ASoC: wm8962: Replace direct snd_soc_codec dapm field access
[deliverable/linux.git] / sound / usb / endpoint.c
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License as published by
4 * the Free Software Foundation; either version 2 of the License, or
5 * (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
15 *
16 */
17
18 #include <linux/gfp.h>
19 #include <linux/init.h>
20 #include <linux/ratelimit.h>
21 #include <linux/usb.h>
22 #include <linux/usb/audio.h>
23 #include <linux/slab.h>
24
25 #include <sound/core.h>
26 #include <sound/pcm.h>
27 #include <sound/pcm_params.h>
28
29 #include "usbaudio.h"
30 #include "helper.h"
31 #include "card.h"
32 #include "endpoint.h"
33 #include "pcm.h"
34 #include "quirks.h"
35
36 #define EP_FLAG_RUNNING 1
37 #define EP_FLAG_STOPPING 2
38
39 /*
40 * snd_usb_endpoint is a model that abstracts everything related to an
41 * USB endpoint and its streaming.
42 *
43 * There are functions to activate and deactivate the streaming URBs and
44 * optional callbacks to let the pcm logic handle the actual content of the
45 * packets for playback and record. Thus, the bus streaming and the audio
46 * handlers are fully decoupled.
47 *
48 * There are two different types of endpoints in audio applications.
49 *
50 * SND_USB_ENDPOINT_TYPE_DATA handles full audio data payload for both
51 * inbound and outbound traffic.
52 *
53 * SND_USB_ENDPOINT_TYPE_SYNC endpoints are for inbound traffic only and
54 * expect the payload to carry Q10.14 / Q16.16 formatted sync information
55 * (3 or 4 bytes).
56 *
57 * Each endpoint has to be configured prior to being used by calling
58 * snd_usb_endpoint_set_params().
59 *
60 * The model incorporates a reference counting, so that multiple users
61 * can call snd_usb_endpoint_start() and snd_usb_endpoint_stop(), and
62 * only the first user will effectively start the URBs, and only the last
63 * one to stop it will tear the URBs down again.
64 */
65
66 /*
67 * convert a sampling rate into our full speed format (fs/1000 in Q16.16)
68 * this will overflow at approx 524 kHz
69 */
70 static inline unsigned get_usb_full_speed_rate(unsigned int rate)
71 {
72 return ((rate << 13) + 62) / 125;
73 }
74
75 /*
76 * convert a sampling rate into USB high speed format (fs/8000 in Q16.16)
77 * this will overflow at approx 4 MHz
78 */
79 static inline unsigned get_usb_high_speed_rate(unsigned int rate)
80 {
81 return ((rate << 10) + 62) / 125;
82 }
83
84 /*
85 * release a urb data
86 */
87 static void release_urb_ctx(struct snd_urb_ctx *u)
88 {
89 if (u->buffer_size)
90 usb_free_coherent(u->ep->chip->dev, u->buffer_size,
91 u->urb->transfer_buffer,
92 u->urb->transfer_dma);
93 usb_free_urb(u->urb);
94 u->urb = NULL;
95 }
96
97 static const char *usb_error_string(int err)
98 {
99 switch (err) {
100 case -ENODEV:
101 return "no device";
102 case -ENOENT:
103 return "endpoint not enabled";
104 case -EPIPE:
105 return "endpoint stalled";
106 case -ENOSPC:
107 return "not enough bandwidth";
108 case -ESHUTDOWN:
109 return "device disabled";
110 case -EHOSTUNREACH:
111 return "device suspended";
112 case -EINVAL:
113 case -EAGAIN:
114 case -EFBIG:
115 case -EMSGSIZE:
116 return "internal error";
117 default:
118 return "unknown error";
119 }
120 }
121
122 /**
123 * snd_usb_endpoint_implicit_feedback_sink: Report endpoint usage type
124 *
125 * @ep: The snd_usb_endpoint
126 *
127 * Determine whether an endpoint is driven by an implicit feedback
128 * data endpoint source.
129 */
130 int snd_usb_endpoint_implicit_feedback_sink(struct snd_usb_endpoint *ep)
131 {
132 return ep->sync_master &&
133 ep->sync_master->type == SND_USB_ENDPOINT_TYPE_DATA &&
134 ep->type == SND_USB_ENDPOINT_TYPE_DATA &&
135 usb_pipeout(ep->pipe);
136 }
137
138 /*
139 * For streaming based on information derived from sync endpoints,
140 * prepare_outbound_urb_sizes() will call next_packet_size() to
141 * determine the number of samples to be sent in the next packet.
142 *
143 * For implicit feedback, next_packet_size() is unused.
144 */
145 int snd_usb_endpoint_next_packet_size(struct snd_usb_endpoint *ep)
146 {
147 unsigned long flags;
148 int ret;
149
150 if (ep->fill_max)
151 return ep->maxframesize;
152
153 spin_lock_irqsave(&ep->lock, flags);
154 ep->phase = (ep->phase & 0xffff)
155 + (ep->freqm << ep->datainterval);
156 ret = min(ep->phase >> 16, ep->maxframesize);
157 spin_unlock_irqrestore(&ep->lock, flags);
158
159 return ret;
160 }
161
162 static void retire_outbound_urb(struct snd_usb_endpoint *ep,
163 struct snd_urb_ctx *urb_ctx)
164 {
165 if (ep->retire_data_urb)
166 ep->retire_data_urb(ep->data_subs, urb_ctx->urb);
167 }
168
169 static void retire_inbound_urb(struct snd_usb_endpoint *ep,
170 struct snd_urb_ctx *urb_ctx)
171 {
172 struct urb *urb = urb_ctx->urb;
173
174 if (unlikely(ep->skip_packets > 0)) {
175 ep->skip_packets--;
176 return;
177 }
178
179 if (ep->sync_slave)
180 snd_usb_handle_sync_urb(ep->sync_slave, ep, urb);
181
182 if (ep->retire_data_urb)
183 ep->retire_data_urb(ep->data_subs, urb);
184 }
185
186 /*
187 * Prepare a PLAYBACK urb for submission to the bus.
188 */
189 static void prepare_outbound_urb(struct snd_usb_endpoint *ep,
190 struct snd_urb_ctx *ctx)
191 {
192 int i;
193 struct urb *urb = ctx->urb;
194 unsigned char *cp = urb->transfer_buffer;
195
196 urb->dev = ep->chip->dev; /* we need to set this at each time */
197
198 switch (ep->type) {
199 case SND_USB_ENDPOINT_TYPE_DATA:
200 if (ep->prepare_data_urb) {
201 ep->prepare_data_urb(ep->data_subs, urb);
202 } else {
203 /* no data provider, so send silence */
204 unsigned int offs = 0;
205 for (i = 0; i < ctx->packets; ++i) {
206 int counts;
207
208 if (ctx->packet_size[i])
209 counts = ctx->packet_size[i];
210 else
211 counts = snd_usb_endpoint_next_packet_size(ep);
212
213 urb->iso_frame_desc[i].offset = offs * ep->stride;
214 urb->iso_frame_desc[i].length = counts * ep->stride;
215 offs += counts;
216 }
217
218 urb->number_of_packets = ctx->packets;
219 urb->transfer_buffer_length = offs * ep->stride;
220 memset(urb->transfer_buffer, ep->silence_value,
221 offs * ep->stride);
222 }
223 break;
224
225 case SND_USB_ENDPOINT_TYPE_SYNC:
226 if (snd_usb_get_speed(ep->chip->dev) >= USB_SPEED_HIGH) {
227 /*
228 * fill the length and offset of each urb descriptor.
229 * the fixed 12.13 frequency is passed as 16.16 through the pipe.
230 */
231 urb->iso_frame_desc[0].length = 4;
232 urb->iso_frame_desc[0].offset = 0;
233 cp[0] = ep->freqn;
234 cp[1] = ep->freqn >> 8;
235 cp[2] = ep->freqn >> 16;
236 cp[3] = ep->freqn >> 24;
237 } else {
238 /*
239 * fill the length and offset of each urb descriptor.
240 * the fixed 10.14 frequency is passed through the pipe.
241 */
242 urb->iso_frame_desc[0].length = 3;
243 urb->iso_frame_desc[0].offset = 0;
244 cp[0] = ep->freqn >> 2;
245 cp[1] = ep->freqn >> 10;
246 cp[2] = ep->freqn >> 18;
247 }
248
249 break;
250 }
251 }
252
253 /*
254 * Prepare a CAPTURE or SYNC urb for submission to the bus.
255 */
256 static inline void prepare_inbound_urb(struct snd_usb_endpoint *ep,
257 struct snd_urb_ctx *urb_ctx)
258 {
259 int i, offs;
260 struct urb *urb = urb_ctx->urb;
261
262 urb->dev = ep->chip->dev; /* we need to set this at each time */
263
264 switch (ep->type) {
265 case SND_USB_ENDPOINT_TYPE_DATA:
266 offs = 0;
267 for (i = 0; i < urb_ctx->packets; i++) {
268 urb->iso_frame_desc[i].offset = offs;
269 urb->iso_frame_desc[i].length = ep->curpacksize;
270 offs += ep->curpacksize;
271 }
272
273 urb->transfer_buffer_length = offs;
274 urb->number_of_packets = urb_ctx->packets;
275 break;
276
277 case SND_USB_ENDPOINT_TYPE_SYNC:
278 urb->iso_frame_desc[0].length = min(4u, ep->syncmaxsize);
279 urb->iso_frame_desc[0].offset = 0;
280 break;
281 }
282 }
283
284 /*
285 * Send output urbs that have been prepared previously. URBs are dequeued
286 * from ep->ready_playback_urbs and in case there there aren't any available
287 * or there are no packets that have been prepared, this function does
288 * nothing.
289 *
290 * The reason why the functionality of sending and preparing URBs is separated
291 * is that host controllers don't guarantee the order in which they return
292 * inbound and outbound packets to their submitters.
293 *
294 * This function is only used for implicit feedback endpoints. For endpoints
295 * driven by dedicated sync endpoints, URBs are immediately re-submitted
296 * from their completion handler.
297 */
298 static void queue_pending_output_urbs(struct snd_usb_endpoint *ep)
299 {
300 while (test_bit(EP_FLAG_RUNNING, &ep->flags)) {
301
302 unsigned long flags;
303 struct snd_usb_packet_info *uninitialized_var(packet);
304 struct snd_urb_ctx *ctx = NULL;
305 struct urb *urb;
306 int err, i;
307
308 spin_lock_irqsave(&ep->lock, flags);
309 if (ep->next_packet_read_pos != ep->next_packet_write_pos) {
310 packet = ep->next_packet + ep->next_packet_read_pos;
311 ep->next_packet_read_pos++;
312 ep->next_packet_read_pos %= MAX_URBS;
313
314 /* take URB out of FIFO */
315 if (!list_empty(&ep->ready_playback_urbs))
316 ctx = list_first_entry(&ep->ready_playback_urbs,
317 struct snd_urb_ctx, ready_list);
318 }
319 spin_unlock_irqrestore(&ep->lock, flags);
320
321 if (ctx == NULL)
322 return;
323
324 list_del_init(&ctx->ready_list);
325 urb = ctx->urb;
326
327 /* copy over the length information */
328 for (i = 0; i < packet->packets; i++)
329 ctx->packet_size[i] = packet->packet_size[i];
330
331 /* call the data handler to fill in playback data */
332 prepare_outbound_urb(ep, ctx);
333
334 err = usb_submit_urb(ctx->urb, GFP_ATOMIC);
335 if (err < 0)
336 usb_audio_err(ep->chip,
337 "Unable to submit urb #%d: %d (urb %p)\n",
338 ctx->index, err, ctx->urb);
339 else
340 set_bit(ctx->index, &ep->active_mask);
341 }
342 }
343
344 /*
345 * complete callback for urbs
346 */
347 static void snd_complete_urb(struct urb *urb)
348 {
349 struct snd_urb_ctx *ctx = urb->context;
350 struct snd_usb_endpoint *ep = ctx->ep;
351 struct snd_pcm_substream *substream;
352 unsigned long flags;
353 int err;
354
355 if (unlikely(urb->status == -ENOENT || /* unlinked */
356 urb->status == -ENODEV || /* device removed */
357 urb->status == -ECONNRESET || /* unlinked */
358 urb->status == -ESHUTDOWN || /* device disabled */
359 ep->chip->shutdown)) /* device disconnected */
360 goto exit_clear;
361
362 if (usb_pipeout(ep->pipe)) {
363 retire_outbound_urb(ep, ctx);
364 /* can be stopped during retire callback */
365 if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
366 goto exit_clear;
367
368 if (snd_usb_endpoint_implicit_feedback_sink(ep)) {
369 spin_lock_irqsave(&ep->lock, flags);
370 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs);
371 spin_unlock_irqrestore(&ep->lock, flags);
372 queue_pending_output_urbs(ep);
373
374 goto exit_clear;
375 }
376
377 prepare_outbound_urb(ep, ctx);
378 } else {
379 retire_inbound_urb(ep, ctx);
380 /* can be stopped during retire callback */
381 if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
382 goto exit_clear;
383
384 prepare_inbound_urb(ep, ctx);
385 }
386
387 err = usb_submit_urb(urb, GFP_ATOMIC);
388 if (err == 0)
389 return;
390
391 usb_audio_err(ep->chip, "cannot submit urb (err = %d)\n", err);
392 if (ep->data_subs && ep->data_subs->pcm_substream) {
393 substream = ep->data_subs->pcm_substream;
394 snd_pcm_stop_xrun(substream);
395 }
396
397 exit_clear:
398 clear_bit(ctx->index, &ep->active_mask);
399 }
400
401 /**
402 * snd_usb_add_endpoint: Add an endpoint to an USB audio chip
403 *
404 * @chip: The chip
405 * @alts: The USB host interface
406 * @ep_num: The number of the endpoint to use
407 * @direction: SNDRV_PCM_STREAM_PLAYBACK or SNDRV_PCM_STREAM_CAPTURE
408 * @type: SND_USB_ENDPOINT_TYPE_DATA or SND_USB_ENDPOINT_TYPE_SYNC
409 *
410 * If the requested endpoint has not been added to the given chip before,
411 * a new instance is created. Otherwise, a pointer to the previoulsy
412 * created instance is returned. In case of any error, NULL is returned.
413 *
414 * New endpoints will be added to chip->ep_list and must be freed by
415 * calling snd_usb_endpoint_free().
416 */
417 struct snd_usb_endpoint *snd_usb_add_endpoint(struct snd_usb_audio *chip,
418 struct usb_host_interface *alts,
419 int ep_num, int direction, int type)
420 {
421 struct snd_usb_endpoint *ep;
422 int is_playback = direction == SNDRV_PCM_STREAM_PLAYBACK;
423
424 if (WARN_ON(!alts))
425 return NULL;
426
427 mutex_lock(&chip->mutex);
428
429 list_for_each_entry(ep, &chip->ep_list, list) {
430 if (ep->ep_num == ep_num &&
431 ep->iface == alts->desc.bInterfaceNumber &&
432 ep->altsetting == alts->desc.bAlternateSetting) {
433 usb_audio_dbg(ep->chip,
434 "Re-using EP %x in iface %d,%d @%p\n",
435 ep_num, ep->iface, ep->altsetting, ep);
436 goto __exit_unlock;
437 }
438 }
439
440 usb_audio_dbg(chip, "Creating new %s %s endpoint #%x\n",
441 is_playback ? "playback" : "capture",
442 type == SND_USB_ENDPOINT_TYPE_DATA ? "data" : "sync",
443 ep_num);
444
445 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
446 if (!ep)
447 goto __exit_unlock;
448
449 ep->chip = chip;
450 spin_lock_init(&ep->lock);
451 ep->type = type;
452 ep->ep_num = ep_num;
453 ep->iface = alts->desc.bInterfaceNumber;
454 ep->altsetting = alts->desc.bAlternateSetting;
455 INIT_LIST_HEAD(&ep->ready_playback_urbs);
456 ep_num &= USB_ENDPOINT_NUMBER_MASK;
457
458 if (is_playback)
459 ep->pipe = usb_sndisocpipe(chip->dev, ep_num);
460 else
461 ep->pipe = usb_rcvisocpipe(chip->dev, ep_num);
462
463 if (type == SND_USB_ENDPOINT_TYPE_SYNC) {
464 if (get_endpoint(alts, 1)->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE &&
465 get_endpoint(alts, 1)->bRefresh >= 1 &&
466 get_endpoint(alts, 1)->bRefresh <= 9)
467 ep->syncinterval = get_endpoint(alts, 1)->bRefresh;
468 else if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL)
469 ep->syncinterval = 1;
470 else if (get_endpoint(alts, 1)->bInterval >= 1 &&
471 get_endpoint(alts, 1)->bInterval <= 16)
472 ep->syncinterval = get_endpoint(alts, 1)->bInterval - 1;
473 else
474 ep->syncinterval = 3;
475
476 ep->syncmaxsize = le16_to_cpu(get_endpoint(alts, 1)->wMaxPacketSize);
477
478 if (chip->usb_id == USB_ID(0x0644, 0x8038) /* TEAC UD-H01 */ &&
479 ep->syncmaxsize == 4)
480 ep->udh01_fb_quirk = 1;
481 }
482
483 list_add_tail(&ep->list, &chip->ep_list);
484
485 __exit_unlock:
486 mutex_unlock(&chip->mutex);
487
488 return ep;
489 }
490
491 /*
492 * wait until all urbs are processed.
493 */
494 static int wait_clear_urbs(struct snd_usb_endpoint *ep)
495 {
496 unsigned long end_time = jiffies + msecs_to_jiffies(1000);
497 int alive;
498
499 do {
500 alive = bitmap_weight(&ep->active_mask, ep->nurbs);
501 if (!alive)
502 break;
503
504 schedule_timeout_uninterruptible(1);
505 } while (time_before(jiffies, end_time));
506
507 if (alive)
508 usb_audio_err(ep->chip,
509 "timeout: still %d active urbs on EP #%x\n",
510 alive, ep->ep_num);
511 clear_bit(EP_FLAG_STOPPING, &ep->flags);
512
513 return 0;
514 }
515
516 /* sync the pending stop operation;
517 * this function itself doesn't trigger the stop operation
518 */
519 void snd_usb_endpoint_sync_pending_stop(struct snd_usb_endpoint *ep)
520 {
521 if (ep && test_bit(EP_FLAG_STOPPING, &ep->flags))
522 wait_clear_urbs(ep);
523 }
524
525 /*
526 * unlink active urbs.
527 */
528 static int deactivate_urbs(struct snd_usb_endpoint *ep, bool force)
529 {
530 unsigned int i;
531
532 if (!force && ep->chip->shutdown) /* to be sure... */
533 return -EBADFD;
534
535 clear_bit(EP_FLAG_RUNNING, &ep->flags);
536
537 INIT_LIST_HEAD(&ep->ready_playback_urbs);
538 ep->next_packet_read_pos = 0;
539 ep->next_packet_write_pos = 0;
540
541 for (i = 0; i < ep->nurbs; i++) {
542 if (test_bit(i, &ep->active_mask)) {
543 if (!test_and_set_bit(i, &ep->unlink_mask)) {
544 struct urb *u = ep->urb[i].urb;
545 usb_unlink_urb(u);
546 }
547 }
548 }
549
550 return 0;
551 }
552
553 /*
554 * release an endpoint's urbs
555 */
556 static void release_urbs(struct snd_usb_endpoint *ep, int force)
557 {
558 int i;
559
560 /* route incoming urbs to nirvana */
561 ep->retire_data_urb = NULL;
562 ep->prepare_data_urb = NULL;
563
564 /* stop urbs */
565 deactivate_urbs(ep, force);
566 wait_clear_urbs(ep);
567
568 for (i = 0; i < ep->nurbs; i++)
569 release_urb_ctx(&ep->urb[i]);
570
571 if (ep->syncbuf)
572 usb_free_coherent(ep->chip->dev, SYNC_URBS * 4,
573 ep->syncbuf, ep->sync_dma);
574
575 ep->syncbuf = NULL;
576 ep->nurbs = 0;
577 }
578
579 /*
580 * configure a data endpoint
581 */
582 static int data_ep_set_params(struct snd_usb_endpoint *ep,
583 snd_pcm_format_t pcm_format,
584 unsigned int channels,
585 unsigned int period_bytes,
586 unsigned int frames_per_period,
587 unsigned int periods_per_buffer,
588 struct audioformat *fmt,
589 struct snd_usb_endpoint *sync_ep)
590 {
591 unsigned int maxsize, minsize, packs_per_ms, max_packs_per_urb;
592 unsigned int max_packs_per_period, urbs_per_period, urb_packs;
593 unsigned int max_urbs, i;
594 int frame_bits = snd_pcm_format_physical_width(pcm_format) * channels;
595
596 if (pcm_format == SNDRV_PCM_FORMAT_DSD_U16_LE && fmt->dsd_dop) {
597 /*
598 * When operating in DSD DOP mode, the size of a sample frame
599 * in hardware differs from the actual physical format width
600 * because we need to make room for the DOP markers.
601 */
602 frame_bits += channels << 3;
603 }
604
605 ep->datainterval = fmt->datainterval;
606 ep->stride = frame_bits >> 3;
607 ep->silence_value = pcm_format == SNDRV_PCM_FORMAT_U8 ? 0x80 : 0;
608
609 /* assume max. frequency is 25% higher than nominal */
610 ep->freqmax = ep->freqn + (ep->freqn >> 2);
611 maxsize = ((ep->freqmax + 0xffff) * (frame_bits >> 3))
612 >> (16 - ep->datainterval);
613 /* but wMaxPacketSize might reduce this */
614 if (ep->maxpacksize && ep->maxpacksize < maxsize) {
615 /* whatever fits into a max. size packet */
616 maxsize = ep->maxpacksize;
617 ep->freqmax = (maxsize / (frame_bits >> 3))
618 << (16 - ep->datainterval);
619 }
620
621 if (ep->fill_max)
622 ep->curpacksize = ep->maxpacksize;
623 else
624 ep->curpacksize = maxsize;
625
626 if (snd_usb_get_speed(ep->chip->dev) != USB_SPEED_FULL) {
627 packs_per_ms = 8 >> ep->datainterval;
628 max_packs_per_urb = MAX_PACKS_HS;
629 } else {
630 packs_per_ms = 1;
631 max_packs_per_urb = MAX_PACKS;
632 }
633 if (sync_ep && !snd_usb_endpoint_implicit_feedback_sink(ep))
634 max_packs_per_urb = min(max_packs_per_urb,
635 1U << sync_ep->syncinterval);
636 max_packs_per_urb = max(1u, max_packs_per_urb >> ep->datainterval);
637
638 /*
639 * Capture endpoints need to use small URBs because there's no way
640 * to tell in advance where the next period will end, and we don't
641 * want the next URB to complete much after the period ends.
642 *
643 * Playback endpoints with implicit sync much use the same parameters
644 * as their corresponding capture endpoint.
645 */
646 if (usb_pipein(ep->pipe) ||
647 snd_usb_endpoint_implicit_feedback_sink(ep)) {
648
649 urb_packs = packs_per_ms;
650 /*
651 * Wireless devices can poll at a max rate of once per 4ms.
652 * For dataintervals less than 5, increase the packet count to
653 * allow the host controller to use bursting to fill in the
654 * gaps.
655 */
656 if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_WIRELESS) {
657 int interval = ep->datainterval;
658 while (interval < 5) {
659 urb_packs <<= 1;
660 ++interval;
661 }
662 }
663 /* make capture URBs <= 1 ms and smaller than a period */
664 urb_packs = min(max_packs_per_urb, urb_packs);
665 while (urb_packs > 1 && urb_packs * maxsize >= period_bytes)
666 urb_packs >>= 1;
667 ep->nurbs = MAX_URBS;
668
669 /*
670 * Playback endpoints without implicit sync are adjusted so that
671 * a period fits as evenly as possible in the smallest number of
672 * URBs. The total number of URBs is adjusted to the size of the
673 * ALSA buffer, subject to the MAX_URBS and MAX_QUEUE limits.
674 */
675 } else {
676 /* determine how small a packet can be */
677 minsize = (ep->freqn >> (16 - ep->datainterval)) *
678 (frame_bits >> 3);
679 /* with sync from device, assume it can be 12% lower */
680 if (sync_ep)
681 minsize -= minsize >> 3;
682 minsize = max(minsize, 1u);
683
684 /* how many packets will contain an entire ALSA period? */
685 max_packs_per_period = DIV_ROUND_UP(period_bytes, minsize);
686
687 /* how many URBs will contain a period? */
688 urbs_per_period = DIV_ROUND_UP(max_packs_per_period,
689 max_packs_per_urb);
690 /* how many packets are needed in each URB? */
691 urb_packs = DIV_ROUND_UP(max_packs_per_period, urbs_per_period);
692
693 /* limit the number of frames in a single URB */
694 ep->max_urb_frames = DIV_ROUND_UP(frames_per_period,
695 urbs_per_period);
696
697 /* try to use enough URBs to contain an entire ALSA buffer */
698 max_urbs = min((unsigned) MAX_URBS,
699 MAX_QUEUE * packs_per_ms / urb_packs);
700 ep->nurbs = min(max_urbs, urbs_per_period * periods_per_buffer);
701 }
702
703 /* allocate and initialize data urbs */
704 for (i = 0; i < ep->nurbs; i++) {
705 struct snd_urb_ctx *u = &ep->urb[i];
706 u->index = i;
707 u->ep = ep;
708 u->packets = urb_packs;
709 u->buffer_size = maxsize * u->packets;
710
711 if (fmt->fmt_type == UAC_FORMAT_TYPE_II)
712 u->packets++; /* for transfer delimiter */
713 u->urb = usb_alloc_urb(u->packets, GFP_KERNEL);
714 if (!u->urb)
715 goto out_of_memory;
716
717 u->urb->transfer_buffer =
718 usb_alloc_coherent(ep->chip->dev, u->buffer_size,
719 GFP_KERNEL, &u->urb->transfer_dma);
720 if (!u->urb->transfer_buffer)
721 goto out_of_memory;
722 u->urb->pipe = ep->pipe;
723 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
724 u->urb->interval = 1 << ep->datainterval;
725 u->urb->context = u;
726 u->urb->complete = snd_complete_urb;
727 INIT_LIST_HEAD(&u->ready_list);
728 }
729
730 return 0;
731
732 out_of_memory:
733 release_urbs(ep, 0);
734 return -ENOMEM;
735 }
736
737 /*
738 * configure a sync endpoint
739 */
740 static int sync_ep_set_params(struct snd_usb_endpoint *ep)
741 {
742 int i;
743
744 ep->syncbuf = usb_alloc_coherent(ep->chip->dev, SYNC_URBS * 4,
745 GFP_KERNEL, &ep->sync_dma);
746 if (!ep->syncbuf)
747 return -ENOMEM;
748
749 for (i = 0; i < SYNC_URBS; i++) {
750 struct snd_urb_ctx *u = &ep->urb[i];
751 u->index = i;
752 u->ep = ep;
753 u->packets = 1;
754 u->urb = usb_alloc_urb(1, GFP_KERNEL);
755 if (!u->urb)
756 goto out_of_memory;
757 u->urb->transfer_buffer = ep->syncbuf + i * 4;
758 u->urb->transfer_dma = ep->sync_dma + i * 4;
759 u->urb->transfer_buffer_length = 4;
760 u->urb->pipe = ep->pipe;
761 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
762 u->urb->number_of_packets = 1;
763 u->urb->interval = 1 << ep->syncinterval;
764 u->urb->context = u;
765 u->urb->complete = snd_complete_urb;
766 }
767
768 ep->nurbs = SYNC_URBS;
769
770 return 0;
771
772 out_of_memory:
773 release_urbs(ep, 0);
774 return -ENOMEM;
775 }
776
777 /**
778 * snd_usb_endpoint_set_params: configure an snd_usb_endpoint
779 *
780 * @ep: the snd_usb_endpoint to configure
781 * @pcm_format: the audio fomat.
782 * @channels: the number of audio channels.
783 * @period_bytes: the number of bytes in one alsa period.
784 * @period_frames: the number of frames in one alsa period.
785 * @buffer_periods: the number of periods in one alsa buffer.
786 * @rate: the frame rate.
787 * @fmt: the USB audio format information
788 * @sync_ep: the sync endpoint to use, if any
789 *
790 * Determine the number of URBs to be used on this endpoint.
791 * An endpoint must be configured before it can be started.
792 * An endpoint that is already running can not be reconfigured.
793 */
794 int snd_usb_endpoint_set_params(struct snd_usb_endpoint *ep,
795 snd_pcm_format_t pcm_format,
796 unsigned int channels,
797 unsigned int period_bytes,
798 unsigned int period_frames,
799 unsigned int buffer_periods,
800 unsigned int rate,
801 struct audioformat *fmt,
802 struct snd_usb_endpoint *sync_ep)
803 {
804 int err;
805
806 if (ep->use_count != 0) {
807 usb_audio_warn(ep->chip,
808 "Unable to change format on ep #%x: already in use\n",
809 ep->ep_num);
810 return -EBUSY;
811 }
812
813 /* release old buffers, if any */
814 release_urbs(ep, 0);
815
816 ep->datainterval = fmt->datainterval;
817 ep->maxpacksize = fmt->maxpacksize;
818 ep->fill_max = !!(fmt->attributes & UAC_EP_CS_ATTR_FILL_MAX);
819
820 if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_FULL)
821 ep->freqn = get_usb_full_speed_rate(rate);
822 else
823 ep->freqn = get_usb_high_speed_rate(rate);
824
825 /* calculate the frequency in 16.16 format */
826 ep->freqm = ep->freqn;
827 ep->freqshift = INT_MIN;
828
829 ep->phase = 0;
830
831 switch (ep->type) {
832 case SND_USB_ENDPOINT_TYPE_DATA:
833 err = data_ep_set_params(ep, pcm_format, channels,
834 period_bytes, period_frames,
835 buffer_periods, fmt, sync_ep);
836 break;
837 case SND_USB_ENDPOINT_TYPE_SYNC:
838 err = sync_ep_set_params(ep);
839 break;
840 default:
841 err = -EINVAL;
842 }
843
844 usb_audio_dbg(ep->chip,
845 "Setting params for ep #%x (type %d, %d urbs), ret=%d\n",
846 ep->ep_num, ep->type, ep->nurbs, err);
847
848 return err;
849 }
850
851 /**
852 * snd_usb_endpoint_start: start an snd_usb_endpoint
853 *
854 * @ep: the endpoint to start
855 * @can_sleep: flag indicating whether the operation is executed in
856 * non-atomic context
857 *
858 * A call to this function will increment the use count of the endpoint.
859 * In case it is not already running, the URBs for this endpoint will be
860 * submitted. Otherwise, this function does nothing.
861 *
862 * Must be balanced to calls of snd_usb_endpoint_stop().
863 *
864 * Returns an error if the URB submission failed, 0 in all other cases.
865 */
866 int snd_usb_endpoint_start(struct snd_usb_endpoint *ep, bool can_sleep)
867 {
868 int err;
869 unsigned int i;
870
871 if (ep->chip->shutdown)
872 return -EBADFD;
873
874 /* already running? */
875 if (++ep->use_count != 1)
876 return 0;
877
878 /* just to be sure */
879 deactivate_urbs(ep, false);
880 if (can_sleep)
881 wait_clear_urbs(ep);
882
883 ep->active_mask = 0;
884 ep->unlink_mask = 0;
885 ep->phase = 0;
886
887 snd_usb_endpoint_start_quirk(ep);
888
889 /*
890 * If this endpoint has a data endpoint as implicit feedback source,
891 * don't start the urbs here. Instead, mark them all as available,
892 * wait for the record urbs to return and queue the playback urbs
893 * from that context.
894 */
895
896 set_bit(EP_FLAG_RUNNING, &ep->flags);
897
898 if (snd_usb_endpoint_implicit_feedback_sink(ep)) {
899 for (i = 0; i < ep->nurbs; i++) {
900 struct snd_urb_ctx *ctx = ep->urb + i;
901 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs);
902 }
903
904 return 0;
905 }
906
907 for (i = 0; i < ep->nurbs; i++) {
908 struct urb *urb = ep->urb[i].urb;
909
910 if (snd_BUG_ON(!urb))
911 goto __error;
912
913 if (usb_pipeout(ep->pipe)) {
914 prepare_outbound_urb(ep, urb->context);
915 } else {
916 prepare_inbound_urb(ep, urb->context);
917 }
918
919 err = usb_submit_urb(urb, GFP_ATOMIC);
920 if (err < 0) {
921 usb_audio_err(ep->chip,
922 "cannot submit urb %d, error %d: %s\n",
923 i, err, usb_error_string(err));
924 goto __error;
925 }
926 set_bit(i, &ep->active_mask);
927 }
928
929 return 0;
930
931 __error:
932 clear_bit(EP_FLAG_RUNNING, &ep->flags);
933 ep->use_count--;
934 deactivate_urbs(ep, false);
935 return -EPIPE;
936 }
937
938 /**
939 * snd_usb_endpoint_stop: stop an snd_usb_endpoint
940 *
941 * @ep: the endpoint to stop (may be NULL)
942 *
943 * A call to this function will decrement the use count of the endpoint.
944 * In case the last user has requested the endpoint stop, the URBs will
945 * actually be deactivated.
946 *
947 * Must be balanced to calls of snd_usb_endpoint_start().
948 *
949 * The caller needs to synchronize the pending stop operation via
950 * snd_usb_endpoint_sync_pending_stop().
951 */
952 void snd_usb_endpoint_stop(struct snd_usb_endpoint *ep)
953 {
954 if (!ep)
955 return;
956
957 if (snd_BUG_ON(ep->use_count == 0))
958 return;
959
960 if (--ep->use_count == 0) {
961 deactivate_urbs(ep, false);
962 ep->data_subs = NULL;
963 ep->sync_slave = NULL;
964 ep->retire_data_urb = NULL;
965 ep->prepare_data_urb = NULL;
966 set_bit(EP_FLAG_STOPPING, &ep->flags);
967 }
968 }
969
970 /**
971 * snd_usb_endpoint_deactivate: deactivate an snd_usb_endpoint
972 *
973 * @ep: the endpoint to deactivate
974 *
975 * If the endpoint is not currently in use, this functions will
976 * deactivate its associated URBs.
977 *
978 * In case of any active users, this functions does nothing.
979 */
980 void snd_usb_endpoint_deactivate(struct snd_usb_endpoint *ep)
981 {
982 if (!ep)
983 return;
984
985 if (ep->use_count != 0)
986 return;
987
988 deactivate_urbs(ep, true);
989 wait_clear_urbs(ep);
990 }
991
992 /**
993 * snd_usb_endpoint_release: Tear down an snd_usb_endpoint
994 *
995 * @ep: the endpoint to release
996 *
997 * This function does not care for the endpoint's use count but will tear
998 * down all the streaming URBs immediately.
999 */
1000 void snd_usb_endpoint_release(struct snd_usb_endpoint *ep)
1001 {
1002 release_urbs(ep, 1);
1003 }
1004
1005 /**
1006 * snd_usb_endpoint_free: Free the resources of an snd_usb_endpoint
1007 *
1008 * @ep: the endpoint to free
1009 *
1010 * This free all resources of the given ep.
1011 */
1012 void snd_usb_endpoint_free(struct snd_usb_endpoint *ep)
1013 {
1014 kfree(ep);
1015 }
1016
1017 /**
1018 * snd_usb_handle_sync_urb: parse an USB sync packet
1019 *
1020 * @ep: the endpoint to handle the packet
1021 * @sender: the sending endpoint
1022 * @urb: the received packet
1023 *
1024 * This function is called from the context of an endpoint that received
1025 * the packet and is used to let another endpoint object handle the payload.
1026 */
1027 void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep,
1028 struct snd_usb_endpoint *sender,
1029 const struct urb *urb)
1030 {
1031 int shift;
1032 unsigned int f;
1033 unsigned long flags;
1034
1035 snd_BUG_ON(ep == sender);
1036
1037 /*
1038 * In case the endpoint is operating in implicit feedback mode, prepare
1039 * a new outbound URB that has the same layout as the received packet
1040 * and add it to the list of pending urbs. queue_pending_output_urbs()
1041 * will take care of them later.
1042 */
1043 if (snd_usb_endpoint_implicit_feedback_sink(ep) &&
1044 ep->use_count != 0) {
1045
1046 /* implicit feedback case */
1047 int i, bytes = 0;
1048 struct snd_urb_ctx *in_ctx;
1049 struct snd_usb_packet_info *out_packet;
1050
1051 in_ctx = urb->context;
1052
1053 /* Count overall packet size */
1054 for (i = 0; i < in_ctx->packets; i++)
1055 if (urb->iso_frame_desc[i].status == 0)
1056 bytes += urb->iso_frame_desc[i].actual_length;
1057
1058 /*
1059 * skip empty packets. At least M-Audio's Fast Track Ultra stops
1060 * streaming once it received a 0-byte OUT URB
1061 */
1062 if (bytes == 0)
1063 return;
1064
1065 spin_lock_irqsave(&ep->lock, flags);
1066 out_packet = ep->next_packet + ep->next_packet_write_pos;
1067
1068 /*
1069 * Iterate through the inbound packet and prepare the lengths
1070 * for the output packet. The OUT packet we are about to send
1071 * will have the same amount of payload bytes per stride as the
1072 * IN packet we just received. Since the actual size is scaled
1073 * by the stride, use the sender stride to calculate the length
1074 * in case the number of channels differ between the implicitly
1075 * fed-back endpoint and the synchronizing endpoint.
1076 */
1077
1078 out_packet->packets = in_ctx->packets;
1079 for (i = 0; i < in_ctx->packets; i++) {
1080 if (urb->iso_frame_desc[i].status == 0)
1081 out_packet->packet_size[i] =
1082 urb->iso_frame_desc[i].actual_length / sender->stride;
1083 else
1084 out_packet->packet_size[i] = 0;
1085 }
1086
1087 ep->next_packet_write_pos++;
1088 ep->next_packet_write_pos %= MAX_URBS;
1089 spin_unlock_irqrestore(&ep->lock, flags);
1090 queue_pending_output_urbs(ep);
1091
1092 return;
1093 }
1094
1095 /*
1096 * process after playback sync complete
1097 *
1098 * Full speed devices report feedback values in 10.14 format as samples
1099 * per frame, high speed devices in 16.16 format as samples per
1100 * microframe.
1101 *
1102 * Because the Audio Class 1 spec was written before USB 2.0, many high
1103 * speed devices use a wrong interpretation, some others use an
1104 * entirely different format.
1105 *
1106 * Therefore, we cannot predict what format any particular device uses
1107 * and must detect it automatically.
1108 */
1109
1110 if (urb->iso_frame_desc[0].status != 0 ||
1111 urb->iso_frame_desc[0].actual_length < 3)
1112 return;
1113
1114 f = le32_to_cpup(urb->transfer_buffer);
1115 if (urb->iso_frame_desc[0].actual_length == 3)
1116 f &= 0x00ffffff;
1117 else
1118 f &= 0x0fffffff;
1119
1120 if (f == 0)
1121 return;
1122
1123 if (unlikely(sender->udh01_fb_quirk)) {
1124 /*
1125 * The TEAC UD-H01 firmware sometimes changes the feedback value
1126 * by +/- 0x1.0000.
1127 */
1128 if (f < ep->freqn - 0x8000)
1129 f += 0x10000;
1130 else if (f > ep->freqn + 0x8000)
1131 f -= 0x10000;
1132 } else if (unlikely(ep->freqshift == INT_MIN)) {
1133 /*
1134 * The first time we see a feedback value, determine its format
1135 * by shifting it left or right until it matches the nominal
1136 * frequency value. This assumes that the feedback does not
1137 * differ from the nominal value more than +50% or -25%.
1138 */
1139 shift = 0;
1140 while (f < ep->freqn - ep->freqn / 4) {
1141 f <<= 1;
1142 shift++;
1143 }
1144 while (f > ep->freqn + ep->freqn / 2) {
1145 f >>= 1;
1146 shift--;
1147 }
1148 ep->freqshift = shift;
1149 } else if (ep->freqshift >= 0)
1150 f <<= ep->freqshift;
1151 else
1152 f >>= -ep->freqshift;
1153
1154 if (likely(f >= ep->freqn - ep->freqn / 8 && f <= ep->freqmax)) {
1155 /*
1156 * If the frequency looks valid, set it.
1157 * This value is referred to in prepare_playback_urb().
1158 */
1159 spin_lock_irqsave(&ep->lock, flags);
1160 ep->freqm = f;
1161 spin_unlock_irqrestore(&ep->lock, flags);
1162 } else {
1163 /*
1164 * Out of range; maybe the shift value is wrong.
1165 * Reset it so that we autodetect again the next time.
1166 */
1167 ep->freqshift = INT_MIN;
1168 }
1169 }
1170
This page took 0.074643 seconds and 5 git commands to generate.