Merge branch 'for-linus' of git://git.infradead.org/users/vkoul/slave-dma
[deliverable/linux.git] / tools / perf / util / evlist.c
1 /*
2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3 *
4 * Parts came from builtin-{top,stat,record}.c, see those files for further
5 * copyright notes.
6 *
7 * Released under the GPL v2. (and only v2, not any later version)
8 */
9 #include "util.h"
10 #include <api/fs/debugfs.h>
11 #include <poll.h>
12 #include "cpumap.h"
13 #include "thread_map.h"
14 #include "target.h"
15 #include "evlist.h"
16 #include "evsel.h"
17 #include "debug.h"
18 #include <unistd.h>
19
20 #include "parse-events.h"
21 #include "parse-options.h"
22
23 #include <sys/mman.h>
24
25 #include <linux/bitops.h>
26 #include <linux/hash.h>
27
28 static void perf_evlist__mmap_put(struct perf_evlist *evlist, int idx);
29 static void __perf_evlist__munmap(struct perf_evlist *evlist, int idx);
30
31 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
32 #define SID(e, x, y) xyarray__entry(e->sample_id, x, y)
33
34 void perf_evlist__init(struct perf_evlist *evlist, struct cpu_map *cpus,
35 struct thread_map *threads)
36 {
37 int i;
38
39 for (i = 0; i < PERF_EVLIST__HLIST_SIZE; ++i)
40 INIT_HLIST_HEAD(&evlist->heads[i]);
41 INIT_LIST_HEAD(&evlist->entries);
42 perf_evlist__set_maps(evlist, cpus, threads);
43 fdarray__init(&evlist->pollfd, 64);
44 evlist->workload.pid = -1;
45 }
46
47 struct perf_evlist *perf_evlist__new(void)
48 {
49 struct perf_evlist *evlist = zalloc(sizeof(*evlist));
50
51 if (evlist != NULL)
52 perf_evlist__init(evlist, NULL, NULL);
53
54 return evlist;
55 }
56
57 struct perf_evlist *perf_evlist__new_default(void)
58 {
59 struct perf_evlist *evlist = perf_evlist__new();
60
61 if (evlist && perf_evlist__add_default(evlist)) {
62 perf_evlist__delete(evlist);
63 evlist = NULL;
64 }
65
66 return evlist;
67 }
68
69 /**
70 * perf_evlist__set_id_pos - set the positions of event ids.
71 * @evlist: selected event list
72 *
73 * Events with compatible sample types all have the same id_pos
74 * and is_pos. For convenience, put a copy on evlist.
75 */
76 void perf_evlist__set_id_pos(struct perf_evlist *evlist)
77 {
78 struct perf_evsel *first = perf_evlist__first(evlist);
79
80 evlist->id_pos = first->id_pos;
81 evlist->is_pos = first->is_pos;
82 }
83
84 static void perf_evlist__update_id_pos(struct perf_evlist *evlist)
85 {
86 struct perf_evsel *evsel;
87
88 evlist__for_each(evlist, evsel)
89 perf_evsel__calc_id_pos(evsel);
90
91 perf_evlist__set_id_pos(evlist);
92 }
93
94 static void perf_evlist__purge(struct perf_evlist *evlist)
95 {
96 struct perf_evsel *pos, *n;
97
98 evlist__for_each_safe(evlist, n, pos) {
99 list_del_init(&pos->node);
100 perf_evsel__delete(pos);
101 }
102
103 evlist->nr_entries = 0;
104 }
105
106 void perf_evlist__exit(struct perf_evlist *evlist)
107 {
108 zfree(&evlist->mmap);
109 fdarray__exit(&evlist->pollfd);
110 }
111
112 void perf_evlist__delete(struct perf_evlist *evlist)
113 {
114 perf_evlist__munmap(evlist);
115 perf_evlist__close(evlist);
116 cpu_map__delete(evlist->cpus);
117 thread_map__delete(evlist->threads);
118 evlist->cpus = NULL;
119 evlist->threads = NULL;
120 perf_evlist__purge(evlist);
121 perf_evlist__exit(evlist);
122 free(evlist);
123 }
124
125 void perf_evlist__add(struct perf_evlist *evlist, struct perf_evsel *entry)
126 {
127 list_add_tail(&entry->node, &evlist->entries);
128 entry->idx = evlist->nr_entries;
129 entry->tracking = !entry->idx;
130
131 if (!evlist->nr_entries++)
132 perf_evlist__set_id_pos(evlist);
133 }
134
135 void perf_evlist__splice_list_tail(struct perf_evlist *evlist,
136 struct list_head *list,
137 int nr_entries)
138 {
139 bool set_id_pos = !evlist->nr_entries;
140
141 list_splice_tail(list, &evlist->entries);
142 evlist->nr_entries += nr_entries;
143 if (set_id_pos)
144 perf_evlist__set_id_pos(evlist);
145 }
146
147 void __perf_evlist__set_leader(struct list_head *list)
148 {
149 struct perf_evsel *evsel, *leader;
150
151 leader = list_entry(list->next, struct perf_evsel, node);
152 evsel = list_entry(list->prev, struct perf_evsel, node);
153
154 leader->nr_members = evsel->idx - leader->idx + 1;
155
156 __evlist__for_each(list, evsel) {
157 evsel->leader = leader;
158 }
159 }
160
161 void perf_evlist__set_leader(struct perf_evlist *evlist)
162 {
163 if (evlist->nr_entries) {
164 evlist->nr_groups = evlist->nr_entries > 1 ? 1 : 0;
165 __perf_evlist__set_leader(&evlist->entries);
166 }
167 }
168
169 int perf_evlist__add_default(struct perf_evlist *evlist)
170 {
171 struct perf_event_attr attr = {
172 .type = PERF_TYPE_HARDWARE,
173 .config = PERF_COUNT_HW_CPU_CYCLES,
174 };
175 struct perf_evsel *evsel;
176
177 event_attr_init(&attr);
178
179 evsel = perf_evsel__new(&attr);
180 if (evsel == NULL)
181 goto error;
182
183 /* use strdup() because free(evsel) assumes name is allocated */
184 evsel->name = strdup("cycles");
185 if (!evsel->name)
186 goto error_free;
187
188 perf_evlist__add(evlist, evsel);
189 return 0;
190 error_free:
191 perf_evsel__delete(evsel);
192 error:
193 return -ENOMEM;
194 }
195
196 static int perf_evlist__add_attrs(struct perf_evlist *evlist,
197 struct perf_event_attr *attrs, size_t nr_attrs)
198 {
199 struct perf_evsel *evsel, *n;
200 LIST_HEAD(head);
201 size_t i;
202
203 for (i = 0; i < nr_attrs; i++) {
204 evsel = perf_evsel__new_idx(attrs + i, evlist->nr_entries + i);
205 if (evsel == NULL)
206 goto out_delete_partial_list;
207 list_add_tail(&evsel->node, &head);
208 }
209
210 perf_evlist__splice_list_tail(evlist, &head, nr_attrs);
211
212 return 0;
213
214 out_delete_partial_list:
215 __evlist__for_each_safe(&head, n, evsel)
216 perf_evsel__delete(evsel);
217 return -1;
218 }
219
220 int __perf_evlist__add_default_attrs(struct perf_evlist *evlist,
221 struct perf_event_attr *attrs, size_t nr_attrs)
222 {
223 size_t i;
224
225 for (i = 0; i < nr_attrs; i++)
226 event_attr_init(attrs + i);
227
228 return perf_evlist__add_attrs(evlist, attrs, nr_attrs);
229 }
230
231 struct perf_evsel *
232 perf_evlist__find_tracepoint_by_id(struct perf_evlist *evlist, int id)
233 {
234 struct perf_evsel *evsel;
235
236 evlist__for_each(evlist, evsel) {
237 if (evsel->attr.type == PERF_TYPE_TRACEPOINT &&
238 (int)evsel->attr.config == id)
239 return evsel;
240 }
241
242 return NULL;
243 }
244
245 struct perf_evsel *
246 perf_evlist__find_tracepoint_by_name(struct perf_evlist *evlist,
247 const char *name)
248 {
249 struct perf_evsel *evsel;
250
251 evlist__for_each(evlist, evsel) {
252 if ((evsel->attr.type == PERF_TYPE_TRACEPOINT) &&
253 (strcmp(evsel->name, name) == 0))
254 return evsel;
255 }
256
257 return NULL;
258 }
259
260 int perf_evlist__add_newtp(struct perf_evlist *evlist,
261 const char *sys, const char *name, void *handler)
262 {
263 struct perf_evsel *evsel = perf_evsel__newtp(sys, name);
264
265 if (evsel == NULL)
266 return -1;
267
268 evsel->handler = handler;
269 perf_evlist__add(evlist, evsel);
270 return 0;
271 }
272
273 static int perf_evlist__nr_threads(struct perf_evlist *evlist,
274 struct perf_evsel *evsel)
275 {
276 if (evsel->system_wide)
277 return 1;
278 else
279 return thread_map__nr(evlist->threads);
280 }
281
282 void perf_evlist__disable(struct perf_evlist *evlist)
283 {
284 int cpu, thread;
285 struct perf_evsel *pos;
286 int nr_cpus = cpu_map__nr(evlist->cpus);
287 int nr_threads;
288
289 for (cpu = 0; cpu < nr_cpus; cpu++) {
290 evlist__for_each(evlist, pos) {
291 if (!perf_evsel__is_group_leader(pos) || !pos->fd)
292 continue;
293 nr_threads = perf_evlist__nr_threads(evlist, pos);
294 for (thread = 0; thread < nr_threads; thread++)
295 ioctl(FD(pos, cpu, thread),
296 PERF_EVENT_IOC_DISABLE, 0);
297 }
298 }
299 }
300
301 void perf_evlist__enable(struct perf_evlist *evlist)
302 {
303 int cpu, thread;
304 struct perf_evsel *pos;
305 int nr_cpus = cpu_map__nr(evlist->cpus);
306 int nr_threads;
307
308 for (cpu = 0; cpu < nr_cpus; cpu++) {
309 evlist__for_each(evlist, pos) {
310 if (!perf_evsel__is_group_leader(pos) || !pos->fd)
311 continue;
312 nr_threads = perf_evlist__nr_threads(evlist, pos);
313 for (thread = 0; thread < nr_threads; thread++)
314 ioctl(FD(pos, cpu, thread),
315 PERF_EVENT_IOC_ENABLE, 0);
316 }
317 }
318 }
319
320 int perf_evlist__disable_event(struct perf_evlist *evlist,
321 struct perf_evsel *evsel)
322 {
323 int cpu, thread, err;
324 int nr_cpus = cpu_map__nr(evlist->cpus);
325 int nr_threads = perf_evlist__nr_threads(evlist, evsel);
326
327 if (!evsel->fd)
328 return 0;
329
330 for (cpu = 0; cpu < nr_cpus; cpu++) {
331 for (thread = 0; thread < nr_threads; thread++) {
332 err = ioctl(FD(evsel, cpu, thread),
333 PERF_EVENT_IOC_DISABLE, 0);
334 if (err)
335 return err;
336 }
337 }
338 return 0;
339 }
340
341 int perf_evlist__enable_event(struct perf_evlist *evlist,
342 struct perf_evsel *evsel)
343 {
344 int cpu, thread, err;
345 int nr_cpus = cpu_map__nr(evlist->cpus);
346 int nr_threads = perf_evlist__nr_threads(evlist, evsel);
347
348 if (!evsel->fd)
349 return -EINVAL;
350
351 for (cpu = 0; cpu < nr_cpus; cpu++) {
352 for (thread = 0; thread < nr_threads; thread++) {
353 err = ioctl(FD(evsel, cpu, thread),
354 PERF_EVENT_IOC_ENABLE, 0);
355 if (err)
356 return err;
357 }
358 }
359 return 0;
360 }
361
362 static int perf_evlist__enable_event_cpu(struct perf_evlist *evlist,
363 struct perf_evsel *evsel, int cpu)
364 {
365 int thread, err;
366 int nr_threads = perf_evlist__nr_threads(evlist, evsel);
367
368 if (!evsel->fd)
369 return -EINVAL;
370
371 for (thread = 0; thread < nr_threads; thread++) {
372 err = ioctl(FD(evsel, cpu, thread),
373 PERF_EVENT_IOC_ENABLE, 0);
374 if (err)
375 return err;
376 }
377 return 0;
378 }
379
380 static int perf_evlist__enable_event_thread(struct perf_evlist *evlist,
381 struct perf_evsel *evsel,
382 int thread)
383 {
384 int cpu, err;
385 int nr_cpus = cpu_map__nr(evlist->cpus);
386
387 if (!evsel->fd)
388 return -EINVAL;
389
390 for (cpu = 0; cpu < nr_cpus; cpu++) {
391 err = ioctl(FD(evsel, cpu, thread), PERF_EVENT_IOC_ENABLE, 0);
392 if (err)
393 return err;
394 }
395 return 0;
396 }
397
398 int perf_evlist__enable_event_idx(struct perf_evlist *evlist,
399 struct perf_evsel *evsel, int idx)
400 {
401 bool per_cpu_mmaps = !cpu_map__empty(evlist->cpus);
402
403 if (per_cpu_mmaps)
404 return perf_evlist__enable_event_cpu(evlist, evsel, idx);
405 else
406 return perf_evlist__enable_event_thread(evlist, evsel, idx);
407 }
408
409 int perf_evlist__alloc_pollfd(struct perf_evlist *evlist)
410 {
411 int nr_cpus = cpu_map__nr(evlist->cpus);
412 int nr_threads = thread_map__nr(evlist->threads);
413 int nfds = 0;
414 struct perf_evsel *evsel;
415
416 list_for_each_entry(evsel, &evlist->entries, node) {
417 if (evsel->system_wide)
418 nfds += nr_cpus;
419 else
420 nfds += nr_cpus * nr_threads;
421 }
422
423 if (fdarray__available_entries(&evlist->pollfd) < nfds &&
424 fdarray__grow(&evlist->pollfd, nfds) < 0)
425 return -ENOMEM;
426
427 return 0;
428 }
429
430 static int __perf_evlist__add_pollfd(struct perf_evlist *evlist, int fd, int idx)
431 {
432 int pos = fdarray__add(&evlist->pollfd, fd, POLLIN | POLLERR | POLLHUP);
433 /*
434 * Save the idx so that when we filter out fds POLLHUP'ed we can
435 * close the associated evlist->mmap[] entry.
436 */
437 if (pos >= 0) {
438 evlist->pollfd.priv[pos].idx = idx;
439
440 fcntl(fd, F_SETFL, O_NONBLOCK);
441 }
442
443 return pos;
444 }
445
446 int perf_evlist__add_pollfd(struct perf_evlist *evlist, int fd)
447 {
448 return __perf_evlist__add_pollfd(evlist, fd, -1);
449 }
450
451 static void perf_evlist__munmap_filtered(struct fdarray *fda, int fd)
452 {
453 struct perf_evlist *evlist = container_of(fda, struct perf_evlist, pollfd);
454
455 perf_evlist__mmap_put(evlist, fda->priv[fd].idx);
456 }
457
458 int perf_evlist__filter_pollfd(struct perf_evlist *evlist, short revents_and_mask)
459 {
460 return fdarray__filter(&evlist->pollfd, revents_and_mask,
461 perf_evlist__munmap_filtered);
462 }
463
464 int perf_evlist__poll(struct perf_evlist *evlist, int timeout)
465 {
466 return fdarray__poll(&evlist->pollfd, timeout);
467 }
468
469 static void perf_evlist__id_hash(struct perf_evlist *evlist,
470 struct perf_evsel *evsel,
471 int cpu, int thread, u64 id)
472 {
473 int hash;
474 struct perf_sample_id *sid = SID(evsel, cpu, thread);
475
476 sid->id = id;
477 sid->evsel = evsel;
478 hash = hash_64(sid->id, PERF_EVLIST__HLIST_BITS);
479 hlist_add_head(&sid->node, &evlist->heads[hash]);
480 }
481
482 void perf_evlist__id_add(struct perf_evlist *evlist, struct perf_evsel *evsel,
483 int cpu, int thread, u64 id)
484 {
485 perf_evlist__id_hash(evlist, evsel, cpu, thread, id);
486 evsel->id[evsel->ids++] = id;
487 }
488
489 static int perf_evlist__id_add_fd(struct perf_evlist *evlist,
490 struct perf_evsel *evsel,
491 int cpu, int thread, int fd)
492 {
493 u64 read_data[4] = { 0, };
494 int id_idx = 1; /* The first entry is the counter value */
495 u64 id;
496 int ret;
497
498 ret = ioctl(fd, PERF_EVENT_IOC_ID, &id);
499 if (!ret)
500 goto add;
501
502 if (errno != ENOTTY)
503 return -1;
504
505 /* Legacy way to get event id.. All hail to old kernels! */
506
507 /*
508 * This way does not work with group format read, so bail
509 * out in that case.
510 */
511 if (perf_evlist__read_format(evlist) & PERF_FORMAT_GROUP)
512 return -1;
513
514 if (!(evsel->attr.read_format & PERF_FORMAT_ID) ||
515 read(fd, &read_data, sizeof(read_data)) == -1)
516 return -1;
517
518 if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
519 ++id_idx;
520 if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
521 ++id_idx;
522
523 id = read_data[id_idx];
524
525 add:
526 perf_evlist__id_add(evlist, evsel, cpu, thread, id);
527 return 0;
528 }
529
530 struct perf_sample_id *perf_evlist__id2sid(struct perf_evlist *evlist, u64 id)
531 {
532 struct hlist_head *head;
533 struct perf_sample_id *sid;
534 int hash;
535
536 hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
537 head = &evlist->heads[hash];
538
539 hlist_for_each_entry(sid, head, node)
540 if (sid->id == id)
541 return sid;
542
543 return NULL;
544 }
545
546 struct perf_evsel *perf_evlist__id2evsel(struct perf_evlist *evlist, u64 id)
547 {
548 struct perf_sample_id *sid;
549
550 if (evlist->nr_entries == 1)
551 return perf_evlist__first(evlist);
552
553 sid = perf_evlist__id2sid(evlist, id);
554 if (sid)
555 return sid->evsel;
556
557 if (!perf_evlist__sample_id_all(evlist))
558 return perf_evlist__first(evlist);
559
560 return NULL;
561 }
562
563 static int perf_evlist__event2id(struct perf_evlist *evlist,
564 union perf_event *event, u64 *id)
565 {
566 const u64 *array = event->sample.array;
567 ssize_t n;
568
569 n = (event->header.size - sizeof(event->header)) >> 3;
570
571 if (event->header.type == PERF_RECORD_SAMPLE) {
572 if (evlist->id_pos >= n)
573 return -1;
574 *id = array[evlist->id_pos];
575 } else {
576 if (evlist->is_pos > n)
577 return -1;
578 n -= evlist->is_pos;
579 *id = array[n];
580 }
581 return 0;
582 }
583
584 static struct perf_evsel *perf_evlist__event2evsel(struct perf_evlist *evlist,
585 union perf_event *event)
586 {
587 struct perf_evsel *first = perf_evlist__first(evlist);
588 struct hlist_head *head;
589 struct perf_sample_id *sid;
590 int hash;
591 u64 id;
592
593 if (evlist->nr_entries == 1)
594 return first;
595
596 if (!first->attr.sample_id_all &&
597 event->header.type != PERF_RECORD_SAMPLE)
598 return first;
599
600 if (perf_evlist__event2id(evlist, event, &id))
601 return NULL;
602
603 /* Synthesized events have an id of zero */
604 if (!id)
605 return first;
606
607 hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
608 head = &evlist->heads[hash];
609
610 hlist_for_each_entry(sid, head, node) {
611 if (sid->id == id)
612 return sid->evsel;
613 }
614 return NULL;
615 }
616
617 union perf_event *perf_evlist__mmap_read(struct perf_evlist *evlist, int idx)
618 {
619 struct perf_mmap *md = &evlist->mmap[idx];
620 unsigned int head = perf_mmap__read_head(md);
621 unsigned int old = md->prev;
622 unsigned char *data = md->base + page_size;
623 union perf_event *event = NULL;
624
625 if (evlist->overwrite) {
626 /*
627 * If we're further behind than half the buffer, there's a chance
628 * the writer will bite our tail and mess up the samples under us.
629 *
630 * If we somehow ended up ahead of the head, we got messed up.
631 *
632 * In either case, truncate and restart at head.
633 */
634 int diff = head - old;
635 if (diff > md->mask / 2 || diff < 0) {
636 fprintf(stderr, "WARNING: failed to keep up with mmap data.\n");
637
638 /*
639 * head points to a known good entry, start there.
640 */
641 old = head;
642 }
643 }
644
645 if (old != head) {
646 size_t size;
647
648 event = (union perf_event *)&data[old & md->mask];
649 size = event->header.size;
650
651 /*
652 * Event straddles the mmap boundary -- header should always
653 * be inside due to u64 alignment of output.
654 */
655 if ((old & md->mask) + size != ((old + size) & md->mask)) {
656 unsigned int offset = old;
657 unsigned int len = min(sizeof(*event), size), cpy;
658 void *dst = md->event_copy;
659
660 do {
661 cpy = min(md->mask + 1 - (offset & md->mask), len);
662 memcpy(dst, &data[offset & md->mask], cpy);
663 offset += cpy;
664 dst += cpy;
665 len -= cpy;
666 } while (len);
667
668 event = (union perf_event *) md->event_copy;
669 }
670
671 old += size;
672 }
673
674 md->prev = old;
675
676 return event;
677 }
678
679 static bool perf_mmap__empty(struct perf_mmap *md)
680 {
681 return perf_mmap__read_head(md) != md->prev;
682 }
683
684 static void perf_evlist__mmap_get(struct perf_evlist *evlist, int idx)
685 {
686 ++evlist->mmap[idx].refcnt;
687 }
688
689 static void perf_evlist__mmap_put(struct perf_evlist *evlist, int idx)
690 {
691 BUG_ON(evlist->mmap[idx].refcnt == 0);
692
693 if (--evlist->mmap[idx].refcnt == 0)
694 __perf_evlist__munmap(evlist, idx);
695 }
696
697 void perf_evlist__mmap_consume(struct perf_evlist *evlist, int idx)
698 {
699 struct perf_mmap *md = &evlist->mmap[idx];
700
701 if (!evlist->overwrite) {
702 unsigned int old = md->prev;
703
704 perf_mmap__write_tail(md, old);
705 }
706
707 if (md->refcnt == 1 && perf_mmap__empty(md))
708 perf_evlist__mmap_put(evlist, idx);
709 }
710
711 static void __perf_evlist__munmap(struct perf_evlist *evlist, int idx)
712 {
713 if (evlist->mmap[idx].base != NULL) {
714 munmap(evlist->mmap[idx].base, evlist->mmap_len);
715 evlist->mmap[idx].base = NULL;
716 evlist->mmap[idx].refcnt = 0;
717 }
718 }
719
720 void perf_evlist__munmap(struct perf_evlist *evlist)
721 {
722 int i;
723
724 if (evlist->mmap == NULL)
725 return;
726
727 for (i = 0; i < evlist->nr_mmaps; i++)
728 __perf_evlist__munmap(evlist, i);
729
730 zfree(&evlist->mmap);
731 }
732
733 static int perf_evlist__alloc_mmap(struct perf_evlist *evlist)
734 {
735 evlist->nr_mmaps = cpu_map__nr(evlist->cpus);
736 if (cpu_map__empty(evlist->cpus))
737 evlist->nr_mmaps = thread_map__nr(evlist->threads);
738 evlist->mmap = zalloc(evlist->nr_mmaps * sizeof(struct perf_mmap));
739 return evlist->mmap != NULL ? 0 : -ENOMEM;
740 }
741
742 struct mmap_params {
743 int prot;
744 int mask;
745 };
746
747 static int __perf_evlist__mmap(struct perf_evlist *evlist, int idx,
748 struct mmap_params *mp, int fd)
749 {
750 /*
751 * The last one will be done at perf_evlist__mmap_consume(), so that we
752 * make sure we don't prevent tools from consuming every last event in
753 * the ring buffer.
754 *
755 * I.e. we can get the POLLHUP meaning that the fd doesn't exist
756 * anymore, but the last events for it are still in the ring buffer,
757 * waiting to be consumed.
758 *
759 * Tools can chose to ignore this at their own discretion, but the
760 * evlist layer can't just drop it when filtering events in
761 * perf_evlist__filter_pollfd().
762 */
763 evlist->mmap[idx].refcnt = 2;
764 evlist->mmap[idx].prev = 0;
765 evlist->mmap[idx].mask = mp->mask;
766 evlist->mmap[idx].base = mmap(NULL, evlist->mmap_len, mp->prot,
767 MAP_SHARED, fd, 0);
768 if (evlist->mmap[idx].base == MAP_FAILED) {
769 pr_debug2("failed to mmap perf event ring buffer, error %d\n",
770 errno);
771 evlist->mmap[idx].base = NULL;
772 return -1;
773 }
774
775 return 0;
776 }
777
778 static int perf_evlist__mmap_per_evsel(struct perf_evlist *evlist, int idx,
779 struct mmap_params *mp, int cpu,
780 int thread, int *output)
781 {
782 struct perf_evsel *evsel;
783
784 evlist__for_each(evlist, evsel) {
785 int fd;
786
787 if (evsel->system_wide && thread)
788 continue;
789
790 fd = FD(evsel, cpu, thread);
791
792 if (*output == -1) {
793 *output = fd;
794 if (__perf_evlist__mmap(evlist, idx, mp, *output) < 0)
795 return -1;
796 } else {
797 if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, *output) != 0)
798 return -1;
799
800 perf_evlist__mmap_get(evlist, idx);
801 }
802
803 if (__perf_evlist__add_pollfd(evlist, fd, idx) < 0) {
804 perf_evlist__mmap_put(evlist, idx);
805 return -1;
806 }
807
808 if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
809 perf_evlist__id_add_fd(evlist, evsel, cpu, thread, fd) < 0)
810 return -1;
811 }
812
813 return 0;
814 }
815
816 static int perf_evlist__mmap_per_cpu(struct perf_evlist *evlist,
817 struct mmap_params *mp)
818 {
819 int cpu, thread;
820 int nr_cpus = cpu_map__nr(evlist->cpus);
821 int nr_threads = thread_map__nr(evlist->threads);
822
823 pr_debug2("perf event ring buffer mmapped per cpu\n");
824 for (cpu = 0; cpu < nr_cpus; cpu++) {
825 int output = -1;
826
827 for (thread = 0; thread < nr_threads; thread++) {
828 if (perf_evlist__mmap_per_evsel(evlist, cpu, mp, cpu,
829 thread, &output))
830 goto out_unmap;
831 }
832 }
833
834 return 0;
835
836 out_unmap:
837 for (cpu = 0; cpu < nr_cpus; cpu++)
838 __perf_evlist__munmap(evlist, cpu);
839 return -1;
840 }
841
842 static int perf_evlist__mmap_per_thread(struct perf_evlist *evlist,
843 struct mmap_params *mp)
844 {
845 int thread;
846 int nr_threads = thread_map__nr(evlist->threads);
847
848 pr_debug2("perf event ring buffer mmapped per thread\n");
849 for (thread = 0; thread < nr_threads; thread++) {
850 int output = -1;
851
852 if (perf_evlist__mmap_per_evsel(evlist, thread, mp, 0, thread,
853 &output))
854 goto out_unmap;
855 }
856
857 return 0;
858
859 out_unmap:
860 for (thread = 0; thread < nr_threads; thread++)
861 __perf_evlist__munmap(evlist, thread);
862 return -1;
863 }
864
865 static size_t perf_evlist__mmap_size(unsigned long pages)
866 {
867 /* 512 kiB: default amount of unprivileged mlocked memory */
868 if (pages == UINT_MAX)
869 pages = (512 * 1024) / page_size;
870 else if (!is_power_of_2(pages))
871 return 0;
872
873 return (pages + 1) * page_size;
874 }
875
876 static long parse_pages_arg(const char *str, unsigned long min,
877 unsigned long max)
878 {
879 unsigned long pages, val;
880 static struct parse_tag tags[] = {
881 { .tag = 'B', .mult = 1 },
882 { .tag = 'K', .mult = 1 << 10 },
883 { .tag = 'M', .mult = 1 << 20 },
884 { .tag = 'G', .mult = 1 << 30 },
885 { .tag = 0 },
886 };
887
888 if (str == NULL)
889 return -EINVAL;
890
891 val = parse_tag_value(str, tags);
892 if (val != (unsigned long) -1) {
893 /* we got file size value */
894 pages = PERF_ALIGN(val, page_size) / page_size;
895 } else {
896 /* we got pages count value */
897 char *eptr;
898 pages = strtoul(str, &eptr, 10);
899 if (*eptr != '\0')
900 return -EINVAL;
901 }
902
903 if (pages == 0 && min == 0) {
904 /* leave number of pages at 0 */
905 } else if (!is_power_of_2(pages)) {
906 /* round pages up to next power of 2 */
907 pages = next_pow2_l(pages);
908 if (!pages)
909 return -EINVAL;
910 pr_info("rounding mmap pages size to %lu bytes (%lu pages)\n",
911 pages * page_size, pages);
912 }
913
914 if (pages > max)
915 return -EINVAL;
916
917 return pages;
918 }
919
920 int perf_evlist__parse_mmap_pages(const struct option *opt, const char *str,
921 int unset __maybe_unused)
922 {
923 unsigned int *mmap_pages = opt->value;
924 unsigned long max = UINT_MAX;
925 long pages;
926
927 if (max > SIZE_MAX / page_size)
928 max = SIZE_MAX / page_size;
929
930 pages = parse_pages_arg(str, 1, max);
931 if (pages < 0) {
932 pr_err("Invalid argument for --mmap_pages/-m\n");
933 return -1;
934 }
935
936 *mmap_pages = pages;
937 return 0;
938 }
939
940 /**
941 * perf_evlist__mmap - Create mmaps to receive events.
942 * @evlist: list of events
943 * @pages: map length in pages
944 * @overwrite: overwrite older events?
945 *
946 * If @overwrite is %false the user needs to signal event consumption using
947 * perf_mmap__write_tail(). Using perf_evlist__mmap_read() does this
948 * automatically.
949 *
950 * Return: %0 on success, negative error code otherwise.
951 */
952 int perf_evlist__mmap(struct perf_evlist *evlist, unsigned int pages,
953 bool overwrite)
954 {
955 struct perf_evsel *evsel;
956 const struct cpu_map *cpus = evlist->cpus;
957 const struct thread_map *threads = evlist->threads;
958 struct mmap_params mp = {
959 .prot = PROT_READ | (overwrite ? 0 : PROT_WRITE),
960 };
961
962 if (evlist->mmap == NULL && perf_evlist__alloc_mmap(evlist) < 0)
963 return -ENOMEM;
964
965 if (evlist->pollfd.entries == NULL && perf_evlist__alloc_pollfd(evlist) < 0)
966 return -ENOMEM;
967
968 evlist->overwrite = overwrite;
969 evlist->mmap_len = perf_evlist__mmap_size(pages);
970 pr_debug("mmap size %zuB\n", evlist->mmap_len);
971 mp.mask = evlist->mmap_len - page_size - 1;
972
973 evlist__for_each(evlist, evsel) {
974 if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
975 evsel->sample_id == NULL &&
976 perf_evsel__alloc_id(evsel, cpu_map__nr(cpus), threads->nr) < 0)
977 return -ENOMEM;
978 }
979
980 if (cpu_map__empty(cpus))
981 return perf_evlist__mmap_per_thread(evlist, &mp);
982
983 return perf_evlist__mmap_per_cpu(evlist, &mp);
984 }
985
986 int perf_evlist__create_maps(struct perf_evlist *evlist, struct target *target)
987 {
988 evlist->threads = thread_map__new_str(target->pid, target->tid,
989 target->uid);
990
991 if (evlist->threads == NULL)
992 return -1;
993
994 if (target__uses_dummy_map(target))
995 evlist->cpus = cpu_map__dummy_new();
996 else
997 evlist->cpus = cpu_map__new(target->cpu_list);
998
999 if (evlist->cpus == NULL)
1000 goto out_delete_threads;
1001
1002 return 0;
1003
1004 out_delete_threads:
1005 thread_map__delete(evlist->threads);
1006 return -1;
1007 }
1008
1009 int perf_evlist__apply_filters(struct perf_evlist *evlist)
1010 {
1011 struct perf_evsel *evsel;
1012 int err = 0;
1013 const int ncpus = cpu_map__nr(evlist->cpus),
1014 nthreads = thread_map__nr(evlist->threads);
1015
1016 evlist__for_each(evlist, evsel) {
1017 if (evsel->filter == NULL)
1018 continue;
1019
1020 err = perf_evsel__set_filter(evsel, ncpus, nthreads, evsel->filter);
1021 if (err)
1022 break;
1023 }
1024
1025 return err;
1026 }
1027
1028 int perf_evlist__set_filter(struct perf_evlist *evlist, const char *filter)
1029 {
1030 struct perf_evsel *evsel;
1031 int err = 0;
1032 const int ncpus = cpu_map__nr(evlist->cpus),
1033 nthreads = thread_map__nr(evlist->threads);
1034
1035 evlist__for_each(evlist, evsel) {
1036 err = perf_evsel__set_filter(evsel, ncpus, nthreads, filter);
1037 if (err)
1038 break;
1039 }
1040
1041 return err;
1042 }
1043
1044 bool perf_evlist__valid_sample_type(struct perf_evlist *evlist)
1045 {
1046 struct perf_evsel *pos;
1047
1048 if (evlist->nr_entries == 1)
1049 return true;
1050
1051 if (evlist->id_pos < 0 || evlist->is_pos < 0)
1052 return false;
1053
1054 evlist__for_each(evlist, pos) {
1055 if (pos->id_pos != evlist->id_pos ||
1056 pos->is_pos != evlist->is_pos)
1057 return false;
1058 }
1059
1060 return true;
1061 }
1062
1063 u64 __perf_evlist__combined_sample_type(struct perf_evlist *evlist)
1064 {
1065 struct perf_evsel *evsel;
1066
1067 if (evlist->combined_sample_type)
1068 return evlist->combined_sample_type;
1069
1070 evlist__for_each(evlist, evsel)
1071 evlist->combined_sample_type |= evsel->attr.sample_type;
1072
1073 return evlist->combined_sample_type;
1074 }
1075
1076 u64 perf_evlist__combined_sample_type(struct perf_evlist *evlist)
1077 {
1078 evlist->combined_sample_type = 0;
1079 return __perf_evlist__combined_sample_type(evlist);
1080 }
1081
1082 bool perf_evlist__valid_read_format(struct perf_evlist *evlist)
1083 {
1084 struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
1085 u64 read_format = first->attr.read_format;
1086 u64 sample_type = first->attr.sample_type;
1087
1088 evlist__for_each(evlist, pos) {
1089 if (read_format != pos->attr.read_format)
1090 return false;
1091 }
1092
1093 /* PERF_SAMPLE_READ imples PERF_FORMAT_ID. */
1094 if ((sample_type & PERF_SAMPLE_READ) &&
1095 !(read_format & PERF_FORMAT_ID)) {
1096 return false;
1097 }
1098
1099 return true;
1100 }
1101
1102 u64 perf_evlist__read_format(struct perf_evlist *evlist)
1103 {
1104 struct perf_evsel *first = perf_evlist__first(evlist);
1105 return first->attr.read_format;
1106 }
1107
1108 u16 perf_evlist__id_hdr_size(struct perf_evlist *evlist)
1109 {
1110 struct perf_evsel *first = perf_evlist__first(evlist);
1111 struct perf_sample *data;
1112 u64 sample_type;
1113 u16 size = 0;
1114
1115 if (!first->attr.sample_id_all)
1116 goto out;
1117
1118 sample_type = first->attr.sample_type;
1119
1120 if (sample_type & PERF_SAMPLE_TID)
1121 size += sizeof(data->tid) * 2;
1122
1123 if (sample_type & PERF_SAMPLE_TIME)
1124 size += sizeof(data->time);
1125
1126 if (sample_type & PERF_SAMPLE_ID)
1127 size += sizeof(data->id);
1128
1129 if (sample_type & PERF_SAMPLE_STREAM_ID)
1130 size += sizeof(data->stream_id);
1131
1132 if (sample_type & PERF_SAMPLE_CPU)
1133 size += sizeof(data->cpu) * 2;
1134
1135 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1136 size += sizeof(data->id);
1137 out:
1138 return size;
1139 }
1140
1141 bool perf_evlist__valid_sample_id_all(struct perf_evlist *evlist)
1142 {
1143 struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
1144
1145 evlist__for_each_continue(evlist, pos) {
1146 if (first->attr.sample_id_all != pos->attr.sample_id_all)
1147 return false;
1148 }
1149
1150 return true;
1151 }
1152
1153 bool perf_evlist__sample_id_all(struct perf_evlist *evlist)
1154 {
1155 struct perf_evsel *first = perf_evlist__first(evlist);
1156 return first->attr.sample_id_all;
1157 }
1158
1159 void perf_evlist__set_selected(struct perf_evlist *evlist,
1160 struct perf_evsel *evsel)
1161 {
1162 evlist->selected = evsel;
1163 }
1164
1165 void perf_evlist__close(struct perf_evlist *evlist)
1166 {
1167 struct perf_evsel *evsel;
1168 int ncpus = cpu_map__nr(evlist->cpus);
1169 int nthreads = thread_map__nr(evlist->threads);
1170 int n;
1171
1172 evlist__for_each_reverse(evlist, evsel) {
1173 n = evsel->cpus ? evsel->cpus->nr : ncpus;
1174 perf_evsel__close(evsel, n, nthreads);
1175 }
1176 }
1177
1178 int perf_evlist__open(struct perf_evlist *evlist)
1179 {
1180 struct perf_evsel *evsel;
1181 int err;
1182
1183 perf_evlist__update_id_pos(evlist);
1184
1185 evlist__for_each(evlist, evsel) {
1186 err = perf_evsel__open(evsel, evlist->cpus, evlist->threads);
1187 if (err < 0)
1188 goto out_err;
1189 }
1190
1191 return 0;
1192 out_err:
1193 perf_evlist__close(evlist);
1194 errno = -err;
1195 return err;
1196 }
1197
1198 int perf_evlist__prepare_workload(struct perf_evlist *evlist, struct target *target,
1199 const char *argv[], bool pipe_output,
1200 void (*exec_error)(int signo, siginfo_t *info, void *ucontext))
1201 {
1202 int child_ready_pipe[2], go_pipe[2];
1203 char bf;
1204
1205 if (pipe(child_ready_pipe) < 0) {
1206 perror("failed to create 'ready' pipe");
1207 return -1;
1208 }
1209
1210 if (pipe(go_pipe) < 0) {
1211 perror("failed to create 'go' pipe");
1212 goto out_close_ready_pipe;
1213 }
1214
1215 evlist->workload.pid = fork();
1216 if (evlist->workload.pid < 0) {
1217 perror("failed to fork");
1218 goto out_close_pipes;
1219 }
1220
1221 if (!evlist->workload.pid) {
1222 int ret;
1223
1224 if (pipe_output)
1225 dup2(2, 1);
1226
1227 signal(SIGTERM, SIG_DFL);
1228
1229 close(child_ready_pipe[0]);
1230 close(go_pipe[1]);
1231 fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
1232
1233 /*
1234 * Tell the parent we're ready to go
1235 */
1236 close(child_ready_pipe[1]);
1237
1238 /*
1239 * Wait until the parent tells us to go.
1240 */
1241 ret = read(go_pipe[0], &bf, 1);
1242 /*
1243 * The parent will ask for the execvp() to be performed by
1244 * writing exactly one byte, in workload.cork_fd, usually via
1245 * perf_evlist__start_workload().
1246 *
1247 * For cancelling the workload without actuallin running it,
1248 * the parent will just close workload.cork_fd, without writing
1249 * anything, i.e. read will return zero and we just exit()
1250 * here.
1251 */
1252 if (ret != 1) {
1253 if (ret == -1)
1254 perror("unable to read pipe");
1255 exit(ret);
1256 }
1257
1258 execvp(argv[0], (char **)argv);
1259
1260 if (exec_error) {
1261 union sigval val;
1262
1263 val.sival_int = errno;
1264 if (sigqueue(getppid(), SIGUSR1, val))
1265 perror(argv[0]);
1266 } else
1267 perror(argv[0]);
1268 exit(-1);
1269 }
1270
1271 if (exec_error) {
1272 struct sigaction act = {
1273 .sa_flags = SA_SIGINFO,
1274 .sa_sigaction = exec_error,
1275 };
1276 sigaction(SIGUSR1, &act, NULL);
1277 }
1278
1279 if (target__none(target))
1280 evlist->threads->map[0] = evlist->workload.pid;
1281
1282 close(child_ready_pipe[1]);
1283 close(go_pipe[0]);
1284 /*
1285 * wait for child to settle
1286 */
1287 if (read(child_ready_pipe[0], &bf, 1) == -1) {
1288 perror("unable to read pipe");
1289 goto out_close_pipes;
1290 }
1291
1292 fcntl(go_pipe[1], F_SETFD, FD_CLOEXEC);
1293 evlist->workload.cork_fd = go_pipe[1];
1294 close(child_ready_pipe[0]);
1295 return 0;
1296
1297 out_close_pipes:
1298 close(go_pipe[0]);
1299 close(go_pipe[1]);
1300 out_close_ready_pipe:
1301 close(child_ready_pipe[0]);
1302 close(child_ready_pipe[1]);
1303 return -1;
1304 }
1305
1306 int perf_evlist__start_workload(struct perf_evlist *evlist)
1307 {
1308 if (evlist->workload.cork_fd > 0) {
1309 char bf = 0;
1310 int ret;
1311 /*
1312 * Remove the cork, let it rip!
1313 */
1314 ret = write(evlist->workload.cork_fd, &bf, 1);
1315 if (ret < 0)
1316 perror("enable to write to pipe");
1317
1318 close(evlist->workload.cork_fd);
1319 return ret;
1320 }
1321
1322 return 0;
1323 }
1324
1325 int perf_evlist__parse_sample(struct perf_evlist *evlist, union perf_event *event,
1326 struct perf_sample *sample)
1327 {
1328 struct perf_evsel *evsel = perf_evlist__event2evsel(evlist, event);
1329
1330 if (!evsel)
1331 return -EFAULT;
1332 return perf_evsel__parse_sample(evsel, event, sample);
1333 }
1334
1335 size_t perf_evlist__fprintf(struct perf_evlist *evlist, FILE *fp)
1336 {
1337 struct perf_evsel *evsel;
1338 size_t printed = 0;
1339
1340 evlist__for_each(evlist, evsel) {
1341 printed += fprintf(fp, "%s%s", evsel->idx ? ", " : "",
1342 perf_evsel__name(evsel));
1343 }
1344
1345 return printed + fprintf(fp, "\n");
1346 }
1347
1348 int perf_evlist__strerror_tp(struct perf_evlist *evlist __maybe_unused,
1349 int err, char *buf, size_t size)
1350 {
1351 char sbuf[128];
1352
1353 switch (err) {
1354 case ENOENT:
1355 scnprintf(buf, size, "%s",
1356 "Error:\tUnable to find debugfs\n"
1357 "Hint:\tWas your kernel was compiled with debugfs support?\n"
1358 "Hint:\tIs the debugfs filesystem mounted?\n"
1359 "Hint:\tTry 'sudo mount -t debugfs nodev /sys/kernel/debug'");
1360 break;
1361 case EACCES:
1362 scnprintf(buf, size,
1363 "Error:\tNo permissions to read %s/tracing/events/raw_syscalls\n"
1364 "Hint:\tTry 'sudo mount -o remount,mode=755 %s'\n",
1365 debugfs_mountpoint, debugfs_mountpoint);
1366 break;
1367 default:
1368 scnprintf(buf, size, "%s", strerror_r(err, sbuf, sizeof(sbuf)));
1369 break;
1370 }
1371
1372 return 0;
1373 }
1374
1375 int perf_evlist__strerror_open(struct perf_evlist *evlist __maybe_unused,
1376 int err, char *buf, size_t size)
1377 {
1378 int printed, value;
1379 char sbuf[STRERR_BUFSIZE], *emsg = strerror_r(err, sbuf, sizeof(sbuf));
1380
1381 switch (err) {
1382 case EACCES:
1383 case EPERM:
1384 printed = scnprintf(buf, size,
1385 "Error:\t%s.\n"
1386 "Hint:\tCheck /proc/sys/kernel/perf_event_paranoid setting.", emsg);
1387
1388 value = perf_event_paranoid();
1389
1390 printed += scnprintf(buf + printed, size - printed, "\nHint:\t");
1391
1392 if (value >= 2) {
1393 printed += scnprintf(buf + printed, size - printed,
1394 "For your workloads it needs to be <= 1\nHint:\t");
1395 }
1396 printed += scnprintf(buf + printed, size - printed,
1397 "For system wide tracing it needs to be set to -1.\n");
1398
1399 printed += scnprintf(buf + printed, size - printed,
1400 "Hint:\tTry: 'sudo sh -c \"echo -1 > /proc/sys/kernel/perf_event_paranoid\"'\n"
1401 "Hint:\tThe current value is %d.", value);
1402 break;
1403 default:
1404 scnprintf(buf, size, "%s", emsg);
1405 break;
1406 }
1407
1408 return 0;
1409 }
1410
1411 void perf_evlist__to_front(struct perf_evlist *evlist,
1412 struct perf_evsel *move_evsel)
1413 {
1414 struct perf_evsel *evsel, *n;
1415 LIST_HEAD(move);
1416
1417 if (move_evsel == perf_evlist__first(evlist))
1418 return;
1419
1420 evlist__for_each_safe(evlist, n, evsel) {
1421 if (evsel->leader == move_evsel->leader)
1422 list_move_tail(&evsel->node, &move);
1423 }
1424
1425 list_splice(&move, &evlist->entries);
1426 }
1427
1428 void perf_evlist__set_tracking_event(struct perf_evlist *evlist,
1429 struct perf_evsel *tracking_evsel)
1430 {
1431 struct perf_evsel *evsel;
1432
1433 if (tracking_evsel->tracking)
1434 return;
1435
1436 evlist__for_each(evlist, evsel) {
1437 if (evsel != tracking_evsel)
1438 evsel->tracking = false;
1439 }
1440
1441 tracking_evsel->tracking = true;
1442 }
This page took 0.062043 seconds and 6 git commands to generate.