Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
[deliverable/linux.git] / tools / perf / builtin-sched.c
1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/evlist.h"
6 #include "util/cache.h"
7 #include "util/evsel.h"
8 #include "util/symbol.h"
9 #include "util/thread.h"
10 #include "util/header.h"
11 #include "util/session.h"
12 #include "util/tool.h"
13 #include "util/cloexec.h"
14
15 #include "util/parse-options.h"
16 #include "util/trace-event.h"
17
18 #include "util/debug.h"
19
20 #include <sys/prctl.h>
21 #include <sys/resource.h>
22
23 #include <semaphore.h>
24 #include <pthread.h>
25 #include <math.h>
26 #include <api/fs/fs.h>
27
28 #define PR_SET_NAME 15 /* Set process name */
29 #define MAX_CPUS 4096
30 #define COMM_LEN 20
31 #define SYM_LEN 129
32 #define MAX_PID 1024000
33
34 struct sched_atom;
35
36 struct task_desc {
37 unsigned long nr;
38 unsigned long pid;
39 char comm[COMM_LEN];
40
41 unsigned long nr_events;
42 unsigned long curr_event;
43 struct sched_atom **atoms;
44
45 pthread_t thread;
46 sem_t sleep_sem;
47
48 sem_t ready_for_work;
49 sem_t work_done_sem;
50
51 u64 cpu_usage;
52 };
53
54 enum sched_event_type {
55 SCHED_EVENT_RUN,
56 SCHED_EVENT_SLEEP,
57 SCHED_EVENT_WAKEUP,
58 SCHED_EVENT_MIGRATION,
59 };
60
61 struct sched_atom {
62 enum sched_event_type type;
63 int specific_wait;
64 u64 timestamp;
65 u64 duration;
66 unsigned long nr;
67 sem_t *wait_sem;
68 struct task_desc *wakee;
69 };
70
71 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
72
73 enum thread_state {
74 THREAD_SLEEPING = 0,
75 THREAD_WAIT_CPU,
76 THREAD_SCHED_IN,
77 THREAD_IGNORE
78 };
79
80 struct work_atom {
81 struct list_head list;
82 enum thread_state state;
83 u64 sched_out_time;
84 u64 wake_up_time;
85 u64 sched_in_time;
86 u64 runtime;
87 };
88
89 struct work_atoms {
90 struct list_head work_list;
91 struct thread *thread;
92 struct rb_node node;
93 u64 max_lat;
94 u64 max_lat_at;
95 u64 total_lat;
96 u64 nb_atoms;
97 u64 total_runtime;
98 };
99
100 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
101
102 struct perf_sched;
103
104 struct trace_sched_handler {
105 int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
106 struct perf_sample *sample, struct machine *machine);
107
108 int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
109 struct perf_sample *sample, struct machine *machine);
110
111 int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
112 struct perf_sample *sample, struct machine *machine);
113
114 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
115 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
116 struct machine *machine);
117
118 int (*migrate_task_event)(struct perf_sched *sched,
119 struct perf_evsel *evsel,
120 struct perf_sample *sample,
121 struct machine *machine);
122 };
123
124 struct perf_sched {
125 struct perf_tool tool;
126 const char *sort_order;
127 unsigned long nr_tasks;
128 struct task_desc **pid_to_task;
129 struct task_desc **tasks;
130 const struct trace_sched_handler *tp_handler;
131 pthread_mutex_t start_work_mutex;
132 pthread_mutex_t work_done_wait_mutex;
133 int profile_cpu;
134 /*
135 * Track the current task - that way we can know whether there's any
136 * weird events, such as a task being switched away that is not current.
137 */
138 int max_cpu;
139 u32 curr_pid[MAX_CPUS];
140 struct thread *curr_thread[MAX_CPUS];
141 char next_shortname1;
142 char next_shortname2;
143 unsigned int replay_repeat;
144 unsigned long nr_run_events;
145 unsigned long nr_sleep_events;
146 unsigned long nr_wakeup_events;
147 unsigned long nr_sleep_corrections;
148 unsigned long nr_run_events_optimized;
149 unsigned long targetless_wakeups;
150 unsigned long multitarget_wakeups;
151 unsigned long nr_runs;
152 unsigned long nr_timestamps;
153 unsigned long nr_unordered_timestamps;
154 unsigned long nr_context_switch_bugs;
155 unsigned long nr_events;
156 unsigned long nr_lost_chunks;
157 unsigned long nr_lost_events;
158 u64 run_measurement_overhead;
159 u64 sleep_measurement_overhead;
160 u64 start_time;
161 u64 cpu_usage;
162 u64 runavg_cpu_usage;
163 u64 parent_cpu_usage;
164 u64 runavg_parent_cpu_usage;
165 u64 sum_runtime;
166 u64 sum_fluct;
167 u64 run_avg;
168 u64 all_runtime;
169 u64 all_count;
170 u64 cpu_last_switched[MAX_CPUS];
171 struct rb_root atom_root, sorted_atom_root;
172 struct list_head sort_list, cmp_pid;
173 bool force;
174 };
175
176 static u64 get_nsecs(void)
177 {
178 struct timespec ts;
179
180 clock_gettime(CLOCK_MONOTONIC, &ts);
181
182 return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
183 }
184
185 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
186 {
187 u64 T0 = get_nsecs(), T1;
188
189 do {
190 T1 = get_nsecs();
191 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
192 }
193
194 static void sleep_nsecs(u64 nsecs)
195 {
196 struct timespec ts;
197
198 ts.tv_nsec = nsecs % 999999999;
199 ts.tv_sec = nsecs / 999999999;
200
201 nanosleep(&ts, NULL);
202 }
203
204 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
205 {
206 u64 T0, T1, delta, min_delta = 1000000000ULL;
207 int i;
208
209 for (i = 0; i < 10; i++) {
210 T0 = get_nsecs();
211 burn_nsecs(sched, 0);
212 T1 = get_nsecs();
213 delta = T1-T0;
214 min_delta = min(min_delta, delta);
215 }
216 sched->run_measurement_overhead = min_delta;
217
218 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
219 }
220
221 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
222 {
223 u64 T0, T1, delta, min_delta = 1000000000ULL;
224 int i;
225
226 for (i = 0; i < 10; i++) {
227 T0 = get_nsecs();
228 sleep_nsecs(10000);
229 T1 = get_nsecs();
230 delta = T1-T0;
231 min_delta = min(min_delta, delta);
232 }
233 min_delta -= 10000;
234 sched->sleep_measurement_overhead = min_delta;
235
236 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
237 }
238
239 static struct sched_atom *
240 get_new_event(struct task_desc *task, u64 timestamp)
241 {
242 struct sched_atom *event = zalloc(sizeof(*event));
243 unsigned long idx = task->nr_events;
244 size_t size;
245
246 event->timestamp = timestamp;
247 event->nr = idx;
248
249 task->nr_events++;
250 size = sizeof(struct sched_atom *) * task->nr_events;
251 task->atoms = realloc(task->atoms, size);
252 BUG_ON(!task->atoms);
253
254 task->atoms[idx] = event;
255
256 return event;
257 }
258
259 static struct sched_atom *last_event(struct task_desc *task)
260 {
261 if (!task->nr_events)
262 return NULL;
263
264 return task->atoms[task->nr_events - 1];
265 }
266
267 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
268 u64 timestamp, u64 duration)
269 {
270 struct sched_atom *event, *curr_event = last_event(task);
271
272 /*
273 * optimize an existing RUN event by merging this one
274 * to it:
275 */
276 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
277 sched->nr_run_events_optimized++;
278 curr_event->duration += duration;
279 return;
280 }
281
282 event = get_new_event(task, timestamp);
283
284 event->type = SCHED_EVENT_RUN;
285 event->duration = duration;
286
287 sched->nr_run_events++;
288 }
289
290 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
291 u64 timestamp, struct task_desc *wakee)
292 {
293 struct sched_atom *event, *wakee_event;
294
295 event = get_new_event(task, timestamp);
296 event->type = SCHED_EVENT_WAKEUP;
297 event->wakee = wakee;
298
299 wakee_event = last_event(wakee);
300 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
301 sched->targetless_wakeups++;
302 return;
303 }
304 if (wakee_event->wait_sem) {
305 sched->multitarget_wakeups++;
306 return;
307 }
308
309 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
310 sem_init(wakee_event->wait_sem, 0, 0);
311 wakee_event->specific_wait = 1;
312 event->wait_sem = wakee_event->wait_sem;
313
314 sched->nr_wakeup_events++;
315 }
316
317 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
318 u64 timestamp, u64 task_state __maybe_unused)
319 {
320 struct sched_atom *event = get_new_event(task, timestamp);
321
322 event->type = SCHED_EVENT_SLEEP;
323
324 sched->nr_sleep_events++;
325 }
326
327 static struct task_desc *register_pid(struct perf_sched *sched,
328 unsigned long pid, const char *comm)
329 {
330 struct task_desc *task;
331 static int pid_max;
332
333 if (sched->pid_to_task == NULL) {
334 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
335 pid_max = MAX_PID;
336 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
337 }
338 if (pid >= (unsigned long)pid_max) {
339 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
340 sizeof(struct task_desc *))) == NULL);
341 while (pid >= (unsigned long)pid_max)
342 sched->pid_to_task[pid_max++] = NULL;
343 }
344
345 task = sched->pid_to_task[pid];
346
347 if (task)
348 return task;
349
350 task = zalloc(sizeof(*task));
351 task->pid = pid;
352 task->nr = sched->nr_tasks;
353 strcpy(task->comm, comm);
354 /*
355 * every task starts in sleeping state - this gets ignored
356 * if there's no wakeup pointing to this sleep state:
357 */
358 add_sched_event_sleep(sched, task, 0, 0);
359
360 sched->pid_to_task[pid] = task;
361 sched->nr_tasks++;
362 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
363 BUG_ON(!sched->tasks);
364 sched->tasks[task->nr] = task;
365
366 if (verbose)
367 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
368
369 return task;
370 }
371
372
373 static void print_task_traces(struct perf_sched *sched)
374 {
375 struct task_desc *task;
376 unsigned long i;
377
378 for (i = 0; i < sched->nr_tasks; i++) {
379 task = sched->tasks[i];
380 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
381 task->nr, task->comm, task->pid, task->nr_events);
382 }
383 }
384
385 static void add_cross_task_wakeups(struct perf_sched *sched)
386 {
387 struct task_desc *task1, *task2;
388 unsigned long i, j;
389
390 for (i = 0; i < sched->nr_tasks; i++) {
391 task1 = sched->tasks[i];
392 j = i + 1;
393 if (j == sched->nr_tasks)
394 j = 0;
395 task2 = sched->tasks[j];
396 add_sched_event_wakeup(sched, task1, 0, task2);
397 }
398 }
399
400 static void perf_sched__process_event(struct perf_sched *sched,
401 struct sched_atom *atom)
402 {
403 int ret = 0;
404
405 switch (atom->type) {
406 case SCHED_EVENT_RUN:
407 burn_nsecs(sched, atom->duration);
408 break;
409 case SCHED_EVENT_SLEEP:
410 if (atom->wait_sem)
411 ret = sem_wait(atom->wait_sem);
412 BUG_ON(ret);
413 break;
414 case SCHED_EVENT_WAKEUP:
415 if (atom->wait_sem)
416 ret = sem_post(atom->wait_sem);
417 BUG_ON(ret);
418 break;
419 case SCHED_EVENT_MIGRATION:
420 break;
421 default:
422 BUG_ON(1);
423 }
424 }
425
426 static u64 get_cpu_usage_nsec_parent(void)
427 {
428 struct rusage ru;
429 u64 sum;
430 int err;
431
432 err = getrusage(RUSAGE_SELF, &ru);
433 BUG_ON(err);
434
435 sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
436 sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
437
438 return sum;
439 }
440
441 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
442 {
443 struct perf_event_attr attr;
444 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
445 int fd;
446 struct rlimit limit;
447 bool need_privilege = false;
448
449 memset(&attr, 0, sizeof(attr));
450
451 attr.type = PERF_TYPE_SOFTWARE;
452 attr.config = PERF_COUNT_SW_TASK_CLOCK;
453
454 force_again:
455 fd = sys_perf_event_open(&attr, 0, -1, -1,
456 perf_event_open_cloexec_flag());
457
458 if (fd < 0) {
459 if (errno == EMFILE) {
460 if (sched->force) {
461 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
462 limit.rlim_cur += sched->nr_tasks - cur_task;
463 if (limit.rlim_cur > limit.rlim_max) {
464 limit.rlim_max = limit.rlim_cur;
465 need_privilege = true;
466 }
467 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
468 if (need_privilege && errno == EPERM)
469 strcpy(info, "Need privilege\n");
470 } else
471 goto force_again;
472 } else
473 strcpy(info, "Have a try with -f option\n");
474 }
475 pr_err("Error: sys_perf_event_open() syscall returned "
476 "with %d (%s)\n%s", fd,
477 strerror_r(errno, sbuf, sizeof(sbuf)), info);
478 exit(EXIT_FAILURE);
479 }
480 return fd;
481 }
482
483 static u64 get_cpu_usage_nsec_self(int fd)
484 {
485 u64 runtime;
486 int ret;
487
488 ret = read(fd, &runtime, sizeof(runtime));
489 BUG_ON(ret != sizeof(runtime));
490
491 return runtime;
492 }
493
494 struct sched_thread_parms {
495 struct task_desc *task;
496 struct perf_sched *sched;
497 int fd;
498 };
499
500 static void *thread_func(void *ctx)
501 {
502 struct sched_thread_parms *parms = ctx;
503 struct task_desc *this_task = parms->task;
504 struct perf_sched *sched = parms->sched;
505 u64 cpu_usage_0, cpu_usage_1;
506 unsigned long i, ret;
507 char comm2[22];
508 int fd = parms->fd;
509
510 zfree(&parms);
511
512 sprintf(comm2, ":%s", this_task->comm);
513 prctl(PR_SET_NAME, comm2);
514 if (fd < 0)
515 return NULL;
516 again:
517 ret = sem_post(&this_task->ready_for_work);
518 BUG_ON(ret);
519 ret = pthread_mutex_lock(&sched->start_work_mutex);
520 BUG_ON(ret);
521 ret = pthread_mutex_unlock(&sched->start_work_mutex);
522 BUG_ON(ret);
523
524 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
525
526 for (i = 0; i < this_task->nr_events; i++) {
527 this_task->curr_event = i;
528 perf_sched__process_event(sched, this_task->atoms[i]);
529 }
530
531 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
532 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
533 ret = sem_post(&this_task->work_done_sem);
534 BUG_ON(ret);
535
536 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
537 BUG_ON(ret);
538 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
539 BUG_ON(ret);
540
541 goto again;
542 }
543
544 static void create_tasks(struct perf_sched *sched)
545 {
546 struct task_desc *task;
547 pthread_attr_t attr;
548 unsigned long i;
549 int err;
550
551 err = pthread_attr_init(&attr);
552 BUG_ON(err);
553 err = pthread_attr_setstacksize(&attr,
554 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
555 BUG_ON(err);
556 err = pthread_mutex_lock(&sched->start_work_mutex);
557 BUG_ON(err);
558 err = pthread_mutex_lock(&sched->work_done_wait_mutex);
559 BUG_ON(err);
560 for (i = 0; i < sched->nr_tasks; i++) {
561 struct sched_thread_parms *parms = malloc(sizeof(*parms));
562 BUG_ON(parms == NULL);
563 parms->task = task = sched->tasks[i];
564 parms->sched = sched;
565 parms->fd = self_open_counters(sched, i);
566 sem_init(&task->sleep_sem, 0, 0);
567 sem_init(&task->ready_for_work, 0, 0);
568 sem_init(&task->work_done_sem, 0, 0);
569 task->curr_event = 0;
570 err = pthread_create(&task->thread, &attr, thread_func, parms);
571 BUG_ON(err);
572 }
573 }
574
575 static void wait_for_tasks(struct perf_sched *sched)
576 {
577 u64 cpu_usage_0, cpu_usage_1;
578 struct task_desc *task;
579 unsigned long i, ret;
580
581 sched->start_time = get_nsecs();
582 sched->cpu_usage = 0;
583 pthread_mutex_unlock(&sched->work_done_wait_mutex);
584
585 for (i = 0; i < sched->nr_tasks; i++) {
586 task = sched->tasks[i];
587 ret = sem_wait(&task->ready_for_work);
588 BUG_ON(ret);
589 sem_init(&task->ready_for_work, 0, 0);
590 }
591 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
592 BUG_ON(ret);
593
594 cpu_usage_0 = get_cpu_usage_nsec_parent();
595
596 pthread_mutex_unlock(&sched->start_work_mutex);
597
598 for (i = 0; i < sched->nr_tasks; i++) {
599 task = sched->tasks[i];
600 ret = sem_wait(&task->work_done_sem);
601 BUG_ON(ret);
602 sem_init(&task->work_done_sem, 0, 0);
603 sched->cpu_usage += task->cpu_usage;
604 task->cpu_usage = 0;
605 }
606
607 cpu_usage_1 = get_cpu_usage_nsec_parent();
608 if (!sched->runavg_cpu_usage)
609 sched->runavg_cpu_usage = sched->cpu_usage;
610 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
611
612 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
613 if (!sched->runavg_parent_cpu_usage)
614 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
615 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
616 sched->parent_cpu_usage)/sched->replay_repeat;
617
618 ret = pthread_mutex_lock(&sched->start_work_mutex);
619 BUG_ON(ret);
620
621 for (i = 0; i < sched->nr_tasks; i++) {
622 task = sched->tasks[i];
623 sem_init(&task->sleep_sem, 0, 0);
624 task->curr_event = 0;
625 }
626 }
627
628 static void run_one_test(struct perf_sched *sched)
629 {
630 u64 T0, T1, delta, avg_delta, fluct;
631
632 T0 = get_nsecs();
633 wait_for_tasks(sched);
634 T1 = get_nsecs();
635
636 delta = T1 - T0;
637 sched->sum_runtime += delta;
638 sched->nr_runs++;
639
640 avg_delta = sched->sum_runtime / sched->nr_runs;
641 if (delta < avg_delta)
642 fluct = avg_delta - delta;
643 else
644 fluct = delta - avg_delta;
645 sched->sum_fluct += fluct;
646 if (!sched->run_avg)
647 sched->run_avg = delta;
648 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
649
650 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
651
652 printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
653
654 printf("cpu: %0.2f / %0.2f",
655 (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
656
657 #if 0
658 /*
659 * rusage statistics done by the parent, these are less
660 * accurate than the sched->sum_exec_runtime based statistics:
661 */
662 printf(" [%0.2f / %0.2f]",
663 (double)sched->parent_cpu_usage/1e6,
664 (double)sched->runavg_parent_cpu_usage/1e6);
665 #endif
666
667 printf("\n");
668
669 if (sched->nr_sleep_corrections)
670 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
671 sched->nr_sleep_corrections = 0;
672 }
673
674 static void test_calibrations(struct perf_sched *sched)
675 {
676 u64 T0, T1;
677
678 T0 = get_nsecs();
679 burn_nsecs(sched, 1e6);
680 T1 = get_nsecs();
681
682 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
683
684 T0 = get_nsecs();
685 sleep_nsecs(1e6);
686 T1 = get_nsecs();
687
688 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
689 }
690
691 static int
692 replay_wakeup_event(struct perf_sched *sched,
693 struct perf_evsel *evsel, struct perf_sample *sample,
694 struct machine *machine __maybe_unused)
695 {
696 const char *comm = perf_evsel__strval(evsel, sample, "comm");
697 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
698 struct task_desc *waker, *wakee;
699
700 if (verbose) {
701 printf("sched_wakeup event %p\n", evsel);
702
703 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
704 }
705
706 waker = register_pid(sched, sample->tid, "<unknown>");
707 wakee = register_pid(sched, pid, comm);
708
709 add_sched_event_wakeup(sched, waker, sample->time, wakee);
710 return 0;
711 }
712
713 static int replay_switch_event(struct perf_sched *sched,
714 struct perf_evsel *evsel,
715 struct perf_sample *sample,
716 struct machine *machine __maybe_unused)
717 {
718 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
719 *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
720 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
721 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
722 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
723 struct task_desc *prev, __maybe_unused *next;
724 u64 timestamp0, timestamp = sample->time;
725 int cpu = sample->cpu;
726 s64 delta;
727
728 if (verbose)
729 printf("sched_switch event %p\n", evsel);
730
731 if (cpu >= MAX_CPUS || cpu < 0)
732 return 0;
733
734 timestamp0 = sched->cpu_last_switched[cpu];
735 if (timestamp0)
736 delta = timestamp - timestamp0;
737 else
738 delta = 0;
739
740 if (delta < 0) {
741 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
742 return -1;
743 }
744
745 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
746 prev_comm, prev_pid, next_comm, next_pid, delta);
747
748 prev = register_pid(sched, prev_pid, prev_comm);
749 next = register_pid(sched, next_pid, next_comm);
750
751 sched->cpu_last_switched[cpu] = timestamp;
752
753 add_sched_event_run(sched, prev, timestamp, delta);
754 add_sched_event_sleep(sched, prev, timestamp, prev_state);
755
756 return 0;
757 }
758
759 static int replay_fork_event(struct perf_sched *sched,
760 union perf_event *event,
761 struct machine *machine)
762 {
763 struct thread *child, *parent;
764
765 child = machine__findnew_thread(machine, event->fork.pid,
766 event->fork.tid);
767 parent = machine__findnew_thread(machine, event->fork.ppid,
768 event->fork.ptid);
769
770 if (child == NULL || parent == NULL) {
771 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
772 child, parent);
773 return 0;
774 }
775
776 if (verbose) {
777 printf("fork event\n");
778 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
779 printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
780 }
781
782 register_pid(sched, parent->tid, thread__comm_str(parent));
783 register_pid(sched, child->tid, thread__comm_str(child));
784 return 0;
785 }
786
787 struct sort_dimension {
788 const char *name;
789 sort_fn_t cmp;
790 struct list_head list;
791 };
792
793 static int
794 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
795 {
796 struct sort_dimension *sort;
797 int ret = 0;
798
799 BUG_ON(list_empty(list));
800
801 list_for_each_entry(sort, list, list) {
802 ret = sort->cmp(l, r);
803 if (ret)
804 return ret;
805 }
806
807 return ret;
808 }
809
810 static struct work_atoms *
811 thread_atoms_search(struct rb_root *root, struct thread *thread,
812 struct list_head *sort_list)
813 {
814 struct rb_node *node = root->rb_node;
815 struct work_atoms key = { .thread = thread };
816
817 while (node) {
818 struct work_atoms *atoms;
819 int cmp;
820
821 atoms = container_of(node, struct work_atoms, node);
822
823 cmp = thread_lat_cmp(sort_list, &key, atoms);
824 if (cmp > 0)
825 node = node->rb_left;
826 else if (cmp < 0)
827 node = node->rb_right;
828 else {
829 BUG_ON(thread != atoms->thread);
830 return atoms;
831 }
832 }
833 return NULL;
834 }
835
836 static void
837 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
838 struct list_head *sort_list)
839 {
840 struct rb_node **new = &(root->rb_node), *parent = NULL;
841
842 while (*new) {
843 struct work_atoms *this;
844 int cmp;
845
846 this = container_of(*new, struct work_atoms, node);
847 parent = *new;
848
849 cmp = thread_lat_cmp(sort_list, data, this);
850
851 if (cmp > 0)
852 new = &((*new)->rb_left);
853 else
854 new = &((*new)->rb_right);
855 }
856
857 rb_link_node(&data->node, parent, new);
858 rb_insert_color(&data->node, root);
859 }
860
861 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
862 {
863 struct work_atoms *atoms = zalloc(sizeof(*atoms));
864 if (!atoms) {
865 pr_err("No memory at %s\n", __func__);
866 return -1;
867 }
868
869 atoms->thread = thread__get(thread);
870 INIT_LIST_HEAD(&atoms->work_list);
871 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
872 return 0;
873 }
874
875 static char sched_out_state(u64 prev_state)
876 {
877 const char *str = TASK_STATE_TO_CHAR_STR;
878
879 return str[prev_state];
880 }
881
882 static int
883 add_sched_out_event(struct work_atoms *atoms,
884 char run_state,
885 u64 timestamp)
886 {
887 struct work_atom *atom = zalloc(sizeof(*atom));
888 if (!atom) {
889 pr_err("Non memory at %s", __func__);
890 return -1;
891 }
892
893 atom->sched_out_time = timestamp;
894
895 if (run_state == 'R') {
896 atom->state = THREAD_WAIT_CPU;
897 atom->wake_up_time = atom->sched_out_time;
898 }
899
900 list_add_tail(&atom->list, &atoms->work_list);
901 return 0;
902 }
903
904 static void
905 add_runtime_event(struct work_atoms *atoms, u64 delta,
906 u64 timestamp __maybe_unused)
907 {
908 struct work_atom *atom;
909
910 BUG_ON(list_empty(&atoms->work_list));
911
912 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
913
914 atom->runtime += delta;
915 atoms->total_runtime += delta;
916 }
917
918 static void
919 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
920 {
921 struct work_atom *atom;
922 u64 delta;
923
924 if (list_empty(&atoms->work_list))
925 return;
926
927 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
928
929 if (atom->state != THREAD_WAIT_CPU)
930 return;
931
932 if (timestamp < atom->wake_up_time) {
933 atom->state = THREAD_IGNORE;
934 return;
935 }
936
937 atom->state = THREAD_SCHED_IN;
938 atom->sched_in_time = timestamp;
939
940 delta = atom->sched_in_time - atom->wake_up_time;
941 atoms->total_lat += delta;
942 if (delta > atoms->max_lat) {
943 atoms->max_lat = delta;
944 atoms->max_lat_at = timestamp;
945 }
946 atoms->nb_atoms++;
947 }
948
949 static int latency_switch_event(struct perf_sched *sched,
950 struct perf_evsel *evsel,
951 struct perf_sample *sample,
952 struct machine *machine)
953 {
954 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
955 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
956 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
957 struct work_atoms *out_events, *in_events;
958 struct thread *sched_out, *sched_in;
959 u64 timestamp0, timestamp = sample->time;
960 int cpu = sample->cpu;
961 s64 delta;
962
963 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
964
965 timestamp0 = sched->cpu_last_switched[cpu];
966 sched->cpu_last_switched[cpu] = timestamp;
967 if (timestamp0)
968 delta = timestamp - timestamp0;
969 else
970 delta = 0;
971
972 if (delta < 0) {
973 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
974 return -1;
975 }
976
977 sched_out = machine__findnew_thread(machine, -1, prev_pid);
978 sched_in = machine__findnew_thread(machine, -1, next_pid);
979
980 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
981 if (!out_events) {
982 if (thread_atoms_insert(sched, sched_out))
983 return -1;
984 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
985 if (!out_events) {
986 pr_err("out-event: Internal tree error");
987 return -1;
988 }
989 }
990 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
991 return -1;
992
993 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
994 if (!in_events) {
995 if (thread_atoms_insert(sched, sched_in))
996 return -1;
997 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
998 if (!in_events) {
999 pr_err("in-event: Internal tree error");
1000 return -1;
1001 }
1002 /*
1003 * Take came in we have not heard about yet,
1004 * add in an initial atom in runnable state:
1005 */
1006 if (add_sched_out_event(in_events, 'R', timestamp))
1007 return -1;
1008 }
1009 add_sched_in_event(in_events, timestamp);
1010
1011 return 0;
1012 }
1013
1014 static int latency_runtime_event(struct perf_sched *sched,
1015 struct perf_evsel *evsel,
1016 struct perf_sample *sample,
1017 struct machine *machine)
1018 {
1019 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1020 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
1021 struct thread *thread = machine__findnew_thread(machine, -1, pid);
1022 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1023 u64 timestamp = sample->time;
1024 int cpu = sample->cpu;
1025
1026 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1027 if (!atoms) {
1028 if (thread_atoms_insert(sched, thread))
1029 return -1;
1030 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1031 if (!atoms) {
1032 pr_err("in-event: Internal tree error");
1033 return -1;
1034 }
1035 if (add_sched_out_event(atoms, 'R', timestamp))
1036 return -1;
1037 }
1038
1039 add_runtime_event(atoms, runtime, timestamp);
1040 return 0;
1041 }
1042
1043 static int latency_wakeup_event(struct perf_sched *sched,
1044 struct perf_evsel *evsel,
1045 struct perf_sample *sample,
1046 struct machine *machine)
1047 {
1048 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1049 struct work_atoms *atoms;
1050 struct work_atom *atom;
1051 struct thread *wakee;
1052 u64 timestamp = sample->time;
1053
1054 wakee = machine__findnew_thread(machine, -1, pid);
1055 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1056 if (!atoms) {
1057 if (thread_atoms_insert(sched, wakee))
1058 return -1;
1059 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1060 if (!atoms) {
1061 pr_err("wakeup-event: Internal tree error");
1062 return -1;
1063 }
1064 if (add_sched_out_event(atoms, 'S', timestamp))
1065 return -1;
1066 }
1067
1068 BUG_ON(list_empty(&atoms->work_list));
1069
1070 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1071
1072 /*
1073 * As we do not guarantee the wakeup event happens when
1074 * task is out of run queue, also may happen when task is
1075 * on run queue and wakeup only change ->state to TASK_RUNNING,
1076 * then we should not set the ->wake_up_time when wake up a
1077 * task which is on run queue.
1078 *
1079 * You WILL be missing events if you've recorded only
1080 * one CPU, or are only looking at only one, so don't
1081 * skip in this case.
1082 */
1083 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1084 return 0;
1085
1086 sched->nr_timestamps++;
1087 if (atom->sched_out_time > timestamp) {
1088 sched->nr_unordered_timestamps++;
1089 return 0;
1090 }
1091
1092 atom->state = THREAD_WAIT_CPU;
1093 atom->wake_up_time = timestamp;
1094 return 0;
1095 }
1096
1097 static int latency_migrate_task_event(struct perf_sched *sched,
1098 struct perf_evsel *evsel,
1099 struct perf_sample *sample,
1100 struct machine *machine)
1101 {
1102 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1103 u64 timestamp = sample->time;
1104 struct work_atoms *atoms;
1105 struct work_atom *atom;
1106 struct thread *migrant;
1107
1108 /*
1109 * Only need to worry about migration when profiling one CPU.
1110 */
1111 if (sched->profile_cpu == -1)
1112 return 0;
1113
1114 migrant = machine__findnew_thread(machine, -1, pid);
1115 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1116 if (!atoms) {
1117 if (thread_atoms_insert(sched, migrant))
1118 return -1;
1119 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1120 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1121 if (!atoms) {
1122 pr_err("migration-event: Internal tree error");
1123 return -1;
1124 }
1125 if (add_sched_out_event(atoms, 'R', timestamp))
1126 return -1;
1127 }
1128
1129 BUG_ON(list_empty(&atoms->work_list));
1130
1131 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1132 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1133
1134 sched->nr_timestamps++;
1135
1136 if (atom->sched_out_time > timestamp)
1137 sched->nr_unordered_timestamps++;
1138
1139 return 0;
1140 }
1141
1142 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1143 {
1144 int i;
1145 int ret;
1146 u64 avg;
1147
1148 if (!work_list->nb_atoms)
1149 return;
1150 /*
1151 * Ignore idle threads:
1152 */
1153 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1154 return;
1155
1156 sched->all_runtime += work_list->total_runtime;
1157 sched->all_count += work_list->nb_atoms;
1158
1159 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1160
1161 for (i = 0; i < 24 - ret; i++)
1162 printf(" ");
1163
1164 avg = work_list->total_lat / work_list->nb_atoms;
1165
1166 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n",
1167 (double)work_list->total_runtime / 1e6,
1168 work_list->nb_atoms, (double)avg / 1e6,
1169 (double)work_list->max_lat / 1e6,
1170 (double)work_list->max_lat_at / 1e9);
1171 }
1172
1173 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1174 {
1175 if (l->thread->tid < r->thread->tid)
1176 return -1;
1177 if (l->thread->tid > r->thread->tid)
1178 return 1;
1179
1180 return 0;
1181 }
1182
1183 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1184 {
1185 u64 avgl, avgr;
1186
1187 if (!l->nb_atoms)
1188 return -1;
1189
1190 if (!r->nb_atoms)
1191 return 1;
1192
1193 avgl = l->total_lat / l->nb_atoms;
1194 avgr = r->total_lat / r->nb_atoms;
1195
1196 if (avgl < avgr)
1197 return -1;
1198 if (avgl > avgr)
1199 return 1;
1200
1201 return 0;
1202 }
1203
1204 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1205 {
1206 if (l->max_lat < r->max_lat)
1207 return -1;
1208 if (l->max_lat > r->max_lat)
1209 return 1;
1210
1211 return 0;
1212 }
1213
1214 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1215 {
1216 if (l->nb_atoms < r->nb_atoms)
1217 return -1;
1218 if (l->nb_atoms > r->nb_atoms)
1219 return 1;
1220
1221 return 0;
1222 }
1223
1224 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1225 {
1226 if (l->total_runtime < r->total_runtime)
1227 return -1;
1228 if (l->total_runtime > r->total_runtime)
1229 return 1;
1230
1231 return 0;
1232 }
1233
1234 static int sort_dimension__add(const char *tok, struct list_head *list)
1235 {
1236 size_t i;
1237 static struct sort_dimension avg_sort_dimension = {
1238 .name = "avg",
1239 .cmp = avg_cmp,
1240 };
1241 static struct sort_dimension max_sort_dimension = {
1242 .name = "max",
1243 .cmp = max_cmp,
1244 };
1245 static struct sort_dimension pid_sort_dimension = {
1246 .name = "pid",
1247 .cmp = pid_cmp,
1248 };
1249 static struct sort_dimension runtime_sort_dimension = {
1250 .name = "runtime",
1251 .cmp = runtime_cmp,
1252 };
1253 static struct sort_dimension switch_sort_dimension = {
1254 .name = "switch",
1255 .cmp = switch_cmp,
1256 };
1257 struct sort_dimension *available_sorts[] = {
1258 &pid_sort_dimension,
1259 &avg_sort_dimension,
1260 &max_sort_dimension,
1261 &switch_sort_dimension,
1262 &runtime_sort_dimension,
1263 };
1264
1265 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1266 if (!strcmp(available_sorts[i]->name, tok)) {
1267 list_add_tail(&available_sorts[i]->list, list);
1268
1269 return 0;
1270 }
1271 }
1272
1273 return -1;
1274 }
1275
1276 static void perf_sched__sort_lat(struct perf_sched *sched)
1277 {
1278 struct rb_node *node;
1279
1280 for (;;) {
1281 struct work_atoms *data;
1282 node = rb_first(&sched->atom_root);
1283 if (!node)
1284 break;
1285
1286 rb_erase(node, &sched->atom_root);
1287 data = rb_entry(node, struct work_atoms, node);
1288 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1289 }
1290 }
1291
1292 static int process_sched_wakeup_event(struct perf_tool *tool,
1293 struct perf_evsel *evsel,
1294 struct perf_sample *sample,
1295 struct machine *machine)
1296 {
1297 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1298
1299 if (sched->tp_handler->wakeup_event)
1300 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1301
1302 return 0;
1303 }
1304
1305 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1306 struct perf_sample *sample, struct machine *machine)
1307 {
1308 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1309 struct thread *sched_in;
1310 int new_shortname;
1311 u64 timestamp0, timestamp = sample->time;
1312 s64 delta;
1313 int cpu, this_cpu = sample->cpu;
1314
1315 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1316
1317 if (this_cpu > sched->max_cpu)
1318 sched->max_cpu = this_cpu;
1319
1320 timestamp0 = sched->cpu_last_switched[this_cpu];
1321 sched->cpu_last_switched[this_cpu] = timestamp;
1322 if (timestamp0)
1323 delta = timestamp - timestamp0;
1324 else
1325 delta = 0;
1326
1327 if (delta < 0) {
1328 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1329 return -1;
1330 }
1331
1332 sched_in = machine__findnew_thread(machine, -1, next_pid);
1333
1334 sched->curr_thread[this_cpu] = sched_in;
1335
1336 printf(" ");
1337
1338 new_shortname = 0;
1339 if (!sched_in->shortname[0]) {
1340 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1341 /*
1342 * Don't allocate a letter-number for swapper:0
1343 * as a shortname. Instead, we use '.' for it.
1344 */
1345 sched_in->shortname[0] = '.';
1346 sched_in->shortname[1] = ' ';
1347 } else {
1348 sched_in->shortname[0] = sched->next_shortname1;
1349 sched_in->shortname[1] = sched->next_shortname2;
1350
1351 if (sched->next_shortname1 < 'Z') {
1352 sched->next_shortname1++;
1353 } else {
1354 sched->next_shortname1 = 'A';
1355 if (sched->next_shortname2 < '9')
1356 sched->next_shortname2++;
1357 else
1358 sched->next_shortname2 = '0';
1359 }
1360 }
1361 new_shortname = 1;
1362 }
1363
1364 for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
1365 if (cpu != this_cpu)
1366 printf(" ");
1367 else
1368 printf("*");
1369
1370 if (sched->curr_thread[cpu])
1371 printf("%2s ", sched->curr_thread[cpu]->shortname);
1372 else
1373 printf(" ");
1374 }
1375
1376 printf(" %12.6f secs ", (double)timestamp/1e9);
1377 if (new_shortname) {
1378 printf("%s => %s:%d\n",
1379 sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1380 } else {
1381 printf("\n");
1382 }
1383
1384 return 0;
1385 }
1386
1387 static int process_sched_switch_event(struct perf_tool *tool,
1388 struct perf_evsel *evsel,
1389 struct perf_sample *sample,
1390 struct machine *machine)
1391 {
1392 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1393 int this_cpu = sample->cpu, err = 0;
1394 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1395 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1396
1397 if (sched->curr_pid[this_cpu] != (u32)-1) {
1398 /*
1399 * Are we trying to switch away a PID that is
1400 * not current?
1401 */
1402 if (sched->curr_pid[this_cpu] != prev_pid)
1403 sched->nr_context_switch_bugs++;
1404 }
1405
1406 if (sched->tp_handler->switch_event)
1407 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1408
1409 sched->curr_pid[this_cpu] = next_pid;
1410 return err;
1411 }
1412
1413 static int process_sched_runtime_event(struct perf_tool *tool,
1414 struct perf_evsel *evsel,
1415 struct perf_sample *sample,
1416 struct machine *machine)
1417 {
1418 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1419
1420 if (sched->tp_handler->runtime_event)
1421 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1422
1423 return 0;
1424 }
1425
1426 static int perf_sched__process_fork_event(struct perf_tool *tool,
1427 union perf_event *event,
1428 struct perf_sample *sample,
1429 struct machine *machine)
1430 {
1431 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1432
1433 /* run the fork event through the perf machineruy */
1434 perf_event__process_fork(tool, event, sample, machine);
1435
1436 /* and then run additional processing needed for this command */
1437 if (sched->tp_handler->fork_event)
1438 return sched->tp_handler->fork_event(sched, event, machine);
1439
1440 return 0;
1441 }
1442
1443 static int process_sched_migrate_task_event(struct perf_tool *tool,
1444 struct perf_evsel *evsel,
1445 struct perf_sample *sample,
1446 struct machine *machine)
1447 {
1448 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1449
1450 if (sched->tp_handler->migrate_task_event)
1451 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1452
1453 return 0;
1454 }
1455
1456 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1457 struct perf_evsel *evsel,
1458 struct perf_sample *sample,
1459 struct machine *machine);
1460
1461 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1462 union perf_event *event __maybe_unused,
1463 struct perf_sample *sample,
1464 struct perf_evsel *evsel,
1465 struct machine *machine)
1466 {
1467 int err = 0;
1468
1469 if (evsel->handler != NULL) {
1470 tracepoint_handler f = evsel->handler;
1471 err = f(tool, evsel, sample, machine);
1472 }
1473
1474 return err;
1475 }
1476
1477 static int perf_sched__read_events(struct perf_sched *sched)
1478 {
1479 const struct perf_evsel_str_handler handlers[] = {
1480 { "sched:sched_switch", process_sched_switch_event, },
1481 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1482 { "sched:sched_wakeup", process_sched_wakeup_event, },
1483 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1484 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1485 };
1486 struct perf_session *session;
1487 struct perf_data_file file = {
1488 .path = input_name,
1489 .mode = PERF_DATA_MODE_READ,
1490 .force = sched->force,
1491 };
1492 int rc = -1;
1493
1494 session = perf_session__new(&file, false, &sched->tool);
1495 if (session == NULL) {
1496 pr_debug("No Memory for session\n");
1497 return -1;
1498 }
1499
1500 symbol__init(&session->header.env);
1501
1502 if (perf_session__set_tracepoints_handlers(session, handlers))
1503 goto out_delete;
1504
1505 if (perf_session__has_traces(session, "record -R")) {
1506 int err = perf_session__process_events(session);
1507 if (err) {
1508 pr_err("Failed to process events, error %d", err);
1509 goto out_delete;
1510 }
1511
1512 sched->nr_events = session->evlist->stats.nr_events[0];
1513 sched->nr_lost_events = session->evlist->stats.total_lost;
1514 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1515 }
1516
1517 rc = 0;
1518 out_delete:
1519 perf_session__delete(session);
1520 return rc;
1521 }
1522
1523 static void print_bad_events(struct perf_sched *sched)
1524 {
1525 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1526 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1527 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1528 sched->nr_unordered_timestamps, sched->nr_timestamps);
1529 }
1530 if (sched->nr_lost_events && sched->nr_events) {
1531 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1532 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1533 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1534 }
1535 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1536 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
1537 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1538 sched->nr_context_switch_bugs, sched->nr_timestamps);
1539 if (sched->nr_lost_events)
1540 printf(" (due to lost events?)");
1541 printf("\n");
1542 }
1543 }
1544
1545 static int perf_sched__lat(struct perf_sched *sched)
1546 {
1547 struct rb_node *next;
1548
1549 setup_pager();
1550
1551 if (perf_sched__read_events(sched))
1552 return -1;
1553
1554 perf_sched__sort_lat(sched);
1555
1556 printf("\n -----------------------------------------------------------------------------------------------------------------\n");
1557 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
1558 printf(" -----------------------------------------------------------------------------------------------------------------\n");
1559
1560 next = rb_first(&sched->sorted_atom_root);
1561
1562 while (next) {
1563 struct work_atoms *work_list;
1564
1565 work_list = rb_entry(next, struct work_atoms, node);
1566 output_lat_thread(sched, work_list);
1567 next = rb_next(next);
1568 thread__zput(work_list->thread);
1569 }
1570
1571 printf(" -----------------------------------------------------------------------------------------------------------------\n");
1572 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
1573 (double)sched->all_runtime / 1e6, sched->all_count);
1574
1575 printf(" ---------------------------------------------------\n");
1576
1577 print_bad_events(sched);
1578 printf("\n");
1579
1580 return 0;
1581 }
1582
1583 static int perf_sched__map(struct perf_sched *sched)
1584 {
1585 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1586
1587 setup_pager();
1588 if (perf_sched__read_events(sched))
1589 return -1;
1590 print_bad_events(sched);
1591 return 0;
1592 }
1593
1594 static int perf_sched__replay(struct perf_sched *sched)
1595 {
1596 unsigned long i;
1597
1598 calibrate_run_measurement_overhead(sched);
1599 calibrate_sleep_measurement_overhead(sched);
1600
1601 test_calibrations(sched);
1602
1603 if (perf_sched__read_events(sched))
1604 return -1;
1605
1606 printf("nr_run_events: %ld\n", sched->nr_run_events);
1607 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
1608 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
1609
1610 if (sched->targetless_wakeups)
1611 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
1612 if (sched->multitarget_wakeups)
1613 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1614 if (sched->nr_run_events_optimized)
1615 printf("run atoms optimized: %ld\n",
1616 sched->nr_run_events_optimized);
1617
1618 print_task_traces(sched);
1619 add_cross_task_wakeups(sched);
1620
1621 create_tasks(sched);
1622 printf("------------------------------------------------------------\n");
1623 for (i = 0; i < sched->replay_repeat; i++)
1624 run_one_test(sched);
1625
1626 return 0;
1627 }
1628
1629 static void setup_sorting(struct perf_sched *sched, const struct option *options,
1630 const char * const usage_msg[])
1631 {
1632 char *tmp, *tok, *str = strdup(sched->sort_order);
1633
1634 for (tok = strtok_r(str, ", ", &tmp);
1635 tok; tok = strtok_r(NULL, ", ", &tmp)) {
1636 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1637 error("Unknown --sort key: `%s'", tok);
1638 usage_with_options(usage_msg, options);
1639 }
1640 }
1641
1642 free(str);
1643
1644 sort_dimension__add("pid", &sched->cmp_pid);
1645 }
1646
1647 static int __cmd_record(int argc, const char **argv)
1648 {
1649 unsigned int rec_argc, i, j;
1650 const char **rec_argv;
1651 const char * const record_args[] = {
1652 "record",
1653 "-a",
1654 "-R",
1655 "-m", "1024",
1656 "-c", "1",
1657 "-e", "sched:sched_switch",
1658 "-e", "sched:sched_stat_wait",
1659 "-e", "sched:sched_stat_sleep",
1660 "-e", "sched:sched_stat_iowait",
1661 "-e", "sched:sched_stat_runtime",
1662 "-e", "sched:sched_process_fork",
1663 "-e", "sched:sched_wakeup",
1664 "-e", "sched:sched_wakeup_new",
1665 "-e", "sched:sched_migrate_task",
1666 };
1667
1668 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1669 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1670
1671 if (rec_argv == NULL)
1672 return -ENOMEM;
1673
1674 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1675 rec_argv[i] = strdup(record_args[i]);
1676
1677 for (j = 1; j < (unsigned int)argc; j++, i++)
1678 rec_argv[i] = argv[j];
1679
1680 BUG_ON(i != rec_argc);
1681
1682 return cmd_record(i, rec_argv, NULL);
1683 }
1684
1685 int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1686 {
1687 const char default_sort_order[] = "avg, max, switch, runtime";
1688 struct perf_sched sched = {
1689 .tool = {
1690 .sample = perf_sched__process_tracepoint_sample,
1691 .comm = perf_event__process_comm,
1692 .lost = perf_event__process_lost,
1693 .fork = perf_sched__process_fork_event,
1694 .ordered_events = true,
1695 },
1696 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
1697 .sort_list = LIST_HEAD_INIT(sched.sort_list),
1698 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
1699 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1700 .sort_order = default_sort_order,
1701 .replay_repeat = 10,
1702 .profile_cpu = -1,
1703 .next_shortname1 = 'A',
1704 .next_shortname2 = '0',
1705 };
1706 const struct option latency_options[] = {
1707 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1708 "sort by key(s): runtime, switch, avg, max"),
1709 OPT_INCR('v', "verbose", &verbose,
1710 "be more verbose (show symbol address, etc)"),
1711 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1712 "CPU to profile on"),
1713 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1714 "dump raw trace in ASCII"),
1715 OPT_END()
1716 };
1717 const struct option replay_options[] = {
1718 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1719 "repeat the workload replay N times (-1: infinite)"),
1720 OPT_INCR('v', "verbose", &verbose,
1721 "be more verbose (show symbol address, etc)"),
1722 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1723 "dump raw trace in ASCII"),
1724 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
1725 OPT_END()
1726 };
1727 const struct option sched_options[] = {
1728 OPT_STRING('i', "input", &input_name, "file",
1729 "input file name"),
1730 OPT_INCR('v', "verbose", &verbose,
1731 "be more verbose (show symbol address, etc)"),
1732 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1733 "dump raw trace in ASCII"),
1734 OPT_END()
1735 };
1736 const char * const latency_usage[] = {
1737 "perf sched latency [<options>]",
1738 NULL
1739 };
1740 const char * const replay_usage[] = {
1741 "perf sched replay [<options>]",
1742 NULL
1743 };
1744 const char *const sched_subcommands[] = { "record", "latency", "map",
1745 "replay", "script", NULL };
1746 const char *sched_usage[] = {
1747 NULL,
1748 NULL
1749 };
1750 struct trace_sched_handler lat_ops = {
1751 .wakeup_event = latency_wakeup_event,
1752 .switch_event = latency_switch_event,
1753 .runtime_event = latency_runtime_event,
1754 .migrate_task_event = latency_migrate_task_event,
1755 };
1756 struct trace_sched_handler map_ops = {
1757 .switch_event = map_switch_event,
1758 };
1759 struct trace_sched_handler replay_ops = {
1760 .wakeup_event = replay_wakeup_event,
1761 .switch_event = replay_switch_event,
1762 .fork_event = replay_fork_event,
1763 };
1764 unsigned int i;
1765
1766 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
1767 sched.curr_pid[i] = -1;
1768
1769 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
1770 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1771 if (!argc)
1772 usage_with_options(sched_usage, sched_options);
1773
1774 /*
1775 * Aliased to 'perf script' for now:
1776 */
1777 if (!strcmp(argv[0], "script"))
1778 return cmd_script(argc, argv, prefix);
1779
1780 if (!strncmp(argv[0], "rec", 3)) {
1781 return __cmd_record(argc, argv);
1782 } else if (!strncmp(argv[0], "lat", 3)) {
1783 sched.tp_handler = &lat_ops;
1784 if (argc > 1) {
1785 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1786 if (argc)
1787 usage_with_options(latency_usage, latency_options);
1788 }
1789 setup_sorting(&sched, latency_options, latency_usage);
1790 return perf_sched__lat(&sched);
1791 } else if (!strcmp(argv[0], "map")) {
1792 sched.tp_handler = &map_ops;
1793 setup_sorting(&sched, latency_options, latency_usage);
1794 return perf_sched__map(&sched);
1795 } else if (!strncmp(argv[0], "rep", 3)) {
1796 sched.tp_handler = &replay_ops;
1797 if (argc) {
1798 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1799 if (argc)
1800 usage_with_options(replay_usage, replay_options);
1801 }
1802 return perf_sched__replay(&sched);
1803 } else {
1804 usage_with_options(sched_usage, sched_options);
1805 }
1806
1807 return 0;
1808 }
This page took 0.129211 seconds and 5 git commands to generate.