Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty...
[deliverable/linux.git] / sound / usb / endpoint.c
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License as published by
4 * the Free Software Foundation; either version 2 of the License, or
5 * (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
15 *
16 */
17
18 #include <linux/gfp.h>
19 #include <linux/init.h>
20 #include <linux/ratelimit.h>
21 #include <linux/usb.h>
22 #include <linux/usb/audio.h>
23 #include <linux/slab.h>
24
25 #include <sound/core.h>
26 #include <sound/pcm.h>
27 #include <sound/pcm_params.h>
28
29 #include "usbaudio.h"
30 #include "helper.h"
31 #include "card.h"
32 #include "endpoint.h"
33 #include "pcm.h"
34 #include "quirks.h"
35
36 #define EP_FLAG_RUNNING 1
37 #define EP_FLAG_STOPPING 2
38
39 /*
40 * snd_usb_endpoint is a model that abstracts everything related to an
41 * USB endpoint and its streaming.
42 *
43 * There are functions to activate and deactivate the streaming URBs and
44 * optional callbacks to let the pcm logic handle the actual content of the
45 * packets for playback and record. Thus, the bus streaming and the audio
46 * handlers are fully decoupled.
47 *
48 * There are two different types of endpoints in audio applications.
49 *
50 * SND_USB_ENDPOINT_TYPE_DATA handles full audio data payload for both
51 * inbound and outbound traffic.
52 *
53 * SND_USB_ENDPOINT_TYPE_SYNC endpoints are for inbound traffic only and
54 * expect the payload to carry Q10.14 / Q16.16 formatted sync information
55 * (3 or 4 bytes).
56 *
57 * Each endpoint has to be configured prior to being used by calling
58 * snd_usb_endpoint_set_params().
59 *
60 * The model incorporates a reference counting, so that multiple users
61 * can call snd_usb_endpoint_start() and snd_usb_endpoint_stop(), and
62 * only the first user will effectively start the URBs, and only the last
63 * one to stop it will tear the URBs down again.
64 */
65
66 /*
67 * convert a sampling rate into our full speed format (fs/1000 in Q16.16)
68 * this will overflow at approx 524 kHz
69 */
70 static inline unsigned get_usb_full_speed_rate(unsigned int rate)
71 {
72 return ((rate << 13) + 62) / 125;
73 }
74
75 /*
76 * convert a sampling rate into USB high speed format (fs/8000 in Q16.16)
77 * this will overflow at approx 4 MHz
78 */
79 static inline unsigned get_usb_high_speed_rate(unsigned int rate)
80 {
81 return ((rate << 10) + 62) / 125;
82 }
83
84 /*
85 * release a urb data
86 */
87 static void release_urb_ctx(struct snd_urb_ctx *u)
88 {
89 if (u->buffer_size)
90 usb_free_coherent(u->ep->chip->dev, u->buffer_size,
91 u->urb->transfer_buffer,
92 u->urb->transfer_dma);
93 usb_free_urb(u->urb);
94 u->urb = NULL;
95 }
96
97 static const char *usb_error_string(int err)
98 {
99 switch (err) {
100 case -ENODEV:
101 return "no device";
102 case -ENOENT:
103 return "endpoint not enabled";
104 case -EPIPE:
105 return "endpoint stalled";
106 case -ENOSPC:
107 return "not enough bandwidth";
108 case -ESHUTDOWN:
109 return "device disabled";
110 case -EHOSTUNREACH:
111 return "device suspended";
112 case -EINVAL:
113 case -EAGAIN:
114 case -EFBIG:
115 case -EMSGSIZE:
116 return "internal error";
117 default:
118 return "unknown error";
119 }
120 }
121
122 /**
123 * snd_usb_endpoint_implicit_feedback_sink: Report endpoint usage type
124 *
125 * @ep: The snd_usb_endpoint
126 *
127 * Determine whether an endpoint is driven by an implicit feedback
128 * data endpoint source.
129 */
130 int snd_usb_endpoint_implicit_feedback_sink(struct snd_usb_endpoint *ep)
131 {
132 return ep->sync_master &&
133 ep->sync_master->type == SND_USB_ENDPOINT_TYPE_DATA &&
134 ep->type == SND_USB_ENDPOINT_TYPE_DATA &&
135 usb_pipeout(ep->pipe);
136 }
137
138 /*
139 * For streaming based on information derived from sync endpoints,
140 * prepare_outbound_urb_sizes() will call next_packet_size() to
141 * determine the number of samples to be sent in the next packet.
142 *
143 * For implicit feedback, next_packet_size() is unused.
144 */
145 int snd_usb_endpoint_next_packet_size(struct snd_usb_endpoint *ep)
146 {
147 unsigned long flags;
148 int ret;
149
150 if (ep->fill_max)
151 return ep->maxframesize;
152
153 spin_lock_irqsave(&ep->lock, flags);
154 ep->phase = (ep->phase & 0xffff)
155 + (ep->freqm << ep->datainterval);
156 ret = min(ep->phase >> 16, ep->maxframesize);
157 spin_unlock_irqrestore(&ep->lock, flags);
158
159 return ret;
160 }
161
162 static void retire_outbound_urb(struct snd_usb_endpoint *ep,
163 struct snd_urb_ctx *urb_ctx)
164 {
165 if (ep->retire_data_urb)
166 ep->retire_data_urb(ep->data_subs, urb_ctx->urb);
167 }
168
169 static void retire_inbound_urb(struct snd_usb_endpoint *ep,
170 struct snd_urb_ctx *urb_ctx)
171 {
172 struct urb *urb = urb_ctx->urb;
173
174 if (unlikely(ep->skip_packets > 0)) {
175 ep->skip_packets--;
176 return;
177 }
178
179 if (ep->sync_slave)
180 snd_usb_handle_sync_urb(ep->sync_slave, ep, urb);
181
182 if (ep->retire_data_urb)
183 ep->retire_data_urb(ep->data_subs, urb);
184 }
185
186 /*
187 * Prepare a PLAYBACK urb for submission to the bus.
188 */
189 static void prepare_outbound_urb(struct snd_usb_endpoint *ep,
190 struct snd_urb_ctx *ctx)
191 {
192 int i;
193 struct urb *urb = ctx->urb;
194 unsigned char *cp = urb->transfer_buffer;
195
196 urb->dev = ep->chip->dev; /* we need to set this at each time */
197
198 switch (ep->type) {
199 case SND_USB_ENDPOINT_TYPE_DATA:
200 if (ep->prepare_data_urb) {
201 ep->prepare_data_urb(ep->data_subs, urb);
202 } else {
203 /* no data provider, so send silence */
204 unsigned int offs = 0;
205 for (i = 0; i < ctx->packets; ++i) {
206 int counts;
207
208 if (ctx->packet_size[i])
209 counts = ctx->packet_size[i];
210 else
211 counts = snd_usb_endpoint_next_packet_size(ep);
212
213 urb->iso_frame_desc[i].offset = offs * ep->stride;
214 urb->iso_frame_desc[i].length = counts * ep->stride;
215 offs += counts;
216 }
217
218 urb->number_of_packets = ctx->packets;
219 urb->transfer_buffer_length = offs * ep->stride;
220 memset(urb->transfer_buffer, ep->silence_value,
221 offs * ep->stride);
222 }
223 break;
224
225 case SND_USB_ENDPOINT_TYPE_SYNC:
226 if (snd_usb_get_speed(ep->chip->dev) >= USB_SPEED_HIGH) {
227 /*
228 * fill the length and offset of each urb descriptor.
229 * the fixed 12.13 frequency is passed as 16.16 through the pipe.
230 */
231 urb->iso_frame_desc[0].length = 4;
232 urb->iso_frame_desc[0].offset = 0;
233 cp[0] = ep->freqn;
234 cp[1] = ep->freqn >> 8;
235 cp[2] = ep->freqn >> 16;
236 cp[3] = ep->freqn >> 24;
237 } else {
238 /*
239 * fill the length and offset of each urb descriptor.
240 * the fixed 10.14 frequency is passed through the pipe.
241 */
242 urb->iso_frame_desc[0].length = 3;
243 urb->iso_frame_desc[0].offset = 0;
244 cp[0] = ep->freqn >> 2;
245 cp[1] = ep->freqn >> 10;
246 cp[2] = ep->freqn >> 18;
247 }
248
249 break;
250 }
251 }
252
253 /*
254 * Prepare a CAPTURE or SYNC urb for submission to the bus.
255 */
256 static inline void prepare_inbound_urb(struct snd_usb_endpoint *ep,
257 struct snd_urb_ctx *urb_ctx)
258 {
259 int i, offs;
260 struct urb *urb = urb_ctx->urb;
261
262 urb->dev = ep->chip->dev; /* we need to set this at each time */
263
264 switch (ep->type) {
265 case SND_USB_ENDPOINT_TYPE_DATA:
266 offs = 0;
267 for (i = 0; i < urb_ctx->packets; i++) {
268 urb->iso_frame_desc[i].offset = offs;
269 urb->iso_frame_desc[i].length = ep->curpacksize;
270 offs += ep->curpacksize;
271 }
272
273 urb->transfer_buffer_length = offs;
274 urb->number_of_packets = urb_ctx->packets;
275 break;
276
277 case SND_USB_ENDPOINT_TYPE_SYNC:
278 urb->iso_frame_desc[0].length = min(4u, ep->syncmaxsize);
279 urb->iso_frame_desc[0].offset = 0;
280 break;
281 }
282 }
283
284 /*
285 * Send output urbs that have been prepared previously. URBs are dequeued
286 * from ep->ready_playback_urbs and in case there there aren't any available
287 * or there are no packets that have been prepared, this function does
288 * nothing.
289 *
290 * The reason why the functionality of sending and preparing URBs is separated
291 * is that host controllers don't guarantee the order in which they return
292 * inbound and outbound packets to their submitters.
293 *
294 * This function is only used for implicit feedback endpoints. For endpoints
295 * driven by dedicated sync endpoints, URBs are immediately re-submitted
296 * from their completion handler.
297 */
298 static void queue_pending_output_urbs(struct snd_usb_endpoint *ep)
299 {
300 while (test_bit(EP_FLAG_RUNNING, &ep->flags)) {
301
302 unsigned long flags;
303 struct snd_usb_packet_info *uninitialized_var(packet);
304 struct snd_urb_ctx *ctx = NULL;
305 struct urb *urb;
306 int err, i;
307
308 spin_lock_irqsave(&ep->lock, flags);
309 if (ep->next_packet_read_pos != ep->next_packet_write_pos) {
310 packet = ep->next_packet + ep->next_packet_read_pos;
311 ep->next_packet_read_pos++;
312 ep->next_packet_read_pos %= MAX_URBS;
313
314 /* take URB out of FIFO */
315 if (!list_empty(&ep->ready_playback_urbs))
316 ctx = list_first_entry(&ep->ready_playback_urbs,
317 struct snd_urb_ctx, ready_list);
318 }
319 spin_unlock_irqrestore(&ep->lock, flags);
320
321 if (ctx == NULL)
322 return;
323
324 list_del_init(&ctx->ready_list);
325 urb = ctx->urb;
326
327 /* copy over the length information */
328 for (i = 0; i < packet->packets; i++)
329 ctx->packet_size[i] = packet->packet_size[i];
330
331 /* call the data handler to fill in playback data */
332 prepare_outbound_urb(ep, ctx);
333
334 err = usb_submit_urb(ctx->urb, GFP_ATOMIC);
335 if (err < 0)
336 usb_audio_err(ep->chip,
337 "Unable to submit urb #%d: %d (urb %p)\n",
338 ctx->index, err, ctx->urb);
339 else
340 set_bit(ctx->index, &ep->active_mask);
341 }
342 }
343
344 /*
345 * complete callback for urbs
346 */
347 static void snd_complete_urb(struct urb *urb)
348 {
349 struct snd_urb_ctx *ctx = urb->context;
350 struct snd_usb_endpoint *ep = ctx->ep;
351 struct snd_pcm_substream *substream;
352 unsigned long flags;
353 int err;
354
355 if (unlikely(urb->status == -ENOENT || /* unlinked */
356 urb->status == -ENODEV || /* device removed */
357 urb->status == -ECONNRESET || /* unlinked */
358 urb->status == -ESHUTDOWN)) /* device disabled */
359 goto exit_clear;
360 /* device disconnected */
361 if (unlikely(atomic_read(&ep->chip->shutdown)))
362 goto exit_clear;
363
364 if (usb_pipeout(ep->pipe)) {
365 retire_outbound_urb(ep, ctx);
366 /* can be stopped during retire callback */
367 if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
368 goto exit_clear;
369
370 if (snd_usb_endpoint_implicit_feedback_sink(ep)) {
371 spin_lock_irqsave(&ep->lock, flags);
372 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs);
373 spin_unlock_irqrestore(&ep->lock, flags);
374 queue_pending_output_urbs(ep);
375
376 goto exit_clear;
377 }
378
379 prepare_outbound_urb(ep, ctx);
380 } else {
381 retire_inbound_urb(ep, ctx);
382 /* can be stopped during retire callback */
383 if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
384 goto exit_clear;
385
386 prepare_inbound_urb(ep, ctx);
387 }
388
389 err = usb_submit_urb(urb, GFP_ATOMIC);
390 if (err == 0)
391 return;
392
393 usb_audio_err(ep->chip, "cannot submit urb (err = %d)\n", err);
394 if (ep->data_subs && ep->data_subs->pcm_substream) {
395 substream = ep->data_subs->pcm_substream;
396 snd_pcm_stop_xrun(substream);
397 }
398
399 exit_clear:
400 clear_bit(ctx->index, &ep->active_mask);
401 }
402
403 /**
404 * snd_usb_add_endpoint: Add an endpoint to an USB audio chip
405 *
406 * @chip: The chip
407 * @alts: The USB host interface
408 * @ep_num: The number of the endpoint to use
409 * @direction: SNDRV_PCM_STREAM_PLAYBACK or SNDRV_PCM_STREAM_CAPTURE
410 * @type: SND_USB_ENDPOINT_TYPE_DATA or SND_USB_ENDPOINT_TYPE_SYNC
411 *
412 * If the requested endpoint has not been added to the given chip before,
413 * a new instance is created. Otherwise, a pointer to the previoulsy
414 * created instance is returned. In case of any error, NULL is returned.
415 *
416 * New endpoints will be added to chip->ep_list and must be freed by
417 * calling snd_usb_endpoint_free().
418 */
419 struct snd_usb_endpoint *snd_usb_add_endpoint(struct snd_usb_audio *chip,
420 struct usb_host_interface *alts,
421 int ep_num, int direction, int type)
422 {
423 struct snd_usb_endpoint *ep;
424 int is_playback = direction == SNDRV_PCM_STREAM_PLAYBACK;
425
426 if (WARN_ON(!alts))
427 return NULL;
428
429 mutex_lock(&chip->mutex);
430
431 list_for_each_entry(ep, &chip->ep_list, list) {
432 if (ep->ep_num == ep_num &&
433 ep->iface == alts->desc.bInterfaceNumber &&
434 ep->altsetting == alts->desc.bAlternateSetting) {
435 usb_audio_dbg(ep->chip,
436 "Re-using EP %x in iface %d,%d @%p\n",
437 ep_num, ep->iface, ep->altsetting, ep);
438 goto __exit_unlock;
439 }
440 }
441
442 usb_audio_dbg(chip, "Creating new %s %s endpoint #%x\n",
443 is_playback ? "playback" : "capture",
444 type == SND_USB_ENDPOINT_TYPE_DATA ? "data" : "sync",
445 ep_num);
446
447 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
448 if (!ep)
449 goto __exit_unlock;
450
451 ep->chip = chip;
452 spin_lock_init(&ep->lock);
453 ep->type = type;
454 ep->ep_num = ep_num;
455 ep->iface = alts->desc.bInterfaceNumber;
456 ep->altsetting = alts->desc.bAlternateSetting;
457 INIT_LIST_HEAD(&ep->ready_playback_urbs);
458 ep_num &= USB_ENDPOINT_NUMBER_MASK;
459
460 if (is_playback)
461 ep->pipe = usb_sndisocpipe(chip->dev, ep_num);
462 else
463 ep->pipe = usb_rcvisocpipe(chip->dev, ep_num);
464
465 if (type == SND_USB_ENDPOINT_TYPE_SYNC) {
466 if (get_endpoint(alts, 1)->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE &&
467 get_endpoint(alts, 1)->bRefresh >= 1 &&
468 get_endpoint(alts, 1)->bRefresh <= 9)
469 ep->syncinterval = get_endpoint(alts, 1)->bRefresh;
470 else if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL)
471 ep->syncinterval = 1;
472 else if (get_endpoint(alts, 1)->bInterval >= 1 &&
473 get_endpoint(alts, 1)->bInterval <= 16)
474 ep->syncinterval = get_endpoint(alts, 1)->bInterval - 1;
475 else
476 ep->syncinterval = 3;
477
478 ep->syncmaxsize = le16_to_cpu(get_endpoint(alts, 1)->wMaxPacketSize);
479
480 if (chip->usb_id == USB_ID(0x0644, 0x8038) /* TEAC UD-H01 */ &&
481 ep->syncmaxsize == 4)
482 ep->udh01_fb_quirk = 1;
483 }
484
485 list_add_tail(&ep->list, &chip->ep_list);
486
487 __exit_unlock:
488 mutex_unlock(&chip->mutex);
489
490 return ep;
491 }
492
493 /*
494 * wait until all urbs are processed.
495 */
496 static int wait_clear_urbs(struct snd_usb_endpoint *ep)
497 {
498 unsigned long end_time = jiffies + msecs_to_jiffies(1000);
499 int alive;
500
501 do {
502 alive = bitmap_weight(&ep->active_mask, ep->nurbs);
503 if (!alive)
504 break;
505
506 schedule_timeout_uninterruptible(1);
507 } while (time_before(jiffies, end_time));
508
509 if (alive)
510 usb_audio_err(ep->chip,
511 "timeout: still %d active urbs on EP #%x\n",
512 alive, ep->ep_num);
513 clear_bit(EP_FLAG_STOPPING, &ep->flags);
514
515 return 0;
516 }
517
518 /* sync the pending stop operation;
519 * this function itself doesn't trigger the stop operation
520 */
521 void snd_usb_endpoint_sync_pending_stop(struct snd_usb_endpoint *ep)
522 {
523 if (ep && test_bit(EP_FLAG_STOPPING, &ep->flags))
524 wait_clear_urbs(ep);
525 }
526
527 /*
528 * unlink active urbs.
529 */
530 static int deactivate_urbs(struct snd_usb_endpoint *ep, bool force)
531 {
532 unsigned int i;
533
534 if (!force && atomic_read(&ep->chip->shutdown)) /* to be sure... */
535 return -EBADFD;
536
537 clear_bit(EP_FLAG_RUNNING, &ep->flags);
538
539 INIT_LIST_HEAD(&ep->ready_playback_urbs);
540 ep->next_packet_read_pos = 0;
541 ep->next_packet_write_pos = 0;
542
543 for (i = 0; i < ep->nurbs; i++) {
544 if (test_bit(i, &ep->active_mask)) {
545 if (!test_and_set_bit(i, &ep->unlink_mask)) {
546 struct urb *u = ep->urb[i].urb;
547 usb_unlink_urb(u);
548 }
549 }
550 }
551
552 return 0;
553 }
554
555 /*
556 * release an endpoint's urbs
557 */
558 static void release_urbs(struct snd_usb_endpoint *ep, int force)
559 {
560 int i;
561
562 /* route incoming urbs to nirvana */
563 ep->retire_data_urb = NULL;
564 ep->prepare_data_urb = NULL;
565
566 /* stop urbs */
567 deactivate_urbs(ep, force);
568 wait_clear_urbs(ep);
569
570 for (i = 0; i < ep->nurbs; i++)
571 release_urb_ctx(&ep->urb[i]);
572
573 if (ep->syncbuf)
574 usb_free_coherent(ep->chip->dev, SYNC_URBS * 4,
575 ep->syncbuf, ep->sync_dma);
576
577 ep->syncbuf = NULL;
578 ep->nurbs = 0;
579 }
580
581 /*
582 * configure a data endpoint
583 */
584 static int data_ep_set_params(struct snd_usb_endpoint *ep,
585 snd_pcm_format_t pcm_format,
586 unsigned int channels,
587 unsigned int period_bytes,
588 unsigned int frames_per_period,
589 unsigned int periods_per_buffer,
590 struct audioformat *fmt,
591 struct snd_usb_endpoint *sync_ep)
592 {
593 unsigned int maxsize, minsize, packs_per_ms, max_packs_per_urb;
594 unsigned int max_packs_per_period, urbs_per_period, urb_packs;
595 unsigned int max_urbs, i;
596 int frame_bits = snd_pcm_format_physical_width(pcm_format) * channels;
597
598 if (pcm_format == SNDRV_PCM_FORMAT_DSD_U16_LE && fmt->dsd_dop) {
599 /*
600 * When operating in DSD DOP mode, the size of a sample frame
601 * in hardware differs from the actual physical format width
602 * because we need to make room for the DOP markers.
603 */
604 frame_bits += channels << 3;
605 }
606
607 ep->datainterval = fmt->datainterval;
608 ep->stride = frame_bits >> 3;
609 ep->silence_value = pcm_format == SNDRV_PCM_FORMAT_U8 ? 0x80 : 0;
610
611 /* assume max. frequency is 25% higher than nominal */
612 ep->freqmax = ep->freqn + (ep->freqn >> 2);
613 maxsize = ((ep->freqmax + 0xffff) * (frame_bits >> 3))
614 >> (16 - ep->datainterval);
615 /* but wMaxPacketSize might reduce this */
616 if (ep->maxpacksize && ep->maxpacksize < maxsize) {
617 /* whatever fits into a max. size packet */
618 maxsize = ep->maxpacksize;
619 ep->freqmax = (maxsize / (frame_bits >> 3))
620 << (16 - ep->datainterval);
621 }
622
623 if (ep->fill_max)
624 ep->curpacksize = ep->maxpacksize;
625 else
626 ep->curpacksize = maxsize;
627
628 if (snd_usb_get_speed(ep->chip->dev) != USB_SPEED_FULL) {
629 packs_per_ms = 8 >> ep->datainterval;
630 max_packs_per_urb = MAX_PACKS_HS;
631 } else {
632 packs_per_ms = 1;
633 max_packs_per_urb = MAX_PACKS;
634 }
635 if (sync_ep && !snd_usb_endpoint_implicit_feedback_sink(ep))
636 max_packs_per_urb = min(max_packs_per_urb,
637 1U << sync_ep->syncinterval);
638 max_packs_per_urb = max(1u, max_packs_per_urb >> ep->datainterval);
639
640 /*
641 * Capture endpoints need to use small URBs because there's no way
642 * to tell in advance where the next period will end, and we don't
643 * want the next URB to complete much after the period ends.
644 *
645 * Playback endpoints with implicit sync much use the same parameters
646 * as their corresponding capture endpoint.
647 */
648 if (usb_pipein(ep->pipe) ||
649 snd_usb_endpoint_implicit_feedback_sink(ep)) {
650
651 urb_packs = packs_per_ms;
652 /*
653 * Wireless devices can poll at a max rate of once per 4ms.
654 * For dataintervals less than 5, increase the packet count to
655 * allow the host controller to use bursting to fill in the
656 * gaps.
657 */
658 if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_WIRELESS) {
659 int interval = ep->datainterval;
660 while (interval < 5) {
661 urb_packs <<= 1;
662 ++interval;
663 }
664 }
665 /* make capture URBs <= 1 ms and smaller than a period */
666 urb_packs = min(max_packs_per_urb, urb_packs);
667 while (urb_packs > 1 && urb_packs * maxsize >= period_bytes)
668 urb_packs >>= 1;
669 ep->nurbs = MAX_URBS;
670
671 /*
672 * Playback endpoints without implicit sync are adjusted so that
673 * a period fits as evenly as possible in the smallest number of
674 * URBs. The total number of URBs is adjusted to the size of the
675 * ALSA buffer, subject to the MAX_URBS and MAX_QUEUE limits.
676 */
677 } else {
678 /* determine how small a packet can be */
679 minsize = (ep->freqn >> (16 - ep->datainterval)) *
680 (frame_bits >> 3);
681 /* with sync from device, assume it can be 12% lower */
682 if (sync_ep)
683 minsize -= minsize >> 3;
684 minsize = max(minsize, 1u);
685
686 /* how many packets will contain an entire ALSA period? */
687 max_packs_per_period = DIV_ROUND_UP(period_bytes, minsize);
688
689 /* how many URBs will contain a period? */
690 urbs_per_period = DIV_ROUND_UP(max_packs_per_period,
691 max_packs_per_urb);
692 /* how many packets are needed in each URB? */
693 urb_packs = DIV_ROUND_UP(max_packs_per_period, urbs_per_period);
694
695 /* limit the number of frames in a single URB */
696 ep->max_urb_frames = DIV_ROUND_UP(frames_per_period,
697 urbs_per_period);
698
699 /* try to use enough URBs to contain an entire ALSA buffer */
700 max_urbs = min((unsigned) MAX_URBS,
701 MAX_QUEUE * packs_per_ms / urb_packs);
702 ep->nurbs = min(max_urbs, urbs_per_period * periods_per_buffer);
703 }
704
705 /* allocate and initialize data urbs */
706 for (i = 0; i < ep->nurbs; i++) {
707 struct snd_urb_ctx *u = &ep->urb[i];
708 u->index = i;
709 u->ep = ep;
710 u->packets = urb_packs;
711 u->buffer_size = maxsize * u->packets;
712
713 if (fmt->fmt_type == UAC_FORMAT_TYPE_II)
714 u->packets++; /* for transfer delimiter */
715 u->urb = usb_alloc_urb(u->packets, GFP_KERNEL);
716 if (!u->urb)
717 goto out_of_memory;
718
719 u->urb->transfer_buffer =
720 usb_alloc_coherent(ep->chip->dev, u->buffer_size,
721 GFP_KERNEL, &u->urb->transfer_dma);
722 if (!u->urb->transfer_buffer)
723 goto out_of_memory;
724 u->urb->pipe = ep->pipe;
725 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
726 u->urb->interval = 1 << ep->datainterval;
727 u->urb->context = u;
728 u->urb->complete = snd_complete_urb;
729 INIT_LIST_HEAD(&u->ready_list);
730 }
731
732 return 0;
733
734 out_of_memory:
735 release_urbs(ep, 0);
736 return -ENOMEM;
737 }
738
739 /*
740 * configure a sync endpoint
741 */
742 static int sync_ep_set_params(struct snd_usb_endpoint *ep)
743 {
744 int i;
745
746 ep->syncbuf = usb_alloc_coherent(ep->chip->dev, SYNC_URBS * 4,
747 GFP_KERNEL, &ep->sync_dma);
748 if (!ep->syncbuf)
749 return -ENOMEM;
750
751 for (i = 0; i < SYNC_URBS; i++) {
752 struct snd_urb_ctx *u = &ep->urb[i];
753 u->index = i;
754 u->ep = ep;
755 u->packets = 1;
756 u->urb = usb_alloc_urb(1, GFP_KERNEL);
757 if (!u->urb)
758 goto out_of_memory;
759 u->urb->transfer_buffer = ep->syncbuf + i * 4;
760 u->urb->transfer_dma = ep->sync_dma + i * 4;
761 u->urb->transfer_buffer_length = 4;
762 u->urb->pipe = ep->pipe;
763 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
764 u->urb->number_of_packets = 1;
765 u->urb->interval = 1 << ep->syncinterval;
766 u->urb->context = u;
767 u->urb->complete = snd_complete_urb;
768 }
769
770 ep->nurbs = SYNC_URBS;
771
772 return 0;
773
774 out_of_memory:
775 release_urbs(ep, 0);
776 return -ENOMEM;
777 }
778
779 /**
780 * snd_usb_endpoint_set_params: configure an snd_usb_endpoint
781 *
782 * @ep: the snd_usb_endpoint to configure
783 * @pcm_format: the audio fomat.
784 * @channels: the number of audio channels.
785 * @period_bytes: the number of bytes in one alsa period.
786 * @period_frames: the number of frames in one alsa period.
787 * @buffer_periods: the number of periods in one alsa buffer.
788 * @rate: the frame rate.
789 * @fmt: the USB audio format information
790 * @sync_ep: the sync endpoint to use, if any
791 *
792 * Determine the number of URBs to be used on this endpoint.
793 * An endpoint must be configured before it can be started.
794 * An endpoint that is already running can not be reconfigured.
795 */
796 int snd_usb_endpoint_set_params(struct snd_usb_endpoint *ep,
797 snd_pcm_format_t pcm_format,
798 unsigned int channels,
799 unsigned int period_bytes,
800 unsigned int period_frames,
801 unsigned int buffer_periods,
802 unsigned int rate,
803 struct audioformat *fmt,
804 struct snd_usb_endpoint *sync_ep)
805 {
806 int err;
807
808 if (ep->use_count != 0) {
809 usb_audio_warn(ep->chip,
810 "Unable to change format on ep #%x: already in use\n",
811 ep->ep_num);
812 return -EBUSY;
813 }
814
815 /* release old buffers, if any */
816 release_urbs(ep, 0);
817
818 ep->datainterval = fmt->datainterval;
819 ep->maxpacksize = fmt->maxpacksize;
820 ep->fill_max = !!(fmt->attributes & UAC_EP_CS_ATTR_FILL_MAX);
821
822 if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_FULL)
823 ep->freqn = get_usb_full_speed_rate(rate);
824 else
825 ep->freqn = get_usb_high_speed_rate(rate);
826
827 /* calculate the frequency in 16.16 format */
828 ep->freqm = ep->freqn;
829 ep->freqshift = INT_MIN;
830
831 ep->phase = 0;
832
833 switch (ep->type) {
834 case SND_USB_ENDPOINT_TYPE_DATA:
835 err = data_ep_set_params(ep, pcm_format, channels,
836 period_bytes, period_frames,
837 buffer_periods, fmt, sync_ep);
838 break;
839 case SND_USB_ENDPOINT_TYPE_SYNC:
840 err = sync_ep_set_params(ep);
841 break;
842 default:
843 err = -EINVAL;
844 }
845
846 usb_audio_dbg(ep->chip,
847 "Setting params for ep #%x (type %d, %d urbs), ret=%d\n",
848 ep->ep_num, ep->type, ep->nurbs, err);
849
850 return err;
851 }
852
853 /**
854 * snd_usb_endpoint_start: start an snd_usb_endpoint
855 *
856 * @ep: the endpoint to start
857 * @can_sleep: flag indicating whether the operation is executed in
858 * non-atomic context
859 *
860 * A call to this function will increment the use count of the endpoint.
861 * In case it is not already running, the URBs for this endpoint will be
862 * submitted. Otherwise, this function does nothing.
863 *
864 * Must be balanced to calls of snd_usb_endpoint_stop().
865 *
866 * Returns an error if the URB submission failed, 0 in all other cases.
867 */
868 int snd_usb_endpoint_start(struct snd_usb_endpoint *ep, bool can_sleep)
869 {
870 int err;
871 unsigned int i;
872
873 if (atomic_read(&ep->chip->shutdown))
874 return -EBADFD;
875
876 /* already running? */
877 if (++ep->use_count != 1)
878 return 0;
879
880 /* just to be sure */
881 deactivate_urbs(ep, false);
882 if (can_sleep)
883 wait_clear_urbs(ep);
884
885 ep->active_mask = 0;
886 ep->unlink_mask = 0;
887 ep->phase = 0;
888
889 snd_usb_endpoint_start_quirk(ep);
890
891 /*
892 * If this endpoint has a data endpoint as implicit feedback source,
893 * don't start the urbs here. Instead, mark them all as available,
894 * wait for the record urbs to return and queue the playback urbs
895 * from that context.
896 */
897
898 set_bit(EP_FLAG_RUNNING, &ep->flags);
899
900 if (snd_usb_endpoint_implicit_feedback_sink(ep)) {
901 for (i = 0; i < ep->nurbs; i++) {
902 struct snd_urb_ctx *ctx = ep->urb + i;
903 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs);
904 }
905
906 return 0;
907 }
908
909 for (i = 0; i < ep->nurbs; i++) {
910 struct urb *urb = ep->urb[i].urb;
911
912 if (snd_BUG_ON(!urb))
913 goto __error;
914
915 if (usb_pipeout(ep->pipe)) {
916 prepare_outbound_urb(ep, urb->context);
917 } else {
918 prepare_inbound_urb(ep, urb->context);
919 }
920
921 err = usb_submit_urb(urb, GFP_ATOMIC);
922 if (err < 0) {
923 usb_audio_err(ep->chip,
924 "cannot submit urb %d, error %d: %s\n",
925 i, err, usb_error_string(err));
926 goto __error;
927 }
928 set_bit(i, &ep->active_mask);
929 }
930
931 return 0;
932
933 __error:
934 clear_bit(EP_FLAG_RUNNING, &ep->flags);
935 ep->use_count--;
936 deactivate_urbs(ep, false);
937 return -EPIPE;
938 }
939
940 /**
941 * snd_usb_endpoint_stop: stop an snd_usb_endpoint
942 *
943 * @ep: the endpoint to stop (may be NULL)
944 *
945 * A call to this function will decrement the use count of the endpoint.
946 * In case the last user has requested the endpoint stop, the URBs will
947 * actually be deactivated.
948 *
949 * Must be balanced to calls of snd_usb_endpoint_start().
950 *
951 * The caller needs to synchronize the pending stop operation via
952 * snd_usb_endpoint_sync_pending_stop().
953 */
954 void snd_usb_endpoint_stop(struct snd_usb_endpoint *ep)
955 {
956 if (!ep)
957 return;
958
959 if (snd_BUG_ON(ep->use_count == 0))
960 return;
961
962 if (--ep->use_count == 0) {
963 deactivate_urbs(ep, false);
964 ep->data_subs = NULL;
965 ep->sync_slave = NULL;
966 ep->retire_data_urb = NULL;
967 ep->prepare_data_urb = NULL;
968 set_bit(EP_FLAG_STOPPING, &ep->flags);
969 }
970 }
971
972 /**
973 * snd_usb_endpoint_deactivate: deactivate an snd_usb_endpoint
974 *
975 * @ep: the endpoint to deactivate
976 *
977 * If the endpoint is not currently in use, this functions will
978 * deactivate its associated URBs.
979 *
980 * In case of any active users, this functions does nothing.
981 */
982 void snd_usb_endpoint_deactivate(struct snd_usb_endpoint *ep)
983 {
984 if (!ep)
985 return;
986
987 if (ep->use_count != 0)
988 return;
989
990 deactivate_urbs(ep, true);
991 wait_clear_urbs(ep);
992 }
993
994 /**
995 * snd_usb_endpoint_release: Tear down an snd_usb_endpoint
996 *
997 * @ep: the endpoint to release
998 *
999 * This function does not care for the endpoint's use count but will tear
1000 * down all the streaming URBs immediately.
1001 */
1002 void snd_usb_endpoint_release(struct snd_usb_endpoint *ep)
1003 {
1004 release_urbs(ep, 1);
1005 }
1006
1007 /**
1008 * snd_usb_endpoint_free: Free the resources of an snd_usb_endpoint
1009 *
1010 * @ep: the endpoint to free
1011 *
1012 * This free all resources of the given ep.
1013 */
1014 void snd_usb_endpoint_free(struct snd_usb_endpoint *ep)
1015 {
1016 kfree(ep);
1017 }
1018
1019 /**
1020 * snd_usb_handle_sync_urb: parse an USB sync packet
1021 *
1022 * @ep: the endpoint to handle the packet
1023 * @sender: the sending endpoint
1024 * @urb: the received packet
1025 *
1026 * This function is called from the context of an endpoint that received
1027 * the packet and is used to let another endpoint object handle the payload.
1028 */
1029 void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep,
1030 struct snd_usb_endpoint *sender,
1031 const struct urb *urb)
1032 {
1033 int shift;
1034 unsigned int f;
1035 unsigned long flags;
1036
1037 snd_BUG_ON(ep == sender);
1038
1039 /*
1040 * In case the endpoint is operating in implicit feedback mode, prepare
1041 * a new outbound URB that has the same layout as the received packet
1042 * and add it to the list of pending urbs. queue_pending_output_urbs()
1043 * will take care of them later.
1044 */
1045 if (snd_usb_endpoint_implicit_feedback_sink(ep) &&
1046 ep->use_count != 0) {
1047
1048 /* implicit feedback case */
1049 int i, bytes = 0;
1050 struct snd_urb_ctx *in_ctx;
1051 struct snd_usb_packet_info *out_packet;
1052
1053 in_ctx = urb->context;
1054
1055 /* Count overall packet size */
1056 for (i = 0; i < in_ctx->packets; i++)
1057 if (urb->iso_frame_desc[i].status == 0)
1058 bytes += urb->iso_frame_desc[i].actual_length;
1059
1060 /*
1061 * skip empty packets. At least M-Audio's Fast Track Ultra stops
1062 * streaming once it received a 0-byte OUT URB
1063 */
1064 if (bytes == 0)
1065 return;
1066
1067 spin_lock_irqsave(&ep->lock, flags);
1068 out_packet = ep->next_packet + ep->next_packet_write_pos;
1069
1070 /*
1071 * Iterate through the inbound packet and prepare the lengths
1072 * for the output packet. The OUT packet we are about to send
1073 * will have the same amount of payload bytes per stride as the
1074 * IN packet we just received. Since the actual size is scaled
1075 * by the stride, use the sender stride to calculate the length
1076 * in case the number of channels differ between the implicitly
1077 * fed-back endpoint and the synchronizing endpoint.
1078 */
1079
1080 out_packet->packets = in_ctx->packets;
1081 for (i = 0; i < in_ctx->packets; i++) {
1082 if (urb->iso_frame_desc[i].status == 0)
1083 out_packet->packet_size[i] =
1084 urb->iso_frame_desc[i].actual_length / sender->stride;
1085 else
1086 out_packet->packet_size[i] = 0;
1087 }
1088
1089 ep->next_packet_write_pos++;
1090 ep->next_packet_write_pos %= MAX_URBS;
1091 spin_unlock_irqrestore(&ep->lock, flags);
1092 queue_pending_output_urbs(ep);
1093
1094 return;
1095 }
1096
1097 /*
1098 * process after playback sync complete
1099 *
1100 * Full speed devices report feedback values in 10.14 format as samples
1101 * per frame, high speed devices in 16.16 format as samples per
1102 * microframe.
1103 *
1104 * Because the Audio Class 1 spec was written before USB 2.0, many high
1105 * speed devices use a wrong interpretation, some others use an
1106 * entirely different format.
1107 *
1108 * Therefore, we cannot predict what format any particular device uses
1109 * and must detect it automatically.
1110 */
1111
1112 if (urb->iso_frame_desc[0].status != 0 ||
1113 urb->iso_frame_desc[0].actual_length < 3)
1114 return;
1115
1116 f = le32_to_cpup(urb->transfer_buffer);
1117 if (urb->iso_frame_desc[0].actual_length == 3)
1118 f &= 0x00ffffff;
1119 else
1120 f &= 0x0fffffff;
1121
1122 if (f == 0)
1123 return;
1124
1125 if (unlikely(sender->udh01_fb_quirk)) {
1126 /*
1127 * The TEAC UD-H01 firmware sometimes changes the feedback value
1128 * by +/- 0x1.0000.
1129 */
1130 if (f < ep->freqn - 0x8000)
1131 f += 0x10000;
1132 else if (f > ep->freqn + 0x8000)
1133 f -= 0x10000;
1134 } else if (unlikely(ep->freqshift == INT_MIN)) {
1135 /*
1136 * The first time we see a feedback value, determine its format
1137 * by shifting it left or right until it matches the nominal
1138 * frequency value. This assumes that the feedback does not
1139 * differ from the nominal value more than +50% or -25%.
1140 */
1141 shift = 0;
1142 while (f < ep->freqn - ep->freqn / 4) {
1143 f <<= 1;
1144 shift++;
1145 }
1146 while (f > ep->freqn + ep->freqn / 2) {
1147 f >>= 1;
1148 shift--;
1149 }
1150 ep->freqshift = shift;
1151 } else if (ep->freqshift >= 0)
1152 f <<= ep->freqshift;
1153 else
1154 f >>= -ep->freqshift;
1155
1156 if (likely(f >= ep->freqn - ep->freqn / 8 && f <= ep->freqmax)) {
1157 /*
1158 * If the frequency looks valid, set it.
1159 * This value is referred to in prepare_playback_urb().
1160 */
1161 spin_lock_irqsave(&ep->lock, flags);
1162 ep->freqm = f;
1163 spin_unlock_irqrestore(&ep->lock, flags);
1164 } else {
1165 /*
1166 * Out of range; maybe the shift value is wrong.
1167 * Reset it so that we autodetect again the next time.
1168 */
1169 ep->freqshift = INT_MIN;
1170 }
1171 }
1172
This page took 0.075601 seconds and 6 git commands to generate.