Btrfs: add missing free_extent_buffer
[deliverable/linux.git] / tools / perf / builtin-timechart.c
1 /*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
15 #include <traceevent/event-parse.h>
16
17 #include "builtin.h"
18
19 #include "util/util.h"
20
21 #include "util/color.h"
22 #include <linux/list.h>
23 #include "util/cache.h"
24 #include "util/evlist.h"
25 #include "util/evsel.h"
26 #include <linux/rbtree.h>
27 #include "util/symbol.h"
28 #include "util/callchain.h"
29 #include "util/strlist.h"
30
31 #include "perf.h"
32 #include "util/header.h"
33 #include "util/parse-options.h"
34 #include "util/parse-events.h"
35 #include "util/event.h"
36 #include "util/session.h"
37 #include "util/svghelper.h"
38 #include "util/tool.h"
39 #include "util/data.h"
40 #include "util/debug.h"
41
42 #define SUPPORT_OLD_POWER_EVENTS 1
43 #define PWR_EVENT_EXIT -1
44
45 struct per_pid;
46 struct power_event;
47 struct wake_event;
48
49 struct timechart {
50 struct perf_tool tool;
51 struct per_pid *all_data;
52 struct power_event *power_events;
53 struct wake_event *wake_events;
54 int proc_num;
55 unsigned int numcpus;
56 u64 min_freq, /* Lowest CPU frequency seen */
57 max_freq, /* Highest CPU frequency seen */
58 turbo_frequency,
59 first_time, last_time;
60 bool power_only,
61 tasks_only,
62 with_backtrace,
63 topology;
64 /* IO related settings */
65 u64 io_events;
66 bool io_only,
67 skip_eagain;
68 u64 min_time,
69 merge_dist;
70 bool force;
71 };
72
73 struct per_pidcomm;
74 struct cpu_sample;
75 struct io_sample;
76
77 /*
78 * Datastructure layout:
79 * We keep an list of "pid"s, matching the kernels notion of a task struct.
80 * Each "pid" entry, has a list of "comm"s.
81 * this is because we want to track different programs different, while
82 * exec will reuse the original pid (by design).
83 * Each comm has a list of samples that will be used to draw
84 * final graph.
85 */
86
87 struct per_pid {
88 struct per_pid *next;
89
90 int pid;
91 int ppid;
92
93 u64 start_time;
94 u64 end_time;
95 u64 total_time;
96 u64 total_bytes;
97 int display;
98
99 struct per_pidcomm *all;
100 struct per_pidcomm *current;
101 };
102
103
104 struct per_pidcomm {
105 struct per_pidcomm *next;
106
107 u64 start_time;
108 u64 end_time;
109 u64 total_time;
110 u64 max_bytes;
111 u64 total_bytes;
112
113 int Y;
114 int display;
115
116 long state;
117 u64 state_since;
118
119 char *comm;
120
121 struct cpu_sample *samples;
122 struct io_sample *io_samples;
123 };
124
125 struct sample_wrapper {
126 struct sample_wrapper *next;
127
128 u64 timestamp;
129 unsigned char data[0];
130 };
131
132 #define TYPE_NONE 0
133 #define TYPE_RUNNING 1
134 #define TYPE_WAITING 2
135 #define TYPE_BLOCKED 3
136
137 struct cpu_sample {
138 struct cpu_sample *next;
139
140 u64 start_time;
141 u64 end_time;
142 int type;
143 int cpu;
144 const char *backtrace;
145 };
146
147 enum {
148 IOTYPE_READ,
149 IOTYPE_WRITE,
150 IOTYPE_SYNC,
151 IOTYPE_TX,
152 IOTYPE_RX,
153 IOTYPE_POLL,
154 };
155
156 struct io_sample {
157 struct io_sample *next;
158
159 u64 start_time;
160 u64 end_time;
161 u64 bytes;
162 int type;
163 int fd;
164 int err;
165 int merges;
166 };
167
168 #define CSTATE 1
169 #define PSTATE 2
170
171 struct power_event {
172 struct power_event *next;
173 int type;
174 int state;
175 u64 start_time;
176 u64 end_time;
177 int cpu;
178 };
179
180 struct wake_event {
181 struct wake_event *next;
182 int waker;
183 int wakee;
184 u64 time;
185 const char *backtrace;
186 };
187
188 struct process_filter {
189 char *name;
190 int pid;
191 struct process_filter *next;
192 };
193
194 static struct process_filter *process_filter;
195
196
197 static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
198 {
199 struct per_pid *cursor = tchart->all_data;
200
201 while (cursor) {
202 if (cursor->pid == pid)
203 return cursor;
204 cursor = cursor->next;
205 }
206 cursor = zalloc(sizeof(*cursor));
207 assert(cursor != NULL);
208 cursor->pid = pid;
209 cursor->next = tchart->all_data;
210 tchart->all_data = cursor;
211 return cursor;
212 }
213
214 static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
215 {
216 struct per_pid *p;
217 struct per_pidcomm *c;
218 p = find_create_pid(tchart, pid);
219 c = p->all;
220 while (c) {
221 if (c->comm && strcmp(c->comm, comm) == 0) {
222 p->current = c;
223 return;
224 }
225 if (!c->comm) {
226 c->comm = strdup(comm);
227 p->current = c;
228 return;
229 }
230 c = c->next;
231 }
232 c = zalloc(sizeof(*c));
233 assert(c != NULL);
234 c->comm = strdup(comm);
235 p->current = c;
236 c->next = p->all;
237 p->all = c;
238 }
239
240 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
241 {
242 struct per_pid *p, *pp;
243 p = find_create_pid(tchart, pid);
244 pp = find_create_pid(tchart, ppid);
245 p->ppid = ppid;
246 if (pp->current && pp->current->comm && !p->current)
247 pid_set_comm(tchart, pid, pp->current->comm);
248
249 p->start_time = timestamp;
250 if (p->current && !p->current->start_time) {
251 p->current->start_time = timestamp;
252 p->current->state_since = timestamp;
253 }
254 }
255
256 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
257 {
258 struct per_pid *p;
259 p = find_create_pid(tchart, pid);
260 p->end_time = timestamp;
261 if (p->current)
262 p->current->end_time = timestamp;
263 }
264
265 static void pid_put_sample(struct timechart *tchart, int pid, int type,
266 unsigned int cpu, u64 start, u64 end,
267 const char *backtrace)
268 {
269 struct per_pid *p;
270 struct per_pidcomm *c;
271 struct cpu_sample *sample;
272
273 p = find_create_pid(tchart, pid);
274 c = p->current;
275 if (!c) {
276 c = zalloc(sizeof(*c));
277 assert(c != NULL);
278 p->current = c;
279 c->next = p->all;
280 p->all = c;
281 }
282
283 sample = zalloc(sizeof(*sample));
284 assert(sample != NULL);
285 sample->start_time = start;
286 sample->end_time = end;
287 sample->type = type;
288 sample->next = c->samples;
289 sample->cpu = cpu;
290 sample->backtrace = backtrace;
291 c->samples = sample;
292
293 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
294 c->total_time += (end-start);
295 p->total_time += (end-start);
296 }
297
298 if (c->start_time == 0 || c->start_time > start)
299 c->start_time = start;
300 if (p->start_time == 0 || p->start_time > start)
301 p->start_time = start;
302 }
303
304 #define MAX_CPUS 4096
305
306 static u64 cpus_cstate_start_times[MAX_CPUS];
307 static int cpus_cstate_state[MAX_CPUS];
308 static u64 cpus_pstate_start_times[MAX_CPUS];
309 static u64 cpus_pstate_state[MAX_CPUS];
310
311 static int process_comm_event(struct perf_tool *tool,
312 union perf_event *event,
313 struct perf_sample *sample __maybe_unused,
314 struct machine *machine __maybe_unused)
315 {
316 struct timechart *tchart = container_of(tool, struct timechart, tool);
317 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
318 return 0;
319 }
320
321 static int process_fork_event(struct perf_tool *tool,
322 union perf_event *event,
323 struct perf_sample *sample __maybe_unused,
324 struct machine *machine __maybe_unused)
325 {
326 struct timechart *tchart = container_of(tool, struct timechart, tool);
327 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
328 return 0;
329 }
330
331 static int process_exit_event(struct perf_tool *tool,
332 union perf_event *event,
333 struct perf_sample *sample __maybe_unused,
334 struct machine *machine __maybe_unused)
335 {
336 struct timechart *tchart = container_of(tool, struct timechart, tool);
337 pid_exit(tchart, event->fork.pid, event->fork.time);
338 return 0;
339 }
340
341 #ifdef SUPPORT_OLD_POWER_EVENTS
342 static int use_old_power_events;
343 #endif
344
345 static void c_state_start(int cpu, u64 timestamp, int state)
346 {
347 cpus_cstate_start_times[cpu] = timestamp;
348 cpus_cstate_state[cpu] = state;
349 }
350
351 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
352 {
353 struct power_event *pwr = zalloc(sizeof(*pwr));
354
355 if (!pwr)
356 return;
357
358 pwr->state = cpus_cstate_state[cpu];
359 pwr->start_time = cpus_cstate_start_times[cpu];
360 pwr->end_time = timestamp;
361 pwr->cpu = cpu;
362 pwr->type = CSTATE;
363 pwr->next = tchart->power_events;
364
365 tchart->power_events = pwr;
366 }
367
368 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
369 {
370 struct power_event *pwr;
371
372 if (new_freq > 8000000) /* detect invalid data */
373 return;
374
375 pwr = zalloc(sizeof(*pwr));
376 if (!pwr)
377 return;
378
379 pwr->state = cpus_pstate_state[cpu];
380 pwr->start_time = cpus_pstate_start_times[cpu];
381 pwr->end_time = timestamp;
382 pwr->cpu = cpu;
383 pwr->type = PSTATE;
384 pwr->next = tchart->power_events;
385
386 if (!pwr->start_time)
387 pwr->start_time = tchart->first_time;
388
389 tchart->power_events = pwr;
390
391 cpus_pstate_state[cpu] = new_freq;
392 cpus_pstate_start_times[cpu] = timestamp;
393
394 if ((u64)new_freq > tchart->max_freq)
395 tchart->max_freq = new_freq;
396
397 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
398 tchart->min_freq = new_freq;
399
400 if (new_freq == tchart->max_freq - 1000)
401 tchart->turbo_frequency = tchart->max_freq;
402 }
403
404 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
405 int waker, int wakee, u8 flags, const char *backtrace)
406 {
407 struct per_pid *p;
408 struct wake_event *we = zalloc(sizeof(*we));
409
410 if (!we)
411 return;
412
413 we->time = timestamp;
414 we->waker = waker;
415 we->backtrace = backtrace;
416
417 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
418 we->waker = -1;
419
420 we->wakee = wakee;
421 we->next = tchart->wake_events;
422 tchart->wake_events = we;
423 p = find_create_pid(tchart, we->wakee);
424
425 if (p && p->current && p->current->state == TYPE_NONE) {
426 p->current->state_since = timestamp;
427 p->current->state = TYPE_WAITING;
428 }
429 if (p && p->current && p->current->state == TYPE_BLOCKED) {
430 pid_put_sample(tchart, p->pid, p->current->state, cpu,
431 p->current->state_since, timestamp, NULL);
432 p->current->state_since = timestamp;
433 p->current->state = TYPE_WAITING;
434 }
435 }
436
437 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
438 int prev_pid, int next_pid, u64 prev_state,
439 const char *backtrace)
440 {
441 struct per_pid *p = NULL, *prev_p;
442
443 prev_p = find_create_pid(tchart, prev_pid);
444
445 p = find_create_pid(tchart, next_pid);
446
447 if (prev_p->current && prev_p->current->state != TYPE_NONE)
448 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
449 prev_p->current->state_since, timestamp,
450 backtrace);
451 if (p && p->current) {
452 if (p->current->state != TYPE_NONE)
453 pid_put_sample(tchart, next_pid, p->current->state, cpu,
454 p->current->state_since, timestamp,
455 backtrace);
456
457 p->current->state_since = timestamp;
458 p->current->state = TYPE_RUNNING;
459 }
460
461 if (prev_p->current) {
462 prev_p->current->state = TYPE_NONE;
463 prev_p->current->state_since = timestamp;
464 if (prev_state & 2)
465 prev_p->current->state = TYPE_BLOCKED;
466 if (prev_state == 0)
467 prev_p->current->state = TYPE_WAITING;
468 }
469 }
470
471 static const char *cat_backtrace(union perf_event *event,
472 struct perf_sample *sample,
473 struct machine *machine)
474 {
475 struct addr_location al;
476 unsigned int i;
477 char *p = NULL;
478 size_t p_len;
479 u8 cpumode = PERF_RECORD_MISC_USER;
480 struct addr_location tal;
481 struct ip_callchain *chain = sample->callchain;
482 FILE *f = open_memstream(&p, &p_len);
483
484 if (!f) {
485 perror("open_memstream error");
486 return NULL;
487 }
488
489 if (!chain)
490 goto exit;
491
492 if (perf_event__preprocess_sample(event, machine, &al, sample) < 0) {
493 fprintf(stderr, "problem processing %d event, skipping it.\n",
494 event->header.type);
495 goto exit;
496 }
497
498 for (i = 0; i < chain->nr; i++) {
499 u64 ip;
500
501 if (callchain_param.order == ORDER_CALLEE)
502 ip = chain->ips[i];
503 else
504 ip = chain->ips[chain->nr - i - 1];
505
506 if (ip >= PERF_CONTEXT_MAX) {
507 switch (ip) {
508 case PERF_CONTEXT_HV:
509 cpumode = PERF_RECORD_MISC_HYPERVISOR;
510 break;
511 case PERF_CONTEXT_KERNEL:
512 cpumode = PERF_RECORD_MISC_KERNEL;
513 break;
514 case PERF_CONTEXT_USER:
515 cpumode = PERF_RECORD_MISC_USER;
516 break;
517 default:
518 pr_debug("invalid callchain context: "
519 "%"PRId64"\n", (s64) ip);
520
521 /*
522 * It seems the callchain is corrupted.
523 * Discard all.
524 */
525 zfree(&p);
526 goto exit;
527 }
528 continue;
529 }
530
531 tal.filtered = 0;
532 thread__find_addr_location(al.thread, cpumode,
533 MAP__FUNCTION, ip, &tal);
534
535 if (tal.sym)
536 fprintf(f, "..... %016" PRIx64 " %s\n", ip,
537 tal.sym->name);
538 else
539 fprintf(f, "..... %016" PRIx64 "\n", ip);
540 }
541
542 exit:
543 fclose(f);
544
545 return p;
546 }
547
548 typedef int (*tracepoint_handler)(struct timechart *tchart,
549 struct perf_evsel *evsel,
550 struct perf_sample *sample,
551 const char *backtrace);
552
553 static int process_sample_event(struct perf_tool *tool,
554 union perf_event *event,
555 struct perf_sample *sample,
556 struct perf_evsel *evsel,
557 struct machine *machine)
558 {
559 struct timechart *tchart = container_of(tool, struct timechart, tool);
560
561 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
562 if (!tchart->first_time || tchart->first_time > sample->time)
563 tchart->first_time = sample->time;
564 if (tchart->last_time < sample->time)
565 tchart->last_time = sample->time;
566 }
567
568 if (evsel->handler != NULL) {
569 tracepoint_handler f = evsel->handler;
570 return f(tchart, evsel, sample,
571 cat_backtrace(event, sample, machine));
572 }
573
574 return 0;
575 }
576
577 static int
578 process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
579 struct perf_evsel *evsel,
580 struct perf_sample *sample,
581 const char *backtrace __maybe_unused)
582 {
583 u32 state = perf_evsel__intval(evsel, sample, "state");
584 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
585
586 if (state == (u32)PWR_EVENT_EXIT)
587 c_state_end(tchart, cpu_id, sample->time);
588 else
589 c_state_start(cpu_id, sample->time, state);
590 return 0;
591 }
592
593 static int
594 process_sample_cpu_frequency(struct timechart *tchart,
595 struct perf_evsel *evsel,
596 struct perf_sample *sample,
597 const char *backtrace __maybe_unused)
598 {
599 u32 state = perf_evsel__intval(evsel, sample, "state");
600 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
601
602 p_state_change(tchart, cpu_id, sample->time, state);
603 return 0;
604 }
605
606 static int
607 process_sample_sched_wakeup(struct timechart *tchart,
608 struct perf_evsel *evsel,
609 struct perf_sample *sample,
610 const char *backtrace)
611 {
612 u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
613 int waker = perf_evsel__intval(evsel, sample, "common_pid");
614 int wakee = perf_evsel__intval(evsel, sample, "pid");
615
616 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
617 return 0;
618 }
619
620 static int
621 process_sample_sched_switch(struct timechart *tchart,
622 struct perf_evsel *evsel,
623 struct perf_sample *sample,
624 const char *backtrace)
625 {
626 int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
627 int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
628 u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
629
630 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
631 prev_state, backtrace);
632 return 0;
633 }
634
635 #ifdef SUPPORT_OLD_POWER_EVENTS
636 static int
637 process_sample_power_start(struct timechart *tchart __maybe_unused,
638 struct perf_evsel *evsel,
639 struct perf_sample *sample,
640 const char *backtrace __maybe_unused)
641 {
642 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
643 u64 value = perf_evsel__intval(evsel, sample, "value");
644
645 c_state_start(cpu_id, sample->time, value);
646 return 0;
647 }
648
649 static int
650 process_sample_power_end(struct timechart *tchart,
651 struct perf_evsel *evsel __maybe_unused,
652 struct perf_sample *sample,
653 const char *backtrace __maybe_unused)
654 {
655 c_state_end(tchart, sample->cpu, sample->time);
656 return 0;
657 }
658
659 static int
660 process_sample_power_frequency(struct timechart *tchart,
661 struct perf_evsel *evsel,
662 struct perf_sample *sample,
663 const char *backtrace __maybe_unused)
664 {
665 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
666 u64 value = perf_evsel__intval(evsel, sample, "value");
667
668 p_state_change(tchart, cpu_id, sample->time, value);
669 return 0;
670 }
671 #endif /* SUPPORT_OLD_POWER_EVENTS */
672
673 /*
674 * After the last sample we need to wrap up the current C/P state
675 * and close out each CPU for these.
676 */
677 static void end_sample_processing(struct timechart *tchart)
678 {
679 u64 cpu;
680 struct power_event *pwr;
681
682 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
683 /* C state */
684 #if 0
685 pwr = zalloc(sizeof(*pwr));
686 if (!pwr)
687 return;
688
689 pwr->state = cpus_cstate_state[cpu];
690 pwr->start_time = cpus_cstate_start_times[cpu];
691 pwr->end_time = tchart->last_time;
692 pwr->cpu = cpu;
693 pwr->type = CSTATE;
694 pwr->next = tchart->power_events;
695
696 tchart->power_events = pwr;
697 #endif
698 /* P state */
699
700 pwr = zalloc(sizeof(*pwr));
701 if (!pwr)
702 return;
703
704 pwr->state = cpus_pstate_state[cpu];
705 pwr->start_time = cpus_pstate_start_times[cpu];
706 pwr->end_time = tchart->last_time;
707 pwr->cpu = cpu;
708 pwr->type = PSTATE;
709 pwr->next = tchart->power_events;
710
711 if (!pwr->start_time)
712 pwr->start_time = tchart->first_time;
713 if (!pwr->state)
714 pwr->state = tchart->min_freq;
715 tchart->power_events = pwr;
716 }
717 }
718
719 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
720 u64 start, int fd)
721 {
722 struct per_pid *p = find_create_pid(tchart, pid);
723 struct per_pidcomm *c = p->current;
724 struct io_sample *sample;
725 struct io_sample *prev;
726
727 if (!c) {
728 c = zalloc(sizeof(*c));
729 if (!c)
730 return -ENOMEM;
731 p->current = c;
732 c->next = p->all;
733 p->all = c;
734 }
735
736 prev = c->io_samples;
737
738 if (prev && prev->start_time && !prev->end_time) {
739 pr_warning("Skip invalid start event: "
740 "previous event already started!\n");
741
742 /* remove previous event that has been started,
743 * we are not sure we will ever get an end for it */
744 c->io_samples = prev->next;
745 free(prev);
746 return 0;
747 }
748
749 sample = zalloc(sizeof(*sample));
750 if (!sample)
751 return -ENOMEM;
752 sample->start_time = start;
753 sample->type = type;
754 sample->fd = fd;
755 sample->next = c->io_samples;
756 c->io_samples = sample;
757
758 if (c->start_time == 0 || c->start_time > start)
759 c->start_time = start;
760
761 return 0;
762 }
763
764 static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
765 u64 end, long ret)
766 {
767 struct per_pid *p = find_create_pid(tchart, pid);
768 struct per_pidcomm *c = p->current;
769 struct io_sample *sample, *prev;
770
771 if (!c) {
772 pr_warning("Invalid pidcomm!\n");
773 return -1;
774 }
775
776 sample = c->io_samples;
777
778 if (!sample) /* skip partially captured events */
779 return 0;
780
781 if (sample->end_time) {
782 pr_warning("Skip invalid end event: "
783 "previous event already ended!\n");
784 return 0;
785 }
786
787 if (sample->type != type) {
788 pr_warning("Skip invalid end event: invalid event type!\n");
789 return 0;
790 }
791
792 sample->end_time = end;
793 prev = sample->next;
794
795 /* we want to be able to see small and fast transfers, so make them
796 * at least min_time long, but don't overlap them */
797 if (sample->end_time - sample->start_time < tchart->min_time)
798 sample->end_time = sample->start_time + tchart->min_time;
799 if (prev && sample->start_time < prev->end_time) {
800 if (prev->err) /* try to make errors more visible */
801 sample->start_time = prev->end_time;
802 else
803 prev->end_time = sample->start_time;
804 }
805
806 if (ret < 0) {
807 sample->err = ret;
808 } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
809 type == IOTYPE_TX || type == IOTYPE_RX) {
810
811 if ((u64)ret > c->max_bytes)
812 c->max_bytes = ret;
813
814 c->total_bytes += ret;
815 p->total_bytes += ret;
816 sample->bytes = ret;
817 }
818
819 /* merge two requests to make svg smaller and render-friendly */
820 if (prev &&
821 prev->type == sample->type &&
822 prev->err == sample->err &&
823 prev->fd == sample->fd &&
824 prev->end_time + tchart->merge_dist >= sample->start_time) {
825
826 sample->bytes += prev->bytes;
827 sample->merges += prev->merges + 1;
828
829 sample->start_time = prev->start_time;
830 sample->next = prev->next;
831 free(prev);
832
833 if (!sample->err && sample->bytes > c->max_bytes)
834 c->max_bytes = sample->bytes;
835 }
836
837 tchart->io_events++;
838
839 return 0;
840 }
841
842 static int
843 process_enter_read(struct timechart *tchart,
844 struct perf_evsel *evsel,
845 struct perf_sample *sample)
846 {
847 long fd = perf_evsel__intval(evsel, sample, "fd");
848 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
849 sample->time, fd);
850 }
851
852 static int
853 process_exit_read(struct timechart *tchart,
854 struct perf_evsel *evsel,
855 struct perf_sample *sample)
856 {
857 long ret = perf_evsel__intval(evsel, sample, "ret");
858 return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
859 sample->time, ret);
860 }
861
862 static int
863 process_enter_write(struct timechart *tchart,
864 struct perf_evsel *evsel,
865 struct perf_sample *sample)
866 {
867 long fd = perf_evsel__intval(evsel, sample, "fd");
868 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
869 sample->time, fd);
870 }
871
872 static int
873 process_exit_write(struct timechart *tchart,
874 struct perf_evsel *evsel,
875 struct perf_sample *sample)
876 {
877 long ret = perf_evsel__intval(evsel, sample, "ret");
878 return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
879 sample->time, ret);
880 }
881
882 static int
883 process_enter_sync(struct timechart *tchart,
884 struct perf_evsel *evsel,
885 struct perf_sample *sample)
886 {
887 long fd = perf_evsel__intval(evsel, sample, "fd");
888 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
889 sample->time, fd);
890 }
891
892 static int
893 process_exit_sync(struct timechart *tchart,
894 struct perf_evsel *evsel,
895 struct perf_sample *sample)
896 {
897 long ret = perf_evsel__intval(evsel, sample, "ret");
898 return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
899 sample->time, ret);
900 }
901
902 static int
903 process_enter_tx(struct timechart *tchart,
904 struct perf_evsel *evsel,
905 struct perf_sample *sample)
906 {
907 long fd = perf_evsel__intval(evsel, sample, "fd");
908 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
909 sample->time, fd);
910 }
911
912 static int
913 process_exit_tx(struct timechart *tchart,
914 struct perf_evsel *evsel,
915 struct perf_sample *sample)
916 {
917 long ret = perf_evsel__intval(evsel, sample, "ret");
918 return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
919 sample->time, ret);
920 }
921
922 static int
923 process_enter_rx(struct timechart *tchart,
924 struct perf_evsel *evsel,
925 struct perf_sample *sample)
926 {
927 long fd = perf_evsel__intval(evsel, sample, "fd");
928 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
929 sample->time, fd);
930 }
931
932 static int
933 process_exit_rx(struct timechart *tchart,
934 struct perf_evsel *evsel,
935 struct perf_sample *sample)
936 {
937 long ret = perf_evsel__intval(evsel, sample, "ret");
938 return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
939 sample->time, ret);
940 }
941
942 static int
943 process_enter_poll(struct timechart *tchart,
944 struct perf_evsel *evsel,
945 struct perf_sample *sample)
946 {
947 long fd = perf_evsel__intval(evsel, sample, "fd");
948 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
949 sample->time, fd);
950 }
951
952 static int
953 process_exit_poll(struct timechart *tchart,
954 struct perf_evsel *evsel,
955 struct perf_sample *sample)
956 {
957 long ret = perf_evsel__intval(evsel, sample, "ret");
958 return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
959 sample->time, ret);
960 }
961
962 /*
963 * Sort the pid datastructure
964 */
965 static void sort_pids(struct timechart *tchart)
966 {
967 struct per_pid *new_list, *p, *cursor, *prev;
968 /* sort by ppid first, then by pid, lowest to highest */
969
970 new_list = NULL;
971
972 while (tchart->all_data) {
973 p = tchart->all_data;
974 tchart->all_data = p->next;
975 p->next = NULL;
976
977 if (new_list == NULL) {
978 new_list = p;
979 p->next = NULL;
980 continue;
981 }
982 prev = NULL;
983 cursor = new_list;
984 while (cursor) {
985 if (cursor->ppid > p->ppid ||
986 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
987 /* must insert before */
988 if (prev) {
989 p->next = prev->next;
990 prev->next = p;
991 cursor = NULL;
992 continue;
993 } else {
994 p->next = new_list;
995 new_list = p;
996 cursor = NULL;
997 continue;
998 }
999 }
1000
1001 prev = cursor;
1002 cursor = cursor->next;
1003 if (!cursor)
1004 prev->next = p;
1005 }
1006 }
1007 tchart->all_data = new_list;
1008 }
1009
1010
1011 static void draw_c_p_states(struct timechart *tchart)
1012 {
1013 struct power_event *pwr;
1014 pwr = tchart->power_events;
1015
1016 /*
1017 * two pass drawing so that the P state bars are on top of the C state blocks
1018 */
1019 while (pwr) {
1020 if (pwr->type == CSTATE)
1021 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1022 pwr = pwr->next;
1023 }
1024
1025 pwr = tchart->power_events;
1026 while (pwr) {
1027 if (pwr->type == PSTATE) {
1028 if (!pwr->state)
1029 pwr->state = tchart->min_freq;
1030 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1031 }
1032 pwr = pwr->next;
1033 }
1034 }
1035
1036 static void draw_wakeups(struct timechart *tchart)
1037 {
1038 struct wake_event *we;
1039 struct per_pid *p;
1040 struct per_pidcomm *c;
1041
1042 we = tchart->wake_events;
1043 while (we) {
1044 int from = 0, to = 0;
1045 char *task_from = NULL, *task_to = NULL;
1046
1047 /* locate the column of the waker and wakee */
1048 p = tchart->all_data;
1049 while (p) {
1050 if (p->pid == we->waker || p->pid == we->wakee) {
1051 c = p->all;
1052 while (c) {
1053 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1054 if (p->pid == we->waker && !from) {
1055 from = c->Y;
1056 task_from = strdup(c->comm);
1057 }
1058 if (p->pid == we->wakee && !to) {
1059 to = c->Y;
1060 task_to = strdup(c->comm);
1061 }
1062 }
1063 c = c->next;
1064 }
1065 c = p->all;
1066 while (c) {
1067 if (p->pid == we->waker && !from) {
1068 from = c->Y;
1069 task_from = strdup(c->comm);
1070 }
1071 if (p->pid == we->wakee && !to) {
1072 to = c->Y;
1073 task_to = strdup(c->comm);
1074 }
1075 c = c->next;
1076 }
1077 }
1078 p = p->next;
1079 }
1080
1081 if (!task_from) {
1082 task_from = malloc(40);
1083 sprintf(task_from, "[%i]", we->waker);
1084 }
1085 if (!task_to) {
1086 task_to = malloc(40);
1087 sprintf(task_to, "[%i]", we->wakee);
1088 }
1089
1090 if (we->waker == -1)
1091 svg_interrupt(we->time, to, we->backtrace);
1092 else if (from && to && abs(from - to) == 1)
1093 svg_wakeline(we->time, from, to, we->backtrace);
1094 else
1095 svg_partial_wakeline(we->time, from, task_from, to,
1096 task_to, we->backtrace);
1097 we = we->next;
1098
1099 free(task_from);
1100 free(task_to);
1101 }
1102 }
1103
1104 static void draw_cpu_usage(struct timechart *tchart)
1105 {
1106 struct per_pid *p;
1107 struct per_pidcomm *c;
1108 struct cpu_sample *sample;
1109 p = tchart->all_data;
1110 while (p) {
1111 c = p->all;
1112 while (c) {
1113 sample = c->samples;
1114 while (sample) {
1115 if (sample->type == TYPE_RUNNING) {
1116 svg_process(sample->cpu,
1117 sample->start_time,
1118 sample->end_time,
1119 p->pid,
1120 c->comm,
1121 sample->backtrace);
1122 }
1123
1124 sample = sample->next;
1125 }
1126 c = c->next;
1127 }
1128 p = p->next;
1129 }
1130 }
1131
1132 static void draw_io_bars(struct timechart *tchart)
1133 {
1134 const char *suf;
1135 double bytes;
1136 char comm[256];
1137 struct per_pid *p;
1138 struct per_pidcomm *c;
1139 struct io_sample *sample;
1140 int Y = 1;
1141
1142 p = tchart->all_data;
1143 while (p) {
1144 c = p->all;
1145 while (c) {
1146 if (!c->display) {
1147 c->Y = 0;
1148 c = c->next;
1149 continue;
1150 }
1151
1152 svg_box(Y, c->start_time, c->end_time, "process3");
1153 sample = c->io_samples;
1154 for (sample = c->io_samples; sample; sample = sample->next) {
1155 double h = (double)sample->bytes / c->max_bytes;
1156
1157 if (tchart->skip_eagain &&
1158 sample->err == -EAGAIN)
1159 continue;
1160
1161 if (sample->err)
1162 h = 1;
1163
1164 if (sample->type == IOTYPE_SYNC)
1165 svg_fbox(Y,
1166 sample->start_time,
1167 sample->end_time,
1168 1,
1169 sample->err ? "error" : "sync",
1170 sample->fd,
1171 sample->err,
1172 sample->merges);
1173 else if (sample->type == IOTYPE_POLL)
1174 svg_fbox(Y,
1175 sample->start_time,
1176 sample->end_time,
1177 1,
1178 sample->err ? "error" : "poll",
1179 sample->fd,
1180 sample->err,
1181 sample->merges);
1182 else if (sample->type == IOTYPE_READ)
1183 svg_ubox(Y,
1184 sample->start_time,
1185 sample->end_time,
1186 h,
1187 sample->err ? "error" : "disk",
1188 sample->fd,
1189 sample->err,
1190 sample->merges);
1191 else if (sample->type == IOTYPE_WRITE)
1192 svg_lbox(Y,
1193 sample->start_time,
1194 sample->end_time,
1195 h,
1196 sample->err ? "error" : "disk",
1197 sample->fd,
1198 sample->err,
1199 sample->merges);
1200 else if (sample->type == IOTYPE_RX)
1201 svg_ubox(Y,
1202 sample->start_time,
1203 sample->end_time,
1204 h,
1205 sample->err ? "error" : "net",
1206 sample->fd,
1207 sample->err,
1208 sample->merges);
1209 else if (sample->type == IOTYPE_TX)
1210 svg_lbox(Y,
1211 sample->start_time,
1212 sample->end_time,
1213 h,
1214 sample->err ? "error" : "net",
1215 sample->fd,
1216 sample->err,
1217 sample->merges);
1218 }
1219
1220 suf = "";
1221 bytes = c->total_bytes;
1222 if (bytes > 1024) {
1223 bytes = bytes / 1024;
1224 suf = "K";
1225 }
1226 if (bytes > 1024) {
1227 bytes = bytes / 1024;
1228 suf = "M";
1229 }
1230 if (bytes > 1024) {
1231 bytes = bytes / 1024;
1232 suf = "G";
1233 }
1234
1235
1236 sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1237 svg_text(Y, c->start_time, comm);
1238
1239 c->Y = Y;
1240 Y++;
1241 c = c->next;
1242 }
1243 p = p->next;
1244 }
1245 }
1246
1247 static void draw_process_bars(struct timechart *tchart)
1248 {
1249 struct per_pid *p;
1250 struct per_pidcomm *c;
1251 struct cpu_sample *sample;
1252 int Y = 0;
1253
1254 Y = 2 * tchart->numcpus + 2;
1255
1256 p = tchart->all_data;
1257 while (p) {
1258 c = p->all;
1259 while (c) {
1260 if (!c->display) {
1261 c->Y = 0;
1262 c = c->next;
1263 continue;
1264 }
1265
1266 svg_box(Y, c->start_time, c->end_time, "process");
1267 sample = c->samples;
1268 while (sample) {
1269 if (sample->type == TYPE_RUNNING)
1270 svg_running(Y, sample->cpu,
1271 sample->start_time,
1272 sample->end_time,
1273 sample->backtrace);
1274 if (sample->type == TYPE_BLOCKED)
1275 svg_blocked(Y, sample->cpu,
1276 sample->start_time,
1277 sample->end_time,
1278 sample->backtrace);
1279 if (sample->type == TYPE_WAITING)
1280 svg_waiting(Y, sample->cpu,
1281 sample->start_time,
1282 sample->end_time,
1283 sample->backtrace);
1284 sample = sample->next;
1285 }
1286
1287 if (c->comm) {
1288 char comm[256];
1289 if (c->total_time > 5000000000) /* 5 seconds */
1290 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
1291 else
1292 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
1293
1294 svg_text(Y, c->start_time, comm);
1295 }
1296 c->Y = Y;
1297 Y++;
1298 c = c->next;
1299 }
1300 p = p->next;
1301 }
1302 }
1303
1304 static void add_process_filter(const char *string)
1305 {
1306 int pid = strtoull(string, NULL, 10);
1307 struct process_filter *filt = malloc(sizeof(*filt));
1308
1309 if (!filt)
1310 return;
1311
1312 filt->name = strdup(string);
1313 filt->pid = pid;
1314 filt->next = process_filter;
1315
1316 process_filter = filt;
1317 }
1318
1319 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1320 {
1321 struct process_filter *filt;
1322 if (!process_filter)
1323 return 1;
1324
1325 filt = process_filter;
1326 while (filt) {
1327 if (filt->pid && p->pid == filt->pid)
1328 return 1;
1329 if (strcmp(filt->name, c->comm) == 0)
1330 return 1;
1331 filt = filt->next;
1332 }
1333 return 0;
1334 }
1335
1336 static int determine_display_tasks_filtered(struct timechart *tchart)
1337 {
1338 struct per_pid *p;
1339 struct per_pidcomm *c;
1340 int count = 0;
1341
1342 p = tchart->all_data;
1343 while (p) {
1344 p->display = 0;
1345 if (p->start_time == 1)
1346 p->start_time = tchart->first_time;
1347
1348 /* no exit marker, task kept running to the end */
1349 if (p->end_time == 0)
1350 p->end_time = tchart->last_time;
1351
1352 c = p->all;
1353
1354 while (c) {
1355 c->display = 0;
1356
1357 if (c->start_time == 1)
1358 c->start_time = tchart->first_time;
1359
1360 if (passes_filter(p, c)) {
1361 c->display = 1;
1362 p->display = 1;
1363 count++;
1364 }
1365
1366 if (c->end_time == 0)
1367 c->end_time = tchart->last_time;
1368
1369 c = c->next;
1370 }
1371 p = p->next;
1372 }
1373 return count;
1374 }
1375
1376 static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1377 {
1378 struct per_pid *p;
1379 struct per_pidcomm *c;
1380 int count = 0;
1381
1382 p = tchart->all_data;
1383 while (p) {
1384 p->display = 0;
1385 if (p->start_time == 1)
1386 p->start_time = tchart->first_time;
1387
1388 /* no exit marker, task kept running to the end */
1389 if (p->end_time == 0)
1390 p->end_time = tchart->last_time;
1391 if (p->total_time >= threshold)
1392 p->display = 1;
1393
1394 c = p->all;
1395
1396 while (c) {
1397 c->display = 0;
1398
1399 if (c->start_time == 1)
1400 c->start_time = tchart->first_time;
1401
1402 if (c->total_time >= threshold) {
1403 c->display = 1;
1404 count++;
1405 }
1406
1407 if (c->end_time == 0)
1408 c->end_time = tchart->last_time;
1409
1410 c = c->next;
1411 }
1412 p = p->next;
1413 }
1414 return count;
1415 }
1416
1417 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1418 {
1419 struct per_pid *p;
1420 struct per_pidcomm *c;
1421 int count = 0;
1422
1423 p = timechart->all_data;
1424 while (p) {
1425 /* no exit marker, task kept running to the end */
1426 if (p->end_time == 0)
1427 p->end_time = timechart->last_time;
1428
1429 c = p->all;
1430
1431 while (c) {
1432 c->display = 0;
1433
1434 if (c->total_bytes >= threshold) {
1435 c->display = 1;
1436 count++;
1437 }
1438
1439 if (c->end_time == 0)
1440 c->end_time = timechart->last_time;
1441
1442 c = c->next;
1443 }
1444 p = p->next;
1445 }
1446 return count;
1447 }
1448
1449 #define BYTES_THRESH (1 * 1024 * 1024)
1450 #define TIME_THRESH 10000000
1451
1452 static void write_svg_file(struct timechart *tchart, const char *filename)
1453 {
1454 u64 i;
1455 int count;
1456 int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1457
1458 if (tchart->power_only)
1459 tchart->proc_num = 0;
1460
1461 /* We'd like to show at least proc_num tasks;
1462 * be less picky if we have fewer */
1463 do {
1464 if (process_filter)
1465 count = determine_display_tasks_filtered(tchart);
1466 else if (tchart->io_events)
1467 count = determine_display_io_tasks(tchart, thresh);
1468 else
1469 count = determine_display_tasks(tchart, thresh);
1470 thresh /= 10;
1471 } while (!process_filter && thresh && count < tchart->proc_num);
1472
1473 if (!tchart->proc_num)
1474 count = 0;
1475
1476 if (tchart->io_events) {
1477 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1478
1479 svg_time_grid(0.5);
1480 svg_io_legenda();
1481
1482 draw_io_bars(tchart);
1483 } else {
1484 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1485
1486 svg_time_grid(0);
1487
1488 svg_legenda();
1489
1490 for (i = 0; i < tchart->numcpus; i++)
1491 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1492
1493 draw_cpu_usage(tchart);
1494 if (tchart->proc_num)
1495 draw_process_bars(tchart);
1496 if (!tchart->tasks_only)
1497 draw_c_p_states(tchart);
1498 if (tchart->proc_num)
1499 draw_wakeups(tchart);
1500 }
1501
1502 svg_close();
1503 }
1504
1505 static int process_header(struct perf_file_section *section __maybe_unused,
1506 struct perf_header *ph,
1507 int feat,
1508 int fd __maybe_unused,
1509 void *data)
1510 {
1511 struct timechart *tchart = data;
1512
1513 switch (feat) {
1514 case HEADER_NRCPUS:
1515 tchart->numcpus = ph->env.nr_cpus_avail;
1516 break;
1517
1518 case HEADER_CPU_TOPOLOGY:
1519 if (!tchart->topology)
1520 break;
1521
1522 if (svg_build_topology_map(ph->env.sibling_cores,
1523 ph->env.nr_sibling_cores,
1524 ph->env.sibling_threads,
1525 ph->env.nr_sibling_threads))
1526 fprintf(stderr, "problem building topology\n");
1527 break;
1528
1529 default:
1530 break;
1531 }
1532
1533 return 0;
1534 }
1535
1536 static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1537 {
1538 const struct perf_evsel_str_handler power_tracepoints[] = {
1539 { "power:cpu_idle", process_sample_cpu_idle },
1540 { "power:cpu_frequency", process_sample_cpu_frequency },
1541 { "sched:sched_wakeup", process_sample_sched_wakeup },
1542 { "sched:sched_switch", process_sample_sched_switch },
1543 #ifdef SUPPORT_OLD_POWER_EVENTS
1544 { "power:power_start", process_sample_power_start },
1545 { "power:power_end", process_sample_power_end },
1546 { "power:power_frequency", process_sample_power_frequency },
1547 #endif
1548
1549 { "syscalls:sys_enter_read", process_enter_read },
1550 { "syscalls:sys_enter_pread64", process_enter_read },
1551 { "syscalls:sys_enter_readv", process_enter_read },
1552 { "syscalls:sys_enter_preadv", process_enter_read },
1553 { "syscalls:sys_enter_write", process_enter_write },
1554 { "syscalls:sys_enter_pwrite64", process_enter_write },
1555 { "syscalls:sys_enter_writev", process_enter_write },
1556 { "syscalls:sys_enter_pwritev", process_enter_write },
1557 { "syscalls:sys_enter_sync", process_enter_sync },
1558 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1559 { "syscalls:sys_enter_fsync", process_enter_sync },
1560 { "syscalls:sys_enter_msync", process_enter_sync },
1561 { "syscalls:sys_enter_recvfrom", process_enter_rx },
1562 { "syscalls:sys_enter_recvmmsg", process_enter_rx },
1563 { "syscalls:sys_enter_recvmsg", process_enter_rx },
1564 { "syscalls:sys_enter_sendto", process_enter_tx },
1565 { "syscalls:sys_enter_sendmsg", process_enter_tx },
1566 { "syscalls:sys_enter_sendmmsg", process_enter_tx },
1567 { "syscalls:sys_enter_epoll_pwait", process_enter_poll },
1568 { "syscalls:sys_enter_epoll_wait", process_enter_poll },
1569 { "syscalls:sys_enter_poll", process_enter_poll },
1570 { "syscalls:sys_enter_ppoll", process_enter_poll },
1571 { "syscalls:sys_enter_pselect6", process_enter_poll },
1572 { "syscalls:sys_enter_select", process_enter_poll },
1573
1574 { "syscalls:sys_exit_read", process_exit_read },
1575 { "syscalls:sys_exit_pread64", process_exit_read },
1576 { "syscalls:sys_exit_readv", process_exit_read },
1577 { "syscalls:sys_exit_preadv", process_exit_read },
1578 { "syscalls:sys_exit_write", process_exit_write },
1579 { "syscalls:sys_exit_pwrite64", process_exit_write },
1580 { "syscalls:sys_exit_writev", process_exit_write },
1581 { "syscalls:sys_exit_pwritev", process_exit_write },
1582 { "syscalls:sys_exit_sync", process_exit_sync },
1583 { "syscalls:sys_exit_sync_file_range", process_exit_sync },
1584 { "syscalls:sys_exit_fsync", process_exit_sync },
1585 { "syscalls:sys_exit_msync", process_exit_sync },
1586 { "syscalls:sys_exit_recvfrom", process_exit_rx },
1587 { "syscalls:sys_exit_recvmmsg", process_exit_rx },
1588 { "syscalls:sys_exit_recvmsg", process_exit_rx },
1589 { "syscalls:sys_exit_sendto", process_exit_tx },
1590 { "syscalls:sys_exit_sendmsg", process_exit_tx },
1591 { "syscalls:sys_exit_sendmmsg", process_exit_tx },
1592 { "syscalls:sys_exit_epoll_pwait", process_exit_poll },
1593 { "syscalls:sys_exit_epoll_wait", process_exit_poll },
1594 { "syscalls:sys_exit_poll", process_exit_poll },
1595 { "syscalls:sys_exit_ppoll", process_exit_poll },
1596 { "syscalls:sys_exit_pselect6", process_exit_poll },
1597 { "syscalls:sys_exit_select", process_exit_poll },
1598 };
1599 struct perf_data_file file = {
1600 .path = input_name,
1601 .mode = PERF_DATA_MODE_READ,
1602 .force = tchart->force,
1603 };
1604
1605 struct perf_session *session = perf_session__new(&file, false,
1606 &tchart->tool);
1607 int ret = -EINVAL;
1608
1609 if (session == NULL)
1610 return -1;
1611
1612 symbol__init(&session->header.env);
1613
1614 (void)perf_header__process_sections(&session->header,
1615 perf_data_file__fd(session->file),
1616 tchart,
1617 process_header);
1618
1619 if (!perf_session__has_traces(session, "timechart record"))
1620 goto out_delete;
1621
1622 if (perf_session__set_tracepoints_handlers(session,
1623 power_tracepoints)) {
1624 pr_err("Initializing session tracepoint handlers failed\n");
1625 goto out_delete;
1626 }
1627
1628 ret = perf_session__process_events(session);
1629 if (ret)
1630 goto out_delete;
1631
1632 end_sample_processing(tchart);
1633
1634 sort_pids(tchart);
1635
1636 write_svg_file(tchart, output_name);
1637
1638 pr_info("Written %2.1f seconds of trace to %s.\n",
1639 (tchart->last_time - tchart->first_time) / 1000000000.0, output_name);
1640 out_delete:
1641 perf_session__delete(session);
1642 return ret;
1643 }
1644
1645 static int timechart__io_record(int argc, const char **argv)
1646 {
1647 unsigned int rec_argc, i;
1648 const char **rec_argv;
1649 const char **p;
1650 char *filter = NULL;
1651
1652 const char * const common_args[] = {
1653 "record", "-a", "-R", "-c", "1",
1654 };
1655 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1656
1657 const char * const disk_events[] = {
1658 "syscalls:sys_enter_read",
1659 "syscalls:sys_enter_pread64",
1660 "syscalls:sys_enter_readv",
1661 "syscalls:sys_enter_preadv",
1662 "syscalls:sys_enter_write",
1663 "syscalls:sys_enter_pwrite64",
1664 "syscalls:sys_enter_writev",
1665 "syscalls:sys_enter_pwritev",
1666 "syscalls:sys_enter_sync",
1667 "syscalls:sys_enter_sync_file_range",
1668 "syscalls:sys_enter_fsync",
1669 "syscalls:sys_enter_msync",
1670
1671 "syscalls:sys_exit_read",
1672 "syscalls:sys_exit_pread64",
1673 "syscalls:sys_exit_readv",
1674 "syscalls:sys_exit_preadv",
1675 "syscalls:sys_exit_write",
1676 "syscalls:sys_exit_pwrite64",
1677 "syscalls:sys_exit_writev",
1678 "syscalls:sys_exit_pwritev",
1679 "syscalls:sys_exit_sync",
1680 "syscalls:sys_exit_sync_file_range",
1681 "syscalls:sys_exit_fsync",
1682 "syscalls:sys_exit_msync",
1683 };
1684 unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1685
1686 const char * const net_events[] = {
1687 "syscalls:sys_enter_recvfrom",
1688 "syscalls:sys_enter_recvmmsg",
1689 "syscalls:sys_enter_recvmsg",
1690 "syscalls:sys_enter_sendto",
1691 "syscalls:sys_enter_sendmsg",
1692 "syscalls:sys_enter_sendmmsg",
1693
1694 "syscalls:sys_exit_recvfrom",
1695 "syscalls:sys_exit_recvmmsg",
1696 "syscalls:sys_exit_recvmsg",
1697 "syscalls:sys_exit_sendto",
1698 "syscalls:sys_exit_sendmsg",
1699 "syscalls:sys_exit_sendmmsg",
1700 };
1701 unsigned int net_events_nr = ARRAY_SIZE(net_events);
1702
1703 const char * const poll_events[] = {
1704 "syscalls:sys_enter_epoll_pwait",
1705 "syscalls:sys_enter_epoll_wait",
1706 "syscalls:sys_enter_poll",
1707 "syscalls:sys_enter_ppoll",
1708 "syscalls:sys_enter_pselect6",
1709 "syscalls:sys_enter_select",
1710
1711 "syscalls:sys_exit_epoll_pwait",
1712 "syscalls:sys_exit_epoll_wait",
1713 "syscalls:sys_exit_poll",
1714 "syscalls:sys_exit_ppoll",
1715 "syscalls:sys_exit_pselect6",
1716 "syscalls:sys_exit_select",
1717 };
1718 unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1719
1720 rec_argc = common_args_nr +
1721 disk_events_nr * 4 +
1722 net_events_nr * 4 +
1723 poll_events_nr * 4 +
1724 argc;
1725 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1726
1727 if (rec_argv == NULL)
1728 return -ENOMEM;
1729
1730 if (asprintf(&filter, "common_pid != %d", getpid()) < 0)
1731 return -ENOMEM;
1732
1733 p = rec_argv;
1734 for (i = 0; i < common_args_nr; i++)
1735 *p++ = strdup(common_args[i]);
1736
1737 for (i = 0; i < disk_events_nr; i++) {
1738 if (!is_valid_tracepoint(disk_events[i])) {
1739 rec_argc -= 4;
1740 continue;
1741 }
1742
1743 *p++ = "-e";
1744 *p++ = strdup(disk_events[i]);
1745 *p++ = "--filter";
1746 *p++ = filter;
1747 }
1748 for (i = 0; i < net_events_nr; i++) {
1749 if (!is_valid_tracepoint(net_events[i])) {
1750 rec_argc -= 4;
1751 continue;
1752 }
1753
1754 *p++ = "-e";
1755 *p++ = strdup(net_events[i]);
1756 *p++ = "--filter";
1757 *p++ = filter;
1758 }
1759 for (i = 0; i < poll_events_nr; i++) {
1760 if (!is_valid_tracepoint(poll_events[i])) {
1761 rec_argc -= 4;
1762 continue;
1763 }
1764
1765 *p++ = "-e";
1766 *p++ = strdup(poll_events[i]);
1767 *p++ = "--filter";
1768 *p++ = filter;
1769 }
1770
1771 for (i = 0; i < (unsigned int)argc; i++)
1772 *p++ = argv[i];
1773
1774 return cmd_record(rec_argc, rec_argv, NULL);
1775 }
1776
1777
1778 static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1779 {
1780 unsigned int rec_argc, i, j;
1781 const char **rec_argv;
1782 const char **p;
1783 unsigned int record_elems;
1784
1785 const char * const common_args[] = {
1786 "record", "-a", "-R", "-c", "1",
1787 };
1788 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1789
1790 const char * const backtrace_args[] = {
1791 "-g",
1792 };
1793 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1794
1795 const char * const power_args[] = {
1796 "-e", "power:cpu_frequency",
1797 "-e", "power:cpu_idle",
1798 };
1799 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1800
1801 const char * const old_power_args[] = {
1802 #ifdef SUPPORT_OLD_POWER_EVENTS
1803 "-e", "power:power_start",
1804 "-e", "power:power_end",
1805 "-e", "power:power_frequency",
1806 #endif
1807 };
1808 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1809
1810 const char * const tasks_args[] = {
1811 "-e", "sched:sched_wakeup",
1812 "-e", "sched:sched_switch",
1813 };
1814 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1815
1816 #ifdef SUPPORT_OLD_POWER_EVENTS
1817 if (!is_valid_tracepoint("power:cpu_idle") &&
1818 is_valid_tracepoint("power:power_start")) {
1819 use_old_power_events = 1;
1820 power_args_nr = 0;
1821 } else {
1822 old_power_args_nr = 0;
1823 }
1824 #endif
1825
1826 if (tchart->power_only)
1827 tasks_args_nr = 0;
1828
1829 if (tchart->tasks_only) {
1830 power_args_nr = 0;
1831 old_power_args_nr = 0;
1832 }
1833
1834 if (!tchart->with_backtrace)
1835 backtrace_args_no = 0;
1836
1837 record_elems = common_args_nr + tasks_args_nr +
1838 power_args_nr + old_power_args_nr + backtrace_args_no;
1839
1840 rec_argc = record_elems + argc;
1841 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1842
1843 if (rec_argv == NULL)
1844 return -ENOMEM;
1845
1846 p = rec_argv;
1847 for (i = 0; i < common_args_nr; i++)
1848 *p++ = strdup(common_args[i]);
1849
1850 for (i = 0; i < backtrace_args_no; i++)
1851 *p++ = strdup(backtrace_args[i]);
1852
1853 for (i = 0; i < tasks_args_nr; i++)
1854 *p++ = strdup(tasks_args[i]);
1855
1856 for (i = 0; i < power_args_nr; i++)
1857 *p++ = strdup(power_args[i]);
1858
1859 for (i = 0; i < old_power_args_nr; i++)
1860 *p++ = strdup(old_power_args[i]);
1861
1862 for (j = 0; j < (unsigned int)argc; j++)
1863 *p++ = argv[j];
1864
1865 return cmd_record(rec_argc, rec_argv, NULL);
1866 }
1867
1868 static int
1869 parse_process(const struct option *opt __maybe_unused, const char *arg,
1870 int __maybe_unused unset)
1871 {
1872 if (arg)
1873 add_process_filter(arg);
1874 return 0;
1875 }
1876
1877 static int
1878 parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1879 int __maybe_unused unset)
1880 {
1881 unsigned long duration = strtoul(arg, NULL, 0);
1882
1883 if (svg_highlight || svg_highlight_name)
1884 return -1;
1885
1886 if (duration)
1887 svg_highlight = duration;
1888 else
1889 svg_highlight_name = strdup(arg);
1890
1891 return 0;
1892 }
1893
1894 static int
1895 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1896 {
1897 char unit = 'n';
1898 u64 *value = opt->value;
1899
1900 if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1901 switch (unit) {
1902 case 'm':
1903 *value *= 1000000;
1904 break;
1905 case 'u':
1906 *value *= 1000;
1907 break;
1908 case 'n':
1909 break;
1910 default:
1911 return -1;
1912 }
1913 }
1914
1915 return 0;
1916 }
1917
1918 int cmd_timechart(int argc, const char **argv,
1919 const char *prefix __maybe_unused)
1920 {
1921 struct timechart tchart = {
1922 .tool = {
1923 .comm = process_comm_event,
1924 .fork = process_fork_event,
1925 .exit = process_exit_event,
1926 .sample = process_sample_event,
1927 .ordered_events = true,
1928 },
1929 .proc_num = 15,
1930 .min_time = 1000000,
1931 .merge_dist = 1000,
1932 };
1933 const char *output_name = "output.svg";
1934 const struct option timechart_options[] = {
1935 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1936 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1937 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1938 OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1939 "highlight tasks. Pass duration in ns or process name.",
1940 parse_highlight),
1941 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1942 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1943 "output processes data only"),
1944 OPT_CALLBACK('p', "process", NULL, "process",
1945 "process selector. Pass a pid or process name.",
1946 parse_process),
1947 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1948 "Look for files with symbols relative to this directory"),
1949 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1950 "min. number of tasks to print"),
1951 OPT_BOOLEAN('t', "topology", &tchart.topology,
1952 "sort CPUs according to topology"),
1953 OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1954 "skip EAGAIN errors"),
1955 OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1956 "all IO faster than min-time will visually appear longer",
1957 parse_time),
1958 OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1959 "merge events that are merge-dist us apart",
1960 parse_time),
1961 OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1962 OPT_END()
1963 };
1964 const char * const timechart_subcommands[] = { "record", NULL };
1965 const char *timechart_usage[] = {
1966 "perf timechart [<options>] {record}",
1967 NULL
1968 };
1969
1970 const struct option timechart_record_options[] = {
1971 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1972 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1973 "output processes data only"),
1974 OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1975 "record only IO data"),
1976 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1977 OPT_END()
1978 };
1979 const char * const timechart_record_usage[] = {
1980 "perf timechart record [<options>]",
1981 NULL
1982 };
1983 argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1984 timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1985
1986 if (tchart.power_only && tchart.tasks_only) {
1987 pr_err("-P and -T options cannot be used at the same time.\n");
1988 return -1;
1989 }
1990
1991 if (argc && !strncmp(argv[0], "rec", 3)) {
1992 argc = parse_options(argc, argv, timechart_record_options,
1993 timechart_record_usage,
1994 PARSE_OPT_STOP_AT_NON_OPTION);
1995
1996 if (tchart.power_only && tchart.tasks_only) {
1997 pr_err("-P and -T options cannot be used at the same time.\n");
1998 return -1;
1999 }
2000
2001 if (tchart.io_only)
2002 return timechart__io_record(argc, argv);
2003 else
2004 return timechart__record(&tchart, argc, argv);
2005 } else if (argc)
2006 usage_with_options(timechart_usage, timechart_options);
2007
2008 setup_pager();
2009
2010 return __cmd_timechart(&tchart, output_name);
2011 }
This page took 0.241914 seconds and 5 git commands to generate.