Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[deliverable/linux.git] / sound / usb / endpoint.c
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License as published by
4 * the Free Software Foundation; either version 2 of the License, or
5 * (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
15 *
16 */
17
18 #include <linux/gfp.h>
19 #include <linux/init.h>
20 #include <linux/ratelimit.h>
21 #include <linux/usb.h>
22 #include <linux/usb/audio.h>
23 #include <linux/slab.h>
24
25 #include <sound/core.h>
26 #include <sound/pcm.h>
27 #include <sound/pcm_params.h>
28
29 #include "usbaudio.h"
30 #include "helper.h"
31 #include "card.h"
32 #include "endpoint.h"
33 #include "pcm.h"
34 #include "quirks.h"
35
36 #define EP_FLAG_RUNNING 1
37 #define EP_FLAG_STOPPING 2
38
39 /*
40 * snd_usb_endpoint is a model that abstracts everything related to an
41 * USB endpoint and its streaming.
42 *
43 * There are functions to activate and deactivate the streaming URBs and
44 * optional callbacks to let the pcm logic handle the actual content of the
45 * packets for playback and record. Thus, the bus streaming and the audio
46 * handlers are fully decoupled.
47 *
48 * There are two different types of endpoints in audio applications.
49 *
50 * SND_USB_ENDPOINT_TYPE_DATA handles full audio data payload for both
51 * inbound and outbound traffic.
52 *
53 * SND_USB_ENDPOINT_TYPE_SYNC endpoints are for inbound traffic only and
54 * expect the payload to carry Q10.14 / Q16.16 formatted sync information
55 * (3 or 4 bytes).
56 *
57 * Each endpoint has to be configured prior to being used by calling
58 * snd_usb_endpoint_set_params().
59 *
60 * The model incorporates a reference counting, so that multiple users
61 * can call snd_usb_endpoint_start() and snd_usb_endpoint_stop(), and
62 * only the first user will effectively start the URBs, and only the last
63 * one to stop it will tear the URBs down again.
64 */
65
66 /*
67 * convert a sampling rate into our full speed format (fs/1000 in Q16.16)
68 * this will overflow at approx 524 kHz
69 */
70 static inline unsigned get_usb_full_speed_rate(unsigned int rate)
71 {
72 return ((rate << 13) + 62) / 125;
73 }
74
75 /*
76 * convert a sampling rate into USB high speed format (fs/8000 in Q16.16)
77 * this will overflow at approx 4 MHz
78 */
79 static inline unsigned get_usb_high_speed_rate(unsigned int rate)
80 {
81 return ((rate << 10) + 62) / 125;
82 }
83
84 /*
85 * release a urb data
86 */
87 static void release_urb_ctx(struct snd_urb_ctx *u)
88 {
89 if (u->buffer_size)
90 usb_free_coherent(u->ep->chip->dev, u->buffer_size,
91 u->urb->transfer_buffer,
92 u->urb->transfer_dma);
93 usb_free_urb(u->urb);
94 u->urb = NULL;
95 }
96
97 static const char *usb_error_string(int err)
98 {
99 switch (err) {
100 case -ENODEV:
101 return "no device";
102 case -ENOENT:
103 return "endpoint not enabled";
104 case -EPIPE:
105 return "endpoint stalled";
106 case -ENOSPC:
107 return "not enough bandwidth";
108 case -ESHUTDOWN:
109 return "device disabled";
110 case -EHOSTUNREACH:
111 return "device suspended";
112 case -EINVAL:
113 case -EAGAIN:
114 case -EFBIG:
115 case -EMSGSIZE:
116 return "internal error";
117 default:
118 return "unknown error";
119 }
120 }
121
122 /**
123 * snd_usb_endpoint_implicit_feedback_sink: Report endpoint usage type
124 *
125 * @ep: The snd_usb_endpoint
126 *
127 * Determine whether an endpoint is driven by an implicit feedback
128 * data endpoint source.
129 */
130 int snd_usb_endpoint_implicit_feedback_sink(struct snd_usb_endpoint *ep)
131 {
132 return ep->sync_master &&
133 ep->sync_master->type == SND_USB_ENDPOINT_TYPE_DATA &&
134 ep->type == SND_USB_ENDPOINT_TYPE_DATA &&
135 usb_pipeout(ep->pipe);
136 }
137
138 /*
139 * For streaming based on information derived from sync endpoints,
140 * prepare_outbound_urb_sizes() will call next_packet_size() to
141 * determine the number of samples to be sent in the next packet.
142 *
143 * For implicit feedback, next_packet_size() is unused.
144 */
145 int snd_usb_endpoint_next_packet_size(struct snd_usb_endpoint *ep)
146 {
147 unsigned long flags;
148 int ret;
149
150 if (ep->fill_max)
151 return ep->maxframesize;
152
153 spin_lock_irqsave(&ep->lock, flags);
154 ep->phase = (ep->phase & 0xffff)
155 + (ep->freqm << ep->datainterval);
156 ret = min(ep->phase >> 16, ep->maxframesize);
157 spin_unlock_irqrestore(&ep->lock, flags);
158
159 return ret;
160 }
161
162 static void retire_outbound_urb(struct snd_usb_endpoint *ep,
163 struct snd_urb_ctx *urb_ctx)
164 {
165 if (ep->retire_data_urb)
166 ep->retire_data_urb(ep->data_subs, urb_ctx->urb);
167 }
168
169 static void retire_inbound_urb(struct snd_usb_endpoint *ep,
170 struct snd_urb_ctx *urb_ctx)
171 {
172 struct urb *urb = urb_ctx->urb;
173
174 if (unlikely(ep->skip_packets > 0)) {
175 ep->skip_packets--;
176 return;
177 }
178
179 if (ep->sync_slave)
180 snd_usb_handle_sync_urb(ep->sync_slave, ep, urb);
181
182 if (ep->retire_data_urb)
183 ep->retire_data_urb(ep->data_subs, urb);
184 }
185
186 /*
187 * Prepare a PLAYBACK urb for submission to the bus.
188 */
189 static void prepare_outbound_urb(struct snd_usb_endpoint *ep,
190 struct snd_urb_ctx *ctx)
191 {
192 int i;
193 struct urb *urb = ctx->urb;
194 unsigned char *cp = urb->transfer_buffer;
195
196 urb->dev = ep->chip->dev; /* we need to set this at each time */
197
198 switch (ep->type) {
199 case SND_USB_ENDPOINT_TYPE_DATA:
200 if (ep->prepare_data_urb) {
201 ep->prepare_data_urb(ep->data_subs, urb);
202 } else {
203 /* no data provider, so send silence */
204 unsigned int offs = 0;
205 for (i = 0; i < ctx->packets; ++i) {
206 int counts;
207
208 if (ctx->packet_size[i])
209 counts = ctx->packet_size[i];
210 else
211 counts = snd_usb_endpoint_next_packet_size(ep);
212
213 urb->iso_frame_desc[i].offset = offs * ep->stride;
214 urb->iso_frame_desc[i].length = counts * ep->stride;
215 offs += counts;
216 }
217
218 urb->number_of_packets = ctx->packets;
219 urb->transfer_buffer_length = offs * ep->stride;
220 memset(urb->transfer_buffer, ep->silence_value,
221 offs * ep->stride);
222 }
223 break;
224
225 case SND_USB_ENDPOINT_TYPE_SYNC:
226 if (snd_usb_get_speed(ep->chip->dev) >= USB_SPEED_HIGH) {
227 /*
228 * fill the length and offset of each urb descriptor.
229 * the fixed 12.13 frequency is passed as 16.16 through the pipe.
230 */
231 urb->iso_frame_desc[0].length = 4;
232 urb->iso_frame_desc[0].offset = 0;
233 cp[0] = ep->freqn;
234 cp[1] = ep->freqn >> 8;
235 cp[2] = ep->freqn >> 16;
236 cp[3] = ep->freqn >> 24;
237 } else {
238 /*
239 * fill the length and offset of each urb descriptor.
240 * the fixed 10.14 frequency is passed through the pipe.
241 */
242 urb->iso_frame_desc[0].length = 3;
243 urb->iso_frame_desc[0].offset = 0;
244 cp[0] = ep->freqn >> 2;
245 cp[1] = ep->freqn >> 10;
246 cp[2] = ep->freqn >> 18;
247 }
248
249 break;
250 }
251 }
252
253 /*
254 * Prepare a CAPTURE or SYNC urb for submission to the bus.
255 */
256 static inline void prepare_inbound_urb(struct snd_usb_endpoint *ep,
257 struct snd_urb_ctx *urb_ctx)
258 {
259 int i, offs;
260 struct urb *urb = urb_ctx->urb;
261
262 urb->dev = ep->chip->dev; /* we need to set this at each time */
263
264 switch (ep->type) {
265 case SND_USB_ENDPOINT_TYPE_DATA:
266 offs = 0;
267 for (i = 0; i < urb_ctx->packets; i++) {
268 urb->iso_frame_desc[i].offset = offs;
269 urb->iso_frame_desc[i].length = ep->curpacksize;
270 offs += ep->curpacksize;
271 }
272
273 urb->transfer_buffer_length = offs;
274 urb->number_of_packets = urb_ctx->packets;
275 break;
276
277 case SND_USB_ENDPOINT_TYPE_SYNC:
278 urb->iso_frame_desc[0].length = min(4u, ep->syncmaxsize);
279 urb->iso_frame_desc[0].offset = 0;
280 break;
281 }
282 }
283
284 /*
285 * Send output urbs that have been prepared previously. URBs are dequeued
286 * from ep->ready_playback_urbs and in case there there aren't any available
287 * or there are no packets that have been prepared, this function does
288 * nothing.
289 *
290 * The reason why the functionality of sending and preparing URBs is separated
291 * is that host controllers don't guarantee the order in which they return
292 * inbound and outbound packets to their submitters.
293 *
294 * This function is only used for implicit feedback endpoints. For endpoints
295 * driven by dedicated sync endpoints, URBs are immediately re-submitted
296 * from their completion handler.
297 */
298 static void queue_pending_output_urbs(struct snd_usb_endpoint *ep)
299 {
300 while (test_bit(EP_FLAG_RUNNING, &ep->flags)) {
301
302 unsigned long flags;
303 struct snd_usb_packet_info *uninitialized_var(packet);
304 struct snd_urb_ctx *ctx = NULL;
305 struct urb *urb;
306 int err, i;
307
308 spin_lock_irqsave(&ep->lock, flags);
309 if (ep->next_packet_read_pos != ep->next_packet_write_pos) {
310 packet = ep->next_packet + ep->next_packet_read_pos;
311 ep->next_packet_read_pos++;
312 ep->next_packet_read_pos %= MAX_URBS;
313
314 /* take URB out of FIFO */
315 if (!list_empty(&ep->ready_playback_urbs))
316 ctx = list_first_entry(&ep->ready_playback_urbs,
317 struct snd_urb_ctx, ready_list);
318 }
319 spin_unlock_irqrestore(&ep->lock, flags);
320
321 if (ctx == NULL)
322 return;
323
324 list_del_init(&ctx->ready_list);
325 urb = ctx->urb;
326
327 /* copy over the length information */
328 for (i = 0; i < packet->packets; i++)
329 ctx->packet_size[i] = packet->packet_size[i];
330
331 /* call the data handler to fill in playback data */
332 prepare_outbound_urb(ep, ctx);
333
334 err = usb_submit_urb(ctx->urb, GFP_ATOMIC);
335 if (err < 0)
336 usb_audio_err(ep->chip,
337 "Unable to submit urb #%d: %d (urb %p)\n",
338 ctx->index, err, ctx->urb);
339 else
340 set_bit(ctx->index, &ep->active_mask);
341 }
342 }
343
344 /*
345 * complete callback for urbs
346 */
347 static void snd_complete_urb(struct urb *urb)
348 {
349 struct snd_urb_ctx *ctx = urb->context;
350 struct snd_usb_endpoint *ep = ctx->ep;
351 int err;
352
353 if (unlikely(urb->status == -ENOENT || /* unlinked */
354 urb->status == -ENODEV || /* device removed */
355 urb->status == -ECONNRESET || /* unlinked */
356 urb->status == -ESHUTDOWN || /* device disabled */
357 ep->chip->shutdown)) /* device disconnected */
358 goto exit_clear;
359
360 if (usb_pipeout(ep->pipe)) {
361 retire_outbound_urb(ep, ctx);
362 /* can be stopped during retire callback */
363 if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
364 goto exit_clear;
365
366 if (snd_usb_endpoint_implicit_feedback_sink(ep)) {
367 unsigned long flags;
368
369 spin_lock_irqsave(&ep->lock, flags);
370 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs);
371 spin_unlock_irqrestore(&ep->lock, flags);
372 queue_pending_output_urbs(ep);
373
374 goto exit_clear;
375 }
376
377 prepare_outbound_urb(ep, ctx);
378 } else {
379 retire_inbound_urb(ep, ctx);
380 /* can be stopped during retire callback */
381 if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
382 goto exit_clear;
383
384 prepare_inbound_urb(ep, ctx);
385 }
386
387 err = usb_submit_urb(urb, GFP_ATOMIC);
388 if (err == 0)
389 return;
390
391 usb_audio_err(ep->chip, "cannot submit urb (err = %d)\n", err);
392 //snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
393
394 exit_clear:
395 clear_bit(ctx->index, &ep->active_mask);
396 }
397
398 /**
399 * snd_usb_add_endpoint: Add an endpoint to an USB audio chip
400 *
401 * @chip: The chip
402 * @alts: The USB host interface
403 * @ep_num: The number of the endpoint to use
404 * @direction: SNDRV_PCM_STREAM_PLAYBACK or SNDRV_PCM_STREAM_CAPTURE
405 * @type: SND_USB_ENDPOINT_TYPE_DATA or SND_USB_ENDPOINT_TYPE_SYNC
406 *
407 * If the requested endpoint has not been added to the given chip before,
408 * a new instance is created. Otherwise, a pointer to the previoulsy
409 * created instance is returned. In case of any error, NULL is returned.
410 *
411 * New endpoints will be added to chip->ep_list and must be freed by
412 * calling snd_usb_endpoint_free().
413 */
414 struct snd_usb_endpoint *snd_usb_add_endpoint(struct snd_usb_audio *chip,
415 struct usb_host_interface *alts,
416 int ep_num, int direction, int type)
417 {
418 struct snd_usb_endpoint *ep;
419 int is_playback = direction == SNDRV_PCM_STREAM_PLAYBACK;
420
421 if (WARN_ON(!alts))
422 return NULL;
423
424 mutex_lock(&chip->mutex);
425
426 list_for_each_entry(ep, &chip->ep_list, list) {
427 if (ep->ep_num == ep_num &&
428 ep->iface == alts->desc.bInterfaceNumber &&
429 ep->altsetting == alts->desc.bAlternateSetting) {
430 usb_audio_dbg(ep->chip,
431 "Re-using EP %x in iface %d,%d @%p\n",
432 ep_num, ep->iface, ep->altsetting, ep);
433 goto __exit_unlock;
434 }
435 }
436
437 usb_audio_dbg(chip, "Creating new %s %s endpoint #%x\n",
438 is_playback ? "playback" : "capture",
439 type == SND_USB_ENDPOINT_TYPE_DATA ? "data" : "sync",
440 ep_num);
441
442 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
443 if (!ep)
444 goto __exit_unlock;
445
446 ep->chip = chip;
447 spin_lock_init(&ep->lock);
448 ep->type = type;
449 ep->ep_num = ep_num;
450 ep->iface = alts->desc.bInterfaceNumber;
451 ep->altsetting = alts->desc.bAlternateSetting;
452 INIT_LIST_HEAD(&ep->ready_playback_urbs);
453 ep_num &= USB_ENDPOINT_NUMBER_MASK;
454
455 if (is_playback)
456 ep->pipe = usb_sndisocpipe(chip->dev, ep_num);
457 else
458 ep->pipe = usb_rcvisocpipe(chip->dev, ep_num);
459
460 if (type == SND_USB_ENDPOINT_TYPE_SYNC) {
461 if (get_endpoint(alts, 1)->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE &&
462 get_endpoint(alts, 1)->bRefresh >= 1 &&
463 get_endpoint(alts, 1)->bRefresh <= 9)
464 ep->syncinterval = get_endpoint(alts, 1)->bRefresh;
465 else if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL)
466 ep->syncinterval = 1;
467 else if (get_endpoint(alts, 1)->bInterval >= 1 &&
468 get_endpoint(alts, 1)->bInterval <= 16)
469 ep->syncinterval = get_endpoint(alts, 1)->bInterval - 1;
470 else
471 ep->syncinterval = 3;
472
473 ep->syncmaxsize = le16_to_cpu(get_endpoint(alts, 1)->wMaxPacketSize);
474 }
475
476 list_add_tail(&ep->list, &chip->ep_list);
477
478 __exit_unlock:
479 mutex_unlock(&chip->mutex);
480
481 return ep;
482 }
483
484 /*
485 * wait until all urbs are processed.
486 */
487 static int wait_clear_urbs(struct snd_usb_endpoint *ep)
488 {
489 unsigned long end_time = jiffies + msecs_to_jiffies(1000);
490 int alive;
491
492 do {
493 alive = bitmap_weight(&ep->active_mask, ep->nurbs);
494 if (!alive)
495 break;
496
497 schedule_timeout_uninterruptible(1);
498 } while (time_before(jiffies, end_time));
499
500 if (alive)
501 usb_audio_err(ep->chip,
502 "timeout: still %d active urbs on EP #%x\n",
503 alive, ep->ep_num);
504 clear_bit(EP_FLAG_STOPPING, &ep->flags);
505
506 return 0;
507 }
508
509 /* sync the pending stop operation;
510 * this function itself doesn't trigger the stop operation
511 */
512 void snd_usb_endpoint_sync_pending_stop(struct snd_usb_endpoint *ep)
513 {
514 if (ep && test_bit(EP_FLAG_STOPPING, &ep->flags))
515 wait_clear_urbs(ep);
516 }
517
518 /*
519 * unlink active urbs.
520 */
521 static int deactivate_urbs(struct snd_usb_endpoint *ep, bool force)
522 {
523 unsigned int i;
524
525 if (!force && ep->chip->shutdown) /* to be sure... */
526 return -EBADFD;
527
528 clear_bit(EP_FLAG_RUNNING, &ep->flags);
529
530 INIT_LIST_HEAD(&ep->ready_playback_urbs);
531 ep->next_packet_read_pos = 0;
532 ep->next_packet_write_pos = 0;
533
534 for (i = 0; i < ep->nurbs; i++) {
535 if (test_bit(i, &ep->active_mask)) {
536 if (!test_and_set_bit(i, &ep->unlink_mask)) {
537 struct urb *u = ep->urb[i].urb;
538 usb_unlink_urb(u);
539 }
540 }
541 }
542
543 return 0;
544 }
545
546 /*
547 * release an endpoint's urbs
548 */
549 static void release_urbs(struct snd_usb_endpoint *ep, int force)
550 {
551 int i;
552
553 /* route incoming urbs to nirvana */
554 ep->retire_data_urb = NULL;
555 ep->prepare_data_urb = NULL;
556
557 /* stop urbs */
558 deactivate_urbs(ep, force);
559 wait_clear_urbs(ep);
560
561 for (i = 0; i < ep->nurbs; i++)
562 release_urb_ctx(&ep->urb[i]);
563
564 if (ep->syncbuf)
565 usb_free_coherent(ep->chip->dev, SYNC_URBS * 4,
566 ep->syncbuf, ep->sync_dma);
567
568 ep->syncbuf = NULL;
569 ep->nurbs = 0;
570 }
571
572 /*
573 * configure a data endpoint
574 */
575 static int data_ep_set_params(struct snd_usb_endpoint *ep,
576 snd_pcm_format_t pcm_format,
577 unsigned int channels,
578 unsigned int period_bytes,
579 unsigned int frames_per_period,
580 unsigned int periods_per_buffer,
581 struct audioformat *fmt,
582 struct snd_usb_endpoint *sync_ep)
583 {
584 unsigned int maxsize, minsize, packs_per_ms, max_packs_per_urb;
585 unsigned int max_packs_per_period, urbs_per_period, urb_packs;
586 unsigned int max_urbs, i;
587 int frame_bits = snd_pcm_format_physical_width(pcm_format) * channels;
588
589 if (pcm_format == SNDRV_PCM_FORMAT_DSD_U16_LE && fmt->dsd_dop) {
590 /*
591 * When operating in DSD DOP mode, the size of a sample frame
592 * in hardware differs from the actual physical format width
593 * because we need to make room for the DOP markers.
594 */
595 frame_bits += channels << 3;
596 }
597
598 ep->datainterval = fmt->datainterval;
599 ep->stride = frame_bits >> 3;
600 ep->silence_value = pcm_format == SNDRV_PCM_FORMAT_U8 ? 0x80 : 0;
601
602 /* assume max. frequency is 25% higher than nominal */
603 ep->freqmax = ep->freqn + (ep->freqn >> 2);
604 maxsize = ((ep->freqmax + 0xffff) * (frame_bits >> 3))
605 >> (16 - ep->datainterval);
606 /* but wMaxPacketSize might reduce this */
607 if (ep->maxpacksize && ep->maxpacksize < maxsize) {
608 /* whatever fits into a max. size packet */
609 maxsize = ep->maxpacksize;
610 ep->freqmax = (maxsize / (frame_bits >> 3))
611 << (16 - ep->datainterval);
612 }
613
614 if (ep->fill_max)
615 ep->curpacksize = ep->maxpacksize;
616 else
617 ep->curpacksize = maxsize;
618
619 if (snd_usb_get_speed(ep->chip->dev) != USB_SPEED_FULL) {
620 packs_per_ms = 8 >> ep->datainterval;
621 max_packs_per_urb = MAX_PACKS_HS;
622 } else {
623 packs_per_ms = 1;
624 max_packs_per_urb = MAX_PACKS;
625 }
626 if (sync_ep && !snd_usb_endpoint_implicit_feedback_sink(ep))
627 max_packs_per_urb = min(max_packs_per_urb,
628 1U << sync_ep->syncinterval);
629 max_packs_per_urb = max(1u, max_packs_per_urb >> ep->datainterval);
630
631 /*
632 * Capture endpoints need to use small URBs because there's no way
633 * to tell in advance where the next period will end, and we don't
634 * want the next URB to complete much after the period ends.
635 *
636 * Playback endpoints with implicit sync much use the same parameters
637 * as their corresponding capture endpoint.
638 */
639 if (usb_pipein(ep->pipe) ||
640 snd_usb_endpoint_implicit_feedback_sink(ep)) {
641
642 urb_packs = packs_per_ms;
643 /*
644 * Wireless devices can poll at a max rate of once per 4ms.
645 * For dataintervals less than 5, increase the packet count to
646 * allow the host controller to use bursting to fill in the
647 * gaps.
648 */
649 if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_WIRELESS) {
650 int interval = ep->datainterval;
651 while (interval < 5) {
652 urb_packs <<= 1;
653 ++interval;
654 }
655 }
656 /* make capture URBs <= 1 ms and smaller than a period */
657 urb_packs = min(max_packs_per_urb, urb_packs);
658 while (urb_packs > 1 && urb_packs * maxsize >= period_bytes)
659 urb_packs >>= 1;
660 ep->nurbs = MAX_URBS;
661
662 /*
663 * Playback endpoints without implicit sync are adjusted so that
664 * a period fits as evenly as possible in the smallest number of
665 * URBs. The total number of URBs is adjusted to the size of the
666 * ALSA buffer, subject to the MAX_URBS and MAX_QUEUE limits.
667 */
668 } else {
669 /* determine how small a packet can be */
670 minsize = (ep->freqn >> (16 - ep->datainterval)) *
671 (frame_bits >> 3);
672 /* with sync from device, assume it can be 12% lower */
673 if (sync_ep)
674 minsize -= minsize >> 3;
675 minsize = max(minsize, 1u);
676
677 /* how many packets will contain an entire ALSA period? */
678 max_packs_per_period = DIV_ROUND_UP(period_bytes, minsize);
679
680 /* how many URBs will contain a period? */
681 urbs_per_period = DIV_ROUND_UP(max_packs_per_period,
682 max_packs_per_urb);
683 /* how many packets are needed in each URB? */
684 urb_packs = DIV_ROUND_UP(max_packs_per_period, urbs_per_period);
685
686 /* limit the number of frames in a single URB */
687 ep->max_urb_frames = DIV_ROUND_UP(frames_per_period,
688 urbs_per_period);
689
690 /* try to use enough URBs to contain an entire ALSA buffer */
691 max_urbs = min((unsigned) MAX_URBS,
692 MAX_QUEUE * packs_per_ms / urb_packs);
693 ep->nurbs = min(max_urbs, urbs_per_period * periods_per_buffer);
694 }
695
696 /* allocate and initialize data urbs */
697 for (i = 0; i < ep->nurbs; i++) {
698 struct snd_urb_ctx *u = &ep->urb[i];
699 u->index = i;
700 u->ep = ep;
701 u->packets = urb_packs;
702 u->buffer_size = maxsize * u->packets;
703
704 if (fmt->fmt_type == UAC_FORMAT_TYPE_II)
705 u->packets++; /* for transfer delimiter */
706 u->urb = usb_alloc_urb(u->packets, GFP_KERNEL);
707 if (!u->urb)
708 goto out_of_memory;
709
710 u->urb->transfer_buffer =
711 usb_alloc_coherent(ep->chip->dev, u->buffer_size,
712 GFP_KERNEL, &u->urb->transfer_dma);
713 if (!u->urb->transfer_buffer)
714 goto out_of_memory;
715 u->urb->pipe = ep->pipe;
716 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
717 u->urb->interval = 1 << ep->datainterval;
718 u->urb->context = u;
719 u->urb->complete = snd_complete_urb;
720 INIT_LIST_HEAD(&u->ready_list);
721 }
722
723 return 0;
724
725 out_of_memory:
726 release_urbs(ep, 0);
727 return -ENOMEM;
728 }
729
730 /*
731 * configure a sync endpoint
732 */
733 static int sync_ep_set_params(struct snd_usb_endpoint *ep)
734 {
735 int i;
736
737 ep->syncbuf = usb_alloc_coherent(ep->chip->dev, SYNC_URBS * 4,
738 GFP_KERNEL, &ep->sync_dma);
739 if (!ep->syncbuf)
740 return -ENOMEM;
741
742 for (i = 0; i < SYNC_URBS; i++) {
743 struct snd_urb_ctx *u = &ep->urb[i];
744 u->index = i;
745 u->ep = ep;
746 u->packets = 1;
747 u->urb = usb_alloc_urb(1, GFP_KERNEL);
748 if (!u->urb)
749 goto out_of_memory;
750 u->urb->transfer_buffer = ep->syncbuf + i * 4;
751 u->urb->transfer_dma = ep->sync_dma + i * 4;
752 u->urb->transfer_buffer_length = 4;
753 u->urb->pipe = ep->pipe;
754 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
755 u->urb->number_of_packets = 1;
756 u->urb->interval = 1 << ep->syncinterval;
757 u->urb->context = u;
758 u->urb->complete = snd_complete_urb;
759 }
760
761 ep->nurbs = SYNC_URBS;
762
763 return 0;
764
765 out_of_memory:
766 release_urbs(ep, 0);
767 return -ENOMEM;
768 }
769
770 /**
771 * snd_usb_endpoint_set_params: configure an snd_usb_endpoint
772 *
773 * @ep: the snd_usb_endpoint to configure
774 * @pcm_format: the audio fomat.
775 * @channels: the number of audio channels.
776 * @period_bytes: the number of bytes in one alsa period.
777 * @period_frames: the number of frames in one alsa period.
778 * @buffer_periods: the number of periods in one alsa buffer.
779 * @rate: the frame rate.
780 * @fmt: the USB audio format information
781 * @sync_ep: the sync endpoint to use, if any
782 *
783 * Determine the number of URBs to be used on this endpoint.
784 * An endpoint must be configured before it can be started.
785 * An endpoint that is already running can not be reconfigured.
786 */
787 int snd_usb_endpoint_set_params(struct snd_usb_endpoint *ep,
788 snd_pcm_format_t pcm_format,
789 unsigned int channels,
790 unsigned int period_bytes,
791 unsigned int period_frames,
792 unsigned int buffer_periods,
793 unsigned int rate,
794 struct audioformat *fmt,
795 struct snd_usb_endpoint *sync_ep)
796 {
797 int err;
798
799 if (ep->use_count != 0) {
800 usb_audio_warn(ep->chip,
801 "Unable to change format on ep #%x: already in use\n",
802 ep->ep_num);
803 return -EBUSY;
804 }
805
806 /* release old buffers, if any */
807 release_urbs(ep, 0);
808
809 ep->datainterval = fmt->datainterval;
810 ep->maxpacksize = fmt->maxpacksize;
811 ep->fill_max = !!(fmt->attributes & UAC_EP_CS_ATTR_FILL_MAX);
812
813 if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_FULL)
814 ep->freqn = get_usb_full_speed_rate(rate);
815 else
816 ep->freqn = get_usb_high_speed_rate(rate);
817
818 /* calculate the frequency in 16.16 format */
819 ep->freqm = ep->freqn;
820 ep->freqshift = INT_MIN;
821
822 ep->phase = 0;
823
824 switch (ep->type) {
825 case SND_USB_ENDPOINT_TYPE_DATA:
826 err = data_ep_set_params(ep, pcm_format, channels,
827 period_bytes, period_frames,
828 buffer_periods, fmt, sync_ep);
829 break;
830 case SND_USB_ENDPOINT_TYPE_SYNC:
831 err = sync_ep_set_params(ep);
832 break;
833 default:
834 err = -EINVAL;
835 }
836
837 usb_audio_dbg(ep->chip,
838 "Setting params for ep #%x (type %d, %d urbs), ret=%d\n",
839 ep->ep_num, ep->type, ep->nurbs, err);
840
841 return err;
842 }
843
844 /**
845 * snd_usb_endpoint_start: start an snd_usb_endpoint
846 *
847 * @ep: the endpoint to start
848 * @can_sleep: flag indicating whether the operation is executed in
849 * non-atomic context
850 *
851 * A call to this function will increment the use count of the endpoint.
852 * In case it is not already running, the URBs for this endpoint will be
853 * submitted. Otherwise, this function does nothing.
854 *
855 * Must be balanced to calls of snd_usb_endpoint_stop().
856 *
857 * Returns an error if the URB submission failed, 0 in all other cases.
858 */
859 int snd_usb_endpoint_start(struct snd_usb_endpoint *ep, bool can_sleep)
860 {
861 int err;
862 unsigned int i;
863
864 if (ep->chip->shutdown)
865 return -EBADFD;
866
867 /* already running? */
868 if (++ep->use_count != 1)
869 return 0;
870
871 /* just to be sure */
872 deactivate_urbs(ep, false);
873 if (can_sleep)
874 wait_clear_urbs(ep);
875
876 ep->active_mask = 0;
877 ep->unlink_mask = 0;
878 ep->phase = 0;
879
880 snd_usb_endpoint_start_quirk(ep);
881
882 /*
883 * If this endpoint has a data endpoint as implicit feedback source,
884 * don't start the urbs here. Instead, mark them all as available,
885 * wait for the record urbs to return and queue the playback urbs
886 * from that context.
887 */
888
889 set_bit(EP_FLAG_RUNNING, &ep->flags);
890
891 if (snd_usb_endpoint_implicit_feedback_sink(ep)) {
892 for (i = 0; i < ep->nurbs; i++) {
893 struct snd_urb_ctx *ctx = ep->urb + i;
894 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs);
895 }
896
897 return 0;
898 }
899
900 for (i = 0; i < ep->nurbs; i++) {
901 struct urb *urb = ep->urb[i].urb;
902
903 if (snd_BUG_ON(!urb))
904 goto __error;
905
906 if (usb_pipeout(ep->pipe)) {
907 prepare_outbound_urb(ep, urb->context);
908 } else {
909 prepare_inbound_urb(ep, urb->context);
910 }
911
912 err = usb_submit_urb(urb, GFP_ATOMIC);
913 if (err < 0) {
914 usb_audio_err(ep->chip,
915 "cannot submit urb %d, error %d: %s\n",
916 i, err, usb_error_string(err));
917 goto __error;
918 }
919 set_bit(i, &ep->active_mask);
920 }
921
922 return 0;
923
924 __error:
925 clear_bit(EP_FLAG_RUNNING, &ep->flags);
926 ep->use_count--;
927 deactivate_urbs(ep, false);
928 return -EPIPE;
929 }
930
931 /**
932 * snd_usb_endpoint_stop: stop an snd_usb_endpoint
933 *
934 * @ep: the endpoint to stop (may be NULL)
935 *
936 * A call to this function will decrement the use count of the endpoint.
937 * In case the last user has requested the endpoint stop, the URBs will
938 * actually be deactivated.
939 *
940 * Must be balanced to calls of snd_usb_endpoint_start().
941 *
942 * The caller needs to synchronize the pending stop operation via
943 * snd_usb_endpoint_sync_pending_stop().
944 */
945 void snd_usb_endpoint_stop(struct snd_usb_endpoint *ep)
946 {
947 if (!ep)
948 return;
949
950 if (snd_BUG_ON(ep->use_count == 0))
951 return;
952
953 if (--ep->use_count == 0) {
954 deactivate_urbs(ep, false);
955 ep->data_subs = NULL;
956 ep->sync_slave = NULL;
957 ep->retire_data_urb = NULL;
958 ep->prepare_data_urb = NULL;
959 set_bit(EP_FLAG_STOPPING, &ep->flags);
960 }
961 }
962
963 /**
964 * snd_usb_endpoint_deactivate: deactivate an snd_usb_endpoint
965 *
966 * @ep: the endpoint to deactivate
967 *
968 * If the endpoint is not currently in use, this functions will
969 * deactivate its associated URBs.
970 *
971 * In case of any active users, this functions does nothing.
972 */
973 void snd_usb_endpoint_deactivate(struct snd_usb_endpoint *ep)
974 {
975 if (!ep)
976 return;
977
978 if (ep->use_count != 0)
979 return;
980
981 deactivate_urbs(ep, true);
982 wait_clear_urbs(ep);
983 }
984
985 /**
986 * snd_usb_endpoint_free: Free the resources of an snd_usb_endpoint
987 *
988 * @ep: the list header of the endpoint to free
989 *
990 * This function does not care for the endpoint's use count but will tear
991 * down all the streaming URBs immediately and free all resources.
992 */
993 void snd_usb_endpoint_free(struct list_head *head)
994 {
995 struct snd_usb_endpoint *ep;
996
997 ep = list_entry(head, struct snd_usb_endpoint, list);
998 release_urbs(ep, 1);
999 kfree(ep);
1000 }
1001
1002 /**
1003 * snd_usb_handle_sync_urb: parse an USB sync packet
1004 *
1005 * @ep: the endpoint to handle the packet
1006 * @sender: the sending endpoint
1007 * @urb: the received packet
1008 *
1009 * This function is called from the context of an endpoint that received
1010 * the packet and is used to let another endpoint object handle the payload.
1011 */
1012 void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep,
1013 struct snd_usb_endpoint *sender,
1014 const struct urb *urb)
1015 {
1016 int shift;
1017 unsigned int f;
1018 unsigned long flags;
1019
1020 snd_BUG_ON(ep == sender);
1021
1022 /*
1023 * In case the endpoint is operating in implicit feedback mode, prepare
1024 * a new outbound URB that has the same layout as the received packet
1025 * and add it to the list of pending urbs. queue_pending_output_urbs()
1026 * will take care of them later.
1027 */
1028 if (snd_usb_endpoint_implicit_feedback_sink(ep) &&
1029 ep->use_count != 0) {
1030
1031 /* implicit feedback case */
1032 int i, bytes = 0;
1033 struct snd_urb_ctx *in_ctx;
1034 struct snd_usb_packet_info *out_packet;
1035
1036 in_ctx = urb->context;
1037
1038 /* Count overall packet size */
1039 for (i = 0; i < in_ctx->packets; i++)
1040 if (urb->iso_frame_desc[i].status == 0)
1041 bytes += urb->iso_frame_desc[i].actual_length;
1042
1043 /*
1044 * skip empty packets. At least M-Audio's Fast Track Ultra stops
1045 * streaming once it received a 0-byte OUT URB
1046 */
1047 if (bytes == 0)
1048 return;
1049
1050 spin_lock_irqsave(&ep->lock, flags);
1051 out_packet = ep->next_packet + ep->next_packet_write_pos;
1052
1053 /*
1054 * Iterate through the inbound packet and prepare the lengths
1055 * for the output packet. The OUT packet we are about to send
1056 * will have the same amount of payload bytes per stride as the
1057 * IN packet we just received. Since the actual size is scaled
1058 * by the stride, use the sender stride to calculate the length
1059 * in case the number of channels differ between the implicitly
1060 * fed-back endpoint and the synchronizing endpoint.
1061 */
1062
1063 out_packet->packets = in_ctx->packets;
1064 for (i = 0; i < in_ctx->packets; i++) {
1065 if (urb->iso_frame_desc[i].status == 0)
1066 out_packet->packet_size[i] =
1067 urb->iso_frame_desc[i].actual_length / sender->stride;
1068 else
1069 out_packet->packet_size[i] = 0;
1070 }
1071
1072 ep->next_packet_write_pos++;
1073 ep->next_packet_write_pos %= MAX_URBS;
1074 spin_unlock_irqrestore(&ep->lock, flags);
1075 queue_pending_output_urbs(ep);
1076
1077 return;
1078 }
1079
1080 /*
1081 * process after playback sync complete
1082 *
1083 * Full speed devices report feedback values in 10.14 format as samples
1084 * per frame, high speed devices in 16.16 format as samples per
1085 * microframe.
1086 *
1087 * Because the Audio Class 1 spec was written before USB 2.0, many high
1088 * speed devices use a wrong interpretation, some others use an
1089 * entirely different format.
1090 *
1091 * Therefore, we cannot predict what format any particular device uses
1092 * and must detect it automatically.
1093 */
1094
1095 if (urb->iso_frame_desc[0].status != 0 ||
1096 urb->iso_frame_desc[0].actual_length < 3)
1097 return;
1098
1099 f = le32_to_cpup(urb->transfer_buffer);
1100 if (urb->iso_frame_desc[0].actual_length == 3)
1101 f &= 0x00ffffff;
1102 else
1103 f &= 0x0fffffff;
1104
1105 if (f == 0)
1106 return;
1107
1108 if (unlikely(ep->freqshift == INT_MIN)) {
1109 /*
1110 * The first time we see a feedback value, determine its format
1111 * by shifting it left or right until it matches the nominal
1112 * frequency value. This assumes that the feedback does not
1113 * differ from the nominal value more than +50% or -25%.
1114 */
1115 shift = 0;
1116 while (f < ep->freqn - ep->freqn / 4) {
1117 f <<= 1;
1118 shift++;
1119 }
1120 while (f > ep->freqn + ep->freqn / 2) {
1121 f >>= 1;
1122 shift--;
1123 }
1124 ep->freqshift = shift;
1125 } else if (ep->freqshift >= 0)
1126 f <<= ep->freqshift;
1127 else
1128 f >>= -ep->freqshift;
1129
1130 if (likely(f >= ep->freqn - ep->freqn / 8 && f <= ep->freqmax)) {
1131 /*
1132 * If the frequency looks valid, set it.
1133 * This value is referred to in prepare_playback_urb().
1134 */
1135 spin_lock_irqsave(&ep->lock, flags);
1136 ep->freqm = f;
1137 spin_unlock_irqrestore(&ep->lock, flags);
1138 } else {
1139 /*
1140 * Out of range; maybe the shift value is wrong.
1141 * Reset it so that we autodetect again the next time.
1142 */
1143 ep->freqshift = INT_MIN;
1144 }
1145 }
1146
This page took 0.057072 seconds and 5 git commands to generate.