Merge branch 'ioat' into fixes
[deliverable/linux.git] / sound / soc / soc-dapm.c
1 /*
2 * soc-dapm.c -- ALSA SoC Dynamic Audio Power Management
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; either version 2 of the License, or (at your
10 * option) any later version.
11 *
12 * Features:
13 * o Changes power status of internal codec blocks depending on the
14 * dynamic configuration of codec internal audio paths and active
15 * DACs/ADCs.
16 * o Platform power domain - can support external components i.e. amps and
17 * mic/meadphone insertion events.
18 * o Automatic Mic Bias support
19 * o Jack insertion power event initiation - e.g. hp insertion will enable
20 * sinks, dacs, etc
21 * o Delayed powerdown of audio susbsystem to reduce pops between a quick
22 * device reopen.
23 *
24 * Todo:
25 * o DAPM power change sequencing - allow for configurable per
26 * codec sequences.
27 * o Support for analogue bias optimisation.
28 * o Support for reduced codec oversampling rates.
29 * o Support for reduced codec bias currents.
30 */
31
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/init.h>
35 #include <linux/delay.h>
36 #include <linux/pm.h>
37 #include <linux/bitops.h>
38 #include <linux/platform_device.h>
39 #include <linux/jiffies.h>
40 #include <linux/debugfs.h>
41 #include <sound/core.h>
42 #include <sound/pcm.h>
43 #include <sound/pcm_params.h>
44 #include <sound/soc-dapm.h>
45 #include <sound/initval.h>
46
47 /* debug */
48 #ifdef DEBUG
49 #define dump_dapm(codec, action) dbg_dump_dapm(codec, action)
50 #else
51 #define dump_dapm(codec, action)
52 #endif
53
54 /* dapm power sequences - make this per codec in the future */
55 static int dapm_up_seq[] = {
56 [snd_soc_dapm_pre] = 0,
57 [snd_soc_dapm_supply] = 1,
58 [snd_soc_dapm_micbias] = 2,
59 [snd_soc_dapm_aif_in] = 3,
60 [snd_soc_dapm_aif_out] = 3,
61 [snd_soc_dapm_mic] = 4,
62 [snd_soc_dapm_mux] = 5,
63 [snd_soc_dapm_value_mux] = 5,
64 [snd_soc_dapm_dac] = 6,
65 [snd_soc_dapm_mixer] = 7,
66 [snd_soc_dapm_mixer_named_ctl] = 7,
67 [snd_soc_dapm_pga] = 8,
68 [snd_soc_dapm_adc] = 9,
69 [snd_soc_dapm_hp] = 10,
70 [snd_soc_dapm_spk] = 10,
71 [snd_soc_dapm_post] = 11,
72 };
73
74 static int dapm_down_seq[] = {
75 [snd_soc_dapm_pre] = 0,
76 [snd_soc_dapm_adc] = 1,
77 [snd_soc_dapm_hp] = 2,
78 [snd_soc_dapm_spk] = 2,
79 [snd_soc_dapm_pga] = 4,
80 [snd_soc_dapm_mixer_named_ctl] = 5,
81 [snd_soc_dapm_mixer] = 5,
82 [snd_soc_dapm_dac] = 6,
83 [snd_soc_dapm_mic] = 7,
84 [snd_soc_dapm_micbias] = 8,
85 [snd_soc_dapm_mux] = 9,
86 [snd_soc_dapm_value_mux] = 9,
87 [snd_soc_dapm_aif_in] = 10,
88 [snd_soc_dapm_aif_out] = 10,
89 [snd_soc_dapm_supply] = 11,
90 [snd_soc_dapm_post] = 12,
91 };
92
93 static void pop_wait(u32 pop_time)
94 {
95 if (pop_time)
96 schedule_timeout_uninterruptible(msecs_to_jiffies(pop_time));
97 }
98
99 static void pop_dbg(u32 pop_time, const char *fmt, ...)
100 {
101 va_list args;
102
103 va_start(args, fmt);
104
105 if (pop_time) {
106 vprintk(fmt, args);
107 pop_wait(pop_time);
108 }
109
110 va_end(args);
111 }
112
113 /* create a new dapm widget */
114 static inline struct snd_soc_dapm_widget *dapm_cnew_widget(
115 const struct snd_soc_dapm_widget *_widget)
116 {
117 return kmemdup(_widget, sizeof(*_widget), GFP_KERNEL);
118 }
119
120 /**
121 * snd_soc_dapm_set_bias_level - set the bias level for the system
122 * @socdev: audio device
123 * @level: level to configure
124 *
125 * Configure the bias (power) levels for the SoC audio device.
126 *
127 * Returns 0 for success else error.
128 */
129 static int snd_soc_dapm_set_bias_level(struct snd_soc_device *socdev,
130 enum snd_soc_bias_level level)
131 {
132 struct snd_soc_card *card = socdev->card;
133 struct snd_soc_codec *codec = socdev->card->codec;
134 int ret = 0;
135
136 switch (level) {
137 case SND_SOC_BIAS_ON:
138 dev_dbg(socdev->dev, "Setting full bias\n");
139 break;
140 case SND_SOC_BIAS_PREPARE:
141 dev_dbg(socdev->dev, "Setting bias prepare\n");
142 break;
143 case SND_SOC_BIAS_STANDBY:
144 dev_dbg(socdev->dev, "Setting standby bias\n");
145 break;
146 case SND_SOC_BIAS_OFF:
147 dev_dbg(socdev->dev, "Setting bias off\n");
148 break;
149 default:
150 dev_err(socdev->dev, "Setting invalid bias %d\n", level);
151 return -EINVAL;
152 }
153
154 if (card->set_bias_level)
155 ret = card->set_bias_level(card, level);
156 if (ret == 0) {
157 if (codec->set_bias_level)
158 ret = codec->set_bias_level(codec, level);
159 else
160 codec->bias_level = level;
161 }
162
163 return ret;
164 }
165
166 /* set up initial codec paths */
167 static void dapm_set_path_status(struct snd_soc_dapm_widget *w,
168 struct snd_soc_dapm_path *p, int i)
169 {
170 switch (w->id) {
171 case snd_soc_dapm_switch:
172 case snd_soc_dapm_mixer:
173 case snd_soc_dapm_mixer_named_ctl: {
174 int val;
175 struct soc_mixer_control *mc = (struct soc_mixer_control *)
176 w->kcontrols[i].private_value;
177 unsigned int reg = mc->reg;
178 unsigned int shift = mc->shift;
179 int max = mc->max;
180 unsigned int mask = (1 << fls(max)) - 1;
181 unsigned int invert = mc->invert;
182
183 val = snd_soc_read(w->codec, reg);
184 val = (val >> shift) & mask;
185
186 if ((invert && !val) || (!invert && val))
187 p->connect = 1;
188 else
189 p->connect = 0;
190 }
191 break;
192 case snd_soc_dapm_mux: {
193 struct soc_enum *e = (struct soc_enum *)w->kcontrols[i].private_value;
194 int val, item, bitmask;
195
196 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
197 ;
198 val = snd_soc_read(w->codec, e->reg);
199 item = (val >> e->shift_l) & (bitmask - 1);
200
201 p->connect = 0;
202 for (i = 0; i < e->max; i++) {
203 if (!(strcmp(p->name, e->texts[i])) && item == i)
204 p->connect = 1;
205 }
206 }
207 break;
208 case snd_soc_dapm_value_mux: {
209 struct soc_enum *e = (struct soc_enum *)
210 w->kcontrols[i].private_value;
211 int val, item;
212
213 val = snd_soc_read(w->codec, e->reg);
214 val = (val >> e->shift_l) & e->mask;
215 for (item = 0; item < e->max; item++) {
216 if (val == e->values[item])
217 break;
218 }
219
220 p->connect = 0;
221 for (i = 0; i < e->max; i++) {
222 if (!(strcmp(p->name, e->texts[i])) && item == i)
223 p->connect = 1;
224 }
225 }
226 break;
227 /* does not effect routing - always connected */
228 case snd_soc_dapm_pga:
229 case snd_soc_dapm_output:
230 case snd_soc_dapm_adc:
231 case snd_soc_dapm_input:
232 case snd_soc_dapm_dac:
233 case snd_soc_dapm_micbias:
234 case snd_soc_dapm_vmid:
235 case snd_soc_dapm_supply:
236 case snd_soc_dapm_aif_in:
237 case snd_soc_dapm_aif_out:
238 p->connect = 1;
239 break;
240 /* does effect routing - dynamically connected */
241 case snd_soc_dapm_hp:
242 case snd_soc_dapm_mic:
243 case snd_soc_dapm_spk:
244 case snd_soc_dapm_line:
245 case snd_soc_dapm_pre:
246 case snd_soc_dapm_post:
247 p->connect = 0;
248 break;
249 }
250 }
251
252 /* connect mux widget to its interconnecting audio paths */
253 static int dapm_connect_mux(struct snd_soc_codec *codec,
254 struct snd_soc_dapm_widget *src, struct snd_soc_dapm_widget *dest,
255 struct snd_soc_dapm_path *path, const char *control_name,
256 const struct snd_kcontrol_new *kcontrol)
257 {
258 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
259 int i;
260
261 for (i = 0; i < e->max; i++) {
262 if (!(strcmp(control_name, e->texts[i]))) {
263 list_add(&path->list, &codec->dapm_paths);
264 list_add(&path->list_sink, &dest->sources);
265 list_add(&path->list_source, &src->sinks);
266 path->name = (char*)e->texts[i];
267 dapm_set_path_status(dest, path, 0);
268 return 0;
269 }
270 }
271
272 return -ENODEV;
273 }
274
275 /* connect mixer widget to its interconnecting audio paths */
276 static int dapm_connect_mixer(struct snd_soc_codec *codec,
277 struct snd_soc_dapm_widget *src, struct snd_soc_dapm_widget *dest,
278 struct snd_soc_dapm_path *path, const char *control_name)
279 {
280 int i;
281
282 /* search for mixer kcontrol */
283 for (i = 0; i < dest->num_kcontrols; i++) {
284 if (!strcmp(control_name, dest->kcontrols[i].name)) {
285 list_add(&path->list, &codec->dapm_paths);
286 list_add(&path->list_sink, &dest->sources);
287 list_add(&path->list_source, &src->sinks);
288 path->name = dest->kcontrols[i].name;
289 dapm_set_path_status(dest, path, i);
290 return 0;
291 }
292 }
293 return -ENODEV;
294 }
295
296 /* update dapm codec register bits */
297 static int dapm_update_bits(struct snd_soc_dapm_widget *widget)
298 {
299 int change, power;
300 unsigned int old, new;
301 struct snd_soc_codec *codec = widget->codec;
302
303 /* check for valid widgets */
304 if (widget->reg < 0 || widget->id == snd_soc_dapm_input ||
305 widget->id == snd_soc_dapm_output ||
306 widget->id == snd_soc_dapm_hp ||
307 widget->id == snd_soc_dapm_mic ||
308 widget->id == snd_soc_dapm_line ||
309 widget->id == snd_soc_dapm_spk)
310 return 0;
311
312 power = widget->power;
313 if (widget->invert)
314 power = (power ? 0:1);
315
316 old = snd_soc_read(codec, widget->reg);
317 new = (old & ~(0x1 << widget->shift)) | (power << widget->shift);
318
319 change = old != new;
320 if (change) {
321 pop_dbg(codec->pop_time, "pop test %s : %s in %d ms\n",
322 widget->name, widget->power ? "on" : "off",
323 codec->pop_time);
324 snd_soc_write(codec, widget->reg, new);
325 pop_wait(codec->pop_time);
326 }
327 pr_debug("reg %x old %x new %x change %d\n", widget->reg,
328 old, new, change);
329 return change;
330 }
331
332 /* ramps the volume up or down to minimise pops before or after a
333 * DAPM power event */
334 static int dapm_set_pga(struct snd_soc_dapm_widget *widget, int power)
335 {
336 const struct snd_kcontrol_new *k = widget->kcontrols;
337
338 if (widget->muted && !power)
339 return 0;
340 if (!widget->muted && power)
341 return 0;
342
343 if (widget->num_kcontrols && k) {
344 struct soc_mixer_control *mc =
345 (struct soc_mixer_control *)k->private_value;
346 unsigned int reg = mc->reg;
347 unsigned int shift = mc->shift;
348 int max = mc->max;
349 unsigned int mask = (1 << fls(max)) - 1;
350 unsigned int invert = mc->invert;
351
352 if (power) {
353 int i;
354 /* power up has happended, increase volume to last level */
355 if (invert) {
356 for (i = max; i > widget->saved_value; i--)
357 snd_soc_update_bits(widget->codec, reg, mask, i);
358 } else {
359 for (i = 0; i < widget->saved_value; i++)
360 snd_soc_update_bits(widget->codec, reg, mask, i);
361 }
362 widget->muted = 0;
363 } else {
364 /* power down is about to occur, decrease volume to mute */
365 int val = snd_soc_read(widget->codec, reg);
366 int i = widget->saved_value = (val >> shift) & mask;
367 if (invert) {
368 for (; i < mask; i++)
369 snd_soc_update_bits(widget->codec, reg, mask, i);
370 } else {
371 for (; i > 0; i--)
372 snd_soc_update_bits(widget->codec, reg, mask, i);
373 }
374 widget->muted = 1;
375 }
376 }
377 return 0;
378 }
379
380 /* create new dapm mixer control */
381 static int dapm_new_mixer(struct snd_soc_codec *codec,
382 struct snd_soc_dapm_widget *w)
383 {
384 int i, ret = 0;
385 size_t name_len;
386 struct snd_soc_dapm_path *path;
387
388 /* add kcontrol */
389 for (i = 0; i < w->num_kcontrols; i++) {
390
391 /* match name */
392 list_for_each_entry(path, &w->sources, list_sink) {
393
394 /* mixer/mux paths name must match control name */
395 if (path->name != (char*)w->kcontrols[i].name)
396 continue;
397
398 /* add dapm control with long name.
399 * for dapm_mixer this is the concatenation of the
400 * mixer and kcontrol name.
401 * for dapm_mixer_named_ctl this is simply the
402 * kcontrol name.
403 */
404 name_len = strlen(w->kcontrols[i].name) + 1;
405 if (w->id != snd_soc_dapm_mixer_named_ctl)
406 name_len += 1 + strlen(w->name);
407
408 path->long_name = kmalloc(name_len, GFP_KERNEL);
409
410 if (path->long_name == NULL)
411 return -ENOMEM;
412
413 switch (w->id) {
414 default:
415 snprintf(path->long_name, name_len, "%s %s",
416 w->name, w->kcontrols[i].name);
417 break;
418 case snd_soc_dapm_mixer_named_ctl:
419 snprintf(path->long_name, name_len, "%s",
420 w->kcontrols[i].name);
421 break;
422 }
423
424 path->long_name[name_len - 1] = '\0';
425
426 path->kcontrol = snd_soc_cnew(&w->kcontrols[i], w,
427 path->long_name);
428 ret = snd_ctl_add(codec->card, path->kcontrol);
429 if (ret < 0) {
430 printk(KERN_ERR "asoc: failed to add dapm kcontrol %s: %d\n",
431 path->long_name,
432 ret);
433 kfree(path->long_name);
434 path->long_name = NULL;
435 return ret;
436 }
437 }
438 }
439 return ret;
440 }
441
442 /* create new dapm mux control */
443 static int dapm_new_mux(struct snd_soc_codec *codec,
444 struct snd_soc_dapm_widget *w)
445 {
446 struct snd_soc_dapm_path *path = NULL;
447 struct snd_kcontrol *kcontrol;
448 int ret = 0;
449
450 if (!w->num_kcontrols) {
451 printk(KERN_ERR "asoc: mux %s has no controls\n", w->name);
452 return -EINVAL;
453 }
454
455 kcontrol = snd_soc_cnew(&w->kcontrols[0], w, w->name);
456 ret = snd_ctl_add(codec->card, kcontrol);
457 if (ret < 0)
458 goto err;
459
460 list_for_each_entry(path, &w->sources, list_sink)
461 path->kcontrol = kcontrol;
462
463 return ret;
464
465 err:
466 printk(KERN_ERR "asoc: failed to add kcontrol %s\n", w->name);
467 return ret;
468 }
469
470 /* create new dapm volume control */
471 static int dapm_new_pga(struct snd_soc_codec *codec,
472 struct snd_soc_dapm_widget *w)
473 {
474 struct snd_kcontrol *kcontrol;
475 int ret = 0;
476
477 if (!w->num_kcontrols)
478 return -EINVAL;
479
480 kcontrol = snd_soc_cnew(&w->kcontrols[0], w, w->name);
481 ret = snd_ctl_add(codec->card, kcontrol);
482 if (ret < 0) {
483 printk(KERN_ERR "asoc: failed to add kcontrol %s\n", w->name);
484 return ret;
485 }
486
487 return ret;
488 }
489
490 /* reset 'walked' bit for each dapm path */
491 static inline void dapm_clear_walk(struct snd_soc_codec *codec)
492 {
493 struct snd_soc_dapm_path *p;
494
495 list_for_each_entry(p, &codec->dapm_paths, list)
496 p->walked = 0;
497 }
498
499 /*
500 * Recursively check for a completed path to an active or physically connected
501 * output widget. Returns number of complete paths.
502 */
503 static int is_connected_output_ep(struct snd_soc_dapm_widget *widget)
504 {
505 struct snd_soc_dapm_path *path;
506 int con = 0;
507
508 if (widget->id == snd_soc_dapm_supply)
509 return 0;
510
511 switch (widget->id) {
512 case snd_soc_dapm_adc:
513 case snd_soc_dapm_aif_out:
514 if (widget->active)
515 return 1;
516 default:
517 break;
518 }
519
520 if (widget->connected) {
521 /* connected pin ? */
522 if (widget->id == snd_soc_dapm_output && !widget->ext)
523 return 1;
524
525 /* connected jack or spk ? */
526 if (widget->id == snd_soc_dapm_hp || widget->id == snd_soc_dapm_spk ||
527 (widget->id == snd_soc_dapm_line && !list_empty(&widget->sources)))
528 return 1;
529 }
530
531 list_for_each_entry(path, &widget->sinks, list_source) {
532 if (path->walked)
533 continue;
534
535 if (path->sink && path->connect) {
536 path->walked = 1;
537 con += is_connected_output_ep(path->sink);
538 }
539 }
540
541 return con;
542 }
543
544 /*
545 * Recursively check for a completed path to an active or physically connected
546 * input widget. Returns number of complete paths.
547 */
548 static int is_connected_input_ep(struct snd_soc_dapm_widget *widget)
549 {
550 struct snd_soc_dapm_path *path;
551 int con = 0;
552
553 if (widget->id == snd_soc_dapm_supply)
554 return 0;
555
556 /* active stream ? */
557 switch (widget->id) {
558 case snd_soc_dapm_dac:
559 case snd_soc_dapm_aif_in:
560 if (widget->active)
561 return 1;
562 default:
563 break;
564 }
565
566 if (widget->connected) {
567 /* connected pin ? */
568 if (widget->id == snd_soc_dapm_input && !widget->ext)
569 return 1;
570
571 /* connected VMID/Bias for lower pops */
572 if (widget->id == snd_soc_dapm_vmid)
573 return 1;
574
575 /* connected jack ? */
576 if (widget->id == snd_soc_dapm_mic ||
577 (widget->id == snd_soc_dapm_line && !list_empty(&widget->sinks)))
578 return 1;
579 }
580
581 list_for_each_entry(path, &widget->sources, list_sink) {
582 if (path->walked)
583 continue;
584
585 if (path->source && path->connect) {
586 path->walked = 1;
587 con += is_connected_input_ep(path->source);
588 }
589 }
590
591 return con;
592 }
593
594 /*
595 * Handler for generic register modifier widget.
596 */
597 int dapm_reg_event(struct snd_soc_dapm_widget *w,
598 struct snd_kcontrol *kcontrol, int event)
599 {
600 unsigned int val;
601
602 if (SND_SOC_DAPM_EVENT_ON(event))
603 val = w->on_val;
604 else
605 val = w->off_val;
606
607 snd_soc_update_bits(w->codec, -(w->reg + 1),
608 w->mask << w->shift, val << w->shift);
609
610 return 0;
611 }
612 EXPORT_SYMBOL_GPL(dapm_reg_event);
613
614 /* Standard power change method, used to apply power changes to most
615 * widgets.
616 */
617 static int dapm_generic_apply_power(struct snd_soc_dapm_widget *w)
618 {
619 int ret;
620
621 /* call any power change event handlers */
622 if (w->event)
623 pr_debug("power %s event for %s flags %x\n",
624 w->power ? "on" : "off",
625 w->name, w->event_flags);
626
627 /* power up pre event */
628 if (w->power && w->event &&
629 (w->event_flags & SND_SOC_DAPM_PRE_PMU)) {
630 ret = w->event(w, NULL, SND_SOC_DAPM_PRE_PMU);
631 if (ret < 0)
632 return ret;
633 }
634
635 /* power down pre event */
636 if (!w->power && w->event &&
637 (w->event_flags & SND_SOC_DAPM_PRE_PMD)) {
638 ret = w->event(w, NULL, SND_SOC_DAPM_PRE_PMD);
639 if (ret < 0)
640 return ret;
641 }
642
643 /* Lower PGA volume to reduce pops */
644 if (w->id == snd_soc_dapm_pga && !w->power)
645 dapm_set_pga(w, w->power);
646
647 dapm_update_bits(w);
648
649 /* Raise PGA volume to reduce pops */
650 if (w->id == snd_soc_dapm_pga && w->power)
651 dapm_set_pga(w, w->power);
652
653 /* power up post event */
654 if (w->power && w->event &&
655 (w->event_flags & SND_SOC_DAPM_POST_PMU)) {
656 ret = w->event(w,
657 NULL, SND_SOC_DAPM_POST_PMU);
658 if (ret < 0)
659 return ret;
660 }
661
662 /* power down post event */
663 if (!w->power && w->event &&
664 (w->event_flags & SND_SOC_DAPM_POST_PMD)) {
665 ret = w->event(w, NULL, SND_SOC_DAPM_POST_PMD);
666 if (ret < 0)
667 return ret;
668 }
669
670 return 0;
671 }
672
673 /* Generic check to see if a widget should be powered.
674 */
675 static int dapm_generic_check_power(struct snd_soc_dapm_widget *w)
676 {
677 int in, out;
678
679 in = is_connected_input_ep(w);
680 dapm_clear_walk(w->codec);
681 out = is_connected_output_ep(w);
682 dapm_clear_walk(w->codec);
683 return out != 0 && in != 0;
684 }
685
686 /* Check to see if an ADC has power */
687 static int dapm_adc_check_power(struct snd_soc_dapm_widget *w)
688 {
689 int in;
690
691 if (w->active) {
692 in = is_connected_input_ep(w);
693 dapm_clear_walk(w->codec);
694 return in != 0;
695 } else {
696 return dapm_generic_check_power(w);
697 }
698 }
699
700 /* Check to see if a DAC has power */
701 static int dapm_dac_check_power(struct snd_soc_dapm_widget *w)
702 {
703 int out;
704
705 if (w->active) {
706 out = is_connected_output_ep(w);
707 dapm_clear_walk(w->codec);
708 return out != 0;
709 } else {
710 return dapm_generic_check_power(w);
711 }
712 }
713
714 /* Check to see if a power supply is needed */
715 static int dapm_supply_check_power(struct snd_soc_dapm_widget *w)
716 {
717 struct snd_soc_dapm_path *path;
718 int power = 0;
719
720 /* Check if one of our outputs is connected */
721 list_for_each_entry(path, &w->sinks, list_source) {
722 if (path->sink && path->sink->power_check &&
723 path->sink->power_check(path->sink)) {
724 power = 1;
725 break;
726 }
727 }
728
729 dapm_clear_walk(w->codec);
730
731 return power;
732 }
733
734 static int dapm_seq_compare(struct snd_soc_dapm_widget *a,
735 struct snd_soc_dapm_widget *b,
736 int sort[])
737 {
738 if (sort[a->id] != sort[b->id])
739 return sort[a->id] - sort[b->id];
740 if (a->reg != b->reg)
741 return a->reg - b->reg;
742
743 return 0;
744 }
745
746 /* Insert a widget in order into a DAPM power sequence. */
747 static void dapm_seq_insert(struct snd_soc_dapm_widget *new_widget,
748 struct list_head *list,
749 int sort[])
750 {
751 struct snd_soc_dapm_widget *w;
752
753 list_for_each_entry(w, list, power_list)
754 if (dapm_seq_compare(new_widget, w, sort) < 0) {
755 list_add_tail(&new_widget->power_list, &w->power_list);
756 return;
757 }
758
759 list_add_tail(&new_widget->power_list, list);
760 }
761
762 /* Apply the coalesced changes from a DAPM sequence */
763 static void dapm_seq_run_coalesced(struct snd_soc_codec *codec,
764 struct list_head *pending)
765 {
766 struct snd_soc_dapm_widget *w;
767 int reg, power, ret;
768 unsigned int value = 0;
769 unsigned int mask = 0;
770 unsigned int cur_mask;
771
772 reg = list_first_entry(pending, struct snd_soc_dapm_widget,
773 power_list)->reg;
774
775 list_for_each_entry(w, pending, power_list) {
776 cur_mask = 1 << w->shift;
777 BUG_ON(reg != w->reg);
778
779 if (w->invert)
780 power = !w->power;
781 else
782 power = w->power;
783
784 mask |= cur_mask;
785 if (power)
786 value |= cur_mask;
787
788 pop_dbg(codec->pop_time,
789 "pop test : Queue %s: reg=0x%x, 0x%x/0x%x\n",
790 w->name, reg, value, mask);
791
792 /* power up pre event */
793 if (w->power && w->event &&
794 (w->event_flags & SND_SOC_DAPM_PRE_PMU)) {
795 pop_dbg(codec->pop_time, "pop test : %s PRE_PMU\n",
796 w->name);
797 ret = w->event(w, NULL, SND_SOC_DAPM_PRE_PMU);
798 if (ret < 0)
799 pr_err("%s: pre event failed: %d\n",
800 w->name, ret);
801 }
802
803 /* power down pre event */
804 if (!w->power && w->event &&
805 (w->event_flags & SND_SOC_DAPM_PRE_PMD)) {
806 pop_dbg(codec->pop_time, "pop test : %s PRE_PMD\n",
807 w->name);
808 ret = w->event(w, NULL, SND_SOC_DAPM_PRE_PMD);
809 if (ret < 0)
810 pr_err("%s: pre event failed: %d\n",
811 w->name, ret);
812 }
813
814 /* Lower PGA volume to reduce pops */
815 if (w->id == snd_soc_dapm_pga && !w->power)
816 dapm_set_pga(w, w->power);
817 }
818
819 if (reg >= 0) {
820 pop_dbg(codec->pop_time,
821 "pop test : Applying 0x%x/0x%x to %x in %dms\n",
822 value, mask, reg, codec->pop_time);
823 pop_wait(codec->pop_time);
824 snd_soc_update_bits(codec, reg, mask, value);
825 }
826
827 list_for_each_entry(w, pending, power_list) {
828 /* Raise PGA volume to reduce pops */
829 if (w->id == snd_soc_dapm_pga && w->power)
830 dapm_set_pga(w, w->power);
831
832 /* power up post event */
833 if (w->power && w->event &&
834 (w->event_flags & SND_SOC_DAPM_POST_PMU)) {
835 pop_dbg(codec->pop_time, "pop test : %s POST_PMU\n",
836 w->name);
837 ret = w->event(w,
838 NULL, SND_SOC_DAPM_POST_PMU);
839 if (ret < 0)
840 pr_err("%s: post event failed: %d\n",
841 w->name, ret);
842 }
843
844 /* power down post event */
845 if (!w->power && w->event &&
846 (w->event_flags & SND_SOC_DAPM_POST_PMD)) {
847 pop_dbg(codec->pop_time, "pop test : %s POST_PMD\n",
848 w->name);
849 ret = w->event(w, NULL, SND_SOC_DAPM_POST_PMD);
850 if (ret < 0)
851 pr_err("%s: post event failed: %d\n",
852 w->name, ret);
853 }
854 }
855 }
856
857 /* Apply a DAPM power sequence.
858 *
859 * We walk over a pre-sorted list of widgets to apply power to. In
860 * order to minimise the number of writes to the device required
861 * multiple widgets will be updated in a single write where possible.
862 * Currently anything that requires more than a single write is not
863 * handled.
864 */
865 static void dapm_seq_run(struct snd_soc_codec *codec, struct list_head *list,
866 int event, int sort[])
867 {
868 struct snd_soc_dapm_widget *w, *n;
869 LIST_HEAD(pending);
870 int cur_sort = -1;
871 int cur_reg = SND_SOC_NOPM;
872 int ret;
873
874 list_for_each_entry_safe(w, n, list, power_list) {
875 ret = 0;
876
877 /* Do we need to apply any queued changes? */
878 if (sort[w->id] != cur_sort || w->reg != cur_reg) {
879 if (!list_empty(&pending))
880 dapm_seq_run_coalesced(codec, &pending);
881
882 INIT_LIST_HEAD(&pending);
883 cur_sort = -1;
884 cur_reg = SND_SOC_NOPM;
885 }
886
887 switch (w->id) {
888 case snd_soc_dapm_pre:
889 if (!w->event)
890 list_for_each_entry_safe_continue(w, n, list,
891 power_list);
892
893 if (event == SND_SOC_DAPM_STREAM_START)
894 ret = w->event(w,
895 NULL, SND_SOC_DAPM_PRE_PMU);
896 else if (event == SND_SOC_DAPM_STREAM_STOP)
897 ret = w->event(w,
898 NULL, SND_SOC_DAPM_PRE_PMD);
899 break;
900
901 case snd_soc_dapm_post:
902 if (!w->event)
903 list_for_each_entry_safe_continue(w, n, list,
904 power_list);
905
906 if (event == SND_SOC_DAPM_STREAM_START)
907 ret = w->event(w,
908 NULL, SND_SOC_DAPM_POST_PMU);
909 else if (event == SND_SOC_DAPM_STREAM_STOP)
910 ret = w->event(w,
911 NULL, SND_SOC_DAPM_POST_PMD);
912 break;
913
914 case snd_soc_dapm_input:
915 case snd_soc_dapm_output:
916 case snd_soc_dapm_hp:
917 case snd_soc_dapm_mic:
918 case snd_soc_dapm_line:
919 case snd_soc_dapm_spk:
920 /* No register support currently */
921 ret = dapm_generic_apply_power(w);
922 break;
923
924 default:
925 /* Queue it up for application */
926 cur_sort = sort[w->id];
927 cur_reg = w->reg;
928 list_move(&w->power_list, &pending);
929 break;
930 }
931
932 if (ret < 0)
933 pr_err("Failed to apply widget power: %d\n",
934 ret);
935 }
936
937 if (!list_empty(&pending))
938 dapm_seq_run_coalesced(codec, &pending);
939 }
940
941 /*
942 * Scan each dapm widget for complete audio path.
943 * A complete path is a route that has valid endpoints i.e.:-
944 *
945 * o DAC to output pin.
946 * o Input Pin to ADC.
947 * o Input pin to Output pin (bypass, sidetone)
948 * o DAC to ADC (loopback).
949 */
950 static int dapm_power_widgets(struct snd_soc_codec *codec, int event)
951 {
952 struct snd_soc_device *socdev = codec->socdev;
953 struct snd_soc_dapm_widget *w;
954 LIST_HEAD(up_list);
955 LIST_HEAD(down_list);
956 int ret = 0;
957 int power;
958 int sys_power = 0;
959
960 /* Check which widgets we need to power and store them in
961 * lists indicating if they should be powered up or down.
962 */
963 list_for_each_entry(w, &codec->dapm_widgets, list) {
964 switch (w->id) {
965 case snd_soc_dapm_pre:
966 dapm_seq_insert(w, &down_list, dapm_down_seq);
967 break;
968 case snd_soc_dapm_post:
969 dapm_seq_insert(w, &up_list, dapm_up_seq);
970 break;
971
972 default:
973 if (!w->power_check)
974 continue;
975
976 /* If we're suspending then pull down all the
977 * power. */
978 switch (event) {
979 case SND_SOC_DAPM_STREAM_SUSPEND:
980 power = 0;
981 break;
982
983 default:
984 power = w->power_check(w);
985 if (power)
986 sys_power = 1;
987 break;
988 }
989
990 if (w->power == power)
991 continue;
992
993 if (power)
994 dapm_seq_insert(w, &up_list, dapm_up_seq);
995 else
996 dapm_seq_insert(w, &down_list, dapm_down_seq);
997
998 w->power = power;
999 break;
1000 }
1001 }
1002
1003 /* If there are no DAPM widgets then try to figure out power from the
1004 * event type.
1005 */
1006 if (list_empty(&codec->dapm_widgets)) {
1007 switch (event) {
1008 case SND_SOC_DAPM_STREAM_START:
1009 case SND_SOC_DAPM_STREAM_RESUME:
1010 sys_power = 1;
1011 break;
1012 case SND_SOC_DAPM_STREAM_SUSPEND:
1013 sys_power = 0;
1014 break;
1015 case SND_SOC_DAPM_STREAM_NOP:
1016 sys_power = codec->bias_level != SND_SOC_BIAS_STANDBY;
1017 break;
1018 default:
1019 break;
1020 }
1021 }
1022
1023 /* If we're changing to all on or all off then prepare */
1024 if ((sys_power && codec->bias_level == SND_SOC_BIAS_STANDBY) ||
1025 (!sys_power && codec->bias_level == SND_SOC_BIAS_ON)) {
1026 ret = snd_soc_dapm_set_bias_level(socdev,
1027 SND_SOC_BIAS_PREPARE);
1028 if (ret != 0)
1029 pr_err("Failed to prepare bias: %d\n", ret);
1030 }
1031
1032 /* Power down widgets first; try to avoid amplifying pops. */
1033 dapm_seq_run(codec, &down_list, event, dapm_down_seq);
1034
1035 /* Now power up. */
1036 dapm_seq_run(codec, &up_list, event, dapm_up_seq);
1037
1038 /* If we just powered the last thing off drop to standby bias */
1039 if (codec->bias_level == SND_SOC_BIAS_PREPARE && !sys_power) {
1040 ret = snd_soc_dapm_set_bias_level(socdev,
1041 SND_SOC_BIAS_STANDBY);
1042 if (ret != 0)
1043 pr_err("Failed to apply standby bias: %d\n", ret);
1044 }
1045
1046 /* If we just powered up then move to active bias */
1047 if (codec->bias_level == SND_SOC_BIAS_PREPARE && sys_power) {
1048 ret = snd_soc_dapm_set_bias_level(socdev,
1049 SND_SOC_BIAS_ON);
1050 if (ret != 0)
1051 pr_err("Failed to apply active bias: %d\n", ret);
1052 }
1053
1054 pop_dbg(codec->pop_time, "DAPM sequencing finished, waiting %dms\n",
1055 codec->pop_time);
1056
1057 return 0;
1058 }
1059
1060 #ifdef DEBUG
1061 static void dbg_dump_dapm(struct snd_soc_codec* codec, const char *action)
1062 {
1063 struct snd_soc_dapm_widget *w;
1064 struct snd_soc_dapm_path *p = NULL;
1065 int in, out;
1066
1067 printk("DAPM %s %s\n", codec->name, action);
1068
1069 list_for_each_entry(w, &codec->dapm_widgets, list) {
1070
1071 /* only display widgets that effect routing */
1072 switch (w->id) {
1073 case snd_soc_dapm_pre:
1074 case snd_soc_dapm_post:
1075 case snd_soc_dapm_vmid:
1076 continue;
1077 case snd_soc_dapm_mux:
1078 case snd_soc_dapm_value_mux:
1079 case snd_soc_dapm_output:
1080 case snd_soc_dapm_input:
1081 case snd_soc_dapm_switch:
1082 case snd_soc_dapm_hp:
1083 case snd_soc_dapm_mic:
1084 case snd_soc_dapm_spk:
1085 case snd_soc_dapm_line:
1086 case snd_soc_dapm_micbias:
1087 case snd_soc_dapm_dac:
1088 case snd_soc_dapm_adc:
1089 case snd_soc_dapm_pga:
1090 case snd_soc_dapm_mixer:
1091 case snd_soc_dapm_mixer_named_ctl:
1092 case snd_soc_dapm_supply:
1093 case snd_soc_dapm_aif_in:
1094 case snd_soc_dapm_aif_out:
1095 if (w->name) {
1096 in = is_connected_input_ep(w);
1097 dapm_clear_walk(w->codec);
1098 out = is_connected_output_ep(w);
1099 dapm_clear_walk(w->codec);
1100 printk("%s: %s in %d out %d\n", w->name,
1101 w->power ? "On":"Off",in, out);
1102
1103 list_for_each_entry(p, &w->sources, list_sink) {
1104 if (p->connect)
1105 printk(" in %s %s\n", p->name ? p->name : "static",
1106 p->source->name);
1107 }
1108 list_for_each_entry(p, &w->sinks, list_source) {
1109 if (p->connect)
1110 printk(" out %s %s\n", p->name ? p->name : "static",
1111 p->sink->name);
1112 }
1113 }
1114 break;
1115 }
1116 }
1117 }
1118 #endif
1119
1120 #ifdef CONFIG_DEBUG_FS
1121 static int dapm_widget_power_open_file(struct inode *inode, struct file *file)
1122 {
1123 file->private_data = inode->i_private;
1124 return 0;
1125 }
1126
1127 static ssize_t dapm_widget_power_read_file(struct file *file,
1128 char __user *user_buf,
1129 size_t count, loff_t *ppos)
1130 {
1131 struct snd_soc_dapm_widget *w = file->private_data;
1132 char *buf;
1133 int in, out;
1134 ssize_t ret;
1135 struct snd_soc_dapm_path *p = NULL;
1136
1137 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1138 if (!buf)
1139 return -ENOMEM;
1140
1141 in = is_connected_input_ep(w);
1142 dapm_clear_walk(w->codec);
1143 out = is_connected_output_ep(w);
1144 dapm_clear_walk(w->codec);
1145
1146 ret = snprintf(buf, PAGE_SIZE, "%s: %s in %d out %d\n",
1147 w->name, w->power ? "On" : "Off", in, out);
1148
1149 if (w->sname)
1150 ret += snprintf(buf + ret, PAGE_SIZE - ret, " stream %s %s\n",
1151 w->sname,
1152 w->active ? "active" : "inactive");
1153
1154 list_for_each_entry(p, &w->sources, list_sink) {
1155 if (p->connect)
1156 ret += snprintf(buf + ret, PAGE_SIZE - ret,
1157 " in %s %s\n",
1158 p->name ? p->name : "static",
1159 p->source->name);
1160 }
1161 list_for_each_entry(p, &w->sinks, list_source) {
1162 if (p->connect)
1163 ret += snprintf(buf + ret, PAGE_SIZE - ret,
1164 " out %s %s\n",
1165 p->name ? p->name : "static",
1166 p->sink->name);
1167 }
1168
1169 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1170
1171 kfree(buf);
1172 return ret;
1173 }
1174
1175 static const struct file_operations dapm_widget_power_fops = {
1176 .open = dapm_widget_power_open_file,
1177 .read = dapm_widget_power_read_file,
1178 };
1179
1180 void snd_soc_dapm_debugfs_init(struct snd_soc_codec *codec)
1181 {
1182 struct snd_soc_dapm_widget *w;
1183 struct dentry *d;
1184
1185 if (!codec->debugfs_dapm)
1186 return;
1187
1188 list_for_each_entry(w, &codec->dapm_widgets, list) {
1189 if (!w->name)
1190 continue;
1191
1192 d = debugfs_create_file(w->name, 0444,
1193 codec->debugfs_dapm, w,
1194 &dapm_widget_power_fops);
1195 if (!d)
1196 printk(KERN_WARNING
1197 "ASoC: Failed to create %s debugfs file\n",
1198 w->name);
1199 }
1200 }
1201 #else
1202 void snd_soc_dapm_debugfs_init(struct snd_soc_codec *codec)
1203 {
1204 }
1205 #endif
1206
1207 /* test and update the power status of a mux widget */
1208 static int dapm_mux_update_power(struct snd_soc_dapm_widget *widget,
1209 struct snd_kcontrol *kcontrol, int mask,
1210 int mux, int val, struct soc_enum *e)
1211 {
1212 struct snd_soc_dapm_path *path;
1213 int found = 0;
1214
1215 if (widget->id != snd_soc_dapm_mux &&
1216 widget->id != snd_soc_dapm_value_mux)
1217 return -ENODEV;
1218
1219 if (!snd_soc_test_bits(widget->codec, e->reg, mask, val))
1220 return 0;
1221
1222 /* find dapm widget path assoc with kcontrol */
1223 list_for_each_entry(path, &widget->codec->dapm_paths, list) {
1224 if (path->kcontrol != kcontrol)
1225 continue;
1226
1227 if (!path->name || !e->texts[mux])
1228 continue;
1229
1230 found = 1;
1231 /* we now need to match the string in the enum to the path */
1232 if (!(strcmp(path->name, e->texts[mux])))
1233 path->connect = 1; /* new connection */
1234 else
1235 path->connect = 0; /* old connection must be powered down */
1236 }
1237
1238 if (found) {
1239 dapm_power_widgets(widget->codec, SND_SOC_DAPM_STREAM_NOP);
1240 dump_dapm(widget->codec, "mux power update");
1241 }
1242
1243 return 0;
1244 }
1245
1246 /* test and update the power status of a mixer or switch widget */
1247 static int dapm_mixer_update_power(struct snd_soc_dapm_widget *widget,
1248 struct snd_kcontrol *kcontrol, int reg,
1249 int val_mask, int val, int invert)
1250 {
1251 struct snd_soc_dapm_path *path;
1252 int found = 0;
1253
1254 if (widget->id != snd_soc_dapm_mixer &&
1255 widget->id != snd_soc_dapm_mixer_named_ctl &&
1256 widget->id != snd_soc_dapm_switch)
1257 return -ENODEV;
1258
1259 if (!snd_soc_test_bits(widget->codec, reg, val_mask, val))
1260 return 0;
1261
1262 /* find dapm widget path assoc with kcontrol */
1263 list_for_each_entry(path, &widget->codec->dapm_paths, list) {
1264 if (path->kcontrol != kcontrol)
1265 continue;
1266
1267 /* found, now check type */
1268 found = 1;
1269 if (val)
1270 /* new connection */
1271 path->connect = invert ? 0:1;
1272 else
1273 /* old connection must be powered down */
1274 path->connect = invert ? 1:0;
1275 break;
1276 }
1277
1278 if (found) {
1279 dapm_power_widgets(widget->codec, SND_SOC_DAPM_STREAM_NOP);
1280 dump_dapm(widget->codec, "mixer power update");
1281 }
1282
1283 return 0;
1284 }
1285
1286 /* show dapm widget status in sys fs */
1287 static ssize_t dapm_widget_show(struct device *dev,
1288 struct device_attribute *attr, char *buf)
1289 {
1290 struct snd_soc_device *devdata = dev_get_drvdata(dev);
1291 struct snd_soc_codec *codec = devdata->card->codec;
1292 struct snd_soc_dapm_widget *w;
1293 int count = 0;
1294 char *state = "not set";
1295
1296 list_for_each_entry(w, &codec->dapm_widgets, list) {
1297
1298 /* only display widgets that burnm power */
1299 switch (w->id) {
1300 case snd_soc_dapm_hp:
1301 case snd_soc_dapm_mic:
1302 case snd_soc_dapm_spk:
1303 case snd_soc_dapm_line:
1304 case snd_soc_dapm_micbias:
1305 case snd_soc_dapm_dac:
1306 case snd_soc_dapm_adc:
1307 case snd_soc_dapm_pga:
1308 case snd_soc_dapm_mixer:
1309 case snd_soc_dapm_mixer_named_ctl:
1310 case snd_soc_dapm_supply:
1311 if (w->name)
1312 count += sprintf(buf + count, "%s: %s\n",
1313 w->name, w->power ? "On":"Off");
1314 break;
1315 default:
1316 break;
1317 }
1318 }
1319
1320 switch (codec->bias_level) {
1321 case SND_SOC_BIAS_ON:
1322 state = "On";
1323 break;
1324 case SND_SOC_BIAS_PREPARE:
1325 state = "Prepare";
1326 break;
1327 case SND_SOC_BIAS_STANDBY:
1328 state = "Standby";
1329 break;
1330 case SND_SOC_BIAS_OFF:
1331 state = "Off";
1332 break;
1333 }
1334 count += sprintf(buf + count, "PM State: %s\n", state);
1335
1336 return count;
1337 }
1338
1339 static DEVICE_ATTR(dapm_widget, 0444, dapm_widget_show, NULL);
1340
1341 int snd_soc_dapm_sys_add(struct device *dev)
1342 {
1343 return device_create_file(dev, &dev_attr_dapm_widget);
1344 }
1345
1346 static void snd_soc_dapm_sys_remove(struct device *dev)
1347 {
1348 device_remove_file(dev, &dev_attr_dapm_widget);
1349 }
1350
1351 /* free all dapm widgets and resources */
1352 static void dapm_free_widgets(struct snd_soc_codec *codec)
1353 {
1354 struct snd_soc_dapm_widget *w, *next_w;
1355 struct snd_soc_dapm_path *p, *next_p;
1356
1357 list_for_each_entry_safe(w, next_w, &codec->dapm_widgets, list) {
1358 list_del(&w->list);
1359 kfree(w);
1360 }
1361
1362 list_for_each_entry_safe(p, next_p, &codec->dapm_paths, list) {
1363 list_del(&p->list);
1364 kfree(p->long_name);
1365 kfree(p);
1366 }
1367 }
1368
1369 static int snd_soc_dapm_set_pin(struct snd_soc_codec *codec,
1370 const char *pin, int status)
1371 {
1372 struct snd_soc_dapm_widget *w;
1373
1374 list_for_each_entry(w, &codec->dapm_widgets, list) {
1375 if (!strcmp(w->name, pin)) {
1376 pr_debug("dapm: %s: pin %s\n", codec->name, pin);
1377 w->connected = status;
1378 return 0;
1379 }
1380 }
1381
1382 pr_err("dapm: %s: configuring unknown pin %s\n", codec->name, pin);
1383 return -EINVAL;
1384 }
1385
1386 /**
1387 * snd_soc_dapm_sync - scan and power dapm paths
1388 * @codec: audio codec
1389 *
1390 * Walks all dapm audio paths and powers widgets according to their
1391 * stream or path usage.
1392 *
1393 * Returns 0 for success.
1394 */
1395 int snd_soc_dapm_sync(struct snd_soc_codec *codec)
1396 {
1397 int ret = dapm_power_widgets(codec, SND_SOC_DAPM_STREAM_NOP);
1398 dump_dapm(codec, "sync");
1399 return ret;
1400 }
1401 EXPORT_SYMBOL_GPL(snd_soc_dapm_sync);
1402
1403 static int snd_soc_dapm_add_route(struct snd_soc_codec *codec,
1404 const char *sink, const char *control, const char *source)
1405 {
1406 struct snd_soc_dapm_path *path;
1407 struct snd_soc_dapm_widget *wsource = NULL, *wsink = NULL, *w;
1408 int ret = 0;
1409
1410 /* find src and dest widgets */
1411 list_for_each_entry(w, &codec->dapm_widgets, list) {
1412
1413 if (!wsink && !(strcmp(w->name, sink))) {
1414 wsink = w;
1415 continue;
1416 }
1417 if (!wsource && !(strcmp(w->name, source))) {
1418 wsource = w;
1419 }
1420 }
1421
1422 if (wsource == NULL || wsink == NULL)
1423 return -ENODEV;
1424
1425 path = kzalloc(sizeof(struct snd_soc_dapm_path), GFP_KERNEL);
1426 if (!path)
1427 return -ENOMEM;
1428
1429 path->source = wsource;
1430 path->sink = wsink;
1431 INIT_LIST_HEAD(&path->list);
1432 INIT_LIST_HEAD(&path->list_source);
1433 INIT_LIST_HEAD(&path->list_sink);
1434
1435 /* check for external widgets */
1436 if (wsink->id == snd_soc_dapm_input) {
1437 if (wsource->id == snd_soc_dapm_micbias ||
1438 wsource->id == snd_soc_dapm_mic ||
1439 wsource->id == snd_soc_dapm_line ||
1440 wsource->id == snd_soc_dapm_output)
1441 wsink->ext = 1;
1442 }
1443 if (wsource->id == snd_soc_dapm_output) {
1444 if (wsink->id == snd_soc_dapm_spk ||
1445 wsink->id == snd_soc_dapm_hp ||
1446 wsink->id == snd_soc_dapm_line ||
1447 wsink->id == snd_soc_dapm_input)
1448 wsource->ext = 1;
1449 }
1450
1451 /* connect static paths */
1452 if (control == NULL) {
1453 list_add(&path->list, &codec->dapm_paths);
1454 list_add(&path->list_sink, &wsink->sources);
1455 list_add(&path->list_source, &wsource->sinks);
1456 path->connect = 1;
1457 return 0;
1458 }
1459
1460 /* connect dynamic paths */
1461 switch(wsink->id) {
1462 case snd_soc_dapm_adc:
1463 case snd_soc_dapm_dac:
1464 case snd_soc_dapm_pga:
1465 case snd_soc_dapm_input:
1466 case snd_soc_dapm_output:
1467 case snd_soc_dapm_micbias:
1468 case snd_soc_dapm_vmid:
1469 case snd_soc_dapm_pre:
1470 case snd_soc_dapm_post:
1471 case snd_soc_dapm_supply:
1472 case snd_soc_dapm_aif_in:
1473 case snd_soc_dapm_aif_out:
1474 list_add(&path->list, &codec->dapm_paths);
1475 list_add(&path->list_sink, &wsink->sources);
1476 list_add(&path->list_source, &wsource->sinks);
1477 path->connect = 1;
1478 return 0;
1479 case snd_soc_dapm_mux:
1480 case snd_soc_dapm_value_mux:
1481 ret = dapm_connect_mux(codec, wsource, wsink, path, control,
1482 &wsink->kcontrols[0]);
1483 if (ret != 0)
1484 goto err;
1485 break;
1486 case snd_soc_dapm_switch:
1487 case snd_soc_dapm_mixer:
1488 case snd_soc_dapm_mixer_named_ctl:
1489 ret = dapm_connect_mixer(codec, wsource, wsink, path, control);
1490 if (ret != 0)
1491 goto err;
1492 break;
1493 case snd_soc_dapm_hp:
1494 case snd_soc_dapm_mic:
1495 case snd_soc_dapm_line:
1496 case snd_soc_dapm_spk:
1497 list_add(&path->list, &codec->dapm_paths);
1498 list_add(&path->list_sink, &wsink->sources);
1499 list_add(&path->list_source, &wsource->sinks);
1500 path->connect = 0;
1501 return 0;
1502 }
1503 return 0;
1504
1505 err:
1506 printk(KERN_WARNING "asoc: no dapm match for %s --> %s --> %s\n", source,
1507 control, sink);
1508 kfree(path);
1509 return ret;
1510 }
1511
1512 /**
1513 * snd_soc_dapm_add_routes - Add routes between DAPM widgets
1514 * @codec: codec
1515 * @route: audio routes
1516 * @num: number of routes
1517 *
1518 * Connects 2 dapm widgets together via a named audio path. The sink is
1519 * the widget receiving the audio signal, whilst the source is the sender
1520 * of the audio signal.
1521 *
1522 * Returns 0 for success else error. On error all resources can be freed
1523 * with a call to snd_soc_card_free().
1524 */
1525 int snd_soc_dapm_add_routes(struct snd_soc_codec *codec,
1526 const struct snd_soc_dapm_route *route, int num)
1527 {
1528 int i, ret;
1529
1530 for (i = 0; i < num; i++) {
1531 ret = snd_soc_dapm_add_route(codec, route->sink,
1532 route->control, route->source);
1533 if (ret < 0) {
1534 printk(KERN_ERR "Failed to add route %s->%s\n",
1535 route->source,
1536 route->sink);
1537 return ret;
1538 }
1539 route++;
1540 }
1541
1542 return 0;
1543 }
1544 EXPORT_SYMBOL_GPL(snd_soc_dapm_add_routes);
1545
1546 /**
1547 * snd_soc_dapm_new_widgets - add new dapm widgets
1548 * @codec: audio codec
1549 *
1550 * Checks the codec for any new dapm widgets and creates them if found.
1551 *
1552 * Returns 0 for success.
1553 */
1554 int snd_soc_dapm_new_widgets(struct snd_soc_codec *codec)
1555 {
1556 struct snd_soc_dapm_widget *w;
1557
1558 list_for_each_entry(w, &codec->dapm_widgets, list)
1559 {
1560 if (w->new)
1561 continue;
1562
1563 switch(w->id) {
1564 case snd_soc_dapm_switch:
1565 case snd_soc_dapm_mixer:
1566 case snd_soc_dapm_mixer_named_ctl:
1567 w->power_check = dapm_generic_check_power;
1568 dapm_new_mixer(codec, w);
1569 break;
1570 case snd_soc_dapm_mux:
1571 case snd_soc_dapm_value_mux:
1572 w->power_check = dapm_generic_check_power;
1573 dapm_new_mux(codec, w);
1574 break;
1575 case snd_soc_dapm_adc:
1576 case snd_soc_dapm_aif_out:
1577 w->power_check = dapm_adc_check_power;
1578 break;
1579 case snd_soc_dapm_dac:
1580 case snd_soc_dapm_aif_in:
1581 w->power_check = dapm_dac_check_power;
1582 break;
1583 case snd_soc_dapm_pga:
1584 w->power_check = dapm_generic_check_power;
1585 dapm_new_pga(codec, w);
1586 break;
1587 case snd_soc_dapm_input:
1588 case snd_soc_dapm_output:
1589 case snd_soc_dapm_micbias:
1590 case snd_soc_dapm_spk:
1591 case snd_soc_dapm_hp:
1592 case snd_soc_dapm_mic:
1593 case snd_soc_dapm_line:
1594 w->power_check = dapm_generic_check_power;
1595 break;
1596 case snd_soc_dapm_supply:
1597 w->power_check = dapm_supply_check_power;
1598 case snd_soc_dapm_vmid:
1599 case snd_soc_dapm_pre:
1600 case snd_soc_dapm_post:
1601 break;
1602 }
1603 w->new = 1;
1604 }
1605
1606 dapm_power_widgets(codec, SND_SOC_DAPM_STREAM_NOP);
1607 return 0;
1608 }
1609 EXPORT_SYMBOL_GPL(snd_soc_dapm_new_widgets);
1610
1611 /**
1612 * snd_soc_dapm_get_volsw - dapm mixer get callback
1613 * @kcontrol: mixer control
1614 * @ucontrol: control element information
1615 *
1616 * Callback to get the value of a dapm mixer control.
1617 *
1618 * Returns 0 for success.
1619 */
1620 int snd_soc_dapm_get_volsw(struct snd_kcontrol *kcontrol,
1621 struct snd_ctl_elem_value *ucontrol)
1622 {
1623 struct snd_soc_dapm_widget *widget = snd_kcontrol_chip(kcontrol);
1624 struct soc_mixer_control *mc =
1625 (struct soc_mixer_control *)kcontrol->private_value;
1626 unsigned int reg = mc->reg;
1627 unsigned int shift = mc->shift;
1628 unsigned int rshift = mc->rshift;
1629 int max = mc->max;
1630 unsigned int invert = mc->invert;
1631 unsigned int mask = (1 << fls(max)) - 1;
1632
1633 /* return the saved value if we are powered down */
1634 if (widget->id == snd_soc_dapm_pga && !widget->power) {
1635 ucontrol->value.integer.value[0] = widget->saved_value;
1636 return 0;
1637 }
1638
1639 ucontrol->value.integer.value[0] =
1640 (snd_soc_read(widget->codec, reg) >> shift) & mask;
1641 if (shift != rshift)
1642 ucontrol->value.integer.value[1] =
1643 (snd_soc_read(widget->codec, reg) >> rshift) & mask;
1644 if (invert) {
1645 ucontrol->value.integer.value[0] =
1646 max - ucontrol->value.integer.value[0];
1647 if (shift != rshift)
1648 ucontrol->value.integer.value[1] =
1649 max - ucontrol->value.integer.value[1];
1650 }
1651
1652 return 0;
1653 }
1654 EXPORT_SYMBOL_GPL(snd_soc_dapm_get_volsw);
1655
1656 /**
1657 * snd_soc_dapm_put_volsw - dapm mixer set callback
1658 * @kcontrol: mixer control
1659 * @ucontrol: control element information
1660 *
1661 * Callback to set the value of a dapm mixer control.
1662 *
1663 * Returns 0 for success.
1664 */
1665 int snd_soc_dapm_put_volsw(struct snd_kcontrol *kcontrol,
1666 struct snd_ctl_elem_value *ucontrol)
1667 {
1668 struct snd_soc_dapm_widget *widget = snd_kcontrol_chip(kcontrol);
1669 struct soc_mixer_control *mc =
1670 (struct soc_mixer_control *)kcontrol->private_value;
1671 unsigned int reg = mc->reg;
1672 unsigned int shift = mc->shift;
1673 unsigned int rshift = mc->rshift;
1674 int max = mc->max;
1675 unsigned int mask = (1 << fls(max)) - 1;
1676 unsigned int invert = mc->invert;
1677 unsigned int val, val2, val_mask;
1678 int ret;
1679
1680 val = (ucontrol->value.integer.value[0] & mask);
1681
1682 if (invert)
1683 val = max - val;
1684 val_mask = mask << shift;
1685 val = val << shift;
1686 if (shift != rshift) {
1687 val2 = (ucontrol->value.integer.value[1] & mask);
1688 if (invert)
1689 val2 = max - val2;
1690 val_mask |= mask << rshift;
1691 val |= val2 << rshift;
1692 }
1693
1694 mutex_lock(&widget->codec->mutex);
1695 widget->value = val;
1696
1697 /* save volume value if the widget is powered down */
1698 if (widget->id == snd_soc_dapm_pga && !widget->power) {
1699 widget->saved_value = val;
1700 mutex_unlock(&widget->codec->mutex);
1701 return 1;
1702 }
1703
1704 dapm_mixer_update_power(widget, kcontrol, reg, val_mask, val, invert);
1705 if (widget->event) {
1706 if (widget->event_flags & SND_SOC_DAPM_PRE_REG) {
1707 ret = widget->event(widget, kcontrol,
1708 SND_SOC_DAPM_PRE_REG);
1709 if (ret < 0) {
1710 ret = 1;
1711 goto out;
1712 }
1713 }
1714 ret = snd_soc_update_bits(widget->codec, reg, val_mask, val);
1715 if (widget->event_flags & SND_SOC_DAPM_POST_REG)
1716 ret = widget->event(widget, kcontrol,
1717 SND_SOC_DAPM_POST_REG);
1718 } else
1719 ret = snd_soc_update_bits(widget->codec, reg, val_mask, val);
1720
1721 out:
1722 mutex_unlock(&widget->codec->mutex);
1723 return ret;
1724 }
1725 EXPORT_SYMBOL_GPL(snd_soc_dapm_put_volsw);
1726
1727 /**
1728 * snd_soc_dapm_get_enum_double - dapm enumerated double mixer get callback
1729 * @kcontrol: mixer control
1730 * @ucontrol: control element information
1731 *
1732 * Callback to get the value of a dapm enumerated double mixer control.
1733 *
1734 * Returns 0 for success.
1735 */
1736 int snd_soc_dapm_get_enum_double(struct snd_kcontrol *kcontrol,
1737 struct snd_ctl_elem_value *ucontrol)
1738 {
1739 struct snd_soc_dapm_widget *widget = snd_kcontrol_chip(kcontrol);
1740 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1741 unsigned int val, bitmask;
1742
1743 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1744 ;
1745 val = snd_soc_read(widget->codec, e->reg);
1746 ucontrol->value.enumerated.item[0] = (val >> e->shift_l) & (bitmask - 1);
1747 if (e->shift_l != e->shift_r)
1748 ucontrol->value.enumerated.item[1] =
1749 (val >> e->shift_r) & (bitmask - 1);
1750
1751 return 0;
1752 }
1753 EXPORT_SYMBOL_GPL(snd_soc_dapm_get_enum_double);
1754
1755 /**
1756 * snd_soc_dapm_put_enum_double - dapm enumerated double mixer set callback
1757 * @kcontrol: mixer control
1758 * @ucontrol: control element information
1759 *
1760 * Callback to set the value of a dapm enumerated double mixer control.
1761 *
1762 * Returns 0 for success.
1763 */
1764 int snd_soc_dapm_put_enum_double(struct snd_kcontrol *kcontrol,
1765 struct snd_ctl_elem_value *ucontrol)
1766 {
1767 struct snd_soc_dapm_widget *widget = snd_kcontrol_chip(kcontrol);
1768 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1769 unsigned int val, mux;
1770 unsigned int mask, bitmask;
1771 int ret = 0;
1772
1773 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1774 ;
1775 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1776 return -EINVAL;
1777 mux = ucontrol->value.enumerated.item[0];
1778 val = mux << e->shift_l;
1779 mask = (bitmask - 1) << e->shift_l;
1780 if (e->shift_l != e->shift_r) {
1781 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1782 return -EINVAL;
1783 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1784 mask |= (bitmask - 1) << e->shift_r;
1785 }
1786
1787 mutex_lock(&widget->codec->mutex);
1788 widget->value = val;
1789 dapm_mux_update_power(widget, kcontrol, mask, mux, val, e);
1790 if (widget->event) {
1791 if (widget->event_flags & SND_SOC_DAPM_PRE_REG) {
1792 ret = widget->event(widget,
1793 kcontrol, SND_SOC_DAPM_PRE_REG);
1794 if (ret < 0)
1795 goto out;
1796 }
1797 ret = snd_soc_update_bits(widget->codec, e->reg, mask, val);
1798 if (widget->event_flags & SND_SOC_DAPM_POST_REG)
1799 ret = widget->event(widget,
1800 kcontrol, SND_SOC_DAPM_POST_REG);
1801 } else
1802 ret = snd_soc_update_bits(widget->codec, e->reg, mask, val);
1803
1804 out:
1805 mutex_unlock(&widget->codec->mutex);
1806 return ret;
1807 }
1808 EXPORT_SYMBOL_GPL(snd_soc_dapm_put_enum_double);
1809
1810 /**
1811 * snd_soc_dapm_get_value_enum_double - dapm semi enumerated double mixer get
1812 * callback
1813 * @kcontrol: mixer control
1814 * @ucontrol: control element information
1815 *
1816 * Callback to get the value of a dapm semi enumerated double mixer control.
1817 *
1818 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1819 * used for handling bitfield coded enumeration for example.
1820 *
1821 * Returns 0 for success.
1822 */
1823 int snd_soc_dapm_get_value_enum_double(struct snd_kcontrol *kcontrol,
1824 struct snd_ctl_elem_value *ucontrol)
1825 {
1826 struct snd_soc_dapm_widget *widget = snd_kcontrol_chip(kcontrol);
1827 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1828 unsigned int reg_val, val, mux;
1829
1830 reg_val = snd_soc_read(widget->codec, e->reg);
1831 val = (reg_val >> e->shift_l) & e->mask;
1832 for (mux = 0; mux < e->max; mux++) {
1833 if (val == e->values[mux])
1834 break;
1835 }
1836 ucontrol->value.enumerated.item[0] = mux;
1837 if (e->shift_l != e->shift_r) {
1838 val = (reg_val >> e->shift_r) & e->mask;
1839 for (mux = 0; mux < e->max; mux++) {
1840 if (val == e->values[mux])
1841 break;
1842 }
1843 ucontrol->value.enumerated.item[1] = mux;
1844 }
1845
1846 return 0;
1847 }
1848 EXPORT_SYMBOL_GPL(snd_soc_dapm_get_value_enum_double);
1849
1850 /**
1851 * snd_soc_dapm_put_value_enum_double - dapm semi enumerated double mixer set
1852 * callback
1853 * @kcontrol: mixer control
1854 * @ucontrol: control element information
1855 *
1856 * Callback to set the value of a dapm semi enumerated double mixer control.
1857 *
1858 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1859 * used for handling bitfield coded enumeration for example.
1860 *
1861 * Returns 0 for success.
1862 */
1863 int snd_soc_dapm_put_value_enum_double(struct snd_kcontrol *kcontrol,
1864 struct snd_ctl_elem_value *ucontrol)
1865 {
1866 struct snd_soc_dapm_widget *widget = snd_kcontrol_chip(kcontrol);
1867 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1868 unsigned int val, mux;
1869 unsigned int mask;
1870 int ret = 0;
1871
1872 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1873 return -EINVAL;
1874 mux = ucontrol->value.enumerated.item[0];
1875 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
1876 mask = e->mask << e->shift_l;
1877 if (e->shift_l != e->shift_r) {
1878 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1879 return -EINVAL;
1880 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
1881 mask |= e->mask << e->shift_r;
1882 }
1883
1884 mutex_lock(&widget->codec->mutex);
1885 widget->value = val;
1886 dapm_mux_update_power(widget, kcontrol, mask, mux, val, e);
1887 if (widget->event) {
1888 if (widget->event_flags & SND_SOC_DAPM_PRE_REG) {
1889 ret = widget->event(widget,
1890 kcontrol, SND_SOC_DAPM_PRE_REG);
1891 if (ret < 0)
1892 goto out;
1893 }
1894 ret = snd_soc_update_bits(widget->codec, e->reg, mask, val);
1895 if (widget->event_flags & SND_SOC_DAPM_POST_REG)
1896 ret = widget->event(widget,
1897 kcontrol, SND_SOC_DAPM_POST_REG);
1898 } else
1899 ret = snd_soc_update_bits(widget->codec, e->reg, mask, val);
1900
1901 out:
1902 mutex_unlock(&widget->codec->mutex);
1903 return ret;
1904 }
1905 EXPORT_SYMBOL_GPL(snd_soc_dapm_put_value_enum_double);
1906
1907 /**
1908 * snd_soc_dapm_info_pin_switch - Info for a pin switch
1909 *
1910 * @kcontrol: mixer control
1911 * @uinfo: control element information
1912 *
1913 * Callback to provide information about a pin switch control.
1914 */
1915 int snd_soc_dapm_info_pin_switch(struct snd_kcontrol *kcontrol,
1916 struct snd_ctl_elem_info *uinfo)
1917 {
1918 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1919 uinfo->count = 1;
1920 uinfo->value.integer.min = 0;
1921 uinfo->value.integer.max = 1;
1922
1923 return 0;
1924 }
1925 EXPORT_SYMBOL_GPL(snd_soc_dapm_info_pin_switch);
1926
1927 /**
1928 * snd_soc_dapm_get_pin_switch - Get information for a pin switch
1929 *
1930 * @kcontrol: mixer control
1931 * @ucontrol: Value
1932 */
1933 int snd_soc_dapm_get_pin_switch(struct snd_kcontrol *kcontrol,
1934 struct snd_ctl_elem_value *ucontrol)
1935 {
1936 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1937 const char *pin = (const char *)kcontrol->private_value;
1938
1939 mutex_lock(&codec->mutex);
1940
1941 ucontrol->value.integer.value[0] =
1942 snd_soc_dapm_get_pin_status(codec, pin);
1943
1944 mutex_unlock(&codec->mutex);
1945
1946 return 0;
1947 }
1948 EXPORT_SYMBOL_GPL(snd_soc_dapm_get_pin_switch);
1949
1950 /**
1951 * snd_soc_dapm_put_pin_switch - Set information for a pin switch
1952 *
1953 * @kcontrol: mixer control
1954 * @ucontrol: Value
1955 */
1956 int snd_soc_dapm_put_pin_switch(struct snd_kcontrol *kcontrol,
1957 struct snd_ctl_elem_value *ucontrol)
1958 {
1959 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1960 const char *pin = (const char *)kcontrol->private_value;
1961
1962 mutex_lock(&codec->mutex);
1963
1964 if (ucontrol->value.integer.value[0])
1965 snd_soc_dapm_enable_pin(codec, pin);
1966 else
1967 snd_soc_dapm_disable_pin(codec, pin);
1968
1969 snd_soc_dapm_sync(codec);
1970
1971 mutex_unlock(&codec->mutex);
1972
1973 return 0;
1974 }
1975 EXPORT_SYMBOL_GPL(snd_soc_dapm_put_pin_switch);
1976
1977 /**
1978 * snd_soc_dapm_new_control - create new dapm control
1979 * @codec: audio codec
1980 * @widget: widget template
1981 *
1982 * Creates a new dapm control based upon the template.
1983 *
1984 * Returns 0 for success else error.
1985 */
1986 int snd_soc_dapm_new_control(struct snd_soc_codec *codec,
1987 const struct snd_soc_dapm_widget *widget)
1988 {
1989 struct snd_soc_dapm_widget *w;
1990
1991 if ((w = dapm_cnew_widget(widget)) == NULL)
1992 return -ENOMEM;
1993
1994 w->codec = codec;
1995 INIT_LIST_HEAD(&w->sources);
1996 INIT_LIST_HEAD(&w->sinks);
1997 INIT_LIST_HEAD(&w->list);
1998 list_add(&w->list, &codec->dapm_widgets);
1999
2000 /* machine layer set ups unconnected pins and insertions */
2001 w->connected = 1;
2002 return 0;
2003 }
2004 EXPORT_SYMBOL_GPL(snd_soc_dapm_new_control);
2005
2006 /**
2007 * snd_soc_dapm_new_controls - create new dapm controls
2008 * @codec: audio codec
2009 * @widget: widget array
2010 * @num: number of widgets
2011 *
2012 * Creates new DAPM controls based upon the templates.
2013 *
2014 * Returns 0 for success else error.
2015 */
2016 int snd_soc_dapm_new_controls(struct snd_soc_codec *codec,
2017 const struct snd_soc_dapm_widget *widget,
2018 int num)
2019 {
2020 int i, ret;
2021
2022 for (i = 0; i < num; i++) {
2023 ret = snd_soc_dapm_new_control(codec, widget);
2024 if (ret < 0) {
2025 printk(KERN_ERR
2026 "ASoC: Failed to create DAPM control %s: %d\n",
2027 widget->name, ret);
2028 return ret;
2029 }
2030 widget++;
2031 }
2032 return 0;
2033 }
2034 EXPORT_SYMBOL_GPL(snd_soc_dapm_new_controls);
2035
2036
2037 /**
2038 * snd_soc_dapm_stream_event - send a stream event to the dapm core
2039 * @codec: audio codec
2040 * @stream: stream name
2041 * @event: stream event
2042 *
2043 * Sends a stream event to the dapm core. The core then makes any
2044 * necessary widget power changes.
2045 *
2046 * Returns 0 for success else error.
2047 */
2048 int snd_soc_dapm_stream_event(struct snd_soc_codec *codec,
2049 char *stream, int event)
2050 {
2051 struct snd_soc_dapm_widget *w;
2052
2053 if (stream == NULL)
2054 return 0;
2055
2056 mutex_lock(&codec->mutex);
2057 list_for_each_entry(w, &codec->dapm_widgets, list)
2058 {
2059 if (!w->sname)
2060 continue;
2061 pr_debug("widget %s\n %s stream %s event %d\n",
2062 w->name, w->sname, stream, event);
2063 if (strstr(w->sname, stream)) {
2064 switch(event) {
2065 case SND_SOC_DAPM_STREAM_START:
2066 w->active = 1;
2067 break;
2068 case SND_SOC_DAPM_STREAM_STOP:
2069 w->active = 0;
2070 break;
2071 case SND_SOC_DAPM_STREAM_SUSPEND:
2072 if (w->active)
2073 w->suspend = 1;
2074 w->active = 0;
2075 break;
2076 case SND_SOC_DAPM_STREAM_RESUME:
2077 if (w->suspend) {
2078 w->active = 1;
2079 w->suspend = 0;
2080 }
2081 break;
2082 case SND_SOC_DAPM_STREAM_PAUSE_PUSH:
2083 break;
2084 case SND_SOC_DAPM_STREAM_PAUSE_RELEASE:
2085 break;
2086 }
2087 }
2088 }
2089
2090 dapm_power_widgets(codec, event);
2091 mutex_unlock(&codec->mutex);
2092 dump_dapm(codec, __func__);
2093 return 0;
2094 }
2095 EXPORT_SYMBOL_GPL(snd_soc_dapm_stream_event);
2096
2097 /**
2098 * snd_soc_dapm_enable_pin - enable pin.
2099 * @codec: SoC codec
2100 * @pin: pin name
2101 *
2102 * Enables input/output pin and its parents or children widgets iff there is
2103 * a valid audio route and active audio stream.
2104 * NOTE: snd_soc_dapm_sync() needs to be called after this for DAPM to
2105 * do any widget power switching.
2106 */
2107 int snd_soc_dapm_enable_pin(struct snd_soc_codec *codec, const char *pin)
2108 {
2109 return snd_soc_dapm_set_pin(codec, pin, 1);
2110 }
2111 EXPORT_SYMBOL_GPL(snd_soc_dapm_enable_pin);
2112
2113 /**
2114 * snd_soc_dapm_disable_pin - disable pin.
2115 * @codec: SoC codec
2116 * @pin: pin name
2117 *
2118 * Disables input/output pin and its parents or children widgets.
2119 * NOTE: snd_soc_dapm_sync() needs to be called after this for DAPM to
2120 * do any widget power switching.
2121 */
2122 int snd_soc_dapm_disable_pin(struct snd_soc_codec *codec, const char *pin)
2123 {
2124 return snd_soc_dapm_set_pin(codec, pin, 0);
2125 }
2126 EXPORT_SYMBOL_GPL(snd_soc_dapm_disable_pin);
2127
2128 /**
2129 * snd_soc_dapm_nc_pin - permanently disable pin.
2130 * @codec: SoC codec
2131 * @pin: pin name
2132 *
2133 * Marks the specified pin as being not connected, disabling it along
2134 * any parent or child widgets. At present this is identical to
2135 * snd_soc_dapm_disable_pin() but in future it will be extended to do
2136 * additional things such as disabling controls which only affect
2137 * paths through the pin.
2138 *
2139 * NOTE: snd_soc_dapm_sync() needs to be called after this for DAPM to
2140 * do any widget power switching.
2141 */
2142 int snd_soc_dapm_nc_pin(struct snd_soc_codec *codec, const char *pin)
2143 {
2144 return snd_soc_dapm_set_pin(codec, pin, 0);
2145 }
2146 EXPORT_SYMBOL_GPL(snd_soc_dapm_nc_pin);
2147
2148 /**
2149 * snd_soc_dapm_get_pin_status - get audio pin status
2150 * @codec: audio codec
2151 * @pin: audio signal pin endpoint (or start point)
2152 *
2153 * Get audio pin status - connected or disconnected.
2154 *
2155 * Returns 1 for connected otherwise 0.
2156 */
2157 int snd_soc_dapm_get_pin_status(struct snd_soc_codec *codec, const char *pin)
2158 {
2159 struct snd_soc_dapm_widget *w;
2160
2161 list_for_each_entry(w, &codec->dapm_widgets, list) {
2162 if (!strcmp(w->name, pin))
2163 return w->connected;
2164 }
2165
2166 return 0;
2167 }
2168 EXPORT_SYMBOL_GPL(snd_soc_dapm_get_pin_status);
2169
2170 /**
2171 * snd_soc_dapm_free - free dapm resources
2172 * @socdev: SoC device
2173 *
2174 * Free all dapm widgets and resources.
2175 */
2176 void snd_soc_dapm_free(struct snd_soc_device *socdev)
2177 {
2178 struct snd_soc_codec *codec = socdev->card->codec;
2179
2180 snd_soc_dapm_sys_remove(socdev->dev);
2181 dapm_free_widgets(codec);
2182 }
2183 EXPORT_SYMBOL_GPL(snd_soc_dapm_free);
2184
2185 /*
2186 * snd_soc_dapm_shutdown - callback for system shutdown
2187 */
2188 void snd_soc_dapm_shutdown(struct snd_soc_device *socdev)
2189 {
2190 struct snd_soc_codec *codec = socdev->card->codec;
2191 struct snd_soc_dapm_widget *w;
2192 LIST_HEAD(down_list);
2193 int powerdown = 0;
2194
2195 list_for_each_entry(w, &codec->dapm_widgets, list) {
2196 if (w->power) {
2197 dapm_seq_insert(w, &down_list, dapm_down_seq);
2198 w->power = 0;
2199 powerdown = 1;
2200 }
2201 }
2202
2203 /* If there were no widgets to power down we're already in
2204 * standby.
2205 */
2206 if (powerdown) {
2207 snd_soc_dapm_set_bias_level(socdev, SND_SOC_BIAS_PREPARE);
2208 dapm_seq_run(codec, &down_list, 0, dapm_down_seq);
2209 snd_soc_dapm_set_bias_level(socdev, SND_SOC_BIAS_STANDBY);
2210 }
2211
2212 snd_soc_dapm_set_bias_level(socdev, SND_SOC_BIAS_OFF);
2213 }
2214
2215 /* Module information */
2216 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
2217 MODULE_DESCRIPTION("Dynamic Audio Power Management core for ALSA SoC");
2218 MODULE_LICENSE("GPL");
This page took 0.148048 seconds and 6 git commands to generate.