Merge tag 'v4.0' into for_next
[deliverable/linux.git] / tools / perf / builtin-sched.c
1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/evlist.h"
6 #include "util/cache.h"
7 #include "util/evsel.h"
8 #include "util/symbol.h"
9 #include "util/thread.h"
10 #include "util/header.h"
11 #include "util/session.h"
12 #include "util/tool.h"
13 #include "util/cloexec.h"
14
15 #include "util/parse-options.h"
16 #include "util/trace-event.h"
17
18 #include "util/debug.h"
19
20 #include <sys/prctl.h>
21 #include <sys/resource.h>
22
23 #include <semaphore.h>
24 #include <pthread.h>
25 #include <math.h>
26
27 #define PR_SET_NAME 15 /* Set process name */
28 #define MAX_CPUS 4096
29 #define COMM_LEN 20
30 #define SYM_LEN 129
31 #define MAX_PID 65536
32
33 struct sched_atom;
34
35 struct task_desc {
36 unsigned long nr;
37 unsigned long pid;
38 char comm[COMM_LEN];
39
40 unsigned long nr_events;
41 unsigned long curr_event;
42 struct sched_atom **atoms;
43
44 pthread_t thread;
45 sem_t sleep_sem;
46
47 sem_t ready_for_work;
48 sem_t work_done_sem;
49
50 u64 cpu_usage;
51 };
52
53 enum sched_event_type {
54 SCHED_EVENT_RUN,
55 SCHED_EVENT_SLEEP,
56 SCHED_EVENT_WAKEUP,
57 SCHED_EVENT_MIGRATION,
58 };
59
60 struct sched_atom {
61 enum sched_event_type type;
62 int specific_wait;
63 u64 timestamp;
64 u64 duration;
65 unsigned long nr;
66 sem_t *wait_sem;
67 struct task_desc *wakee;
68 };
69
70 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
71
72 enum thread_state {
73 THREAD_SLEEPING = 0,
74 THREAD_WAIT_CPU,
75 THREAD_SCHED_IN,
76 THREAD_IGNORE
77 };
78
79 struct work_atom {
80 struct list_head list;
81 enum thread_state state;
82 u64 sched_out_time;
83 u64 wake_up_time;
84 u64 sched_in_time;
85 u64 runtime;
86 };
87
88 struct work_atoms {
89 struct list_head work_list;
90 struct thread *thread;
91 struct rb_node node;
92 u64 max_lat;
93 u64 max_lat_at;
94 u64 total_lat;
95 u64 nb_atoms;
96 u64 total_runtime;
97 };
98
99 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
100
101 struct perf_sched;
102
103 struct trace_sched_handler {
104 int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
105 struct perf_sample *sample, struct machine *machine);
106
107 int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
108 struct perf_sample *sample, struct machine *machine);
109
110 int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
111 struct perf_sample *sample, struct machine *machine);
112
113 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
114 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
115 struct machine *machine);
116
117 int (*migrate_task_event)(struct perf_sched *sched,
118 struct perf_evsel *evsel,
119 struct perf_sample *sample,
120 struct machine *machine);
121 };
122
123 struct perf_sched {
124 struct perf_tool tool;
125 const char *sort_order;
126 unsigned long nr_tasks;
127 struct task_desc *pid_to_task[MAX_PID];
128 struct task_desc **tasks;
129 const struct trace_sched_handler *tp_handler;
130 pthread_mutex_t start_work_mutex;
131 pthread_mutex_t work_done_wait_mutex;
132 int profile_cpu;
133 /*
134 * Track the current task - that way we can know whether there's any
135 * weird events, such as a task being switched away that is not current.
136 */
137 int max_cpu;
138 u32 curr_pid[MAX_CPUS];
139 struct thread *curr_thread[MAX_CPUS];
140 char next_shortname1;
141 char next_shortname2;
142 unsigned int replay_repeat;
143 unsigned long nr_run_events;
144 unsigned long nr_sleep_events;
145 unsigned long nr_wakeup_events;
146 unsigned long nr_sleep_corrections;
147 unsigned long nr_run_events_optimized;
148 unsigned long targetless_wakeups;
149 unsigned long multitarget_wakeups;
150 unsigned long nr_runs;
151 unsigned long nr_timestamps;
152 unsigned long nr_unordered_timestamps;
153 unsigned long nr_context_switch_bugs;
154 unsigned long nr_events;
155 unsigned long nr_lost_chunks;
156 unsigned long nr_lost_events;
157 u64 run_measurement_overhead;
158 u64 sleep_measurement_overhead;
159 u64 start_time;
160 u64 cpu_usage;
161 u64 runavg_cpu_usage;
162 u64 parent_cpu_usage;
163 u64 runavg_parent_cpu_usage;
164 u64 sum_runtime;
165 u64 sum_fluct;
166 u64 run_avg;
167 u64 all_runtime;
168 u64 all_count;
169 u64 cpu_last_switched[MAX_CPUS];
170 struct rb_root atom_root, sorted_atom_root;
171 struct list_head sort_list, cmp_pid;
172 };
173
174 static u64 get_nsecs(void)
175 {
176 struct timespec ts;
177
178 clock_gettime(CLOCK_MONOTONIC, &ts);
179
180 return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
181 }
182
183 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
184 {
185 u64 T0 = get_nsecs(), T1;
186
187 do {
188 T1 = get_nsecs();
189 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
190 }
191
192 static void sleep_nsecs(u64 nsecs)
193 {
194 struct timespec ts;
195
196 ts.tv_nsec = nsecs % 999999999;
197 ts.tv_sec = nsecs / 999999999;
198
199 nanosleep(&ts, NULL);
200 }
201
202 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
203 {
204 u64 T0, T1, delta, min_delta = 1000000000ULL;
205 int i;
206
207 for (i = 0; i < 10; i++) {
208 T0 = get_nsecs();
209 burn_nsecs(sched, 0);
210 T1 = get_nsecs();
211 delta = T1-T0;
212 min_delta = min(min_delta, delta);
213 }
214 sched->run_measurement_overhead = min_delta;
215
216 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
217 }
218
219 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
220 {
221 u64 T0, T1, delta, min_delta = 1000000000ULL;
222 int i;
223
224 for (i = 0; i < 10; i++) {
225 T0 = get_nsecs();
226 sleep_nsecs(10000);
227 T1 = get_nsecs();
228 delta = T1-T0;
229 min_delta = min(min_delta, delta);
230 }
231 min_delta -= 10000;
232 sched->sleep_measurement_overhead = min_delta;
233
234 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
235 }
236
237 static struct sched_atom *
238 get_new_event(struct task_desc *task, u64 timestamp)
239 {
240 struct sched_atom *event = zalloc(sizeof(*event));
241 unsigned long idx = task->nr_events;
242 size_t size;
243
244 event->timestamp = timestamp;
245 event->nr = idx;
246
247 task->nr_events++;
248 size = sizeof(struct sched_atom *) * task->nr_events;
249 task->atoms = realloc(task->atoms, size);
250 BUG_ON(!task->atoms);
251
252 task->atoms[idx] = event;
253
254 return event;
255 }
256
257 static struct sched_atom *last_event(struct task_desc *task)
258 {
259 if (!task->nr_events)
260 return NULL;
261
262 return task->atoms[task->nr_events - 1];
263 }
264
265 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
266 u64 timestamp, u64 duration)
267 {
268 struct sched_atom *event, *curr_event = last_event(task);
269
270 /*
271 * optimize an existing RUN event by merging this one
272 * to it:
273 */
274 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
275 sched->nr_run_events_optimized++;
276 curr_event->duration += duration;
277 return;
278 }
279
280 event = get_new_event(task, timestamp);
281
282 event->type = SCHED_EVENT_RUN;
283 event->duration = duration;
284
285 sched->nr_run_events++;
286 }
287
288 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
289 u64 timestamp, struct task_desc *wakee)
290 {
291 struct sched_atom *event, *wakee_event;
292
293 event = get_new_event(task, timestamp);
294 event->type = SCHED_EVENT_WAKEUP;
295 event->wakee = wakee;
296
297 wakee_event = last_event(wakee);
298 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
299 sched->targetless_wakeups++;
300 return;
301 }
302 if (wakee_event->wait_sem) {
303 sched->multitarget_wakeups++;
304 return;
305 }
306
307 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
308 sem_init(wakee_event->wait_sem, 0, 0);
309 wakee_event->specific_wait = 1;
310 event->wait_sem = wakee_event->wait_sem;
311
312 sched->nr_wakeup_events++;
313 }
314
315 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
316 u64 timestamp, u64 task_state __maybe_unused)
317 {
318 struct sched_atom *event = get_new_event(task, timestamp);
319
320 event->type = SCHED_EVENT_SLEEP;
321
322 sched->nr_sleep_events++;
323 }
324
325 static struct task_desc *register_pid(struct perf_sched *sched,
326 unsigned long pid, const char *comm)
327 {
328 struct task_desc *task;
329
330 BUG_ON(pid >= MAX_PID);
331
332 task = sched->pid_to_task[pid];
333
334 if (task)
335 return task;
336
337 task = zalloc(sizeof(*task));
338 task->pid = pid;
339 task->nr = sched->nr_tasks;
340 strcpy(task->comm, comm);
341 /*
342 * every task starts in sleeping state - this gets ignored
343 * if there's no wakeup pointing to this sleep state:
344 */
345 add_sched_event_sleep(sched, task, 0, 0);
346
347 sched->pid_to_task[pid] = task;
348 sched->nr_tasks++;
349 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_task *));
350 BUG_ON(!sched->tasks);
351 sched->tasks[task->nr] = task;
352
353 if (verbose)
354 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
355
356 return task;
357 }
358
359
360 static void print_task_traces(struct perf_sched *sched)
361 {
362 struct task_desc *task;
363 unsigned long i;
364
365 for (i = 0; i < sched->nr_tasks; i++) {
366 task = sched->tasks[i];
367 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
368 task->nr, task->comm, task->pid, task->nr_events);
369 }
370 }
371
372 static void add_cross_task_wakeups(struct perf_sched *sched)
373 {
374 struct task_desc *task1, *task2;
375 unsigned long i, j;
376
377 for (i = 0; i < sched->nr_tasks; i++) {
378 task1 = sched->tasks[i];
379 j = i + 1;
380 if (j == sched->nr_tasks)
381 j = 0;
382 task2 = sched->tasks[j];
383 add_sched_event_wakeup(sched, task1, 0, task2);
384 }
385 }
386
387 static void perf_sched__process_event(struct perf_sched *sched,
388 struct sched_atom *atom)
389 {
390 int ret = 0;
391
392 switch (atom->type) {
393 case SCHED_EVENT_RUN:
394 burn_nsecs(sched, atom->duration);
395 break;
396 case SCHED_EVENT_SLEEP:
397 if (atom->wait_sem)
398 ret = sem_wait(atom->wait_sem);
399 BUG_ON(ret);
400 break;
401 case SCHED_EVENT_WAKEUP:
402 if (atom->wait_sem)
403 ret = sem_post(atom->wait_sem);
404 BUG_ON(ret);
405 break;
406 case SCHED_EVENT_MIGRATION:
407 break;
408 default:
409 BUG_ON(1);
410 }
411 }
412
413 static u64 get_cpu_usage_nsec_parent(void)
414 {
415 struct rusage ru;
416 u64 sum;
417 int err;
418
419 err = getrusage(RUSAGE_SELF, &ru);
420 BUG_ON(err);
421
422 sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
423 sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
424
425 return sum;
426 }
427
428 static int self_open_counters(void)
429 {
430 struct perf_event_attr attr;
431 char sbuf[STRERR_BUFSIZE];
432 int fd;
433
434 memset(&attr, 0, sizeof(attr));
435
436 attr.type = PERF_TYPE_SOFTWARE;
437 attr.config = PERF_COUNT_SW_TASK_CLOCK;
438
439 fd = sys_perf_event_open(&attr, 0, -1, -1,
440 perf_event_open_cloexec_flag());
441
442 if (fd < 0)
443 pr_err("Error: sys_perf_event_open() syscall returned "
444 "with %d (%s)\n", fd,
445 strerror_r(errno, sbuf, sizeof(sbuf)));
446 return fd;
447 }
448
449 static u64 get_cpu_usage_nsec_self(int fd)
450 {
451 u64 runtime;
452 int ret;
453
454 ret = read(fd, &runtime, sizeof(runtime));
455 BUG_ON(ret != sizeof(runtime));
456
457 return runtime;
458 }
459
460 struct sched_thread_parms {
461 struct task_desc *task;
462 struct perf_sched *sched;
463 };
464
465 static void *thread_func(void *ctx)
466 {
467 struct sched_thread_parms *parms = ctx;
468 struct task_desc *this_task = parms->task;
469 struct perf_sched *sched = parms->sched;
470 u64 cpu_usage_0, cpu_usage_1;
471 unsigned long i, ret;
472 char comm2[22];
473 int fd;
474
475 zfree(&parms);
476
477 sprintf(comm2, ":%s", this_task->comm);
478 prctl(PR_SET_NAME, comm2);
479 fd = self_open_counters();
480 if (fd < 0)
481 return NULL;
482 again:
483 ret = sem_post(&this_task->ready_for_work);
484 BUG_ON(ret);
485 ret = pthread_mutex_lock(&sched->start_work_mutex);
486 BUG_ON(ret);
487 ret = pthread_mutex_unlock(&sched->start_work_mutex);
488 BUG_ON(ret);
489
490 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
491
492 for (i = 0; i < this_task->nr_events; i++) {
493 this_task->curr_event = i;
494 perf_sched__process_event(sched, this_task->atoms[i]);
495 }
496
497 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
498 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
499 ret = sem_post(&this_task->work_done_sem);
500 BUG_ON(ret);
501
502 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
503 BUG_ON(ret);
504 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
505 BUG_ON(ret);
506
507 goto again;
508 }
509
510 static void create_tasks(struct perf_sched *sched)
511 {
512 struct task_desc *task;
513 pthread_attr_t attr;
514 unsigned long i;
515 int err;
516
517 err = pthread_attr_init(&attr);
518 BUG_ON(err);
519 err = pthread_attr_setstacksize(&attr,
520 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
521 BUG_ON(err);
522 err = pthread_mutex_lock(&sched->start_work_mutex);
523 BUG_ON(err);
524 err = pthread_mutex_lock(&sched->work_done_wait_mutex);
525 BUG_ON(err);
526 for (i = 0; i < sched->nr_tasks; i++) {
527 struct sched_thread_parms *parms = malloc(sizeof(*parms));
528 BUG_ON(parms == NULL);
529 parms->task = task = sched->tasks[i];
530 parms->sched = sched;
531 sem_init(&task->sleep_sem, 0, 0);
532 sem_init(&task->ready_for_work, 0, 0);
533 sem_init(&task->work_done_sem, 0, 0);
534 task->curr_event = 0;
535 err = pthread_create(&task->thread, &attr, thread_func, parms);
536 BUG_ON(err);
537 }
538 }
539
540 static void wait_for_tasks(struct perf_sched *sched)
541 {
542 u64 cpu_usage_0, cpu_usage_1;
543 struct task_desc *task;
544 unsigned long i, ret;
545
546 sched->start_time = get_nsecs();
547 sched->cpu_usage = 0;
548 pthread_mutex_unlock(&sched->work_done_wait_mutex);
549
550 for (i = 0; i < sched->nr_tasks; i++) {
551 task = sched->tasks[i];
552 ret = sem_wait(&task->ready_for_work);
553 BUG_ON(ret);
554 sem_init(&task->ready_for_work, 0, 0);
555 }
556 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
557 BUG_ON(ret);
558
559 cpu_usage_0 = get_cpu_usage_nsec_parent();
560
561 pthread_mutex_unlock(&sched->start_work_mutex);
562
563 for (i = 0; i < sched->nr_tasks; i++) {
564 task = sched->tasks[i];
565 ret = sem_wait(&task->work_done_sem);
566 BUG_ON(ret);
567 sem_init(&task->work_done_sem, 0, 0);
568 sched->cpu_usage += task->cpu_usage;
569 task->cpu_usage = 0;
570 }
571
572 cpu_usage_1 = get_cpu_usage_nsec_parent();
573 if (!sched->runavg_cpu_usage)
574 sched->runavg_cpu_usage = sched->cpu_usage;
575 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * 9 + sched->cpu_usage) / 10;
576
577 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
578 if (!sched->runavg_parent_cpu_usage)
579 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
580 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * 9 +
581 sched->parent_cpu_usage)/10;
582
583 ret = pthread_mutex_lock(&sched->start_work_mutex);
584 BUG_ON(ret);
585
586 for (i = 0; i < sched->nr_tasks; i++) {
587 task = sched->tasks[i];
588 sem_init(&task->sleep_sem, 0, 0);
589 task->curr_event = 0;
590 }
591 }
592
593 static void run_one_test(struct perf_sched *sched)
594 {
595 u64 T0, T1, delta, avg_delta, fluct;
596
597 T0 = get_nsecs();
598 wait_for_tasks(sched);
599 T1 = get_nsecs();
600
601 delta = T1 - T0;
602 sched->sum_runtime += delta;
603 sched->nr_runs++;
604
605 avg_delta = sched->sum_runtime / sched->nr_runs;
606 if (delta < avg_delta)
607 fluct = avg_delta - delta;
608 else
609 fluct = delta - avg_delta;
610 sched->sum_fluct += fluct;
611 if (!sched->run_avg)
612 sched->run_avg = delta;
613 sched->run_avg = (sched->run_avg * 9 + delta) / 10;
614
615 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
616
617 printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
618
619 printf("cpu: %0.2f / %0.2f",
620 (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
621
622 #if 0
623 /*
624 * rusage statistics done by the parent, these are less
625 * accurate than the sched->sum_exec_runtime based statistics:
626 */
627 printf(" [%0.2f / %0.2f]",
628 (double)sched->parent_cpu_usage/1e6,
629 (double)sched->runavg_parent_cpu_usage/1e6);
630 #endif
631
632 printf("\n");
633
634 if (sched->nr_sleep_corrections)
635 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
636 sched->nr_sleep_corrections = 0;
637 }
638
639 static void test_calibrations(struct perf_sched *sched)
640 {
641 u64 T0, T1;
642
643 T0 = get_nsecs();
644 burn_nsecs(sched, 1e6);
645 T1 = get_nsecs();
646
647 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
648
649 T0 = get_nsecs();
650 sleep_nsecs(1e6);
651 T1 = get_nsecs();
652
653 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
654 }
655
656 static int
657 replay_wakeup_event(struct perf_sched *sched,
658 struct perf_evsel *evsel, struct perf_sample *sample,
659 struct machine *machine __maybe_unused)
660 {
661 const char *comm = perf_evsel__strval(evsel, sample, "comm");
662 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
663 struct task_desc *waker, *wakee;
664
665 if (verbose) {
666 printf("sched_wakeup event %p\n", evsel);
667
668 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
669 }
670
671 waker = register_pid(sched, sample->tid, "<unknown>");
672 wakee = register_pid(sched, pid, comm);
673
674 add_sched_event_wakeup(sched, waker, sample->time, wakee);
675 return 0;
676 }
677
678 static int replay_switch_event(struct perf_sched *sched,
679 struct perf_evsel *evsel,
680 struct perf_sample *sample,
681 struct machine *machine __maybe_unused)
682 {
683 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
684 *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
685 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
686 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
687 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
688 struct task_desc *prev, __maybe_unused *next;
689 u64 timestamp0, timestamp = sample->time;
690 int cpu = sample->cpu;
691 s64 delta;
692
693 if (verbose)
694 printf("sched_switch event %p\n", evsel);
695
696 if (cpu >= MAX_CPUS || cpu < 0)
697 return 0;
698
699 timestamp0 = sched->cpu_last_switched[cpu];
700 if (timestamp0)
701 delta = timestamp - timestamp0;
702 else
703 delta = 0;
704
705 if (delta < 0) {
706 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
707 return -1;
708 }
709
710 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
711 prev_comm, prev_pid, next_comm, next_pid, delta);
712
713 prev = register_pid(sched, prev_pid, prev_comm);
714 next = register_pid(sched, next_pid, next_comm);
715
716 sched->cpu_last_switched[cpu] = timestamp;
717
718 add_sched_event_run(sched, prev, timestamp, delta);
719 add_sched_event_sleep(sched, prev, timestamp, prev_state);
720
721 return 0;
722 }
723
724 static int replay_fork_event(struct perf_sched *sched,
725 union perf_event *event,
726 struct machine *machine)
727 {
728 struct thread *child, *parent;
729
730 child = machine__findnew_thread(machine, event->fork.pid,
731 event->fork.tid);
732 parent = machine__findnew_thread(machine, event->fork.ppid,
733 event->fork.ptid);
734
735 if (child == NULL || parent == NULL) {
736 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
737 child, parent);
738 return 0;
739 }
740
741 if (verbose) {
742 printf("fork event\n");
743 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
744 printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
745 }
746
747 register_pid(sched, parent->tid, thread__comm_str(parent));
748 register_pid(sched, child->tid, thread__comm_str(child));
749 return 0;
750 }
751
752 struct sort_dimension {
753 const char *name;
754 sort_fn_t cmp;
755 struct list_head list;
756 };
757
758 static int
759 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
760 {
761 struct sort_dimension *sort;
762 int ret = 0;
763
764 BUG_ON(list_empty(list));
765
766 list_for_each_entry(sort, list, list) {
767 ret = sort->cmp(l, r);
768 if (ret)
769 return ret;
770 }
771
772 return ret;
773 }
774
775 static struct work_atoms *
776 thread_atoms_search(struct rb_root *root, struct thread *thread,
777 struct list_head *sort_list)
778 {
779 struct rb_node *node = root->rb_node;
780 struct work_atoms key = { .thread = thread };
781
782 while (node) {
783 struct work_atoms *atoms;
784 int cmp;
785
786 atoms = container_of(node, struct work_atoms, node);
787
788 cmp = thread_lat_cmp(sort_list, &key, atoms);
789 if (cmp > 0)
790 node = node->rb_left;
791 else if (cmp < 0)
792 node = node->rb_right;
793 else {
794 BUG_ON(thread != atoms->thread);
795 return atoms;
796 }
797 }
798 return NULL;
799 }
800
801 static void
802 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
803 struct list_head *sort_list)
804 {
805 struct rb_node **new = &(root->rb_node), *parent = NULL;
806
807 while (*new) {
808 struct work_atoms *this;
809 int cmp;
810
811 this = container_of(*new, struct work_atoms, node);
812 parent = *new;
813
814 cmp = thread_lat_cmp(sort_list, data, this);
815
816 if (cmp > 0)
817 new = &((*new)->rb_left);
818 else
819 new = &((*new)->rb_right);
820 }
821
822 rb_link_node(&data->node, parent, new);
823 rb_insert_color(&data->node, root);
824 }
825
826 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
827 {
828 struct work_atoms *atoms = zalloc(sizeof(*atoms));
829 if (!atoms) {
830 pr_err("No memory at %s\n", __func__);
831 return -1;
832 }
833
834 atoms->thread = thread;
835 INIT_LIST_HEAD(&atoms->work_list);
836 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
837 return 0;
838 }
839
840 static char sched_out_state(u64 prev_state)
841 {
842 const char *str = TASK_STATE_TO_CHAR_STR;
843
844 return str[prev_state];
845 }
846
847 static int
848 add_sched_out_event(struct work_atoms *atoms,
849 char run_state,
850 u64 timestamp)
851 {
852 struct work_atom *atom = zalloc(sizeof(*atom));
853 if (!atom) {
854 pr_err("Non memory at %s", __func__);
855 return -1;
856 }
857
858 atom->sched_out_time = timestamp;
859
860 if (run_state == 'R') {
861 atom->state = THREAD_WAIT_CPU;
862 atom->wake_up_time = atom->sched_out_time;
863 }
864
865 list_add_tail(&atom->list, &atoms->work_list);
866 return 0;
867 }
868
869 static void
870 add_runtime_event(struct work_atoms *atoms, u64 delta,
871 u64 timestamp __maybe_unused)
872 {
873 struct work_atom *atom;
874
875 BUG_ON(list_empty(&atoms->work_list));
876
877 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
878
879 atom->runtime += delta;
880 atoms->total_runtime += delta;
881 }
882
883 static void
884 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
885 {
886 struct work_atom *atom;
887 u64 delta;
888
889 if (list_empty(&atoms->work_list))
890 return;
891
892 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
893
894 if (atom->state != THREAD_WAIT_CPU)
895 return;
896
897 if (timestamp < atom->wake_up_time) {
898 atom->state = THREAD_IGNORE;
899 return;
900 }
901
902 atom->state = THREAD_SCHED_IN;
903 atom->sched_in_time = timestamp;
904
905 delta = atom->sched_in_time - atom->wake_up_time;
906 atoms->total_lat += delta;
907 if (delta > atoms->max_lat) {
908 atoms->max_lat = delta;
909 atoms->max_lat_at = timestamp;
910 }
911 atoms->nb_atoms++;
912 }
913
914 static int latency_switch_event(struct perf_sched *sched,
915 struct perf_evsel *evsel,
916 struct perf_sample *sample,
917 struct machine *machine)
918 {
919 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
920 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
921 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
922 struct work_atoms *out_events, *in_events;
923 struct thread *sched_out, *sched_in;
924 u64 timestamp0, timestamp = sample->time;
925 int cpu = sample->cpu;
926 s64 delta;
927
928 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
929
930 timestamp0 = sched->cpu_last_switched[cpu];
931 sched->cpu_last_switched[cpu] = timestamp;
932 if (timestamp0)
933 delta = timestamp - timestamp0;
934 else
935 delta = 0;
936
937 if (delta < 0) {
938 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
939 return -1;
940 }
941
942 sched_out = machine__findnew_thread(machine, -1, prev_pid);
943 sched_in = machine__findnew_thread(machine, -1, next_pid);
944
945 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
946 if (!out_events) {
947 if (thread_atoms_insert(sched, sched_out))
948 return -1;
949 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
950 if (!out_events) {
951 pr_err("out-event: Internal tree error");
952 return -1;
953 }
954 }
955 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
956 return -1;
957
958 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
959 if (!in_events) {
960 if (thread_atoms_insert(sched, sched_in))
961 return -1;
962 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
963 if (!in_events) {
964 pr_err("in-event: Internal tree error");
965 return -1;
966 }
967 /*
968 * Take came in we have not heard about yet,
969 * add in an initial atom in runnable state:
970 */
971 if (add_sched_out_event(in_events, 'R', timestamp))
972 return -1;
973 }
974 add_sched_in_event(in_events, timestamp);
975
976 return 0;
977 }
978
979 static int latency_runtime_event(struct perf_sched *sched,
980 struct perf_evsel *evsel,
981 struct perf_sample *sample,
982 struct machine *machine)
983 {
984 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
985 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
986 struct thread *thread = machine__findnew_thread(machine, -1, pid);
987 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
988 u64 timestamp = sample->time;
989 int cpu = sample->cpu;
990
991 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
992 if (!atoms) {
993 if (thread_atoms_insert(sched, thread))
994 return -1;
995 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
996 if (!atoms) {
997 pr_err("in-event: Internal tree error");
998 return -1;
999 }
1000 if (add_sched_out_event(atoms, 'R', timestamp))
1001 return -1;
1002 }
1003
1004 add_runtime_event(atoms, runtime, timestamp);
1005 return 0;
1006 }
1007
1008 static int latency_wakeup_event(struct perf_sched *sched,
1009 struct perf_evsel *evsel,
1010 struct perf_sample *sample,
1011 struct machine *machine)
1012 {
1013 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1014 struct work_atoms *atoms;
1015 struct work_atom *atom;
1016 struct thread *wakee;
1017 u64 timestamp = sample->time;
1018
1019 wakee = machine__findnew_thread(machine, -1, pid);
1020 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1021 if (!atoms) {
1022 if (thread_atoms_insert(sched, wakee))
1023 return -1;
1024 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1025 if (!atoms) {
1026 pr_err("wakeup-event: Internal tree error");
1027 return -1;
1028 }
1029 if (add_sched_out_event(atoms, 'S', timestamp))
1030 return -1;
1031 }
1032
1033 BUG_ON(list_empty(&atoms->work_list));
1034
1035 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1036
1037 /*
1038 * As we do not guarantee the wakeup event happens when
1039 * task is out of run queue, also may happen when task is
1040 * on run queue and wakeup only change ->state to TASK_RUNNING,
1041 * then we should not set the ->wake_up_time when wake up a
1042 * task which is on run queue.
1043 *
1044 * You WILL be missing events if you've recorded only
1045 * one CPU, or are only looking at only one, so don't
1046 * skip in this case.
1047 */
1048 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1049 return 0;
1050
1051 sched->nr_timestamps++;
1052 if (atom->sched_out_time > timestamp) {
1053 sched->nr_unordered_timestamps++;
1054 return 0;
1055 }
1056
1057 atom->state = THREAD_WAIT_CPU;
1058 atom->wake_up_time = timestamp;
1059 return 0;
1060 }
1061
1062 static int latency_migrate_task_event(struct perf_sched *sched,
1063 struct perf_evsel *evsel,
1064 struct perf_sample *sample,
1065 struct machine *machine)
1066 {
1067 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1068 u64 timestamp = sample->time;
1069 struct work_atoms *atoms;
1070 struct work_atom *atom;
1071 struct thread *migrant;
1072
1073 /*
1074 * Only need to worry about migration when profiling one CPU.
1075 */
1076 if (sched->profile_cpu == -1)
1077 return 0;
1078
1079 migrant = machine__findnew_thread(machine, -1, pid);
1080 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1081 if (!atoms) {
1082 if (thread_atoms_insert(sched, migrant))
1083 return -1;
1084 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1085 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1086 if (!atoms) {
1087 pr_err("migration-event: Internal tree error");
1088 return -1;
1089 }
1090 if (add_sched_out_event(atoms, 'R', timestamp))
1091 return -1;
1092 }
1093
1094 BUG_ON(list_empty(&atoms->work_list));
1095
1096 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1097 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1098
1099 sched->nr_timestamps++;
1100
1101 if (atom->sched_out_time > timestamp)
1102 sched->nr_unordered_timestamps++;
1103
1104 return 0;
1105 }
1106
1107 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1108 {
1109 int i;
1110 int ret;
1111 u64 avg;
1112
1113 if (!work_list->nb_atoms)
1114 return;
1115 /*
1116 * Ignore idle threads:
1117 */
1118 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1119 return;
1120
1121 sched->all_runtime += work_list->total_runtime;
1122 sched->all_count += work_list->nb_atoms;
1123
1124 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1125
1126 for (i = 0; i < 24 - ret; i++)
1127 printf(" ");
1128
1129 avg = work_list->total_lat / work_list->nb_atoms;
1130
1131 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n",
1132 (double)work_list->total_runtime / 1e6,
1133 work_list->nb_atoms, (double)avg / 1e6,
1134 (double)work_list->max_lat / 1e6,
1135 (double)work_list->max_lat_at / 1e9);
1136 }
1137
1138 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1139 {
1140 if (l->thread->tid < r->thread->tid)
1141 return -1;
1142 if (l->thread->tid > r->thread->tid)
1143 return 1;
1144
1145 return 0;
1146 }
1147
1148 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1149 {
1150 u64 avgl, avgr;
1151
1152 if (!l->nb_atoms)
1153 return -1;
1154
1155 if (!r->nb_atoms)
1156 return 1;
1157
1158 avgl = l->total_lat / l->nb_atoms;
1159 avgr = r->total_lat / r->nb_atoms;
1160
1161 if (avgl < avgr)
1162 return -1;
1163 if (avgl > avgr)
1164 return 1;
1165
1166 return 0;
1167 }
1168
1169 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1170 {
1171 if (l->max_lat < r->max_lat)
1172 return -1;
1173 if (l->max_lat > r->max_lat)
1174 return 1;
1175
1176 return 0;
1177 }
1178
1179 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1180 {
1181 if (l->nb_atoms < r->nb_atoms)
1182 return -1;
1183 if (l->nb_atoms > r->nb_atoms)
1184 return 1;
1185
1186 return 0;
1187 }
1188
1189 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1190 {
1191 if (l->total_runtime < r->total_runtime)
1192 return -1;
1193 if (l->total_runtime > r->total_runtime)
1194 return 1;
1195
1196 return 0;
1197 }
1198
1199 static int sort_dimension__add(const char *tok, struct list_head *list)
1200 {
1201 size_t i;
1202 static struct sort_dimension avg_sort_dimension = {
1203 .name = "avg",
1204 .cmp = avg_cmp,
1205 };
1206 static struct sort_dimension max_sort_dimension = {
1207 .name = "max",
1208 .cmp = max_cmp,
1209 };
1210 static struct sort_dimension pid_sort_dimension = {
1211 .name = "pid",
1212 .cmp = pid_cmp,
1213 };
1214 static struct sort_dimension runtime_sort_dimension = {
1215 .name = "runtime",
1216 .cmp = runtime_cmp,
1217 };
1218 static struct sort_dimension switch_sort_dimension = {
1219 .name = "switch",
1220 .cmp = switch_cmp,
1221 };
1222 struct sort_dimension *available_sorts[] = {
1223 &pid_sort_dimension,
1224 &avg_sort_dimension,
1225 &max_sort_dimension,
1226 &switch_sort_dimension,
1227 &runtime_sort_dimension,
1228 };
1229
1230 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1231 if (!strcmp(available_sorts[i]->name, tok)) {
1232 list_add_tail(&available_sorts[i]->list, list);
1233
1234 return 0;
1235 }
1236 }
1237
1238 return -1;
1239 }
1240
1241 static void perf_sched__sort_lat(struct perf_sched *sched)
1242 {
1243 struct rb_node *node;
1244
1245 for (;;) {
1246 struct work_atoms *data;
1247 node = rb_first(&sched->atom_root);
1248 if (!node)
1249 break;
1250
1251 rb_erase(node, &sched->atom_root);
1252 data = rb_entry(node, struct work_atoms, node);
1253 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1254 }
1255 }
1256
1257 static int process_sched_wakeup_event(struct perf_tool *tool,
1258 struct perf_evsel *evsel,
1259 struct perf_sample *sample,
1260 struct machine *machine)
1261 {
1262 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1263
1264 if (sched->tp_handler->wakeup_event)
1265 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1266
1267 return 0;
1268 }
1269
1270 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1271 struct perf_sample *sample, struct machine *machine)
1272 {
1273 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1274 struct thread *sched_in;
1275 int new_shortname;
1276 u64 timestamp0, timestamp = sample->time;
1277 s64 delta;
1278 int cpu, this_cpu = sample->cpu;
1279
1280 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1281
1282 if (this_cpu > sched->max_cpu)
1283 sched->max_cpu = this_cpu;
1284
1285 timestamp0 = sched->cpu_last_switched[this_cpu];
1286 sched->cpu_last_switched[this_cpu] = timestamp;
1287 if (timestamp0)
1288 delta = timestamp - timestamp0;
1289 else
1290 delta = 0;
1291
1292 if (delta < 0) {
1293 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1294 return -1;
1295 }
1296
1297 sched_in = machine__findnew_thread(machine, -1, next_pid);
1298
1299 sched->curr_thread[this_cpu] = sched_in;
1300
1301 printf(" ");
1302
1303 new_shortname = 0;
1304 if (!sched_in->shortname[0]) {
1305 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1306 /*
1307 * Don't allocate a letter-number for swapper:0
1308 * as a shortname. Instead, we use '.' for it.
1309 */
1310 sched_in->shortname[0] = '.';
1311 sched_in->shortname[1] = ' ';
1312 } else {
1313 sched_in->shortname[0] = sched->next_shortname1;
1314 sched_in->shortname[1] = sched->next_shortname2;
1315
1316 if (sched->next_shortname1 < 'Z') {
1317 sched->next_shortname1++;
1318 } else {
1319 sched->next_shortname1 = 'A';
1320 if (sched->next_shortname2 < '9')
1321 sched->next_shortname2++;
1322 else
1323 sched->next_shortname2 = '0';
1324 }
1325 }
1326 new_shortname = 1;
1327 }
1328
1329 for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
1330 if (cpu != this_cpu)
1331 printf(" ");
1332 else
1333 printf("*");
1334
1335 if (sched->curr_thread[cpu])
1336 printf("%2s ", sched->curr_thread[cpu]->shortname);
1337 else
1338 printf(" ");
1339 }
1340
1341 printf(" %12.6f secs ", (double)timestamp/1e9);
1342 if (new_shortname) {
1343 printf("%s => %s:%d\n",
1344 sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1345 } else {
1346 printf("\n");
1347 }
1348
1349 return 0;
1350 }
1351
1352 static int process_sched_switch_event(struct perf_tool *tool,
1353 struct perf_evsel *evsel,
1354 struct perf_sample *sample,
1355 struct machine *machine)
1356 {
1357 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1358 int this_cpu = sample->cpu, err = 0;
1359 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1360 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1361
1362 if (sched->curr_pid[this_cpu] != (u32)-1) {
1363 /*
1364 * Are we trying to switch away a PID that is
1365 * not current?
1366 */
1367 if (sched->curr_pid[this_cpu] != prev_pid)
1368 sched->nr_context_switch_bugs++;
1369 }
1370
1371 if (sched->tp_handler->switch_event)
1372 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1373
1374 sched->curr_pid[this_cpu] = next_pid;
1375 return err;
1376 }
1377
1378 static int process_sched_runtime_event(struct perf_tool *tool,
1379 struct perf_evsel *evsel,
1380 struct perf_sample *sample,
1381 struct machine *machine)
1382 {
1383 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1384
1385 if (sched->tp_handler->runtime_event)
1386 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1387
1388 return 0;
1389 }
1390
1391 static int perf_sched__process_fork_event(struct perf_tool *tool,
1392 union perf_event *event,
1393 struct perf_sample *sample,
1394 struct machine *machine)
1395 {
1396 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1397
1398 /* run the fork event through the perf machineruy */
1399 perf_event__process_fork(tool, event, sample, machine);
1400
1401 /* and then run additional processing needed for this command */
1402 if (sched->tp_handler->fork_event)
1403 return sched->tp_handler->fork_event(sched, event, machine);
1404
1405 return 0;
1406 }
1407
1408 static int process_sched_migrate_task_event(struct perf_tool *tool,
1409 struct perf_evsel *evsel,
1410 struct perf_sample *sample,
1411 struct machine *machine)
1412 {
1413 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1414
1415 if (sched->tp_handler->migrate_task_event)
1416 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1417
1418 return 0;
1419 }
1420
1421 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1422 struct perf_evsel *evsel,
1423 struct perf_sample *sample,
1424 struct machine *machine);
1425
1426 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1427 union perf_event *event __maybe_unused,
1428 struct perf_sample *sample,
1429 struct perf_evsel *evsel,
1430 struct machine *machine)
1431 {
1432 int err = 0;
1433
1434 if (evsel->handler != NULL) {
1435 tracepoint_handler f = evsel->handler;
1436 err = f(tool, evsel, sample, machine);
1437 }
1438
1439 return err;
1440 }
1441
1442 static int perf_sched__read_events(struct perf_sched *sched,
1443 struct perf_session **psession)
1444 {
1445 const struct perf_evsel_str_handler handlers[] = {
1446 { "sched:sched_switch", process_sched_switch_event, },
1447 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1448 { "sched:sched_wakeup", process_sched_wakeup_event, },
1449 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1450 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1451 };
1452 struct perf_session *session;
1453 struct perf_data_file file = {
1454 .path = input_name,
1455 .mode = PERF_DATA_MODE_READ,
1456 };
1457
1458 session = perf_session__new(&file, false, &sched->tool);
1459 if (session == NULL) {
1460 pr_debug("No Memory for session\n");
1461 return -1;
1462 }
1463
1464 symbol__init(&session->header.env);
1465
1466 if (perf_session__set_tracepoints_handlers(session, handlers))
1467 goto out_delete;
1468
1469 if (perf_session__has_traces(session, "record -R")) {
1470 int err = perf_session__process_events(session, &sched->tool);
1471 if (err) {
1472 pr_err("Failed to process events, error %d", err);
1473 goto out_delete;
1474 }
1475
1476 sched->nr_events = session->stats.nr_events[0];
1477 sched->nr_lost_events = session->stats.total_lost;
1478 sched->nr_lost_chunks = session->stats.nr_events[PERF_RECORD_LOST];
1479 }
1480
1481 if (psession)
1482 *psession = session;
1483 else
1484 perf_session__delete(session);
1485
1486 return 0;
1487
1488 out_delete:
1489 perf_session__delete(session);
1490 return -1;
1491 }
1492
1493 static void print_bad_events(struct perf_sched *sched)
1494 {
1495 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1496 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1497 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1498 sched->nr_unordered_timestamps, sched->nr_timestamps);
1499 }
1500 if (sched->nr_lost_events && sched->nr_events) {
1501 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1502 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1503 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1504 }
1505 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1506 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
1507 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1508 sched->nr_context_switch_bugs, sched->nr_timestamps);
1509 if (sched->nr_lost_events)
1510 printf(" (due to lost events?)");
1511 printf("\n");
1512 }
1513 }
1514
1515 static int perf_sched__lat(struct perf_sched *sched)
1516 {
1517 struct rb_node *next;
1518 struct perf_session *session;
1519
1520 setup_pager();
1521
1522 /* save session -- references to threads are held in work_list */
1523 if (perf_sched__read_events(sched, &session))
1524 return -1;
1525
1526 perf_sched__sort_lat(sched);
1527
1528 printf("\n -----------------------------------------------------------------------------------------------------------------\n");
1529 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
1530 printf(" -----------------------------------------------------------------------------------------------------------------\n");
1531
1532 next = rb_first(&sched->sorted_atom_root);
1533
1534 while (next) {
1535 struct work_atoms *work_list;
1536
1537 work_list = rb_entry(next, struct work_atoms, node);
1538 output_lat_thread(sched, work_list);
1539 next = rb_next(next);
1540 }
1541
1542 printf(" -----------------------------------------------------------------------------------------------------------------\n");
1543 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
1544 (double)sched->all_runtime / 1e6, sched->all_count);
1545
1546 printf(" ---------------------------------------------------\n");
1547
1548 print_bad_events(sched);
1549 printf("\n");
1550
1551 perf_session__delete(session);
1552 return 0;
1553 }
1554
1555 static int perf_sched__map(struct perf_sched *sched)
1556 {
1557 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1558
1559 setup_pager();
1560 if (perf_sched__read_events(sched, NULL))
1561 return -1;
1562 print_bad_events(sched);
1563 return 0;
1564 }
1565
1566 static int perf_sched__replay(struct perf_sched *sched)
1567 {
1568 unsigned long i;
1569
1570 calibrate_run_measurement_overhead(sched);
1571 calibrate_sleep_measurement_overhead(sched);
1572
1573 test_calibrations(sched);
1574
1575 if (perf_sched__read_events(sched, NULL))
1576 return -1;
1577
1578 printf("nr_run_events: %ld\n", sched->nr_run_events);
1579 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
1580 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
1581
1582 if (sched->targetless_wakeups)
1583 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
1584 if (sched->multitarget_wakeups)
1585 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1586 if (sched->nr_run_events_optimized)
1587 printf("run atoms optimized: %ld\n",
1588 sched->nr_run_events_optimized);
1589
1590 print_task_traces(sched);
1591 add_cross_task_wakeups(sched);
1592
1593 create_tasks(sched);
1594 printf("------------------------------------------------------------\n");
1595 for (i = 0; i < sched->replay_repeat; i++)
1596 run_one_test(sched);
1597
1598 return 0;
1599 }
1600
1601 static void setup_sorting(struct perf_sched *sched, const struct option *options,
1602 const char * const usage_msg[])
1603 {
1604 char *tmp, *tok, *str = strdup(sched->sort_order);
1605
1606 for (tok = strtok_r(str, ", ", &tmp);
1607 tok; tok = strtok_r(NULL, ", ", &tmp)) {
1608 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1609 error("Unknown --sort key: `%s'", tok);
1610 usage_with_options(usage_msg, options);
1611 }
1612 }
1613
1614 free(str);
1615
1616 sort_dimension__add("pid", &sched->cmp_pid);
1617 }
1618
1619 static int __cmd_record(int argc, const char **argv)
1620 {
1621 unsigned int rec_argc, i, j;
1622 const char **rec_argv;
1623 const char * const record_args[] = {
1624 "record",
1625 "-a",
1626 "-R",
1627 "-m", "1024",
1628 "-c", "1",
1629 "-e", "sched:sched_switch",
1630 "-e", "sched:sched_stat_wait",
1631 "-e", "sched:sched_stat_sleep",
1632 "-e", "sched:sched_stat_iowait",
1633 "-e", "sched:sched_stat_runtime",
1634 "-e", "sched:sched_process_fork",
1635 "-e", "sched:sched_wakeup",
1636 "-e", "sched:sched_wakeup_new",
1637 "-e", "sched:sched_migrate_task",
1638 };
1639
1640 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1641 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1642
1643 if (rec_argv == NULL)
1644 return -ENOMEM;
1645
1646 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1647 rec_argv[i] = strdup(record_args[i]);
1648
1649 for (j = 1; j < (unsigned int)argc; j++, i++)
1650 rec_argv[i] = argv[j];
1651
1652 BUG_ON(i != rec_argc);
1653
1654 return cmd_record(i, rec_argv, NULL);
1655 }
1656
1657 int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1658 {
1659 const char default_sort_order[] = "avg, max, switch, runtime";
1660 struct perf_sched sched = {
1661 .tool = {
1662 .sample = perf_sched__process_tracepoint_sample,
1663 .comm = perf_event__process_comm,
1664 .lost = perf_event__process_lost,
1665 .fork = perf_sched__process_fork_event,
1666 .ordered_events = true,
1667 },
1668 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
1669 .sort_list = LIST_HEAD_INIT(sched.sort_list),
1670 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
1671 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1672 .sort_order = default_sort_order,
1673 .replay_repeat = 10,
1674 .profile_cpu = -1,
1675 .next_shortname1 = 'A',
1676 .next_shortname2 = '0',
1677 };
1678 const struct option latency_options[] = {
1679 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1680 "sort by key(s): runtime, switch, avg, max"),
1681 OPT_INCR('v', "verbose", &verbose,
1682 "be more verbose (show symbol address, etc)"),
1683 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1684 "CPU to profile on"),
1685 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1686 "dump raw trace in ASCII"),
1687 OPT_END()
1688 };
1689 const struct option replay_options[] = {
1690 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1691 "repeat the workload replay N times (-1: infinite)"),
1692 OPT_INCR('v', "verbose", &verbose,
1693 "be more verbose (show symbol address, etc)"),
1694 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1695 "dump raw trace in ASCII"),
1696 OPT_END()
1697 };
1698 const struct option sched_options[] = {
1699 OPT_STRING('i', "input", &input_name, "file",
1700 "input file name"),
1701 OPT_INCR('v', "verbose", &verbose,
1702 "be more verbose (show symbol address, etc)"),
1703 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1704 "dump raw trace in ASCII"),
1705 OPT_END()
1706 };
1707 const char * const latency_usage[] = {
1708 "perf sched latency [<options>]",
1709 NULL
1710 };
1711 const char * const replay_usage[] = {
1712 "perf sched replay [<options>]",
1713 NULL
1714 };
1715 const char *const sched_subcommands[] = { "record", "latency", "map",
1716 "replay", "script", NULL };
1717 const char *sched_usage[] = {
1718 NULL,
1719 NULL
1720 };
1721 struct trace_sched_handler lat_ops = {
1722 .wakeup_event = latency_wakeup_event,
1723 .switch_event = latency_switch_event,
1724 .runtime_event = latency_runtime_event,
1725 .migrate_task_event = latency_migrate_task_event,
1726 };
1727 struct trace_sched_handler map_ops = {
1728 .switch_event = map_switch_event,
1729 };
1730 struct trace_sched_handler replay_ops = {
1731 .wakeup_event = replay_wakeup_event,
1732 .switch_event = replay_switch_event,
1733 .fork_event = replay_fork_event,
1734 };
1735 unsigned int i;
1736
1737 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
1738 sched.curr_pid[i] = -1;
1739
1740 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
1741 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1742 if (!argc)
1743 usage_with_options(sched_usage, sched_options);
1744
1745 /*
1746 * Aliased to 'perf script' for now:
1747 */
1748 if (!strcmp(argv[0], "script"))
1749 return cmd_script(argc, argv, prefix);
1750
1751 if (!strncmp(argv[0], "rec", 3)) {
1752 return __cmd_record(argc, argv);
1753 } else if (!strncmp(argv[0], "lat", 3)) {
1754 sched.tp_handler = &lat_ops;
1755 if (argc > 1) {
1756 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1757 if (argc)
1758 usage_with_options(latency_usage, latency_options);
1759 }
1760 setup_sorting(&sched, latency_options, latency_usage);
1761 return perf_sched__lat(&sched);
1762 } else if (!strcmp(argv[0], "map")) {
1763 sched.tp_handler = &map_ops;
1764 setup_sorting(&sched, latency_options, latency_usage);
1765 return perf_sched__map(&sched);
1766 } else if (!strncmp(argv[0], "rep", 3)) {
1767 sched.tp_handler = &replay_ops;
1768 if (argc) {
1769 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1770 if (argc)
1771 usage_with_options(replay_usage, replay_options);
1772 }
1773 return perf_sched__replay(&sched);
1774 } else {
1775 usage_with_options(sched_usage, sched_options);
1776 }
1777
1778 return 0;
1779 }
This page took 0.19179 seconds and 5 git commands to generate.