->driver && dai->driver->ops->digital_mute)
2861 return dai->driver->ops->digital_mute(dai, mute);
2862 else
2863 return -EINVAL;
2864 }
2865 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2866
2867 /**
2868 * snd_soc_register_card - Register a card with the ASoC core
2869 *
2870 * @card: Card to register
2871 *
2872 * Note that currently this is an internal only function: it will be
2873 * exposed to machine drivers after further backporting of ASoC v2
2874 * registration APIs.
2875 */
2876 static int snd_soc_register_card(struct snd_soc_card *card)
2877 {
2878 int i;
2879
2880 if (!card->name || !card->dev)
2881 return -EINVAL;
2882
2883 card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) * card->num_links,
2884 GFP_KERNEL);
2885 if (card->rtd == NULL)
2886 return -ENOMEM;
2887
2888 for (i = 0; i < card->num_links; i++)
2889 card->rtd[i].dai_link = &card->dai_link[i];
2890
2891 INIT_LIST_HEAD(&card->list);
2892 card->instantiated = 0;
2893 mutex_init(&card->mutex);
2894
2895 mutex_lock(&client_mutex);
2896 list_add(&card->list, &card_list);
2897 snd_soc_instantiate_cards();
2898 mutex_unlock(&client_mutex);
2899
2900 dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2901
2902 return 0;
2903 }
2904
2905 /**
2906 * snd_soc_unregister_card - Unregister a card with the ASoC core
2907 *
2908 * @card: Card to unregister
2909 *
2910 * Note that currently this is an internal only function: it will be
2911 * exposed to machine drivers after further backporting of ASoC v2
2912 * registration APIs.
2913 */
2914 static int snd_soc_unregister_card(struct snd_soc_card *card)
2915 {
2916 mutex_lock(&client_mutex);
2917 list_del(&card->list);
2918 mutex_unlock(&client_mutex);
2919 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2920
2921 return 0;
2922 }
2923
2924 /*
2925 * Simplify DAI link configuration by removing ".-1" from device names
2926 * and sanitizing names.
2927 */
2928 static inline char *fmt_single_name(struct device *dev, int *id)
2929 {
2930 char *found, name[NAME_SIZE];
2931 int id1, id2;
2932
2933 if (dev_name(dev) == NULL)
2934 return NULL;
2935
2936 strncpy(name, dev_name(dev), NAME_SIZE);
2937
2938 /* are we a "%s.%d" name (platform and SPI components) */
2939 found = strstr(name, dev->driver->name);
2940 if (found) {
2941 /* get ID */
2942 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
2943
2944 /* discard ID from name if ID == -1 */
2945 if (*id == -1)
2946 found[strlen(dev->driver->name)] = '\0';
2947 }
2948
2949 } else {
2950 /* I2C component devices are named "bus-addr" */
2951 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
2952 char tmp[NAME_SIZE];
2953
2954 /* create unique ID number from I2C addr and bus */
2955 *id = ((id1 & 0xffff) << 16) + id2;
2956
2957 /* sanitize component name for DAI link creation */
2958 snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
2959 strncpy(name, tmp, NAME_SIZE);
2960 } else
2961 *id = 0;
2962 }
2963
2964 return kstrdup(name, GFP_KERNEL);
2965 }
2966
2967 /*
2968 * Simplify DAI link naming for single devices with multiple DAIs by removing
2969 * any ".-1" and using the DAI name (instead of device name).
2970 */
2971 static inline char *fmt_multiple_name(struct device *dev,
2972 struct snd_soc_dai_driver *dai_drv)
2973 {
2974 if (dai_drv->name == NULL) {
2975 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
2976 dev_name(dev));
2977 return NULL;
2978 }
2979
2980 return kstrdup(dai_drv->name, GFP_KERNEL);
2981 }
2982
2983 /**
2984 * snd_soc_register_dai - Register a DAI with the ASoC core
2985 *
2986 * @dai: DAI to register
2987 */
2988 int snd_soc_register_dai(struct device *dev,
2989 struct snd_soc_dai_driver *dai_drv)
2990 {
2991 struct snd_soc_dai *dai;
2992
2993 dev_dbg(dev, "dai register %s\n", dev_name(dev));
2994
2995 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
2996 if (dai == NULL)
2997 return -ENOMEM;
2998
2999 /* create DAI component name */
3000 dai->name = fmt_single_name(dev, &dai->id);
3001 if (dai->name == NULL) {
3002 kfree(dai);
3003 return -ENOMEM;
3004 }
3005
3006 dai->dev = dev;
3007 dai->driver = dai_drv;
3008 if (!dai->driver->ops)
3009 dai->driver->ops = &null_dai_ops;
3010
3011 mutex_lock(&client_mutex);
3012 list_add(&dai->list, &dai_list);
3013 snd_soc_instantiate_cards();
3014 mutex_unlock(&client_mutex);
3015
3016 pr_debug("Registered DAI '%s'\n", dai->name);
3017
3018 return 0;
3019 }
3020 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
3021
3022 /**
3023 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
3024 *
3025 * @dai: DAI to unregister
3026 */
3027 void snd_soc_unregister_dai(struct device *dev)
3028 {
3029 struct snd_soc_dai *dai;
3030
3031 list_for_each_entry(dai, &dai_list, list) {
3032 if (dev == dai->dev)
3033 goto found;
3034 }
3035 return;
3036
3037 found:
3038 mutex_lock(&client_mutex);
3039 list_del(&dai->list);
3040 mutex_unlock(&client_mutex);
3041
3042 pr_debug("Unregistered DAI '%s'\n", dai->name);
3043 kfree(dai->name);
3044 kfree(dai);
3045 }
3046 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
3047
3048 /**
3049 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
3050 *
3051 * @dai: Array of DAIs to register
3052 * @count: Number of DAIs
3053 */
3054 int snd_soc_register_dais(struct device *dev,
3055 struct snd_soc_dai_driver *dai_drv, size_t count)
3056 {
3057 struct snd_soc_dai *dai;
3058 int i, ret = 0;
3059
3060 dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count);
3061
3062 for (i = 0; i < count; i++) {
3063
3064 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3065 if (dai == NULL) {
3066 ret = -ENOMEM;
3067 goto err;
3068 }
3069
3070 /* create DAI component name */
3071 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3072 if (dai->name == NULL) {
3073 kfree(dai);
3074 ret = -EINVAL;
3075 goto err;
3076 }
3077
3078 dai->dev = dev;
3079 dai->driver = &dai_drv[i];
3080 if (dai->driver->id)
3081 dai->id = dai->driver->id;
3082 else
3083 dai->id = i;
3084 if (!dai->driver->ops)
3085 dai->driver->ops = &null_dai_ops;
3086
3087 mutex_lock(&client_mutex);
3088 list_add(&dai->list, &dai_list);
3089 mutex_unlock(&client_mutex);
3090
3091 pr_debug("Registered DAI '%s'\n", dai->name);
3092 }
3093
3094 snd_soc_instantiate_cards();
3095 return 0;
3096
3097 err:
3098 for (i--; i >= 0; i--)
3099 snd_soc_unregister_dai(dev);
3100
3101 return ret;
3102 }
3103 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
3104
3105 /**
3106 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
3107 *
3108 * @dai: Array of DAIs to unregister
3109 * @count: Number of DAIs
3110 */
3111 void snd_soc_unregister_dais(struct device *dev, size_t count)
3112 {
3113 int i;
3114
3115 for (i = 0; i < count; i++)
3116 snd_soc_unregister_dai(dev);
3117 }
3118 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
3119
3120 /**
3121 * snd_soc_register_platform - Register a platform with the ASoC core
3122 *
3123 * @platform: platform to register
3124 */
3125 int snd_soc_register_platform(struct device *dev,
3126 struct snd_soc_platform_driver *platform_drv)
3127 {
3128 struct snd_soc_platform *platform;
3129
3130 dev_dbg(dev, "platform register %s\n", dev_name(dev));
3131
3132 platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
3133 if (platform == NULL)
3134 return -ENOMEM;
3135
3136 /* create platform component name */
3137 platform->name = fmt_single_name(dev, &platform->id);
3138 if (platform->name == NULL) {
3139 kfree(platform);
3140 return -ENOMEM;
3141 }
3142
3143 platform->dev = dev;
3144 platform->driver = platform_drv;
3145
3146 mutex_lock(&client_mutex);
3147 list_add(&platform->list, &platform_list);
3148 snd_soc_instantiate_cards();
3149 mutex_unlock(&client_mutex);
3150
3151 pr_debug("Registered platform '%s'\n", platform->name);
3152
3153 return 0;
3154 }
3155 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
3156
3157 /**
3158 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
3159 *
3160 * @platform: platform to unregister
3161 */
3162 void snd_soc_unregister_platform(struct device *dev)
3163 {
3164 struct snd_soc_platform *platform;
3165
3166 list_for_each_entry(platform, &platform_list, list) {
3167 if (dev == platform->dev)
3168 goto found;
3169 }
3170 return;
3171
3172 found:
3173 mutex_lock(&client_mutex);
3174 list_del(&platform->list);
3175 mutex_unlock(&client_mutex);
3176
3177 pr_debug("Unregistered platform '%s'\n", platform->name);
3178 kfree(platform->name);
3179 kfree(platform);
3180 }
3181 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
3182
3183 static u64 codec_format_map[] = {
3184 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
3185 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
3186 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
3187 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
3188 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
3189 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
3190 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3191 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3192 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
3193 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
3194 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
3195 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
3196 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
3197 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
3198 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
3199 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
3200 };
3201
3202 /* Fix up the DAI formats for endianness: codecs don't actually see
3203 * the endianness of the data but we're using the CPU format
3204 * definitions which do need to include endianness so we ensure that
3205 * codec DAIs always have both big and little endian variants set.
3206 */
3207 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
3208 {
3209 int i;
3210
3211 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
3212 if (stream->formats & codec_format_map[i])
3213 stream->formats |= codec_format_map[i];
3214 }
3215
3216 /**
3217 * snd_soc_register_codec - Register a codec with the ASoC core
3218 *
3219 * @codec: codec to register
3220 */
3221 int snd_soc_register_codec(struct device *dev,
3222 struct snd_soc_codec_driver *codec_drv,
3223 struct snd_soc_dai_driver *dai_drv, int num_dai)
3224 {
3225 struct snd_soc_codec *codec;
3226 int ret, i;
3227
3228 dev_dbg(dev, "codec register %s\n", dev_name(dev));
3229
3230 codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
3231 if (codec == NULL)
3232 return -ENOMEM;
3233
3234 /* create CODEC component name */
3235 codec->name = fmt_single_name(dev, &codec->id);
3236 if (codec->name == NULL) {
3237 kfree(codec);
3238 return -ENOMEM;
3239 }
3240
3241 INIT_LIST_HEAD(&codec->dapm.widgets);
3242 INIT_LIST_HEAD(&codec->dapm.paths);
3243 codec->dapm.bias_level = SND_SOC_BIAS_OFF;
3244 codec->dapm.dev = dev;
3245 codec->dapm.codec = codec;
3246
3247 /* allocate CODEC register cache */
3248 if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
3249
3250 if (codec_drv->reg_cache_default)
3251 codec->reg_cache = kmemdup(codec_drv->reg_cache_default,
3252 codec_drv->reg_cache_size * codec_drv->reg_word_size, GFP_KERNEL);
3253 else
3254 codec->reg_cache = kzalloc(codec_drv->reg_cache_size *
3255 codec_drv->reg_word_size, GFP_KERNEL);
3256
3257 if (codec->reg_cache == NULL) {
3258 kfree(codec->name);
3259 kfree(codec);
3260 return -ENOMEM;
3261 }
3262 }
3263
3264 codec->dev = dev;
3265 codec->driver = codec_drv;
3266 codec->num_dai = num_dai;
3267 mutex_init(&codec->mutex);
3268
3269 for (i = 0; i < num_dai; i++) {
3270 fixup_codec_formats(&dai_drv[i].playback);
3271 fixup_codec_formats(&dai_drv[i].capture);
3272 }
3273
3274 /* register any DAIs */
3275 if (num_dai) {
3276 ret = snd_soc_register_dais(dev, dai_drv, num_dai);
3277 if (ret < 0)
3278 goto error;
3279 }
3280
3281 mutex_lock(&client_mutex);
3282 list_add(&codec->list, &codec_list);
3283 snd_soc_instantiate_cards();
3284 mutex_unlock(&client_mutex);
3285
3286 pr_debug("Registered codec '%s'\n", codec->name);
3287 return 0;
3288
3289 error:
3290 if (codec->reg_cache)
3291 kfree(codec->reg_cache);
3292 kfree(codec->name);
3293 kfree(codec);
3294 return ret;
3295 }
3296 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
3297
3298 /**
3299 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
3300 *
3301 * @codec: codec to unregister
3302 */
3303 void snd_soc_unregister_codec(struct device *dev)
3304 {
3305 struct snd_soc_codec *codec;
3306 int i;
3307
3308 list_for_each_entry(codec, &codec_list, list) {
3309 if (dev == codec->dev)
3310 goto found;
3311 }
3312 return;
3313
3314 found:
3315 if (codec->num_dai)
3316 for (i = 0; i < codec->num_dai; i++)
3317 snd_soc_unregister_dai(dev);
3318
3319 mutex_lock(&client_mutex);
3320 list_del(&codec->list);
3321 mutex_unlock(&client_mutex);
3322
3323 pr_debug("Unregistered codec '%s'\n", codec->name);
3324
3325 if (codec->reg_cache)
3326 kfree(codec->reg_cache);
3327 kfree(codec->name);
3328 kfree(codec);
3329 }
3330 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
3331
3332 static int __init snd_soc_init(void)
3333 {
3334 #ifdef CONFIG_DEBUG_FS
3335 debugfs_root = debugfs_create_dir("asoc", NULL);
3336 if (IS_ERR(debugfs_root) || !debugfs_root) {
3337 printk(KERN_WARNING
3338 "ASoC: Failed to create debugfs directory\n");
3339 debugfs_root = NULL;
3340 }
3341
3342 if (!debugfs_create_file("codecs", 0444, debugfs_root, NULL,
3343 &codec_list_fops))
3344 pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
3345
3346 if (!debugfs_create_file("dais", 0444, debugfs_root, NULL,
3347 &dai_list_fops))
3348 pr_warn("ASoC: Failed to create DAI list debugfs file\n");
3349
3350 if (!debugfs_create_file("platforms", 0444, debugfs_root, NULL,
3351 &platform_list_fops))
3352 pr_warn("ASoC: Failed to create platform list debugfs file\n");
3353 #endif
3354
3355 return platform_driver_register(&soc_driver);
3356 }
3357 module_init(snd_soc_init);
3358
3359 static void __exit snd_soc_exit(void)
3360 {
3361 #ifdef CONFIG_DEBUG_FS
3362 debugfs_remove_recursive(debugfs_root);
3363 #endif
3364 platform_driver_unregister(&soc_driver);
3365 }
3366 module_exit(snd_soc_exit);
3367
3368 /* Module information */
3369 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
3370 MODULE_DESCRIPTION("ALSA SoC Core");
3371 MODULE_LICENSE("GPL");
3372 MODULE_ALIAS("platform:soc-audio");
This page took 0.180338 seconds and 6 git commands to generate.