[ALSA] sparc dbri: recording is back
[deliverable/linux.git] / sound / sparc / dbri.c
1 /*
2 * Driver for DBRI sound chip found on Sparcs.
3 * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
4 *
5 * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
6 *
7 * Based entirely upon drivers/sbus/audio/dbri.c which is:
8 * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
9 * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
10 *
11 * This is the lowlevel driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
12 * on Sun SPARCstation 10, 20, LX and Voyager models.
13 *
14 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
15 * data time multiplexer with ISDN support (aka T7259)
16 * Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
17 * CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
18 * Documentation:
19 * - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Tranceiver" from
20 * Sparc Technology Business (courtesy of Sun Support)
21 * - Data sheet of the T7903, a newer but very similar ISA bus equivalent
22 * available from the Lucent (formarly AT&T microelectronics) home
23 * page.
24 * - http://www.freesoft.org/Linux/DBRI/
25 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
26 * Interfaces: CHI, Audio In & Out, 2 bits parallel
27 * Documentation: from the Crystal Semiconductor home page.
28 *
29 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
30 * memory and a serial device (long pipes, nr 0-15) or between two serial
31 * devices (short pipes, nr 16-31), or simply send a fixed data to a serial
32 * device (short pipes).
33 * A timeslot defines the bit-offset and nr of bits read from a serial device.
34 * The timeslots are linked to 6 circular lists, one for each direction for
35 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
36 * (the second one is a monitor/tee pipe, valid only for serial input).
37 *
38 * The mmcodec is connected via the CHI bus and needs the data & some
39 * parameters (volume, output selection) timemultiplexed in 8 byte
40 * chunks. It also has a control mode, which serves for audio format setting.
41 *
42 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
43 * the same CHI bus, so I thought perhaps it is possible to use the onboard
44 * & the speakerbox codec simultanously, giving 2 (not very independent :-)
45 * audio devices. But the SUN HW group decided against it, at least on my
46 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
47 * connected.
48 *
49 * I've tried to stick to the following function naming conventions:
50 * snd_* ALSA stuff
51 * cs4215_* CS4215 codec specific stuff
52 * dbri_* DBRI high-level stuff
53 * other DBRI low-level stuff
54 */
55
56 #include <sound/driver.h>
57 #include <linux/interrupt.h>
58 #include <linux/delay.h>
59
60 #include <sound/core.h>
61 #include <sound/pcm.h>
62 #include <sound/pcm_params.h>
63 #include <sound/info.h>
64 #include <sound/control.h>
65 #include <sound/initval.h>
66
67 #include <asm/irq.h>
68 #include <asm/io.h>
69 #include <asm/sbus.h>
70 #include <asm/atomic.h>
71
72 MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
73 MODULE_DESCRIPTION("Sun DBRI");
74 MODULE_LICENSE("GPL");
75 MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
76
77 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
78 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
79 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
80
81 module_param_array(index, int, NULL, 0444);
82 MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
83 module_param_array(id, charp, NULL, 0444);
84 MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
85 module_param_array(enable, bool, NULL, 0444);
86 MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
87
88 #undef DBRI_DEBUG
89
90 #define D_INT (1<<0)
91 #define D_GEN (1<<1)
92 #define D_CMD (1<<2)
93 #define D_MM (1<<3)
94 #define D_USR (1<<4)
95 #define D_DESC (1<<5)
96
97 static int dbri_debug;
98 module_param(dbri_debug, int, 0644);
99 MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
100
101 #ifdef DBRI_DEBUG
102 static char *cmds[] = {
103 "WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
104 "SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
105 };
106
107 #define dprintk(a, x...) if(dbri_debug & a) printk(KERN_DEBUG x)
108
109 #else
110 #define dprintk(a, x...) do { } while (0)
111
112 #endif /* DBRI_DEBUG */
113
114 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) | \
115 (intr << 27) | \
116 value)
117
118 /***************************************************************************
119 CS4215 specific definitions and structures
120 ****************************************************************************/
121
122 struct cs4215 {
123 __u8 data[4]; /* Data mode: Time slots 5-8 */
124 __u8 ctrl[4]; /* Ctrl mode: Time slots 1-4 */
125 __u8 onboard;
126 __u8 offset; /* Bit offset from frame sync to time slot 1 */
127 volatile __u32 status;
128 volatile __u32 version;
129 __u8 precision; /* In bits, either 8 or 16 */
130 __u8 channels; /* 1 or 2 */
131 };
132
133 /*
134 * Control mode first
135 */
136
137 /* Time Slot 1, Status register */
138 #define CS4215_CLB (1<<2) /* Control Latch Bit */
139 #define CS4215_OLB (1<<3) /* 1: line: 2.0V, speaker 4V */
140 /* 0: line: 2.8V, speaker 8V */
141 #define CS4215_MLB (1<<4) /* 1: Microphone: 20dB gain disabled */
142 #define CS4215_RSRVD_1 (1<<5)
143
144 /* Time Slot 2, Data Format Register */
145 #define CS4215_DFR_LINEAR16 0
146 #define CS4215_DFR_ULAW 1
147 #define CS4215_DFR_ALAW 2
148 #define CS4215_DFR_LINEAR8 3
149 #define CS4215_DFR_STEREO (1<<2)
150 static struct {
151 unsigned short freq;
152 unsigned char xtal;
153 unsigned char csval;
154 } CS4215_FREQ[] = {
155 { 8000, (1 << 4), (0 << 3) },
156 { 16000, (1 << 4), (1 << 3) },
157 { 27429, (1 << 4), (2 << 3) }, /* Actually 24428.57 */
158 { 32000, (1 << 4), (3 << 3) },
159 /* { NA, (1 << 4), (4 << 3) }, */
160 /* { NA, (1 << 4), (5 << 3) }, */
161 { 48000, (1 << 4), (6 << 3) },
162 { 9600, (1 << 4), (7 << 3) },
163 { 5512, (2 << 4), (0 << 3) }, /* Actually 5512.5 */
164 { 11025, (2 << 4), (1 << 3) },
165 { 18900, (2 << 4), (2 << 3) },
166 { 22050, (2 << 4), (3 << 3) },
167 { 37800, (2 << 4), (4 << 3) },
168 { 44100, (2 << 4), (5 << 3) },
169 { 33075, (2 << 4), (6 << 3) },
170 { 6615, (2 << 4), (7 << 3) },
171 { 0, 0, 0}
172 };
173
174 #define CS4215_HPF (1<<7) /* High Pass Filter, 1: Enabled */
175
176 #define CS4215_12_MASK 0xfcbf /* Mask off reserved bits in slot 1 & 2 */
177
178 /* Time Slot 3, Serial Port Control register */
179 #define CS4215_XEN (1<<0) /* 0: Enable serial output */
180 #define CS4215_XCLK (1<<1) /* 1: Master mode: Generate SCLK */
181 #define CS4215_BSEL_64 (0<<2) /* Bitrate: 64 bits per frame */
182 #define CS4215_BSEL_128 (1<<2)
183 #define CS4215_BSEL_256 (2<<2)
184 #define CS4215_MCK_MAST (0<<4) /* Master clock */
185 #define CS4215_MCK_XTL1 (1<<4) /* 24.576 MHz clock source */
186 #define CS4215_MCK_XTL2 (2<<4) /* 16.9344 MHz clock source */
187 #define CS4215_MCK_CLK1 (3<<4) /* Clockin, 256 x Fs */
188 #define CS4215_MCK_CLK2 (4<<4) /* Clockin, see DFR */
189
190 /* Time Slot 4, Test Register */
191 #define CS4215_DAD (1<<0) /* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
192 #define CS4215_ENL (1<<1) /* Enable Loopback Testing */
193
194 /* Time Slot 5, Parallel Port Register */
195 /* Read only here and the same as the in data mode */
196
197 /* Time Slot 6, Reserved */
198
199 /* Time Slot 7, Version Register */
200 #define CS4215_VERSION_MASK 0xf /* Known versions 0/C, 1/D, 2/E */
201
202 /* Time Slot 8, Reserved */
203
204 /*
205 * Data mode
206 */
207 /* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data */
208
209 /* Time Slot 5, Output Setting */
210 #define CS4215_LO(v) v /* Left Output Attenuation 0x3f: -94.5 dB */
211 #define CS4215_LE (1<<6) /* Line Out Enable */
212 #define CS4215_HE (1<<7) /* Headphone Enable */
213
214 /* Time Slot 6, Output Setting */
215 #define CS4215_RO(v) v /* Right Output Attenuation 0x3f: -94.5 dB */
216 #define CS4215_SE (1<<6) /* Speaker Enable */
217 #define CS4215_ADI (1<<7) /* A/D Data Invalid: Busy in calibration */
218
219 /* Time Slot 7, Input Setting */
220 #define CS4215_LG(v) v /* Left Gain Setting 0xf: 22.5 dB */
221 #define CS4215_IS (1<<4) /* Input Select: 1=Microphone, 0=Line */
222 #define CS4215_OVR (1<<5) /* 1: Overrange condition occurred */
223 #define CS4215_PIO0 (1<<6) /* Parallel I/O 0 */
224 #define CS4215_PIO1 (1<<7)
225
226 /* Time Slot 8, Input Setting */
227 #define CS4215_RG(v) v /* Right Gain Setting 0xf: 22.5 dB */
228 #define CS4215_MA(v) (v<<4) /* Monitor Path Attenuation 0xf: mute */
229
230 /***************************************************************************
231 DBRI specific definitions and structures
232 ****************************************************************************/
233
234 /* DBRI main registers */
235 #define REG0 0x00UL /* Status and Control */
236 #define REG1 0x04UL /* Mode and Interrupt */
237 #define REG2 0x08UL /* Parallel IO */
238 #define REG3 0x0cUL /* Test */
239 #define REG8 0x20UL /* Command Queue Pointer */
240 #define REG9 0x24UL /* Interrupt Queue Pointer */
241
242 #define DBRI_NO_CMDS 64
243 #define DBRI_INT_BLK 64
244 #define DBRI_NO_DESCS 64
245 #define DBRI_NO_PIPES 32
246 #define DBRI_MAX_PIPE (DBRI_NO_PIPES - 1)
247
248 #define DBRI_REC 0
249 #define DBRI_PLAY 1
250 #define DBRI_NO_STREAMS 2
251
252 /* One transmit/receive descriptor */
253 /* When ba != 0 descriptor is used */
254 struct dbri_mem {
255 volatile __u32 word1;
256 __u32 ba; /* Transmit/Receive Buffer Address */
257 __u32 nda; /* Next Descriptor Address */
258 volatile __u32 word4;
259 };
260
261 /* This structure is in a DMA region where it can accessed by both
262 * the CPU and the DBRI
263 */
264 struct dbri_dma {
265 s32 cmd[DBRI_NO_CMDS]; /* Place for commands */
266 volatile s32 intr[DBRI_INT_BLK]; /* Interrupt field */
267 struct dbri_mem desc[DBRI_NO_DESCS]; /* Xmit/receive descriptors */
268 };
269
270 #define dbri_dma_off(member, elem) \
271 ((u32)(unsigned long) \
272 (&(((struct dbri_dma *)0)->member[elem])))
273
274 enum in_or_out { PIPEinput, PIPEoutput };
275
276 struct dbri_pipe {
277 u32 sdp; /* SDP command word */
278 int nextpipe; /* Next pipe in linked list */
279 int length; /* Length of timeslot (bits) */
280 int first_desc; /* Index of first descriptor */
281 int desc; /* Index of active descriptor */
282 volatile __u32 *recv_fixed_ptr; /* Ptr to receive fixed data */
283 };
284
285 /* Per stream (playback or record) information */
286 struct dbri_streaminfo {
287 struct snd_pcm_substream *substream;
288 u32 dvma_buffer; /* Device view of Alsa DMA buffer */
289 int size; /* Size of DMA buffer */
290 size_t offset; /* offset in user buffer */
291 int pipe; /* Data pipe used */
292 int left_gain; /* mixer elements */
293 int right_gain;
294 };
295
296 /* This structure holds the information for both chips (DBRI & CS4215) */
297 struct snd_dbri {
298 struct snd_card *card; /* ALSA card */
299
300 int regs_size, irq; /* Needed for unload */
301 struct sbus_dev *sdev; /* SBUS device info */
302 spinlock_t lock;
303
304 struct dbri_dma *dma; /* Pointer to our DMA block */
305 u32 dma_dvma; /* DBRI visible DMA address */
306
307 void __iomem *regs; /* dbri HW regs */
308 int dbri_irqp; /* intr queue pointer */
309
310 struct dbri_pipe pipes[DBRI_NO_PIPES]; /* DBRI's 32 data pipes */
311 int next_desc[DBRI_NO_DESCS]; /* Index of next desc, or -1 */
312 spinlock_t cmdlock; /* Protects cmd queue accesses */
313 s32 *cmdptr; /* Pointer to the last queued cmd */
314
315 int chi_bpf;
316
317 struct cs4215 mm; /* mmcodec special info */
318 /* per stream (playback/record) info */
319 struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
320
321 struct snd_dbri *next;
322 };
323
324 #define DBRI_MAX_VOLUME 63 /* Output volume */
325 #define DBRI_MAX_GAIN 15 /* Input gain */
326
327 /* DBRI Reg0 - Status Control Register - defines. (Page 17) */
328 #define D_P (1<<15) /* Program command & queue pointer valid */
329 #define D_G (1<<14) /* Allow 4-Word SBus Burst */
330 #define D_S (1<<13) /* Allow 16-Word SBus Burst */
331 #define D_E (1<<12) /* Allow 8-Word SBus Burst */
332 #define D_X (1<<7) /* Sanity Timer Disable */
333 #define D_T (1<<6) /* Permit activation of the TE interface */
334 #define D_N (1<<5) /* Permit activation of the NT interface */
335 #define D_C (1<<4) /* Permit activation of the CHI interface */
336 #define D_F (1<<3) /* Force Sanity Timer Time-Out */
337 #define D_D (1<<2) /* Disable Master Mode */
338 #define D_H (1<<1) /* Halt for Analysis */
339 #define D_R (1<<0) /* Soft Reset */
340
341 /* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
342 #define D_LITTLE_END (1<<8) /* Byte Order */
343 #define D_BIG_END (0<<8) /* Byte Order */
344 #define D_MRR (1<<4) /* Multiple Error Ack on SBus (readonly) */
345 #define D_MLE (1<<3) /* Multiple Late Error on SBus (readonly) */
346 #define D_LBG (1<<2) /* Lost Bus Grant on SBus (readonly) */
347 #define D_MBE (1<<1) /* Burst Error on SBus (readonly) */
348 #define D_IR (1<<0) /* Interrupt Indicator (readonly) */
349
350 /* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
351 #define D_ENPIO3 (1<<7) /* Enable Pin 3 */
352 #define D_ENPIO2 (1<<6) /* Enable Pin 2 */
353 #define D_ENPIO1 (1<<5) /* Enable Pin 1 */
354 #define D_ENPIO0 (1<<4) /* Enable Pin 0 */
355 #define D_ENPIO (0xf0) /* Enable all the pins */
356 #define D_PIO3 (1<<3) /* Pin 3: 1: Data mode, 0: Ctrl mode */
357 #define D_PIO2 (1<<2) /* Pin 2: 1: Onboard PDN */
358 #define D_PIO1 (1<<1) /* Pin 1: 0: Reset */
359 #define D_PIO0 (1<<0) /* Pin 0: 1: Speakerbox PDN */
360
361 /* DBRI Commands (Page 20) */
362 #define D_WAIT 0x0 /* Stop execution */
363 #define D_PAUSE 0x1 /* Flush long pipes */
364 #define D_JUMP 0x2 /* New command queue */
365 #define D_IIQ 0x3 /* Initialize Interrupt Queue */
366 #define D_REX 0x4 /* Report command execution via interrupt */
367 #define D_SDP 0x5 /* Setup Data Pipe */
368 #define D_CDP 0x6 /* Continue Data Pipe (reread NULL Pointer) */
369 #define D_DTS 0x7 /* Define Time Slot */
370 #define D_SSP 0x8 /* Set short Data Pipe */
371 #define D_CHI 0x9 /* Set CHI Global Mode */
372 #define D_NT 0xa /* NT Command */
373 #define D_TE 0xb /* TE Command */
374 #define D_CDEC 0xc /* Codec setup */
375 #define D_TEST 0xd /* No comment */
376 #define D_CDM 0xe /* CHI Data mode command */
377
378 /* Special bits for some commands */
379 #define D_PIPE(v) ((v)<<0) /* Pipe Nr: 0-15 long, 16-21 short */
380
381 /* Setup Data Pipe */
382 /* IRM */
383 #define D_SDP_2SAME (1<<18) /* Report 2nd time in a row value rcvd */
384 #define D_SDP_CHANGE (2<<18) /* Report any changes */
385 #define D_SDP_EVERY (3<<18) /* Report any changes */
386 #define D_SDP_EOL (1<<17) /* EOL interrupt enable */
387 #define D_SDP_IDLE (1<<16) /* HDLC idle interrupt enable */
388
389 /* Pipe data MODE */
390 #define D_SDP_MEM (0<<13) /* To/from memory */
391 #define D_SDP_HDLC (2<<13)
392 #define D_SDP_HDLC_D (3<<13) /* D Channel (prio control) */
393 #define D_SDP_SER (4<<13) /* Serial to serial */
394 #define D_SDP_FIXED (6<<13) /* Short only */
395 #define D_SDP_MODE(v) ((v)&(7<<13))
396
397 #define D_SDP_TO_SER (1<<12) /* Direction */
398 #define D_SDP_FROM_SER (0<<12) /* Direction */
399 #define D_SDP_MSB (1<<11) /* Bit order within Byte */
400 #define D_SDP_LSB (0<<11) /* Bit order within Byte */
401 #define D_SDP_P (1<<10) /* Pointer Valid */
402 #define D_SDP_A (1<<8) /* Abort */
403 #define D_SDP_C (1<<7) /* Clear */
404
405 /* Define Time Slot */
406 #define D_DTS_VI (1<<17) /* Valid Input Time-Slot Descriptor */
407 #define D_DTS_VO (1<<16) /* Valid Output Time-Slot Descriptor */
408 #define D_DTS_INS (1<<15) /* Insert Time Slot */
409 #define D_DTS_DEL (0<<15) /* Delete Time Slot */
410 #define D_DTS_PRVIN(v) ((v)<<10) /* Previous In Pipe */
411 #define D_DTS_PRVOUT(v) ((v)<<5) /* Previous Out Pipe */
412
413 /* Time Slot defines */
414 #define D_TS_LEN(v) ((v)<<24) /* Number of bits in this time slot */
415 #define D_TS_CYCLE(v) ((v)<<14) /* Bit Count at start of TS */
416 #define D_TS_DI (1<<13) /* Data Invert */
417 #define D_TS_1CHANNEL (0<<10) /* Single Channel / Normal mode */
418 #define D_TS_MONITOR (2<<10) /* Monitor pipe */
419 #define D_TS_NONCONTIG (3<<10) /* Non contiguous mode */
420 #define D_TS_ANCHOR (7<<10) /* Starting short pipes */
421 #define D_TS_MON(v) ((v)<<5) /* Monitor Pipe */
422 #define D_TS_NEXT(v) ((v)<<0) /* Pipe Nr: 0-15 long, 16-21 short */
423
424 /* Concentration Highway Interface Modes */
425 #define D_CHI_CHICM(v) ((v)<<16) /* Clock mode */
426 #define D_CHI_IR (1<<15) /* Immediate Interrupt Report */
427 #define D_CHI_EN (1<<14) /* CHIL Interrupt enabled */
428 #define D_CHI_OD (1<<13) /* Open Drain Enable */
429 #define D_CHI_FE (1<<12) /* Sample CHIFS on Rising Frame Edge */
430 #define D_CHI_FD (1<<11) /* Frame Drive */
431 #define D_CHI_BPF(v) ((v)<<0) /* Bits per Frame */
432
433 /* NT: These are here for completeness */
434 #define D_NT_FBIT (1<<17) /* Frame Bit */
435 #define D_NT_NBF (1<<16) /* Number of bad frames to loose framing */
436 #define D_NT_IRM_IMM (1<<15) /* Interrupt Report & Mask: Immediate */
437 #define D_NT_IRM_EN (1<<14) /* Interrupt Report & Mask: Enable */
438 #define D_NT_ISNT (1<<13) /* Configfure interface as NT */
439 #define D_NT_FT (1<<12) /* Fixed Timing */
440 #define D_NT_EZ (1<<11) /* Echo Channel is Zeros */
441 #define D_NT_IFA (1<<10) /* Inhibit Final Activation */
442 #define D_NT_ACT (1<<9) /* Activate Interface */
443 #define D_NT_MFE (1<<8) /* Multiframe Enable */
444 #define D_NT_RLB(v) ((v)<<5) /* Remote Loopback */
445 #define D_NT_LLB(v) ((v)<<2) /* Local Loopback */
446 #define D_NT_FACT (1<<1) /* Force Activation */
447 #define D_NT_ABV (1<<0) /* Activate Bipolar Violation */
448
449 /* Codec Setup */
450 #define D_CDEC_CK(v) ((v)<<24) /* Clock Select */
451 #define D_CDEC_FED(v) ((v)<<12) /* FSCOD Falling Edge Delay */
452 #define D_CDEC_RED(v) ((v)<<0) /* FSCOD Rising Edge Delay */
453
454 /* Test */
455 #define D_TEST_RAM(v) ((v)<<16) /* RAM Pointer */
456 #define D_TEST_SIZE(v) ((v)<<11) /* */
457 #define D_TEST_ROMONOFF 0x5 /* Toggle ROM opcode monitor on/off */
458 #define D_TEST_PROC 0x6 /* MicroProcessor test */
459 #define D_TEST_SER 0x7 /* Serial-Controller test */
460 #define D_TEST_RAMREAD 0x8 /* Copy from Ram to system memory */
461 #define D_TEST_RAMWRITE 0x9 /* Copy into Ram from system memory */
462 #define D_TEST_RAMBIST 0xa /* RAM Built-In Self Test */
463 #define D_TEST_MCBIST 0xb /* Microcontroller Built-In Self Test */
464 #define D_TEST_DUMP 0xe /* ROM Dump */
465
466 /* CHI Data Mode */
467 #define D_CDM_THI (1<<8) /* Transmit Data on CHIDR Pin */
468 #define D_CDM_RHI (1<<7) /* Receive Data on CHIDX Pin */
469 #define D_CDM_RCE (1<<6) /* Receive on Rising Edge of CHICK */
470 #define D_CDM_XCE (1<<2) /* Transmit Data on Rising Edge of CHICK */
471 #define D_CDM_XEN (1<<1) /* Transmit Highway Enable */
472 #define D_CDM_REN (1<<0) /* Receive Highway Enable */
473
474 /* The Interrupts */
475 #define D_INTR_BRDY 1 /* Buffer Ready for processing */
476 #define D_INTR_MINT 2 /* Marked Interrupt in RD/TD */
477 #define D_INTR_IBEG 3 /* Flag to idle transition detected (HDLC) */
478 #define D_INTR_IEND 4 /* Idle to flag transition detected (HDLC) */
479 #define D_INTR_EOL 5 /* End of List */
480 #define D_INTR_CMDI 6 /* Command has bean read */
481 #define D_INTR_XCMP 8 /* Transmission of frame complete */
482 #define D_INTR_SBRI 9 /* BRI status change info */
483 #define D_INTR_FXDT 10 /* Fixed data change */
484 #define D_INTR_CHIL 11 /* CHI lost frame sync (channel 36 only) */
485 #define D_INTR_COLL 11 /* Unrecoverable D-Channel collision */
486 #define D_INTR_DBYT 12 /* Dropped by frame slip */
487 #define D_INTR_RBYT 13 /* Repeated by frame slip */
488 #define D_INTR_LINT 14 /* Lost Interrupt */
489 #define D_INTR_UNDR 15 /* DMA underrun */
490
491 #define D_INTR_TE 32
492 #define D_INTR_NT 34
493 #define D_INTR_CHI 36
494 #define D_INTR_CMD 38
495
496 #define D_INTR_GETCHAN(v) (((v)>>24) & 0x3f)
497 #define D_INTR_GETCODE(v) (((v)>>20) & 0xf)
498 #define D_INTR_GETCMD(v) (((v)>>16) & 0xf)
499 #define D_INTR_GETVAL(v) ((v) & 0xffff)
500 #define D_INTR_GETRVAL(v) ((v) & 0xfffff)
501
502 #define D_P_0 0 /* TE receive anchor */
503 #define D_P_1 1 /* TE transmit anchor */
504 #define D_P_2 2 /* NT transmit anchor */
505 #define D_P_3 3 /* NT receive anchor */
506 #define D_P_4 4 /* CHI send data */
507 #define D_P_5 5 /* CHI receive data */
508 #define D_P_6 6 /* */
509 #define D_P_7 7 /* */
510 #define D_P_8 8 /* */
511 #define D_P_9 9 /* */
512 #define D_P_10 10 /* */
513 #define D_P_11 11 /* */
514 #define D_P_12 12 /* */
515 #define D_P_13 13 /* */
516 #define D_P_14 14 /* */
517 #define D_P_15 15 /* */
518 #define D_P_16 16 /* CHI anchor pipe */
519 #define D_P_17 17 /* CHI send */
520 #define D_P_18 18 /* CHI receive */
521 #define D_P_19 19 /* CHI receive */
522 #define D_P_20 20 /* CHI receive */
523 #define D_P_21 21 /* */
524 #define D_P_22 22 /* */
525 #define D_P_23 23 /* */
526 #define D_P_24 24 /* */
527 #define D_P_25 25 /* */
528 #define D_P_26 26 /* */
529 #define D_P_27 27 /* */
530 #define D_P_28 28 /* */
531 #define D_P_29 29 /* */
532 #define D_P_30 30 /* */
533 #define D_P_31 31 /* */
534
535 /* Transmit descriptor defines */
536 #define DBRI_TD_F (1<<31) /* End of Frame */
537 #define DBRI_TD_D (1<<30) /* Do not append CRC */
538 #define DBRI_TD_CNT(v) ((v)<<16) /* Number of valid bytes in the buffer */
539 #define DBRI_TD_B (1<<15) /* Final interrupt */
540 #define DBRI_TD_M (1<<14) /* Marker interrupt */
541 #define DBRI_TD_I (1<<13) /* Transmit Idle Characters */
542 #define DBRI_TD_FCNT(v) (v) /* Flag Count */
543 #define DBRI_TD_UNR (1<<3) /* Underrun: transmitter is out of data */
544 #define DBRI_TD_ABT (1<<2) /* Abort: frame aborted */
545 #define DBRI_TD_TBC (1<<0) /* Transmit buffer Complete */
546 #define DBRI_TD_STATUS(v) ((v)&0xff) /* Transmit status */
547 /* Maximum buffer size per TD: almost 8Kb */
548 #define DBRI_TD_MAXCNT ((1 << 13) - 4)
549
550 /* Receive descriptor defines */
551 #define DBRI_RD_F (1<<31) /* End of Frame */
552 #define DBRI_RD_C (1<<30) /* Completed buffer */
553 #define DBRI_RD_B (1<<15) /* Final interrupt */
554 #define DBRI_RD_M (1<<14) /* Marker interrupt */
555 #define DBRI_RD_BCNT(v) (v) /* Buffer size */
556 #define DBRI_RD_CRC (1<<7) /* 0: CRC is correct */
557 #define DBRI_RD_BBC (1<<6) /* 1: Bad Byte received */
558 #define DBRI_RD_ABT (1<<5) /* Abort: frame aborted */
559 #define DBRI_RD_OVRN (1<<3) /* Overrun: data lost */
560 #define DBRI_RD_STATUS(v) ((v)&0xff) /* Receive status */
561 #define DBRI_RD_CNT(v) (((v)>>16)&0x1fff) /* Valid bytes in the buffer */
562
563 /* stream_info[] access */
564 /* Translate the ALSA direction into the array index */
565 #define DBRI_STREAMNO(substream) \
566 (substream->stream == \
567 SNDRV_PCM_STREAM_PLAYBACK? DBRI_PLAY: DBRI_REC)
568
569 /* Return a pointer to dbri_streaminfo */
570 #define DBRI_STREAM(dbri, substream) &dbri->stream_info[DBRI_STREAMNO(substream)]
571
572 static struct snd_dbri *dbri_list; /* All DBRI devices */
573
574 /*
575 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
576 * So we have to reverse the bits. Note: not all bit lengths are supported
577 */
578 static __u32 reverse_bytes(__u32 b, int len)
579 {
580 switch (len) {
581 case 32:
582 b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
583 case 16:
584 b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
585 case 8:
586 b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
587 case 4:
588 b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
589 case 2:
590 b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
591 case 1:
592 case 0:
593 break;
594 default:
595 printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
596 };
597
598 return b;
599 }
600
601 /*
602 ****************************************************************************
603 ************** DBRI initialization and command synchronization *************
604 ****************************************************************************
605
606 Commands are sent to the DBRI by building a list of them in memory,
607 then writing the address of the first list item to DBRI register 8.
608 The list is terminated with a WAIT command, which generates a
609 CPU interrupt to signal completion.
610
611 Since the DBRI can run in parallel with the CPU, several means of
612 synchronization present themselves. The method implemented here is only
613 use of the dbri_cmdwait() to wait for execution of batch of sent commands.
614
615 A circular command buffer is used here. A new command is being added
616 while another can be executed. The scheme works by adding two WAIT commands
617 after each sent batch of commands. When the next batch is prepared it is
618 added after the WAIT commands then the WAITs are replaced with single JUMP
619 command to the new batch. The the DBRI is forced to reread the last WAIT
620 command (replaced by the JUMP by then). If the DBRI is still executing
621 previous commands the request to reread the WAIT command is ignored.
622
623 Every time a routine wants to write commands to the DBRI, it must
624 first call dbri_cmdlock() and get pointer to a free space in
625 dbri->dma->cmd buffer. After this, the commands can be written to
626 the buffer, and dbri_cmdsend() is called with the final pointer value
627 to send them to the DBRI.
628
629 */
630
631 #define MAXLOOPS 20
632 /*
633 * Wait for the current command string to execute
634 */
635 static void dbri_cmdwait(struct snd_dbri *dbri)
636 {
637 int maxloops = MAXLOOPS;
638
639 /* Delay if previous commands are still being processed */
640 while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P))
641 msleep_interruptible(1);
642
643 if (maxloops == 0) {
644 printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
645 } else {
646 dprintk(D_CMD, "Chip completed command buffer (%d)\n",
647 MAXLOOPS - maxloops - 1);
648 }
649 }
650 /*
651 * Lock the command queue and returns pointer to a space for len cmd words
652 * It locks the cmdlock spinlock.
653 */
654 static s32 *dbri_cmdlock(struct snd_dbri * dbri, int len)
655 {
656 /* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
657 len += 2;
658 spin_lock(&dbri->cmdlock);
659 if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
660 return dbri->cmdptr + 2;
661 else if (len < sbus_readl(dbri->regs + REG8) - dbri->dma_dvma)
662 return dbri->dma->cmd;
663 else
664 printk(KERN_ERR "DBRI: no space for commands.");
665
666 return 0;
667 }
668
669 /*
670 * Send prepared cmd string. It works by writting a JUMP cmd into
671 * the last WAIT cmd and force DBRI to reread the cmd.
672 * The JUMP cmd points to the new cmd string.
673 * It also releases the cmdlock spinlock.
674 */
675 static void dbri_cmdsend(struct snd_dbri * dbri, s32 * cmd,int len)
676 {
677 s32 tmp, addr;
678 unsigned long flags;
679 static int wait_id = 0;
680
681 wait_id++;
682 wait_id &= 0xffff; /* restrict it to a 16 bit counter. */
683 *(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
684 *(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
685
686 /* Replace the last command with JUMP */
687 addr = dbri->dma_dvma + (cmd - len - dbri->dma->cmd) * sizeof(s32);
688 *(dbri->cmdptr+1) = addr;
689 *(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
690
691 #ifdef DBRI_DEBUG
692 if (cmd > dbri->cmdptr) {
693 s32 *ptr;
694
695 for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
696 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
697 } else {
698 s32 *ptr = dbri->cmdptr;
699
700 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
701 ptr++;
702 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
703 for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++) {
704 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
705 }
706 }
707 #endif
708
709 spin_lock_irqsave(&dbri->lock, flags);
710 /* Reread the last command */
711 tmp = sbus_readl(dbri->regs + REG0);
712 tmp |= D_P;
713 sbus_writel(tmp, dbri->regs + REG0);
714 spin_unlock_irqrestore(&dbri->lock, flags);
715
716 dbri->cmdptr = cmd;
717 spin_unlock(&dbri->cmdlock);
718 }
719
720 /* Lock must be held when calling this */
721 static void dbri_reset(struct snd_dbri * dbri)
722 {
723 int i;
724 u32 tmp;
725
726 dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
727 sbus_readl(dbri->regs + REG0),
728 sbus_readl(dbri->regs + REG2),
729 sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
730
731 sbus_writel(D_R, dbri->regs + REG0); /* Soft Reset */
732 for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
733 udelay(10);
734
735 /* A brute approach - DBRI falls back to working burst size by itself
736 * On SS20 D_S does not work, so do not try so high. */
737 tmp = sbus_readl(dbri->regs + REG0);
738 tmp |= D_G | D_E;
739 tmp &= ~D_S;
740 sbus_writel(tmp, dbri->regs + REG0);
741 }
742
743 /* Lock must not be held before calling this */
744 static void dbri_initialize(struct snd_dbri * dbri)
745 {
746 s32 *cmd;
747 u32 dma_addr;
748 unsigned long flags;
749 int n;
750
751 spin_lock_irqsave(&dbri->lock, flags);
752
753 dbri_reset(dbri);
754
755 /* Initialize pipes */
756 for (n = 0; n < DBRI_NO_PIPES; n++)
757 dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
758
759 spin_lock_init(&dbri->cmdlock);
760 /*
761 * Initialize the interrupt ringbuffer.
762 */
763 dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
764 dbri->dma->intr[0] = dma_addr;
765 dbri->dbri_irqp = 1;
766 /*
767 * Set up the interrupt queue
768 */
769 spin_lock(&dbri->cmdlock);
770 cmd = dbri->cmdptr = dbri->dma->cmd;
771 *(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
772 *(cmd++) = dma_addr;
773 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
774 dbri->cmdptr = cmd;
775 *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
776 *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
777 dma_addr = dbri->dma_dvma + dbri_dma_off(cmd, 0);
778 sbus_writel(dma_addr, dbri->regs + REG8);
779 spin_unlock(&dbri->cmdlock);
780 dbri_cmdwait(dbri);
781
782 spin_unlock_irqrestore(&dbri->lock, flags);
783 }
784
785 /*
786 ****************************************************************************
787 ************************** DBRI data pipe management ***********************
788 ****************************************************************************
789
790 While DBRI control functions use the command and interrupt buffers, the
791 main data path takes the form of data pipes, which can be short (command
792 and interrupt driven), or long (attached to DMA buffers). These functions
793 provide a rudimentary means of setting up and managing the DBRI's pipes,
794 but the calling functions have to make sure they respect the pipes' linked
795 list ordering, among other things. The transmit and receive functions
796 here interface closely with the transmit and receive interrupt code.
797
798 */
799 static int pipe_active(struct snd_dbri * dbri, int pipe)
800 {
801 return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
802 }
803
804 /* reset_pipe(dbri, pipe)
805 *
806 * Called on an in-use pipe to clear anything being transmitted or received
807 * Lock must be held before calling this.
808 */
809 static void reset_pipe(struct snd_dbri * dbri, int pipe)
810 {
811 int sdp;
812 int desc;
813 s32 *cmd;
814
815 if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
816 printk(KERN_ERR "DBRI: reset_pipe called with illegal pipe number\n");
817 return;
818 }
819
820 sdp = dbri->pipes[pipe].sdp;
821 if (sdp == 0) {
822 printk(KERN_ERR "DBRI: reset_pipe called on uninitialized pipe\n");
823 return;
824 }
825
826 cmd = dbri_cmdlock(dbri, 3);
827 *(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
828 *(cmd++) = 0;
829 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
830 dbri_cmdsend(dbri, cmd, 3);
831
832 desc = dbri->pipes[pipe].first_desc;
833 if ( desc >= 0)
834 do {
835 dbri->dma->desc[desc].nda = dbri->dma->desc[desc].ba = 0;
836 desc = dbri->next_desc[desc];
837 } while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
838
839 dbri->pipes[pipe].desc = -1;
840 dbri->pipes[pipe].first_desc = -1;
841 }
842
843 static void setup_pipe(struct snd_dbri * dbri, int pipe, int sdp)
844 {
845 if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
846 printk(KERN_ERR "DBRI: setup_pipe called with illegal pipe number\n");
847 return;
848 }
849
850 if ((sdp & 0xf800) != sdp) {
851 printk(KERN_ERR "DBRI: setup_pipe called with strange SDP value\n");
852 /* sdp &= 0xf800; */
853 }
854
855 /* If this is a fixed receive pipe, arrange for an interrupt
856 * every time its data changes
857 */
858 if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
859 sdp |= D_SDP_CHANGE;
860
861 sdp |= D_PIPE(pipe);
862 dbri->pipes[pipe].sdp = sdp;
863 dbri->pipes[pipe].desc = -1;
864 dbri->pipes[pipe].first_desc = -1;
865
866 reset_pipe(dbri, pipe);
867 }
868
869 static void link_time_slot(struct snd_dbri * dbri, int pipe,
870 int prevpipe, int nextpipe,
871 int length, int cycle)
872 {
873 s32 *cmd;
874 int val;
875
876 if (pipe < 0 || pipe > DBRI_MAX_PIPE
877 || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
878 || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
879 printk(KERN_ERR
880 "DBRI: link_time_slot called with illegal pipe number\n");
881 return;
882 }
883
884 if (dbri->pipes[pipe].sdp == 0
885 || dbri->pipes[prevpipe].sdp == 0
886 || dbri->pipes[nextpipe].sdp == 0) {
887 printk(KERN_ERR "DBRI: link_time_slot called on uninitialized pipe\n");
888 return;
889 }
890
891 dbri->pipes[prevpipe].nextpipe = pipe;
892 dbri->pipes[pipe].nextpipe = nextpipe;
893 dbri->pipes[pipe].length = length;
894
895 cmd = dbri_cmdlock(dbri, 4);
896
897 if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
898 /* Deal with CHI special case:
899 * "If transmission on edges 0 or 1 is desired, then cycle n
900 * (where n = # of bit times per frame...) must be used."
901 * - DBRI data sheet, page 11
902 */
903 if (prevpipe == 16 && cycle == 0)
904 cycle = dbri->chi_bpf;
905
906 val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
907 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
908 *(cmd++) = 0;
909 *(cmd++) =
910 D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
911 } else {
912 val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
913 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
914 *(cmd++) =
915 D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
916 *(cmd++) = 0;
917 }
918 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
919
920 dbri_cmdsend(dbri, cmd, 4);
921 }
922
923 static void unlink_time_slot(struct snd_dbri * dbri, int pipe,
924 enum in_or_out direction, int prevpipe,
925 int nextpipe)
926 {
927 s32 *cmd;
928 int val;
929
930 if (pipe < 0 || pipe > DBRI_MAX_PIPE
931 || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
932 || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
933 printk(KERN_ERR
934 "DBRI: unlink_time_slot called with illegal pipe number\n");
935 return;
936 }
937
938 cmd = dbri_cmdlock(dbri, 4);
939
940 if (direction == PIPEinput) {
941 val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
942 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
943 *(cmd++) = D_TS_NEXT(nextpipe);
944 *(cmd++) = 0;
945 } else {
946 val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
947 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
948 *(cmd++) = 0;
949 *(cmd++) = D_TS_NEXT(nextpipe);
950 }
951 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
952
953 dbri_cmdsend(dbri, cmd, 4);
954 }
955
956 /* xmit_fixed() / recv_fixed()
957 *
958 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
959 * expected to change much, and which we don't need to buffer.
960 * The DBRI only interrupts us when the data changes (receive pipes),
961 * or only changes the data when this function is called (transmit pipes).
962 * Only short pipes (numbers 16-31) can be used in fixed data mode.
963 *
964 * These function operate on a 32-bit field, no matter how large
965 * the actual time slot is. The interrupt handler takes care of bit
966 * ordering and alignment. An 8-bit time slot will always end up
967 * in the low-order 8 bits, filled either MSB-first or LSB-first,
968 * depending on the settings passed to setup_pipe()
969 */
970 static void xmit_fixed(struct snd_dbri * dbri, int pipe, unsigned int data)
971 {
972 s32 *cmd;
973
974 if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
975 printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
976 return;
977 }
978
979 if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
980 printk(KERN_ERR "DBRI: xmit_fixed: Uninitialized pipe %d\n", pipe);
981 return;
982 }
983
984 if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
985 printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
986 return;
987 }
988
989 if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
990 printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n", pipe);
991 return;
992 }
993
994 /* DBRI short pipes always transmit LSB first */
995
996 if (dbri->pipes[pipe].sdp & D_SDP_MSB)
997 data = reverse_bytes(data, dbri->pipes[pipe].length);
998
999 cmd = dbri_cmdlock(dbri, 3);
1000
1001 *(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1002 *(cmd++) = data;
1003 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1004
1005 dbri_cmdsend(dbri, cmd, 3);
1006 dbri_cmdwait(dbri);
1007 }
1008
1009 static void recv_fixed(struct snd_dbri * dbri, int pipe, volatile __u32 * ptr)
1010 {
1011 if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1012 printk(KERN_ERR "DBRI: recv_fixed called with illegal pipe number\n");
1013 return;
1014 }
1015
1016 if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1017 printk(KERN_ERR "DBRI: recv_fixed called on non-fixed pipe %d\n", pipe);
1018 return;
1019 }
1020
1021 if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1022 printk(KERN_ERR "DBRI: recv_fixed called on transmit pipe %d\n", pipe);
1023 return;
1024 }
1025
1026 dbri->pipes[pipe].recv_fixed_ptr = ptr;
1027 }
1028
1029 /* setup_descs()
1030 *
1031 * Setup transmit/receive data on a "long" pipe - i.e, one associated
1032 * with a DMA buffer.
1033 *
1034 * Only pipe numbers 0-15 can be used in this mode.
1035 *
1036 * This function takes a stream number pointing to a data buffer,
1037 * and work by building chains of descriptors which identify the
1038 * data buffers. Buffers too large for a single descriptor will
1039 * be spread across multiple descriptors.
1040 *
1041 * All descriptors create a ring buffer.
1042 */
1043 static int setup_descs(struct snd_dbri * dbri, int streamno, unsigned int period)
1044 {
1045 struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1046 __u32 dvma_buffer;
1047 int desc = 0;
1048 int len;
1049 int first_desc = -1;
1050 int last_desc = -1;
1051
1052 if (info->pipe < 0 || info->pipe > 15) {
1053 printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1054 return -2;
1055 }
1056
1057 if (dbri->pipes[info->pipe].sdp == 0) {
1058 printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1059 info->pipe);
1060 return -2;
1061 }
1062
1063 dvma_buffer = info->dvma_buffer;
1064 len = info->size;
1065
1066 if (streamno == DBRI_PLAY) {
1067 if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1068 printk(KERN_ERR "DBRI: setup_descs: Called on receive pipe %d\n",
1069 info->pipe);
1070 return -2;
1071 }
1072 } else {
1073 if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1074 printk(KERN_ERR
1075 "DBRI: setup_descs: Called on transmit pipe %d\n",
1076 info->pipe);
1077 return -2;
1078 }
1079 /* Should be able to queue multiple buffers to receive on a pipe */
1080 if (pipe_active(dbri, info->pipe)) {
1081 printk(KERN_ERR "DBRI: recv_on_pipe: Called on active pipe %d\n",
1082 info->pipe);
1083 return -2;
1084 }
1085
1086 /* Make sure buffer size is multiple of four */
1087 len &= ~3;
1088 }
1089
1090 while (len > 0) {
1091 int mylen;
1092
1093 for (; desc < DBRI_NO_DESCS; desc++) {
1094 if (!dbri->dma->desc[desc].ba)
1095 break;
1096 }
1097 if (desc == DBRI_NO_DESCS) {
1098 printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1099 return -1;
1100 }
1101
1102 if (len > DBRI_TD_MAXCNT)
1103 mylen = DBRI_TD_MAXCNT; /* 8KB - 4 */
1104 else
1105 mylen = len;
1106
1107 if (mylen > period)
1108 mylen = period;
1109
1110 dbri->next_desc[desc] = -1;
1111 dbri->dma->desc[desc].ba = dvma_buffer;
1112 dbri->dma->desc[desc].nda = 0;
1113
1114 if (streamno == DBRI_PLAY) {
1115 dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1116 dbri->dma->desc[desc].word4 = 0;
1117 dbri->dma->desc[desc].word1 |=
1118 DBRI_TD_F | DBRI_TD_B;
1119 } else {
1120 dbri->dma->desc[desc].word1 = 0;
1121 dbri->dma->desc[desc].word4 =
1122 DBRI_RD_B | DBRI_RD_BCNT(mylen);
1123 }
1124
1125 if (first_desc == -1)
1126 first_desc = desc;
1127 else {
1128 dbri->next_desc[last_desc] = desc;
1129 dbri->dma->desc[last_desc].nda =
1130 dbri->dma_dvma + dbri_dma_off(desc, desc);
1131 }
1132
1133 last_desc = desc;
1134 dvma_buffer += mylen;
1135 len -= mylen;
1136 }
1137
1138 if (first_desc == -1 || last_desc == -1) {
1139 printk(KERN_ERR "DBRI: setup_descs: Not enough descriptors available\n");
1140 return -1;
1141 }
1142
1143 dbri->dma->desc[last_desc].nda =
1144 dbri->dma_dvma + dbri_dma_off(desc, first_desc);
1145 dbri->next_desc[last_desc] = first_desc;
1146 dbri->pipes[info->pipe].first_desc = first_desc;
1147 dbri->pipes[info->pipe].desc = first_desc;
1148
1149 #ifdef DBRI_DEBUG
1150 for (desc = first_desc; desc != -1; ) {
1151 dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1152 desc,
1153 dbri->dma->desc[desc].word1,
1154 dbri->dma->desc[desc].ba,
1155 dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1156 desc = dbri->next_desc[desc];
1157 if ( desc == first_desc )
1158 break;
1159 }
1160 #endif
1161 return 0;
1162 }
1163
1164 /*
1165 ****************************************************************************
1166 ************************** DBRI - CHI interface ****************************
1167 ****************************************************************************
1168
1169 The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1170 multiplexed serial interface which the DBRI can operate in either master
1171 (give clock/frame sync) or slave (take clock/frame sync) mode.
1172
1173 */
1174
1175 enum master_or_slave { CHImaster, CHIslave };
1176
1177 static void reset_chi(struct snd_dbri * dbri, enum master_or_slave master_or_slave,
1178 int bits_per_frame)
1179 {
1180 s32 *cmd;
1181 int val;
1182
1183 /* Set CHI Anchor: Pipe 16 */
1184
1185 cmd = dbri_cmdlock(dbri, 4);
1186 val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1187 | D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1188 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
1189 *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1190 *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1191 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1192 dbri_cmdsend(dbri, cmd, 4);
1193
1194 dbri->pipes[16].sdp = 1;
1195 dbri->pipes[16].nextpipe = 16;
1196
1197 cmd = dbri_cmdlock(dbri, 4);
1198
1199 if (master_or_slave == CHIslave) {
1200 /* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1201 *
1202 * CHICM = 0 (slave mode, 8 kHz frame rate)
1203 * IR = give immediate CHI status interrupt
1204 * EN = give CHI status interrupt upon change
1205 */
1206 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1207 } else {
1208 /* Setup DBRI for CHI Master - generate clock, FS
1209 *
1210 * BPF = bits per 8 kHz frame
1211 * 12.288 MHz / CHICM_divisor = clock rate
1212 * FD = 1 - drive CHIFS on rising edge of CHICK
1213 */
1214 int clockrate = bits_per_frame * 8;
1215 int divisor = 12288 / clockrate;
1216
1217 if (divisor > 255 || divisor * clockrate != 12288)
1218 printk(KERN_ERR "DBRI: illegal bits_per_frame in setup_chi\n");
1219
1220 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1221 | D_CHI_BPF(bits_per_frame));
1222 }
1223
1224 dbri->chi_bpf = bits_per_frame;
1225
1226 /* CHI Data Mode
1227 *
1228 * RCE = 0 - receive on falling edge of CHICK
1229 * XCE = 1 - transmit on rising edge of CHICK
1230 * XEN = 1 - enable transmitter
1231 * REN = 1 - enable receiver
1232 */
1233
1234 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1235 *(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1236 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1237
1238 dbri_cmdsend(dbri, cmd, 4);
1239 }
1240
1241 /*
1242 ****************************************************************************
1243 *********************** CS4215 audio codec management **********************
1244 ****************************************************************************
1245
1246 In the standard SPARC audio configuration, the CS4215 codec is attached
1247 to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1248
1249 */
1250 static void cs4215_setup_pipes(struct snd_dbri * dbri)
1251 {
1252 /*
1253 * Data mode:
1254 * Pipe 4: Send timeslots 1-4 (audio data)
1255 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1256 * Pipe 6: Receive timeslots 1-4 (audio data)
1257 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1258 * interrupt, and the rest of the data (slot 5 and 8) is
1259 * not relevant for us (only for doublechecking).
1260 *
1261 * Control mode:
1262 * Pipe 17: Send timeslots 1-4 (slots 5-8 are readonly)
1263 * Pipe 18: Receive timeslot 1 (clb).
1264 * Pipe 19: Receive timeslot 7 (version).
1265 */
1266
1267 setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1268 setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1269 setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1270 setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1271
1272 setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1273 setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1274 setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1275
1276 dbri_cmdwait(dbri);
1277 }
1278
1279 static int cs4215_init_data(struct cs4215 *mm)
1280 {
1281 /*
1282 * No action, memory resetting only.
1283 *
1284 * Data Time Slot 5-8
1285 * Speaker,Line and Headphone enable. Gain set to the half.
1286 * Input is mike.
1287 */
1288 mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1289 mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1290 mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1291 mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1292
1293 /*
1294 * Control Time Slot 1-4
1295 * 0: Default I/O voltage scale
1296 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1297 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1298 * 3: Tests disabled
1299 */
1300 mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1301 mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1302 mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1303 mm->ctrl[3] = 0;
1304
1305 mm->status = 0;
1306 mm->version = 0xff;
1307 mm->precision = 8; /* For ULAW */
1308 mm->channels = 1;
1309
1310 return 0;
1311 }
1312
1313 static void cs4215_setdata(struct snd_dbri * dbri, int muted)
1314 {
1315 if (muted) {
1316 dbri->mm.data[0] |= 63;
1317 dbri->mm.data[1] |= 63;
1318 dbri->mm.data[2] &= ~15;
1319 dbri->mm.data[3] &= ~15;
1320 } else {
1321 /* Start by setting the playback attenuation. */
1322 struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1323 int left_gain = info->left_gain & 0x3f;
1324 int right_gain = info->right_gain & 0x3f;
1325
1326 dbri->mm.data[0] &= ~0x3f; /* Reset the volume bits */
1327 dbri->mm.data[1] &= ~0x3f;
1328 dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1329 dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1330
1331 /* Now set the recording gain. */
1332 info = &dbri->stream_info[DBRI_REC];
1333 left_gain = info->left_gain & 0xf;
1334 right_gain = info->right_gain & 0xf;
1335 dbri->mm.data[2] |= CS4215_LG(left_gain);
1336 dbri->mm.data[3] |= CS4215_RG(right_gain);
1337 }
1338
1339 xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1340 }
1341
1342 /*
1343 * Set the CS4215 to data mode.
1344 */
1345 static void cs4215_open(struct snd_dbri * dbri)
1346 {
1347 int data_width;
1348 u32 tmp;
1349
1350 dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1351 dbri->mm.channels, dbri->mm.precision);
1352
1353 /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1354 * to make sure this takes. This avoids clicking noises.
1355 */
1356
1357 cs4215_setdata(dbri, 1);
1358 udelay(125);
1359
1360 /*
1361 * Data mode:
1362 * Pipe 4: Send timeslots 1-4 (audio data)
1363 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1364 * Pipe 6: Receive timeslots 1-4 (audio data)
1365 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1366 * interrupt, and the rest of the data (slot 5 and 8) is
1367 * not relevant for us (only for doublechecking).
1368 *
1369 * Just like in control mode, the time slots are all offset by eight
1370 * bits. The CS4215, it seems, observes TSIN (the delayed signal)
1371 * even if it's the CHI master. Don't ask me...
1372 */
1373 tmp = sbus_readl(dbri->regs + REG0);
1374 tmp &= ~(D_C); /* Disable CHI */
1375 sbus_writel(tmp, dbri->regs + REG0);
1376
1377 /* Switch CS4215 to data mode - set PIO3 to 1 */
1378 sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1379 (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1380
1381 reset_chi(dbri, CHIslave, 128);
1382
1383 /* Note: this next doesn't work for 8-bit stereo, because the two
1384 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1385 * (See CS4215 datasheet Fig 15)
1386 *
1387 * DBRI non-contiguous mode would be required to make this work.
1388 */
1389 data_width = dbri->mm.channels * dbri->mm.precision;
1390
1391 link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1392 link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1393 link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1394 link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1395
1396 /* FIXME: enable CHI after _setdata? */
1397 tmp = sbus_readl(dbri->regs + REG0);
1398 tmp |= D_C; /* Enable CHI */
1399 sbus_writel(tmp, dbri->regs + REG0);
1400
1401 cs4215_setdata(dbri, 0);
1402 }
1403
1404 /*
1405 * Send the control information (i.e. audio format)
1406 */
1407 static int cs4215_setctrl(struct snd_dbri * dbri)
1408 {
1409 int i, val;
1410 u32 tmp;
1411
1412 /* FIXME - let the CPU do something useful during these delays */
1413
1414 /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1415 * to make sure this takes. This avoids clicking noises.
1416 */
1417 cs4215_setdata(dbri, 1);
1418 udelay(125);
1419
1420 /*
1421 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1422 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1423 */
1424 val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1425 sbus_writel(val, dbri->regs + REG2);
1426 dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1427 udelay(34);
1428
1429 /* In Control mode, the CS4215 is a slave device, so the DBRI must
1430 * operate as CHI master, supplying clocking and frame synchronization.
1431 *
1432 * In Data mode, however, the CS4215 must be CHI master to insure
1433 * that its data stream is synchronous with its codec.
1434 *
1435 * The upshot of all this? We start by putting the DBRI into master
1436 * mode, program the CS4215 in Control mode, then switch the CS4215
1437 * into Data mode and put the DBRI into slave mode. Various timing
1438 * requirements must be observed along the way.
1439 *
1440 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1441 * others?), the addressing of the CS4215's time slots is
1442 * offset by eight bits, so we add eight to all the "cycle"
1443 * values in the Define Time Slot (DTS) commands. This is
1444 * done in hardware by a TI 248 that delays the DBRI->4215
1445 * frame sync signal by eight clock cycles. Anybody know why?
1446 */
1447 tmp = sbus_readl(dbri->regs + REG0);
1448 tmp &= ~D_C; /* Disable CHI */
1449 sbus_writel(tmp, dbri->regs + REG0);
1450
1451 reset_chi(dbri, CHImaster, 128);
1452
1453 /*
1454 * Control mode:
1455 * Pipe 17: Send timeslots 1-4 (slots 5-8 are readonly)
1456 * Pipe 18: Receive timeslot 1 (clb).
1457 * Pipe 19: Receive timeslot 7 (version).
1458 */
1459
1460 link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1461 link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1462 link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1463
1464 /* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1465 dbri->mm.ctrl[0] &= ~CS4215_CLB;
1466 xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1467
1468 tmp = sbus_readl(dbri->regs + REG0);
1469 tmp |= D_C; /* Enable CHI */
1470 sbus_writel(tmp, dbri->regs + REG0);
1471
1472 for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i) {
1473 msleep_interruptible(1);
1474 }
1475 if (i == 0) {
1476 dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1477 dbri->mm.status);
1478 return -1;
1479 }
1480
1481 /* Disable changes to our copy of the version number, as we are about
1482 * to leave control mode.
1483 */
1484 recv_fixed(dbri, 19, NULL);
1485
1486 /* Terminate CS4215 control mode - data sheet says
1487 * "Set CLB=1 and send two more frames of valid control info"
1488 */
1489 dbri->mm.ctrl[0] |= CS4215_CLB;
1490 xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1491
1492 /* Two frames of control info @ 8kHz frame rate = 250 us delay */
1493 udelay(250);
1494
1495 cs4215_setdata(dbri, 0);
1496
1497 return 0;
1498 }
1499
1500 /*
1501 * Setup the codec with the sampling rate, audio format and number of
1502 * channels.
1503 * As part of the process we resend the settings for the data
1504 * timeslots as well.
1505 */
1506 static int cs4215_prepare(struct snd_dbri * dbri, unsigned int rate,
1507 snd_pcm_format_t format, unsigned int channels)
1508 {
1509 int freq_idx;
1510 int ret = 0;
1511
1512 /* Lookup index for this rate */
1513 for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1514 if (CS4215_FREQ[freq_idx].freq == rate)
1515 break;
1516 }
1517 if (CS4215_FREQ[freq_idx].freq != rate) {
1518 printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1519 return -1;
1520 }
1521
1522 switch (format) {
1523 case SNDRV_PCM_FORMAT_MU_LAW:
1524 dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1525 dbri->mm.precision = 8;
1526 break;
1527 case SNDRV_PCM_FORMAT_A_LAW:
1528 dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1529 dbri->mm.precision = 8;
1530 break;
1531 case SNDRV_PCM_FORMAT_U8:
1532 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1533 dbri->mm.precision = 8;
1534 break;
1535 case SNDRV_PCM_FORMAT_S16_BE:
1536 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1537 dbri->mm.precision = 16;
1538 break;
1539 default:
1540 printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1541 return -1;
1542 }
1543
1544 /* Add rate parameters */
1545 dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1546 dbri->mm.ctrl[2] = CS4215_XCLK |
1547 CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1548
1549 dbri->mm.channels = channels;
1550 if (channels == 2)
1551 dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1552
1553 ret = cs4215_setctrl(dbri);
1554 if (ret == 0)
1555 cs4215_open(dbri); /* set codec to data mode */
1556
1557 return ret;
1558 }
1559
1560 /*
1561 *
1562 */
1563 static int cs4215_init(struct snd_dbri * dbri)
1564 {
1565 u32 reg2 = sbus_readl(dbri->regs + REG2);
1566 dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1567
1568 /* Look for the cs4215 chips */
1569 if (reg2 & D_PIO2) {
1570 dprintk(D_MM, "Onboard CS4215 detected\n");
1571 dbri->mm.onboard = 1;
1572 }
1573 if (reg2 & D_PIO0) {
1574 dprintk(D_MM, "Speakerbox detected\n");
1575 dbri->mm.onboard = 0;
1576
1577 if (reg2 & D_PIO2) {
1578 printk(KERN_INFO "DBRI: Using speakerbox / "
1579 "ignoring onboard mmcodec.\n");
1580 sbus_writel(D_ENPIO2, dbri->regs + REG2);
1581 }
1582 }
1583
1584 if (!(reg2 & (D_PIO0 | D_PIO2))) {
1585 printk(KERN_ERR "DBRI: no mmcodec found.\n");
1586 return -EIO;
1587 }
1588
1589 cs4215_setup_pipes(dbri);
1590 cs4215_init_data(&dbri->mm);
1591
1592 /* Enable capture of the status & version timeslots. */
1593 recv_fixed(dbri, 18, &dbri->mm.status);
1594 recv_fixed(dbri, 19, &dbri->mm.version);
1595
1596 dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1597 if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1598 dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1599 dbri->mm.offset);
1600 return -EIO;
1601 }
1602 dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1603
1604 return 0;
1605 }
1606
1607 /*
1608 ****************************************************************************
1609 *************************** DBRI interrupt handler *************************
1610 ****************************************************************************
1611
1612 The DBRI communicates with the CPU mainly via a circular interrupt
1613 buffer. When an interrupt is signaled, the CPU walks through the
1614 buffer and calls dbri_process_one_interrupt() for each interrupt word.
1615 Complicated interrupts are handled by dedicated functions (which
1616 appear first in this file). Any pending interrupts can be serviced by
1617 calling dbri_process_interrupt_buffer(), which works even if the CPU's
1618 interrupts are disabled.
1619
1620 */
1621
1622 /* xmit_descs()
1623 *
1624 * Starts transmiting the current TD's for recording/playing.
1625 * For playback, ALSA has filled the DMA memory with new data (we hope).
1626 */
1627 static void xmit_descs(struct snd_dbri *dbri)
1628 {
1629 struct dbri_streaminfo *info;
1630 s32 *cmd;
1631 unsigned long flags;
1632 int first_td;
1633
1634 if (dbri == NULL)
1635 return; /* Disabled */
1636
1637 info = &dbri->stream_info[DBRI_REC];
1638 spin_lock_irqsave(&dbri->lock, flags);
1639
1640 if (info->pipe >= 0) {
1641 first_td = dbri->pipes[info->pipe].first_desc;
1642
1643 dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1644
1645 /* Stream could be closed by the time we run. */
1646 if (first_td >= 0) {
1647 cmd = dbri_cmdlock(dbri, 2);
1648 *(cmd++) = DBRI_CMD(D_SDP, 0,
1649 dbri->pipes[info->pipe].sdp
1650 | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1651 *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, first_td);
1652 dbri_cmdsend(dbri, cmd, 2);
1653
1654 /* Reset our admin of the pipe. */
1655 dbri->pipes[info->pipe].desc = first_td;
1656 }
1657 }
1658
1659 info = &dbri->stream_info[DBRI_PLAY];
1660
1661 if (info->pipe >= 0) {
1662 first_td = dbri->pipes[info->pipe].first_desc;
1663
1664 dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1665
1666 /* Stream could be closed by the time we run. */
1667 if (first_td >= 0) {
1668 cmd = dbri_cmdlock(dbri, 2);
1669 *(cmd++) = DBRI_CMD(D_SDP, 0,
1670 dbri->pipes[info->pipe].sdp
1671 | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1672 *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, first_td);
1673 dbri_cmdsend(dbri, cmd, 2);
1674
1675 /* Reset our admin of the pipe. */
1676 dbri->pipes[info->pipe].desc = first_td;
1677 }
1678 }
1679 spin_unlock_irqrestore(&dbri->lock, flags);
1680 }
1681
1682 /* transmission_complete_intr()
1683 *
1684 * Called by main interrupt handler when DBRI signals transmission complete
1685 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1686 *
1687 * Walks through the pipe's list of transmit buffer descriptors and marks
1688 * them as available. Stops when the first descriptor is found without
1689 * TBC (Transmit Buffer Complete) set, or we've run through them all.
1690 *
1691 * The DMA buffers are not released. They form a ring buffer and
1692 * they are filled by ALSA while others are transmitted by DMA.
1693 *
1694 */
1695
1696 static void transmission_complete_intr(struct snd_dbri * dbri, int pipe)
1697 {
1698 struct dbri_streaminfo *info;
1699 int td;
1700 int status;
1701
1702 info = &dbri->stream_info[DBRI_PLAY];
1703
1704 td = dbri->pipes[pipe].desc;
1705 while (td >= 0) {
1706 if (td >= DBRI_NO_DESCS) {
1707 printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1708 return;
1709 }
1710
1711 status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1712 if (!(status & DBRI_TD_TBC)) {
1713 break;
1714 }
1715
1716 dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1717
1718 dbri->dma->desc[td].word4 = 0; /* Reset it for next time. */
1719 info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1720
1721 td = dbri->next_desc[td];
1722 dbri->pipes[pipe].desc = td;
1723 }
1724
1725 /* Notify ALSA */
1726 if (spin_is_locked(&dbri->lock)) {
1727 spin_unlock(&dbri->lock);
1728 snd_pcm_period_elapsed(info->substream);
1729 spin_lock(&dbri->lock);
1730 } else
1731 snd_pcm_period_elapsed(info->substream);
1732 }
1733
1734 static void reception_complete_intr(struct snd_dbri * dbri, int pipe)
1735 {
1736 struct dbri_streaminfo *info;
1737 int rd = dbri->pipes[pipe].desc;
1738 s32 status;
1739
1740 if (rd < 0 || rd >= DBRI_NO_DESCS) {
1741 printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1742 return;
1743 }
1744
1745 dbri->pipes[pipe].desc = dbri->next_desc[rd];
1746 status = dbri->dma->desc[rd].word1;
1747 dbri->dma->desc[rd].word1 = 0; /* Reset it for next time. */
1748
1749 info = &dbri->stream_info[DBRI_REC];
1750 info->offset += DBRI_RD_CNT(status);
1751
1752 /* FIXME: Check status */
1753
1754 dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1755 rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1756
1757 /* Notify ALSA */
1758 if (spin_is_locked(&dbri->lock)) {
1759 spin_unlock(&dbri->lock);
1760 snd_pcm_period_elapsed(info->substream);
1761 spin_lock(&dbri->lock);
1762 } else
1763 snd_pcm_period_elapsed(info->substream);
1764 }
1765
1766 static void dbri_process_one_interrupt(struct snd_dbri * dbri, int x)
1767 {
1768 int val = D_INTR_GETVAL(x);
1769 int channel = D_INTR_GETCHAN(x);
1770 int command = D_INTR_GETCMD(x);
1771 int code = D_INTR_GETCODE(x);
1772 #ifdef DBRI_DEBUG
1773 int rval = D_INTR_GETRVAL(x);
1774 #endif
1775
1776 if (channel == D_INTR_CMD) {
1777 dprintk(D_CMD, "INTR: Command: %-5s Value:%d\n",
1778 cmds[command], val);
1779 } else {
1780 dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1781 channel, code, rval);
1782 }
1783
1784 switch (code) {
1785 case D_INTR_CMDI:
1786 if (command != D_WAIT)
1787 printk(KERN_ERR "DBRI: Command read interrupt\n");
1788 break;
1789 case D_INTR_BRDY:
1790 reception_complete_intr(dbri, channel);
1791 break;
1792 case D_INTR_XCMP:
1793 case D_INTR_MINT:
1794 transmission_complete_intr(dbri, channel);
1795 break;
1796 case D_INTR_UNDR:
1797 /* UNDR - Transmission underrun
1798 * resend SDP command with clear pipe bit (C) set
1799 */
1800 {
1801 /* FIXME: do something useful in case of underrun */
1802 printk(KERN_ERR "DBRI: Underrun error\n");
1803 #if 0
1804 s32 *cmd;
1805 int pipe = channel;
1806 int td = dbri->pipes[pipe].desc;
1807
1808 dbri->dma->desc[td].word4 = 0;
1809 cmd = dbri_cmdlock(dbri, NoGetLock);
1810 *(cmd++) = DBRI_CMD(D_SDP, 0,
1811 dbri->pipes[pipe].sdp
1812 | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1813 *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1814 dbri_cmdsend(dbri, cmd);
1815 #endif
1816 }
1817 break;
1818 case D_INTR_FXDT:
1819 /* FXDT - Fixed data change */
1820 if (dbri->pipes[channel].sdp & D_SDP_MSB)
1821 val = reverse_bytes(val, dbri->pipes[channel].length);
1822
1823 if (dbri->pipes[channel].recv_fixed_ptr)
1824 *(dbri->pipes[channel].recv_fixed_ptr) = val;
1825 break;
1826 default:
1827 if (channel != D_INTR_CMD)
1828 printk(KERN_WARNING
1829 "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1830 }
1831 }
1832
1833 /* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1834 * buffer until it finds a zero word (indicating nothing more to do
1835 * right now). Non-zero words require processing and are handed off
1836 * to dbri_process_one_interrupt AFTER advancing the pointer.
1837 */
1838 static void dbri_process_interrupt_buffer(struct snd_dbri * dbri)
1839 {
1840 s32 x;
1841
1842 while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1843 dbri->dma->intr[dbri->dbri_irqp] = 0;
1844 dbri->dbri_irqp++;
1845 if (dbri->dbri_irqp == DBRI_INT_BLK)
1846 dbri->dbri_irqp = 1;
1847
1848 dbri_process_one_interrupt(dbri, x);
1849 }
1850 }
1851
1852 static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id,
1853 struct pt_regs *regs)
1854 {
1855 struct snd_dbri *dbri = dev_id;
1856 static int errcnt = 0;
1857 int x;
1858
1859 if (dbri == NULL)
1860 return IRQ_NONE;
1861 spin_lock(&dbri->lock);
1862
1863 /*
1864 * Read it, so the interrupt goes away.
1865 */
1866 x = sbus_readl(dbri->regs + REG1);
1867
1868 if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1869 u32 tmp;
1870
1871 if (x & D_MRR)
1872 printk(KERN_ERR
1873 "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1874 x);
1875 if (x & D_MLE)
1876 printk(KERN_ERR
1877 "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1878 x);
1879 if (x & D_LBG)
1880 printk(KERN_ERR
1881 "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1882 if (x & D_MBE)
1883 printk(KERN_ERR
1884 "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1885
1886 /* Some of these SBus errors cause the chip's SBus circuitry
1887 * to be disabled, so just re-enable and try to keep going.
1888 *
1889 * The only one I've seen is MRR, which will be triggered
1890 * if you let a transmit pipe underrun, then try to CDP it.
1891 *
1892 * If these things persist, we reset the chip.
1893 */
1894 if ((++errcnt) % 10 == 0) {
1895 dprintk(D_INT, "Interrupt errors exceeded.\n");
1896 dbri_reset(dbri);
1897 } else {
1898 tmp = sbus_readl(dbri->regs + REG0);
1899 tmp &= ~(D_D);
1900 sbus_writel(tmp, dbri->regs + REG0);
1901 }
1902 }
1903
1904 dbri_process_interrupt_buffer(dbri);
1905
1906 spin_unlock(&dbri->lock);
1907
1908 return IRQ_HANDLED;
1909 }
1910
1911 /****************************************************************************
1912 PCM Interface
1913 ****************************************************************************/
1914 static struct snd_pcm_hardware snd_dbri_pcm_hw = {
1915 .info = (SNDRV_PCM_INFO_MMAP |
1916 SNDRV_PCM_INFO_INTERLEAVED |
1917 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1918 SNDRV_PCM_INFO_MMAP_VALID),
1919 .formats = SNDRV_PCM_FMTBIT_MU_LAW |
1920 SNDRV_PCM_FMTBIT_A_LAW |
1921 SNDRV_PCM_FMTBIT_U8 |
1922 SNDRV_PCM_FMTBIT_S16_BE,
1923 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1924 .rate_min = 5512,
1925 .rate_max = 48000,
1926 .channels_min = 1,
1927 .channels_max = 2,
1928 .buffer_bytes_max = (64 * 1024),
1929 .period_bytes_min = 1,
1930 .period_bytes_max = DBRI_TD_MAXCNT,
1931 .periods_min = 1,
1932 .periods_max = 1024,
1933 };
1934
1935 static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
1936 struct snd_pcm_hw_rule *rule)
1937 {
1938 struct snd_interval *c = hw_param_interval(params,
1939 SNDRV_PCM_HW_PARAM_CHANNELS);
1940 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
1941 struct snd_mask fmt;
1942
1943 snd_mask_any(&fmt);
1944 if (c->min > 1) {
1945 fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
1946 return snd_mask_refine(f, &fmt);
1947 }
1948 return 0;
1949 }
1950
1951 static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
1952 struct snd_pcm_hw_rule *rule)
1953 {
1954 struct snd_interval *c = hw_param_interval(params,
1955 SNDRV_PCM_HW_PARAM_CHANNELS);
1956 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
1957 struct snd_interval ch;
1958
1959 snd_interval_any(&ch);
1960 if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
1961 ch.min = ch.max = 1;
1962 ch.integer = 1;
1963 return snd_interval_refine(c, &ch);
1964 }
1965 return 0;
1966 }
1967
1968 static int snd_dbri_open(struct snd_pcm_substream *substream)
1969 {
1970 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
1971 struct snd_pcm_runtime *runtime = substream->runtime;
1972 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
1973 unsigned long flags;
1974
1975 dprintk(D_USR, "open audio output.\n");
1976 runtime->hw = snd_dbri_pcm_hw;
1977
1978 spin_lock_irqsave(&dbri->lock, flags);
1979 info->substream = substream;
1980 info->offset = 0;
1981 info->dvma_buffer = 0;
1982 info->pipe = -1;
1983 spin_unlock_irqrestore(&dbri->lock, flags);
1984
1985 snd_pcm_hw_rule_add(runtime,0,SNDRV_PCM_HW_PARAM_CHANNELS,
1986 snd_hw_rule_format, 0, SNDRV_PCM_HW_PARAM_FORMAT,
1987 -1);
1988 snd_pcm_hw_rule_add(runtime,0,SNDRV_PCM_HW_PARAM_FORMAT,
1989 snd_hw_rule_channels, 0,
1990 SNDRV_PCM_HW_PARAM_CHANNELS,
1991 -1);
1992
1993 cs4215_open(dbri);
1994
1995 return 0;
1996 }
1997
1998 static int snd_dbri_close(struct snd_pcm_substream *substream)
1999 {
2000 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2001 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2002
2003 dprintk(D_USR, "close audio output.\n");
2004 info->substream = NULL;
2005 info->offset = 0;
2006
2007 return 0;
2008 }
2009
2010 static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2011 struct snd_pcm_hw_params *hw_params)
2012 {
2013 struct snd_pcm_runtime *runtime = substream->runtime;
2014 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2015 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2016 int direction;
2017 int ret;
2018
2019 /* set sampling rate, audio format and number of channels */
2020 ret = cs4215_prepare(dbri, params_rate(hw_params),
2021 params_format(hw_params),
2022 params_channels(hw_params));
2023 if (ret != 0)
2024 return ret;
2025
2026 if ((ret = snd_pcm_lib_malloc_pages(substream,
2027 params_buffer_bytes(hw_params))) < 0) {
2028 printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2029 return ret;
2030 }
2031
2032 /* hw_params can get called multiple times. Only map the DMA once.
2033 */
2034 if (info->dvma_buffer == 0) {
2035 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2036 direction = SBUS_DMA_TODEVICE;
2037 else
2038 direction = SBUS_DMA_FROMDEVICE;
2039
2040 info->dvma_buffer = sbus_map_single(dbri->sdev,
2041 runtime->dma_area,
2042 params_buffer_bytes(hw_params),
2043 direction);
2044 }
2045
2046 direction = params_buffer_bytes(hw_params);
2047 dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2048 direction, info->dvma_buffer);
2049 return 0;
2050 }
2051
2052 static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2053 {
2054 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2055 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2056 int direction;
2057 dprintk(D_USR, "hw_free.\n");
2058
2059 /* hw_free can get called multiple times. Only unmap the DMA once.
2060 */
2061 if (info->dvma_buffer) {
2062 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2063 direction = SBUS_DMA_TODEVICE;
2064 else
2065 direction = SBUS_DMA_FROMDEVICE;
2066
2067 sbus_unmap_single(dbri->sdev, info->dvma_buffer,
2068 substream->runtime->buffer_size, direction);
2069 info->dvma_buffer = 0;
2070 }
2071 info->pipe = -1;
2072
2073 return snd_pcm_lib_free_pages(substream);
2074 }
2075
2076 static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2077 {
2078 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2079 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2080 struct snd_pcm_runtime *runtime = substream->runtime;
2081 int ret;
2082
2083 info->size = snd_pcm_lib_buffer_bytes(substream);
2084 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2085 info->pipe = 4; /* Send pipe */
2086 else
2087 info->pipe = 6; /* Receive pipe */
2088
2089 spin_lock_irq(&dbri->lock);
2090 info->offset = 0;
2091
2092 /* Setup the all the transmit/receive desciptors to cover the
2093 * whole DMA buffer.
2094 */
2095 ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2096 snd_pcm_lib_period_bytes(substream));
2097
2098 runtime->stop_threshold = DBRI_TD_MAXCNT / runtime->channels;
2099
2100 spin_unlock_irq(&dbri->lock);
2101
2102 dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2103 return ret;
2104 }
2105
2106 static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2107 {
2108 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2109 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2110 int ret = 0;
2111
2112 switch (cmd) {
2113 case SNDRV_PCM_TRIGGER_START:
2114 dprintk(D_USR, "start audio, period is %d bytes\n",
2115 (int)snd_pcm_lib_period_bytes(substream));
2116 /* Re-submit the TDs. */
2117 xmit_descs(dbri);
2118 break;
2119 case SNDRV_PCM_TRIGGER_STOP:
2120 dprintk(D_USR, "stop audio.\n");
2121 reset_pipe(dbri, info->pipe);
2122 break;
2123 default:
2124 ret = -EINVAL;
2125 }
2126
2127 return ret;
2128 }
2129
2130 static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2131 {
2132 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2133 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2134 snd_pcm_uframes_t ret;
2135
2136 ret = bytes_to_frames(substream->runtime, info->offset)
2137 % substream->runtime->buffer_size;
2138 dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2139 ret, substream->runtime->buffer_size);
2140 return ret;
2141 }
2142
2143 static struct snd_pcm_ops snd_dbri_ops = {
2144 .open = snd_dbri_open,
2145 .close = snd_dbri_close,
2146 .ioctl = snd_pcm_lib_ioctl,
2147 .hw_params = snd_dbri_hw_params,
2148 .hw_free = snd_dbri_hw_free,
2149 .prepare = snd_dbri_prepare,
2150 .trigger = snd_dbri_trigger,
2151 .pointer = snd_dbri_pointer,
2152 };
2153
2154 static int __devinit snd_dbri_pcm(struct snd_dbri * dbri)
2155 {
2156 struct snd_pcm *pcm;
2157 int err;
2158
2159 if ((err = snd_pcm_new(dbri->card,
2160 /* ID */ "sun_dbri",
2161 /* device */ 0,
2162 /* playback count */ 1,
2163 /* capture count */ 1, &pcm)) < 0)
2164 return err;
2165 snd_assert(pcm != NULL, return -EINVAL);
2166
2167 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2168 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2169
2170 pcm->private_data = dbri;
2171 pcm->info_flags = 0;
2172 strcpy(pcm->name, dbri->card->shortname);
2173
2174 if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2175 SNDRV_DMA_TYPE_CONTINUOUS,
2176 snd_dma_continuous_data(GFP_KERNEL),
2177 64 * 1024, 64 * 1024)) < 0) {
2178 return err;
2179 }
2180
2181 return 0;
2182 }
2183
2184 /*****************************************************************************
2185 Mixer interface
2186 *****************************************************************************/
2187
2188 static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2189 struct snd_ctl_elem_info *uinfo)
2190 {
2191 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2192 uinfo->count = 2;
2193 uinfo->value.integer.min = 0;
2194 if (kcontrol->private_value == DBRI_PLAY) {
2195 uinfo->value.integer.max = DBRI_MAX_VOLUME;
2196 } else {
2197 uinfo->value.integer.max = DBRI_MAX_GAIN;
2198 }
2199 return 0;
2200 }
2201
2202 static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2203 struct snd_ctl_elem_value *ucontrol)
2204 {
2205 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2206 struct dbri_streaminfo *info;
2207 snd_assert(dbri != NULL, return -EINVAL);
2208 info = &dbri->stream_info[kcontrol->private_value];
2209 snd_assert(info != NULL, return -EINVAL);
2210
2211 ucontrol->value.integer.value[0] = info->left_gain;
2212 ucontrol->value.integer.value[1] = info->right_gain;
2213 return 0;
2214 }
2215
2216 static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2217 struct snd_ctl_elem_value *ucontrol)
2218 {
2219 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2220 struct dbri_streaminfo *info = &dbri->stream_info[kcontrol->private_value];
2221 unsigned long flags;
2222 int changed = 0;
2223
2224 if (info->left_gain != ucontrol->value.integer.value[0]) {
2225 info->left_gain = ucontrol->value.integer.value[0];
2226 changed = 1;
2227 }
2228 if (info->right_gain != ucontrol->value.integer.value[1]) {
2229 info->right_gain = ucontrol->value.integer.value[1];
2230 changed = 1;
2231 }
2232 if (changed == 1) {
2233 /* First mute outputs, and wait 1/8000 sec (125 us)
2234 * to make sure this takes. This avoids clicking noises.
2235 */
2236 spin_lock_irqsave(&dbri->lock, flags);
2237
2238 cs4215_setdata(dbri, 1);
2239 udelay(125);
2240 cs4215_setdata(dbri, 0);
2241
2242 spin_unlock_irqrestore(&dbri->lock, flags);
2243 }
2244 return changed;
2245 }
2246
2247 static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2248 struct snd_ctl_elem_info *uinfo)
2249 {
2250 int mask = (kcontrol->private_value >> 16) & 0xff;
2251
2252 uinfo->type = (mask == 1) ?
2253 SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2254 uinfo->count = 1;
2255 uinfo->value.integer.min = 0;
2256 uinfo->value.integer.max = mask;
2257 return 0;
2258 }
2259
2260 static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2261 struct snd_ctl_elem_value *ucontrol)
2262 {
2263 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2264 int elem = kcontrol->private_value & 0xff;
2265 int shift = (kcontrol->private_value >> 8) & 0xff;
2266 int mask = (kcontrol->private_value >> 16) & 0xff;
2267 int invert = (kcontrol->private_value >> 24) & 1;
2268 snd_assert(dbri != NULL, return -EINVAL);
2269
2270 if (elem < 4) {
2271 ucontrol->value.integer.value[0] =
2272 (dbri->mm.data[elem] >> shift) & mask;
2273 } else {
2274 ucontrol->value.integer.value[0] =
2275 (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2276 }
2277
2278 if (invert == 1) {
2279 ucontrol->value.integer.value[0] =
2280 mask - ucontrol->value.integer.value[0];
2281 }
2282 return 0;
2283 }
2284
2285 static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2286 struct snd_ctl_elem_value *ucontrol)
2287 {
2288 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2289 unsigned long flags;
2290 int elem = kcontrol->private_value & 0xff;
2291 int shift = (kcontrol->private_value >> 8) & 0xff;
2292 int mask = (kcontrol->private_value >> 16) & 0xff;
2293 int invert = (kcontrol->private_value >> 24) & 1;
2294 int changed = 0;
2295 unsigned short val;
2296 snd_assert(dbri != NULL, return -EINVAL);
2297
2298 val = (ucontrol->value.integer.value[0] & mask);
2299 if (invert == 1)
2300 val = mask - val;
2301 val <<= shift;
2302
2303 if (elem < 4) {
2304 dbri->mm.data[elem] = (dbri->mm.data[elem] &
2305 ~(mask << shift)) | val;
2306 changed = (val != dbri->mm.data[elem]);
2307 } else {
2308 dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2309 ~(mask << shift)) | val;
2310 changed = (val != dbri->mm.ctrl[elem - 4]);
2311 }
2312
2313 dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2314 "mixer-value=%ld, mm-value=0x%x\n",
2315 mask, changed, ucontrol->value.integer.value[0],
2316 dbri->mm.data[elem & 3]);
2317
2318 if (changed) {
2319 /* First mute outputs, and wait 1/8000 sec (125 us)
2320 * to make sure this takes. This avoids clicking noises.
2321 */
2322 spin_lock_irqsave(&dbri->lock, flags);
2323
2324 cs4215_setdata(dbri, 1);
2325 udelay(125);
2326 cs4215_setdata(dbri, 0);
2327
2328 spin_unlock_irqrestore(&dbri->lock, flags);
2329 }
2330 return changed;
2331 }
2332
2333 /* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2334 timeslots. Shift is the bit offset in the timeslot, mask defines the
2335 number of bits. invert is a boolean for use with attenuation.
2336 */
2337 #define CS4215_SINGLE(xname, entry, shift, mask, invert) \
2338 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2339 .info = snd_cs4215_info_single, \
2340 .get = snd_cs4215_get_single, .put = snd_cs4215_put_single, \
2341 .private_value = entry | (shift << 8) | (mask << 16) | (invert << 24) },
2342
2343 static struct snd_kcontrol_new dbri_controls[] __devinitdata = {
2344 {
2345 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2346 .name = "Playback Volume",
2347 .info = snd_cs4215_info_volume,
2348 .get = snd_cs4215_get_volume,
2349 .put = snd_cs4215_put_volume,
2350 .private_value = DBRI_PLAY,
2351 },
2352 CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2353 CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2354 CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2355 {
2356 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2357 .name = "Capture Volume",
2358 .info = snd_cs4215_info_volume,
2359 .get = snd_cs4215_get_volume,
2360 .put = snd_cs4215_put_volume,
2361 .private_value = DBRI_REC,
2362 },
2363 /* FIXME: mic/line switch */
2364 CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2365 CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2366 CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2367 CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2368 };
2369
2370 #define NUM_CS4215_CONTROLS (sizeof(dbri_controls)/sizeof(struct snd_kcontrol_new))
2371
2372 static int __init snd_dbri_mixer(struct snd_dbri * dbri)
2373 {
2374 struct snd_card *card;
2375 int idx, err;
2376
2377 snd_assert(dbri != NULL && dbri->card != NULL, return -EINVAL);
2378
2379 card = dbri->card;
2380 strcpy(card->mixername, card->shortname);
2381
2382 for (idx = 0; idx < NUM_CS4215_CONTROLS; idx++) {
2383 if ((err = snd_ctl_add(card,
2384 snd_ctl_new1(&dbri_controls[idx], dbri))) < 0)
2385 return err;
2386 }
2387
2388 for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2389 dbri->stream_info[idx].left_gain = 0;
2390 dbri->stream_info[idx].right_gain = 0;
2391 }
2392
2393 return 0;
2394 }
2395
2396 /****************************************************************************
2397 /proc interface
2398 ****************************************************************************/
2399 static void dbri_regs_read(struct snd_info_entry * entry, struct snd_info_buffer *buffer)
2400 {
2401 struct snd_dbri *dbri = entry->private_data;
2402
2403 snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2404 snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2405 snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2406 snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2407 }
2408
2409 #ifdef DBRI_DEBUG
2410 static void dbri_debug_read(struct snd_info_entry * entry,
2411 struct snd_info_buffer *buffer)
2412 {
2413 struct snd_dbri *dbri = entry->private_data;
2414 int pipe;
2415 snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2416
2417 for (pipe = 0; pipe < 32; pipe++) {
2418 if (pipe_active(dbri, pipe)) {
2419 struct dbri_pipe *pptr = &dbri->pipes[pipe];
2420 snd_iprintf(buffer,
2421 "Pipe %d: %s SDP=0x%x desc=%d, "
2422 "len=%d next %d\n",
2423 pipe,
2424 ((pptr->sdp & D_SDP_TO_SER) ? "output" : "input"),
2425 pptr->sdp, pptr->desc,
2426 pptr->length, pptr->nextpipe);
2427 }
2428 }
2429 }
2430 #endif
2431
2432 void snd_dbri_proc(struct snd_dbri * dbri)
2433 {
2434 struct snd_info_entry *entry;
2435
2436 if (! snd_card_proc_new(dbri->card, "regs", &entry))
2437 snd_info_set_text_ops(entry, dbri, dbri_regs_read);
2438
2439 #ifdef DBRI_DEBUG
2440 if (! snd_card_proc_new(dbri->card, "debug", &entry)) {
2441 snd_info_set_text_ops(entry, dbri, dbri_debug_read);
2442 entry->mode = S_IFREG | S_IRUGO; /* Readable only. */
2443 }
2444 #endif
2445 }
2446
2447 /*
2448 ****************************************************************************
2449 **************************** Initialization ********************************
2450 ****************************************************************************
2451 */
2452 static void snd_dbri_free(struct snd_dbri * dbri);
2453
2454 static int __init snd_dbri_create(struct snd_card *card,
2455 struct sbus_dev *sdev,
2456 struct linux_prom_irqs *irq, int dev)
2457 {
2458 struct snd_dbri *dbri = card->private_data;
2459 int err;
2460
2461 spin_lock_init(&dbri->lock);
2462 dbri->card = card;
2463 dbri->sdev = sdev;
2464 dbri->irq = irq->pri;
2465
2466 dbri->dma = sbus_alloc_consistent(sdev, sizeof(struct dbri_dma),
2467 &dbri->dma_dvma);
2468 memset((void *)dbri->dma, 0, sizeof(struct dbri_dma));
2469
2470 dprintk(D_GEN, "DMA Cmd Block 0x%p (0x%08x)\n",
2471 dbri->dma, dbri->dma_dvma);
2472
2473 /* Map the registers into memory. */
2474 dbri->regs_size = sdev->reg_addrs[0].reg_size;
2475 dbri->regs = sbus_ioremap(&sdev->resource[0], 0,
2476 dbri->regs_size, "DBRI Registers");
2477 if (!dbri->regs) {
2478 printk(KERN_ERR "DBRI: could not allocate registers\n");
2479 sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2480 (void *)dbri->dma, dbri->dma_dvma);
2481 return -EIO;
2482 }
2483
2484 err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2485 "DBRI audio", dbri);
2486 if (err) {
2487 printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2488 sbus_iounmap(dbri->regs, dbri->regs_size);
2489 sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2490 (void *)dbri->dma, dbri->dma_dvma);
2491 return err;
2492 }
2493
2494 /* Do low level initialization of the DBRI and CS4215 chips */
2495 dbri_initialize(dbri);
2496 err = cs4215_init(dbri);
2497 if (err) {
2498 snd_dbri_free(dbri);
2499 return err;
2500 }
2501
2502 dbri->next = dbri_list;
2503 dbri_list = dbri;
2504
2505 return 0;
2506 }
2507
2508 static void snd_dbri_free(struct snd_dbri * dbri)
2509 {
2510 dprintk(D_GEN, "snd_dbri_free\n");
2511 dbri_reset(dbri);
2512
2513 if (dbri->irq)
2514 free_irq(dbri->irq, dbri);
2515
2516 if (dbri->regs)
2517 sbus_iounmap(dbri->regs, dbri->regs_size);
2518
2519 if (dbri->dma)
2520 sbus_free_consistent(dbri->sdev, sizeof(struct dbri_dma),
2521 (void *)dbri->dma, dbri->dma_dvma);
2522 }
2523
2524 static int __init dbri_attach(int prom_node, struct sbus_dev *sdev)
2525 {
2526 struct snd_dbri *dbri;
2527 struct linux_prom_irqs irq;
2528 struct resource *rp;
2529 struct snd_card *card;
2530 static int dev = 0;
2531 int err;
2532
2533 if (sdev->prom_name[9] < 'e') {
2534 printk(KERN_ERR "DBRI: unsupported chip version %c found.\n",
2535 sdev->prom_name[9]);
2536 return -EIO;
2537 }
2538
2539 if (dev >= SNDRV_CARDS)
2540 return -ENODEV;
2541 if (!enable[dev]) {
2542 dev++;
2543 return -ENOENT;
2544 }
2545
2546 err = prom_getproperty(prom_node, "intr", (char *)&irq, sizeof(irq));
2547 if (err < 0) {
2548 printk(KERN_ERR "DBRI-%d: Firmware node lacks IRQ property.\n", dev);
2549 return -ENODEV;
2550 }
2551
2552 card = snd_card_new(index[dev], id[dev], THIS_MODULE,
2553 sizeof(struct snd_dbri));
2554 if (card == NULL)
2555 return -ENOMEM;
2556
2557 strcpy(card->driver, "DBRI");
2558 strcpy(card->shortname, "Sun DBRI");
2559 rp = &sdev->resource[0];
2560 sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2561 card->shortname,
2562 rp->flags & 0xffL, (unsigned long long)rp->start, irq.pri);
2563
2564 if ((err = snd_dbri_create(card, sdev, &irq, dev)) < 0) {
2565 snd_card_free(card);
2566 return err;
2567 }
2568
2569 dbri = card->private_data;
2570 if ((err = snd_dbri_pcm(dbri)) < 0)
2571 goto _err;
2572
2573 if ((err = snd_dbri_mixer(dbri)) < 0)
2574 goto _err;
2575
2576 /* /proc file handling */
2577 snd_dbri_proc(dbri);
2578
2579 if ((err = snd_card_register(card)) < 0)
2580 goto _err;
2581
2582 printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2583 dev, dbri->regs,
2584 dbri->irq, sdev->prom_name[9], dbri->mm.version);
2585 dev++;
2586
2587 return 0;
2588
2589 _err:
2590 snd_dbri_free(dbri);
2591 snd_card_free(card);
2592 return err;
2593 }
2594
2595 /* Probe for the dbri chip and then attach the driver. */
2596 static int __init dbri_init(void)
2597 {
2598 struct sbus_bus *sbus;
2599 struct sbus_dev *sdev;
2600 int found = 0;
2601
2602 /* Probe each SBUS for the DBRI chip(s). */
2603 for_all_sbusdev(sdev, sbus) {
2604 /*
2605 * The version is coded in the last character
2606 */
2607 if (!strncmp(sdev->prom_name, "SUNW,DBRI", 9)) {
2608 dprintk(D_GEN, "DBRI: Found %s in SBUS slot %d\n",
2609 sdev->prom_name, sdev->slot);
2610
2611 if (dbri_attach(sdev->prom_node, sdev) == 0)
2612 found++;
2613 }
2614 }
2615
2616 return (found > 0) ? 0 : -EIO;
2617 }
2618
2619 static void __exit dbri_exit(void)
2620 {
2621 struct snd_dbri *this = dbri_list;
2622
2623 while (this != NULL) {
2624 struct snd_dbri *next = this->next;
2625 struct snd_card *card = this->card;
2626
2627 snd_dbri_free(this);
2628 snd_card_free(card);
2629 this = next;
2630 }
2631 dbri_list = NULL;
2632 }
2633
2634 module_init(dbri_init);
2635 module_exit(dbri_exit);
This page took 0.132279 seconds and 5 git commands to generate.