Merge branch 'perf/urgent' into perf/core, to resolve a conflict
[deliverable/linux.git] / tools / perf / util / evsel.c
1 /*
2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3 *
4 * Parts came from builtin-{top,stat,record}.c, see those files for further
5 * copyright notes.
6 *
7 * Released under the GPL v2. (and only v2, not any later version)
8 */
9
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/tracing_path.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <linux/err.h>
17 #include <sys/resource.h>
18 #include "asm/bug.h"
19 #include "callchain.h"
20 #include "cgroup.h"
21 #include "evsel.h"
22 #include "evlist.h"
23 #include "util.h"
24 #include "cpumap.h"
25 #include "thread_map.h"
26 #include "target.h"
27 #include "perf_regs.h"
28 #include "debug.h"
29 #include "trace-event.h"
30 #include "stat.h"
31
32 static struct {
33 bool sample_id_all;
34 bool exclude_guest;
35 bool mmap2;
36 bool cloexec;
37 bool clockid;
38 bool clockid_wrong;
39 } perf_missing_features;
40
41 static clockid_t clockid;
42
43 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
44 {
45 return 0;
46 }
47
48 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
49 {
50 }
51
52 static struct {
53 size_t size;
54 int (*init)(struct perf_evsel *evsel);
55 void (*fini)(struct perf_evsel *evsel);
56 } perf_evsel__object = {
57 .size = sizeof(struct perf_evsel),
58 .init = perf_evsel__no_extra_init,
59 .fini = perf_evsel__no_extra_fini,
60 };
61
62 int perf_evsel__object_config(size_t object_size,
63 int (*init)(struct perf_evsel *evsel),
64 void (*fini)(struct perf_evsel *evsel))
65 {
66
67 if (object_size == 0)
68 goto set_methods;
69
70 if (perf_evsel__object.size > object_size)
71 return -EINVAL;
72
73 perf_evsel__object.size = object_size;
74
75 set_methods:
76 if (init != NULL)
77 perf_evsel__object.init = init;
78
79 if (fini != NULL)
80 perf_evsel__object.fini = fini;
81
82 return 0;
83 }
84
85 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
86
87 int __perf_evsel__sample_size(u64 sample_type)
88 {
89 u64 mask = sample_type & PERF_SAMPLE_MASK;
90 int size = 0;
91 int i;
92
93 for (i = 0; i < 64; i++) {
94 if (mask & (1ULL << i))
95 size++;
96 }
97
98 size *= sizeof(u64);
99
100 return size;
101 }
102
103 /**
104 * __perf_evsel__calc_id_pos - calculate id_pos.
105 * @sample_type: sample type
106 *
107 * This function returns the position of the event id (PERF_SAMPLE_ID or
108 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
109 * sample_event.
110 */
111 static int __perf_evsel__calc_id_pos(u64 sample_type)
112 {
113 int idx = 0;
114
115 if (sample_type & PERF_SAMPLE_IDENTIFIER)
116 return 0;
117
118 if (!(sample_type & PERF_SAMPLE_ID))
119 return -1;
120
121 if (sample_type & PERF_SAMPLE_IP)
122 idx += 1;
123
124 if (sample_type & PERF_SAMPLE_TID)
125 idx += 1;
126
127 if (sample_type & PERF_SAMPLE_TIME)
128 idx += 1;
129
130 if (sample_type & PERF_SAMPLE_ADDR)
131 idx += 1;
132
133 return idx;
134 }
135
136 /**
137 * __perf_evsel__calc_is_pos - calculate is_pos.
138 * @sample_type: sample type
139 *
140 * This function returns the position (counting backwards) of the event id
141 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
142 * sample_id_all is used there is an id sample appended to non-sample events.
143 */
144 static int __perf_evsel__calc_is_pos(u64 sample_type)
145 {
146 int idx = 1;
147
148 if (sample_type & PERF_SAMPLE_IDENTIFIER)
149 return 1;
150
151 if (!(sample_type & PERF_SAMPLE_ID))
152 return -1;
153
154 if (sample_type & PERF_SAMPLE_CPU)
155 idx += 1;
156
157 if (sample_type & PERF_SAMPLE_STREAM_ID)
158 idx += 1;
159
160 return idx;
161 }
162
163 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
164 {
165 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
166 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
167 }
168
169 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
170 enum perf_event_sample_format bit)
171 {
172 if (!(evsel->attr.sample_type & bit)) {
173 evsel->attr.sample_type |= bit;
174 evsel->sample_size += sizeof(u64);
175 perf_evsel__calc_id_pos(evsel);
176 }
177 }
178
179 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
180 enum perf_event_sample_format bit)
181 {
182 if (evsel->attr.sample_type & bit) {
183 evsel->attr.sample_type &= ~bit;
184 evsel->sample_size -= sizeof(u64);
185 perf_evsel__calc_id_pos(evsel);
186 }
187 }
188
189 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
190 bool can_sample_identifier)
191 {
192 if (can_sample_identifier) {
193 perf_evsel__reset_sample_bit(evsel, ID);
194 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
195 } else {
196 perf_evsel__set_sample_bit(evsel, ID);
197 }
198 evsel->attr.read_format |= PERF_FORMAT_ID;
199 }
200
201 void perf_evsel__init(struct perf_evsel *evsel,
202 struct perf_event_attr *attr, int idx)
203 {
204 evsel->idx = idx;
205 evsel->tracking = !idx;
206 evsel->attr = *attr;
207 evsel->leader = evsel;
208 evsel->unit = "";
209 evsel->scale = 1.0;
210 evsel->evlist = NULL;
211 INIT_LIST_HEAD(&evsel->node);
212 INIT_LIST_HEAD(&evsel->config_terms);
213 perf_evsel__object.init(evsel);
214 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
215 perf_evsel__calc_id_pos(evsel);
216 evsel->cmdline_group_boundary = false;
217 }
218
219 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
220 {
221 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
222
223 if (evsel != NULL)
224 perf_evsel__init(evsel, attr, idx);
225
226 return evsel;
227 }
228
229 /*
230 * Returns pointer with encoded error via <linux/err.h> interface.
231 */
232 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
233 {
234 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
235 int err = -ENOMEM;
236
237 if (evsel == NULL) {
238 goto out_err;
239 } else {
240 struct perf_event_attr attr = {
241 .type = PERF_TYPE_TRACEPOINT,
242 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
243 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
244 };
245
246 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
247 goto out_free;
248
249 evsel->tp_format = trace_event__tp_format(sys, name);
250 if (IS_ERR(evsel->tp_format)) {
251 err = PTR_ERR(evsel->tp_format);
252 goto out_free;
253 }
254
255 event_attr_init(&attr);
256 attr.config = evsel->tp_format->id;
257 attr.sample_period = 1;
258 perf_evsel__init(evsel, &attr, idx);
259 }
260
261 return evsel;
262
263 out_free:
264 zfree(&evsel->name);
265 free(evsel);
266 out_err:
267 return ERR_PTR(err);
268 }
269
270 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
271 "cycles",
272 "instructions",
273 "cache-references",
274 "cache-misses",
275 "branches",
276 "branch-misses",
277 "bus-cycles",
278 "stalled-cycles-frontend",
279 "stalled-cycles-backend",
280 "ref-cycles",
281 };
282
283 static const char *__perf_evsel__hw_name(u64 config)
284 {
285 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
286 return perf_evsel__hw_names[config];
287
288 return "unknown-hardware";
289 }
290
291 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
292 {
293 int colon = 0, r = 0;
294 struct perf_event_attr *attr = &evsel->attr;
295 bool exclude_guest_default = false;
296
297 #define MOD_PRINT(context, mod) do { \
298 if (!attr->exclude_##context) { \
299 if (!colon) colon = ++r; \
300 r += scnprintf(bf + r, size - r, "%c", mod); \
301 } } while(0)
302
303 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
304 MOD_PRINT(kernel, 'k');
305 MOD_PRINT(user, 'u');
306 MOD_PRINT(hv, 'h');
307 exclude_guest_default = true;
308 }
309
310 if (attr->precise_ip) {
311 if (!colon)
312 colon = ++r;
313 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
314 exclude_guest_default = true;
315 }
316
317 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
318 MOD_PRINT(host, 'H');
319 MOD_PRINT(guest, 'G');
320 }
321 #undef MOD_PRINT
322 if (colon)
323 bf[colon - 1] = ':';
324 return r;
325 }
326
327 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
328 {
329 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
330 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
331 }
332
333 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
334 "cpu-clock",
335 "task-clock",
336 "page-faults",
337 "context-switches",
338 "cpu-migrations",
339 "minor-faults",
340 "major-faults",
341 "alignment-faults",
342 "emulation-faults",
343 "dummy",
344 };
345
346 static const char *__perf_evsel__sw_name(u64 config)
347 {
348 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
349 return perf_evsel__sw_names[config];
350 return "unknown-software";
351 }
352
353 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
354 {
355 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
356 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
357 }
358
359 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
360 {
361 int r;
362
363 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
364
365 if (type & HW_BREAKPOINT_R)
366 r += scnprintf(bf + r, size - r, "r");
367
368 if (type & HW_BREAKPOINT_W)
369 r += scnprintf(bf + r, size - r, "w");
370
371 if (type & HW_BREAKPOINT_X)
372 r += scnprintf(bf + r, size - r, "x");
373
374 return r;
375 }
376
377 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
378 {
379 struct perf_event_attr *attr = &evsel->attr;
380 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
381 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
382 }
383
384 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
385 [PERF_EVSEL__MAX_ALIASES] = {
386 { "L1-dcache", "l1-d", "l1d", "L1-data", },
387 { "L1-icache", "l1-i", "l1i", "L1-instruction", },
388 { "LLC", "L2", },
389 { "dTLB", "d-tlb", "Data-TLB", },
390 { "iTLB", "i-tlb", "Instruction-TLB", },
391 { "branch", "branches", "bpu", "btb", "bpc", },
392 { "node", },
393 };
394
395 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
396 [PERF_EVSEL__MAX_ALIASES] = {
397 { "load", "loads", "read", },
398 { "store", "stores", "write", },
399 { "prefetch", "prefetches", "speculative-read", "speculative-load", },
400 };
401
402 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
403 [PERF_EVSEL__MAX_ALIASES] = {
404 { "refs", "Reference", "ops", "access", },
405 { "misses", "miss", },
406 };
407
408 #define C(x) PERF_COUNT_HW_CACHE_##x
409 #define CACHE_READ (1 << C(OP_READ))
410 #define CACHE_WRITE (1 << C(OP_WRITE))
411 #define CACHE_PREFETCH (1 << C(OP_PREFETCH))
412 #define COP(x) (1 << x)
413
414 /*
415 * cache operartion stat
416 * L1I : Read and prefetch only
417 * ITLB and BPU : Read-only
418 */
419 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
420 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
421 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH),
422 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
423 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
424 [C(ITLB)] = (CACHE_READ),
425 [C(BPU)] = (CACHE_READ),
426 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
427 };
428
429 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
430 {
431 if (perf_evsel__hw_cache_stat[type] & COP(op))
432 return true; /* valid */
433 else
434 return false; /* invalid */
435 }
436
437 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
438 char *bf, size_t size)
439 {
440 if (result) {
441 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
442 perf_evsel__hw_cache_op[op][0],
443 perf_evsel__hw_cache_result[result][0]);
444 }
445
446 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
447 perf_evsel__hw_cache_op[op][1]);
448 }
449
450 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
451 {
452 u8 op, result, type = (config >> 0) & 0xff;
453 const char *err = "unknown-ext-hardware-cache-type";
454
455 if (type > PERF_COUNT_HW_CACHE_MAX)
456 goto out_err;
457
458 op = (config >> 8) & 0xff;
459 err = "unknown-ext-hardware-cache-op";
460 if (op > PERF_COUNT_HW_CACHE_OP_MAX)
461 goto out_err;
462
463 result = (config >> 16) & 0xff;
464 err = "unknown-ext-hardware-cache-result";
465 if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
466 goto out_err;
467
468 err = "invalid-cache";
469 if (!perf_evsel__is_cache_op_valid(type, op))
470 goto out_err;
471
472 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
473 out_err:
474 return scnprintf(bf, size, "%s", err);
475 }
476
477 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
478 {
479 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
480 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
481 }
482
483 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
484 {
485 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
486 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
487 }
488
489 const char *perf_evsel__name(struct perf_evsel *evsel)
490 {
491 char bf[128];
492
493 if (evsel->name)
494 return evsel->name;
495
496 switch (evsel->attr.type) {
497 case PERF_TYPE_RAW:
498 perf_evsel__raw_name(evsel, bf, sizeof(bf));
499 break;
500
501 case PERF_TYPE_HARDWARE:
502 perf_evsel__hw_name(evsel, bf, sizeof(bf));
503 break;
504
505 case PERF_TYPE_HW_CACHE:
506 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
507 break;
508
509 case PERF_TYPE_SOFTWARE:
510 perf_evsel__sw_name(evsel, bf, sizeof(bf));
511 break;
512
513 case PERF_TYPE_TRACEPOINT:
514 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
515 break;
516
517 case PERF_TYPE_BREAKPOINT:
518 perf_evsel__bp_name(evsel, bf, sizeof(bf));
519 break;
520
521 default:
522 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
523 evsel->attr.type);
524 break;
525 }
526
527 evsel->name = strdup(bf);
528
529 return evsel->name ?: "unknown";
530 }
531
532 const char *perf_evsel__group_name(struct perf_evsel *evsel)
533 {
534 return evsel->group_name ?: "anon group";
535 }
536
537 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
538 {
539 int ret;
540 struct perf_evsel *pos;
541 const char *group_name = perf_evsel__group_name(evsel);
542
543 ret = scnprintf(buf, size, "%s", group_name);
544
545 ret += scnprintf(buf + ret, size - ret, " { %s",
546 perf_evsel__name(evsel));
547
548 for_each_group_member(pos, evsel)
549 ret += scnprintf(buf + ret, size - ret, ", %s",
550 perf_evsel__name(pos));
551
552 ret += scnprintf(buf + ret, size - ret, " }");
553
554 return ret;
555 }
556
557 static void
558 perf_evsel__config_callgraph(struct perf_evsel *evsel,
559 struct record_opts *opts,
560 struct callchain_param *param)
561 {
562 bool function = perf_evsel__is_function_event(evsel);
563 struct perf_event_attr *attr = &evsel->attr;
564
565 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
566
567 if (param->record_mode == CALLCHAIN_LBR) {
568 if (!opts->branch_stack) {
569 if (attr->exclude_user) {
570 pr_warning("LBR callstack option is only available "
571 "to get user callchain information. "
572 "Falling back to framepointers.\n");
573 } else {
574 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
575 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
576 PERF_SAMPLE_BRANCH_CALL_STACK;
577 }
578 } else
579 pr_warning("Cannot use LBR callstack with branch stack. "
580 "Falling back to framepointers.\n");
581 }
582
583 if (param->record_mode == CALLCHAIN_DWARF) {
584 if (!function) {
585 perf_evsel__set_sample_bit(evsel, REGS_USER);
586 perf_evsel__set_sample_bit(evsel, STACK_USER);
587 attr->sample_regs_user = PERF_REGS_MASK;
588 attr->sample_stack_user = param->dump_size;
589 attr->exclude_callchain_user = 1;
590 } else {
591 pr_info("Cannot use DWARF unwind for function trace event,"
592 " falling back to framepointers.\n");
593 }
594 }
595
596 if (function) {
597 pr_info("Disabling user space callchains for function trace event.\n");
598 attr->exclude_callchain_user = 1;
599 }
600 }
601
602 static void
603 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
604 struct callchain_param *param)
605 {
606 struct perf_event_attr *attr = &evsel->attr;
607
608 perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
609 if (param->record_mode == CALLCHAIN_LBR) {
610 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
611 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
612 PERF_SAMPLE_BRANCH_CALL_STACK);
613 }
614 if (param->record_mode == CALLCHAIN_DWARF) {
615 perf_evsel__reset_sample_bit(evsel, REGS_USER);
616 perf_evsel__reset_sample_bit(evsel, STACK_USER);
617 }
618 }
619
620 static void apply_config_terms(struct perf_evsel *evsel,
621 struct record_opts *opts)
622 {
623 struct perf_evsel_config_term *term;
624 struct list_head *config_terms = &evsel->config_terms;
625 struct perf_event_attr *attr = &evsel->attr;
626 struct callchain_param param;
627 u32 dump_size = 0;
628 char *callgraph_buf = NULL;
629
630 /* callgraph default */
631 param.record_mode = callchain_param.record_mode;
632
633 list_for_each_entry(term, config_terms, list) {
634 switch (term->type) {
635 case PERF_EVSEL__CONFIG_TERM_PERIOD:
636 attr->sample_period = term->val.period;
637 attr->freq = 0;
638 break;
639 case PERF_EVSEL__CONFIG_TERM_FREQ:
640 attr->sample_freq = term->val.freq;
641 attr->freq = 1;
642 break;
643 case PERF_EVSEL__CONFIG_TERM_TIME:
644 if (term->val.time)
645 perf_evsel__set_sample_bit(evsel, TIME);
646 else
647 perf_evsel__reset_sample_bit(evsel, TIME);
648 break;
649 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
650 callgraph_buf = term->val.callgraph;
651 break;
652 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
653 dump_size = term->val.stack_user;
654 break;
655 default:
656 break;
657 }
658 }
659
660 /* User explicitly set per-event callgraph, clear the old setting and reset. */
661 if ((callgraph_buf != NULL) || (dump_size > 0)) {
662
663 /* parse callgraph parameters */
664 if (callgraph_buf != NULL) {
665 if (!strcmp(callgraph_buf, "no")) {
666 param.enabled = false;
667 param.record_mode = CALLCHAIN_NONE;
668 } else {
669 param.enabled = true;
670 if (parse_callchain_record(callgraph_buf, &param)) {
671 pr_err("per-event callgraph setting for %s failed. "
672 "Apply callgraph global setting for it\n",
673 evsel->name);
674 return;
675 }
676 }
677 }
678 if (dump_size > 0) {
679 dump_size = round_up(dump_size, sizeof(u64));
680 param.dump_size = dump_size;
681 }
682
683 /* If global callgraph set, clear it */
684 if (callchain_param.enabled)
685 perf_evsel__reset_callgraph(evsel, &callchain_param);
686
687 /* set perf-event callgraph */
688 if (param.enabled)
689 perf_evsel__config_callgraph(evsel, opts, &param);
690 }
691 }
692
693 /*
694 * The enable_on_exec/disabled value strategy:
695 *
696 * 1) For any type of traced program:
697 * - all independent events and group leaders are disabled
698 * - all group members are enabled
699 *
700 * Group members are ruled by group leaders. They need to
701 * be enabled, because the group scheduling relies on that.
702 *
703 * 2) For traced programs executed by perf:
704 * - all independent events and group leaders have
705 * enable_on_exec set
706 * - we don't specifically enable or disable any event during
707 * the record command
708 *
709 * Independent events and group leaders are initially disabled
710 * and get enabled by exec. Group members are ruled by group
711 * leaders as stated in 1).
712 *
713 * 3) For traced programs attached by perf (pid/tid):
714 * - we specifically enable or disable all events during
715 * the record command
716 *
717 * When attaching events to already running traced we
718 * enable/disable events specifically, as there's no
719 * initial traced exec call.
720 */
721 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts)
722 {
723 struct perf_evsel *leader = evsel->leader;
724 struct perf_event_attr *attr = &evsel->attr;
725 int track = evsel->tracking;
726 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
727
728 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
729 attr->inherit = !opts->no_inherit;
730
731 perf_evsel__set_sample_bit(evsel, IP);
732 perf_evsel__set_sample_bit(evsel, TID);
733
734 if (evsel->sample_read) {
735 perf_evsel__set_sample_bit(evsel, READ);
736
737 /*
738 * We need ID even in case of single event, because
739 * PERF_SAMPLE_READ process ID specific data.
740 */
741 perf_evsel__set_sample_id(evsel, false);
742
743 /*
744 * Apply group format only if we belong to group
745 * with more than one members.
746 */
747 if (leader->nr_members > 1) {
748 attr->read_format |= PERF_FORMAT_GROUP;
749 attr->inherit = 0;
750 }
751 }
752
753 /*
754 * We default some events to have a default interval. But keep
755 * it a weak assumption overridable by the user.
756 */
757 if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
758 opts->user_interval != ULLONG_MAX)) {
759 if (opts->freq) {
760 perf_evsel__set_sample_bit(evsel, PERIOD);
761 attr->freq = 1;
762 attr->sample_freq = opts->freq;
763 } else {
764 attr->sample_period = opts->default_interval;
765 }
766 }
767
768 /*
769 * Disable sampling for all group members other
770 * than leader in case leader 'leads' the sampling.
771 */
772 if ((leader != evsel) && leader->sample_read) {
773 attr->sample_freq = 0;
774 attr->sample_period = 0;
775 }
776
777 if (opts->no_samples)
778 attr->sample_freq = 0;
779
780 if (opts->inherit_stat)
781 attr->inherit_stat = 1;
782
783 if (opts->sample_address) {
784 perf_evsel__set_sample_bit(evsel, ADDR);
785 attr->mmap_data = track;
786 }
787
788 /*
789 * We don't allow user space callchains for function trace
790 * event, due to issues with page faults while tracing page
791 * fault handler and its overall trickiness nature.
792 */
793 if (perf_evsel__is_function_event(evsel))
794 evsel->attr.exclude_callchain_user = 1;
795
796 if (callchain_param.enabled && !evsel->no_aux_samples)
797 perf_evsel__config_callgraph(evsel, opts, &callchain_param);
798
799 if (opts->sample_intr_regs) {
800 attr->sample_regs_intr = opts->sample_intr_regs;
801 perf_evsel__set_sample_bit(evsel, REGS_INTR);
802 }
803
804 if (target__has_cpu(&opts->target))
805 perf_evsel__set_sample_bit(evsel, CPU);
806
807 if (opts->period)
808 perf_evsel__set_sample_bit(evsel, PERIOD);
809
810 /*
811 * When the user explicitely disabled time don't force it here.
812 */
813 if (opts->sample_time &&
814 (!perf_missing_features.sample_id_all &&
815 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
816 opts->sample_time_set)))
817 perf_evsel__set_sample_bit(evsel, TIME);
818
819 if (opts->raw_samples && !evsel->no_aux_samples) {
820 perf_evsel__set_sample_bit(evsel, TIME);
821 perf_evsel__set_sample_bit(evsel, RAW);
822 perf_evsel__set_sample_bit(evsel, CPU);
823 }
824
825 if (opts->sample_address)
826 perf_evsel__set_sample_bit(evsel, DATA_SRC);
827
828 if (opts->no_buffering) {
829 attr->watermark = 0;
830 attr->wakeup_events = 1;
831 }
832 if (opts->branch_stack && !evsel->no_aux_samples) {
833 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
834 attr->branch_sample_type = opts->branch_stack;
835 }
836
837 if (opts->sample_weight)
838 perf_evsel__set_sample_bit(evsel, WEIGHT);
839
840 attr->task = track;
841 attr->mmap = track;
842 attr->mmap2 = track && !perf_missing_features.mmap2;
843 attr->comm = track;
844
845 if (opts->record_switch_events)
846 attr->context_switch = track;
847
848 if (opts->sample_transaction)
849 perf_evsel__set_sample_bit(evsel, TRANSACTION);
850
851 if (opts->running_time) {
852 evsel->attr.read_format |=
853 PERF_FORMAT_TOTAL_TIME_ENABLED |
854 PERF_FORMAT_TOTAL_TIME_RUNNING;
855 }
856
857 /*
858 * XXX see the function comment above
859 *
860 * Disabling only independent events or group leaders,
861 * keeping group members enabled.
862 */
863 if (perf_evsel__is_group_leader(evsel))
864 attr->disabled = 1;
865
866 /*
867 * Setting enable_on_exec for independent events and
868 * group leaders for traced executed by perf.
869 */
870 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
871 !opts->initial_delay)
872 attr->enable_on_exec = 1;
873
874 if (evsel->immediate) {
875 attr->disabled = 0;
876 attr->enable_on_exec = 0;
877 }
878
879 clockid = opts->clockid;
880 if (opts->use_clockid) {
881 attr->use_clockid = 1;
882 attr->clockid = opts->clockid;
883 }
884
885 /*
886 * Apply event specific term settings,
887 * it overloads any global configuration.
888 */
889 apply_config_terms(evsel, opts);
890 }
891
892 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
893 {
894 int cpu, thread;
895
896 if (evsel->system_wide)
897 nthreads = 1;
898
899 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
900
901 if (evsel->fd) {
902 for (cpu = 0; cpu < ncpus; cpu++) {
903 for (thread = 0; thread < nthreads; thread++) {
904 FD(evsel, cpu, thread) = -1;
905 }
906 }
907 }
908
909 return evsel->fd != NULL ? 0 : -ENOMEM;
910 }
911
912 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
913 int ioc, void *arg)
914 {
915 int cpu, thread;
916
917 if (evsel->system_wide)
918 nthreads = 1;
919
920 for (cpu = 0; cpu < ncpus; cpu++) {
921 for (thread = 0; thread < nthreads; thread++) {
922 int fd = FD(evsel, cpu, thread),
923 err = ioctl(fd, ioc, arg);
924
925 if (err)
926 return err;
927 }
928 }
929
930 return 0;
931 }
932
933 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
934 const char *filter)
935 {
936 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
937 PERF_EVENT_IOC_SET_FILTER,
938 (void *)filter);
939 }
940
941 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
942 {
943 char *new_filter = strdup(filter);
944
945 if (new_filter != NULL) {
946 free(evsel->filter);
947 evsel->filter = new_filter;
948 return 0;
949 }
950
951 return -1;
952 }
953
954 int perf_evsel__append_filter(struct perf_evsel *evsel,
955 const char *op, const char *filter)
956 {
957 char *new_filter;
958
959 if (evsel->filter == NULL)
960 return perf_evsel__set_filter(evsel, filter);
961
962 if (asprintf(&new_filter,"(%s) %s (%s)", evsel->filter, op, filter) > 0) {
963 free(evsel->filter);
964 evsel->filter = new_filter;
965 return 0;
966 }
967
968 return -1;
969 }
970
971 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
972 {
973 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
974 PERF_EVENT_IOC_ENABLE,
975 0);
976 }
977
978 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
979 {
980 if (ncpus == 0 || nthreads == 0)
981 return 0;
982
983 if (evsel->system_wide)
984 nthreads = 1;
985
986 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
987 if (evsel->sample_id == NULL)
988 return -ENOMEM;
989
990 evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
991 if (evsel->id == NULL) {
992 xyarray__delete(evsel->sample_id);
993 evsel->sample_id = NULL;
994 return -ENOMEM;
995 }
996
997 return 0;
998 }
999
1000 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1001 {
1002 xyarray__delete(evsel->fd);
1003 evsel->fd = NULL;
1004 }
1005
1006 static void perf_evsel__free_id(struct perf_evsel *evsel)
1007 {
1008 xyarray__delete(evsel->sample_id);
1009 evsel->sample_id = NULL;
1010 zfree(&evsel->id);
1011 }
1012
1013 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1014 {
1015 struct perf_evsel_config_term *term, *h;
1016
1017 list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1018 list_del(&term->list);
1019 free(term);
1020 }
1021 }
1022
1023 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1024 {
1025 int cpu, thread;
1026
1027 if (evsel->system_wide)
1028 nthreads = 1;
1029
1030 for (cpu = 0; cpu < ncpus; cpu++)
1031 for (thread = 0; thread < nthreads; ++thread) {
1032 close(FD(evsel, cpu, thread));
1033 FD(evsel, cpu, thread) = -1;
1034 }
1035 }
1036
1037 void perf_evsel__exit(struct perf_evsel *evsel)
1038 {
1039 assert(list_empty(&evsel->node));
1040 assert(evsel->evlist == NULL);
1041 perf_evsel__free_fd(evsel);
1042 perf_evsel__free_id(evsel);
1043 perf_evsel__free_config_terms(evsel);
1044 close_cgroup(evsel->cgrp);
1045 cpu_map__put(evsel->cpus);
1046 cpu_map__put(evsel->own_cpus);
1047 thread_map__put(evsel->threads);
1048 zfree(&evsel->group_name);
1049 zfree(&evsel->name);
1050 perf_evsel__object.fini(evsel);
1051 }
1052
1053 void perf_evsel__delete(struct perf_evsel *evsel)
1054 {
1055 perf_evsel__exit(evsel);
1056 free(evsel);
1057 }
1058
1059 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1060 struct perf_counts_values *count)
1061 {
1062 struct perf_counts_values tmp;
1063
1064 if (!evsel->prev_raw_counts)
1065 return;
1066
1067 if (cpu == -1) {
1068 tmp = evsel->prev_raw_counts->aggr;
1069 evsel->prev_raw_counts->aggr = *count;
1070 } else {
1071 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1072 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1073 }
1074
1075 count->val = count->val - tmp.val;
1076 count->ena = count->ena - tmp.ena;
1077 count->run = count->run - tmp.run;
1078 }
1079
1080 void perf_counts_values__scale(struct perf_counts_values *count,
1081 bool scale, s8 *pscaled)
1082 {
1083 s8 scaled = 0;
1084
1085 if (scale) {
1086 if (count->run == 0) {
1087 scaled = -1;
1088 count->val = 0;
1089 } else if (count->run < count->ena) {
1090 scaled = 1;
1091 count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1092 }
1093 } else
1094 count->ena = count->run = 0;
1095
1096 if (pscaled)
1097 *pscaled = scaled;
1098 }
1099
1100 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1101 struct perf_counts_values *count)
1102 {
1103 memset(count, 0, sizeof(*count));
1104
1105 if (FD(evsel, cpu, thread) < 0)
1106 return -EINVAL;
1107
1108 if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) < 0)
1109 return -errno;
1110
1111 return 0;
1112 }
1113
1114 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1115 int cpu, int thread, bool scale)
1116 {
1117 struct perf_counts_values count;
1118 size_t nv = scale ? 3 : 1;
1119
1120 if (FD(evsel, cpu, thread) < 0)
1121 return -EINVAL;
1122
1123 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1124 return -ENOMEM;
1125
1126 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
1127 return -errno;
1128
1129 perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1130 perf_counts_values__scale(&count, scale, NULL);
1131 *perf_counts(evsel->counts, cpu, thread) = count;
1132 return 0;
1133 }
1134
1135 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1136 {
1137 struct perf_evsel *leader = evsel->leader;
1138 int fd;
1139
1140 if (perf_evsel__is_group_leader(evsel))
1141 return -1;
1142
1143 /*
1144 * Leader must be already processed/open,
1145 * if not it's a bug.
1146 */
1147 BUG_ON(!leader->fd);
1148
1149 fd = FD(leader, cpu, thread);
1150 BUG_ON(fd == -1);
1151
1152 return fd;
1153 }
1154
1155 struct bit_names {
1156 int bit;
1157 const char *name;
1158 };
1159
1160 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1161 {
1162 bool first_bit = true;
1163 int i = 0;
1164
1165 do {
1166 if (value & bits[i].bit) {
1167 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1168 first_bit = false;
1169 }
1170 } while (bits[++i].name != NULL);
1171 }
1172
1173 static void __p_sample_type(char *buf, size_t size, u64 value)
1174 {
1175 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1176 struct bit_names bits[] = {
1177 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1178 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1179 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1180 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1181 bit_name(IDENTIFIER), bit_name(REGS_INTR),
1182 { .name = NULL, }
1183 };
1184 #undef bit_name
1185 __p_bits(buf, size, value, bits);
1186 }
1187
1188 static void __p_read_format(char *buf, size_t size, u64 value)
1189 {
1190 #define bit_name(n) { PERF_FORMAT_##n, #n }
1191 struct bit_names bits[] = {
1192 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1193 bit_name(ID), bit_name(GROUP),
1194 { .name = NULL, }
1195 };
1196 #undef bit_name
1197 __p_bits(buf, size, value, bits);
1198 }
1199
1200 #define BUF_SIZE 1024
1201
1202 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1203 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1204 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1205 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val)
1206 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val)
1207
1208 #define PRINT_ATTRn(_n, _f, _p) \
1209 do { \
1210 if (attr->_f) { \
1211 _p(attr->_f); \
1212 ret += attr__fprintf(fp, _n, buf, priv);\
1213 } \
1214 } while (0)
1215
1216 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p)
1217
1218 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1219 attr__fprintf_f attr__fprintf, void *priv)
1220 {
1221 char buf[BUF_SIZE];
1222 int ret = 0;
1223
1224 PRINT_ATTRf(type, p_unsigned);
1225 PRINT_ATTRf(size, p_unsigned);
1226 PRINT_ATTRf(config, p_hex);
1227 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1228 PRINT_ATTRf(sample_type, p_sample_type);
1229 PRINT_ATTRf(read_format, p_read_format);
1230
1231 PRINT_ATTRf(disabled, p_unsigned);
1232 PRINT_ATTRf(inherit, p_unsigned);
1233 PRINT_ATTRf(pinned, p_unsigned);
1234 PRINT_ATTRf(exclusive, p_unsigned);
1235 PRINT_ATTRf(exclude_user, p_unsigned);
1236 PRINT_ATTRf(exclude_kernel, p_unsigned);
1237 PRINT_ATTRf(exclude_hv, p_unsigned);
1238 PRINT_ATTRf(exclude_idle, p_unsigned);
1239 PRINT_ATTRf(mmap, p_unsigned);
1240 PRINT_ATTRf(comm, p_unsigned);
1241 PRINT_ATTRf(freq, p_unsigned);
1242 PRINT_ATTRf(inherit_stat, p_unsigned);
1243 PRINT_ATTRf(enable_on_exec, p_unsigned);
1244 PRINT_ATTRf(task, p_unsigned);
1245 PRINT_ATTRf(watermark, p_unsigned);
1246 PRINT_ATTRf(precise_ip, p_unsigned);
1247 PRINT_ATTRf(mmap_data, p_unsigned);
1248 PRINT_ATTRf(sample_id_all, p_unsigned);
1249 PRINT_ATTRf(exclude_host, p_unsigned);
1250 PRINT_ATTRf(exclude_guest, p_unsigned);
1251 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1252 PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1253 PRINT_ATTRf(mmap2, p_unsigned);
1254 PRINT_ATTRf(comm_exec, p_unsigned);
1255 PRINT_ATTRf(use_clockid, p_unsigned);
1256 PRINT_ATTRf(context_switch, p_unsigned);
1257
1258 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1259 PRINT_ATTRf(bp_type, p_unsigned);
1260 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1261 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1262 PRINT_ATTRf(sample_regs_user, p_hex);
1263 PRINT_ATTRf(sample_stack_user, p_unsigned);
1264 PRINT_ATTRf(clockid, p_signed);
1265 PRINT_ATTRf(sample_regs_intr, p_hex);
1266 PRINT_ATTRf(aux_watermark, p_unsigned);
1267
1268 return ret;
1269 }
1270
1271 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1272 void *priv __attribute__((unused)))
1273 {
1274 return fprintf(fp, " %-32s %s\n", name, val);
1275 }
1276
1277 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1278 struct thread_map *threads)
1279 {
1280 int cpu, thread, nthreads;
1281 unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1282 int pid = -1, err;
1283 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1284
1285 if (evsel->system_wide)
1286 nthreads = 1;
1287 else
1288 nthreads = threads->nr;
1289
1290 if (evsel->fd == NULL &&
1291 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1292 return -ENOMEM;
1293
1294 if (evsel->cgrp) {
1295 flags |= PERF_FLAG_PID_CGROUP;
1296 pid = evsel->cgrp->fd;
1297 }
1298
1299 fallback_missing_features:
1300 if (perf_missing_features.clockid_wrong)
1301 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1302 if (perf_missing_features.clockid) {
1303 evsel->attr.use_clockid = 0;
1304 evsel->attr.clockid = 0;
1305 }
1306 if (perf_missing_features.cloexec)
1307 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1308 if (perf_missing_features.mmap2)
1309 evsel->attr.mmap2 = 0;
1310 if (perf_missing_features.exclude_guest)
1311 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1312 retry_sample_id:
1313 if (perf_missing_features.sample_id_all)
1314 evsel->attr.sample_id_all = 0;
1315
1316 if (verbose >= 2) {
1317 fprintf(stderr, "%.60s\n", graph_dotted_line);
1318 fprintf(stderr, "perf_event_attr:\n");
1319 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1320 fprintf(stderr, "%.60s\n", graph_dotted_line);
1321 }
1322
1323 for (cpu = 0; cpu < cpus->nr; cpu++) {
1324
1325 for (thread = 0; thread < nthreads; thread++) {
1326 int group_fd;
1327
1328 if (!evsel->cgrp && !evsel->system_wide)
1329 pid = thread_map__pid(threads, thread);
1330
1331 group_fd = get_group_fd(evsel, cpu, thread);
1332 retry_open:
1333 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx\n",
1334 pid, cpus->map[cpu], group_fd, flags);
1335
1336 FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1337 pid,
1338 cpus->map[cpu],
1339 group_fd, flags);
1340 if (FD(evsel, cpu, thread) < 0) {
1341 err = -errno;
1342 pr_debug2("sys_perf_event_open failed, error %d\n",
1343 err);
1344 goto try_fallback;
1345 }
1346 set_rlimit = NO_CHANGE;
1347
1348 /*
1349 * If we succeeded but had to kill clockid, fail and
1350 * have perf_evsel__open_strerror() print us a nice
1351 * error.
1352 */
1353 if (perf_missing_features.clockid ||
1354 perf_missing_features.clockid_wrong) {
1355 err = -EINVAL;
1356 goto out_close;
1357 }
1358 }
1359 }
1360
1361 return 0;
1362
1363 try_fallback:
1364 /*
1365 * perf stat needs between 5 and 22 fds per CPU. When we run out
1366 * of them try to increase the limits.
1367 */
1368 if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1369 struct rlimit l;
1370 int old_errno = errno;
1371
1372 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1373 if (set_rlimit == NO_CHANGE)
1374 l.rlim_cur = l.rlim_max;
1375 else {
1376 l.rlim_cur = l.rlim_max + 1000;
1377 l.rlim_max = l.rlim_cur;
1378 }
1379 if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1380 set_rlimit++;
1381 errno = old_errno;
1382 goto retry_open;
1383 }
1384 }
1385 errno = old_errno;
1386 }
1387
1388 if (err != -EINVAL || cpu > 0 || thread > 0)
1389 goto out_close;
1390
1391 /*
1392 * Must probe features in the order they were added to the
1393 * perf_event_attr interface.
1394 */
1395 if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1396 perf_missing_features.clockid_wrong = true;
1397 goto fallback_missing_features;
1398 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1399 perf_missing_features.clockid = true;
1400 goto fallback_missing_features;
1401 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1402 perf_missing_features.cloexec = true;
1403 goto fallback_missing_features;
1404 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1405 perf_missing_features.mmap2 = true;
1406 goto fallback_missing_features;
1407 } else if (!perf_missing_features.exclude_guest &&
1408 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1409 perf_missing_features.exclude_guest = true;
1410 goto fallback_missing_features;
1411 } else if (!perf_missing_features.sample_id_all) {
1412 perf_missing_features.sample_id_all = true;
1413 goto retry_sample_id;
1414 }
1415
1416 out_close:
1417 do {
1418 while (--thread >= 0) {
1419 close(FD(evsel, cpu, thread));
1420 FD(evsel, cpu, thread) = -1;
1421 }
1422 thread = nthreads;
1423 } while (--cpu >= 0);
1424 return err;
1425 }
1426
1427 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1428 {
1429 if (evsel->fd == NULL)
1430 return;
1431
1432 perf_evsel__close_fd(evsel, ncpus, nthreads);
1433 perf_evsel__free_fd(evsel);
1434 }
1435
1436 static struct {
1437 struct cpu_map map;
1438 int cpus[1];
1439 } empty_cpu_map = {
1440 .map.nr = 1,
1441 .cpus = { -1, },
1442 };
1443
1444 static struct {
1445 struct thread_map map;
1446 int threads[1];
1447 } empty_thread_map = {
1448 .map.nr = 1,
1449 .threads = { -1, },
1450 };
1451
1452 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1453 struct thread_map *threads)
1454 {
1455 if (cpus == NULL) {
1456 /* Work around old compiler warnings about strict aliasing */
1457 cpus = &empty_cpu_map.map;
1458 }
1459
1460 if (threads == NULL)
1461 threads = &empty_thread_map.map;
1462
1463 return __perf_evsel__open(evsel, cpus, threads);
1464 }
1465
1466 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1467 struct cpu_map *cpus)
1468 {
1469 return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1470 }
1471
1472 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1473 struct thread_map *threads)
1474 {
1475 return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1476 }
1477
1478 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1479 const union perf_event *event,
1480 struct perf_sample *sample)
1481 {
1482 u64 type = evsel->attr.sample_type;
1483 const u64 *array = event->sample.array;
1484 bool swapped = evsel->needs_swap;
1485 union u64_swap u;
1486
1487 array += ((event->header.size -
1488 sizeof(event->header)) / sizeof(u64)) - 1;
1489
1490 if (type & PERF_SAMPLE_IDENTIFIER) {
1491 sample->id = *array;
1492 array--;
1493 }
1494
1495 if (type & PERF_SAMPLE_CPU) {
1496 u.val64 = *array;
1497 if (swapped) {
1498 /* undo swap of u64, then swap on individual u32s */
1499 u.val64 = bswap_64(u.val64);
1500 u.val32[0] = bswap_32(u.val32[0]);
1501 }
1502
1503 sample->cpu = u.val32[0];
1504 array--;
1505 }
1506
1507 if (type & PERF_SAMPLE_STREAM_ID) {
1508 sample->stream_id = *array;
1509 array--;
1510 }
1511
1512 if (type & PERF_SAMPLE_ID) {
1513 sample->id = *array;
1514 array--;
1515 }
1516
1517 if (type & PERF_SAMPLE_TIME) {
1518 sample->time = *array;
1519 array--;
1520 }
1521
1522 if (type & PERF_SAMPLE_TID) {
1523 u.val64 = *array;
1524 if (swapped) {
1525 /* undo swap of u64, then swap on individual u32s */
1526 u.val64 = bswap_64(u.val64);
1527 u.val32[0] = bswap_32(u.val32[0]);
1528 u.val32[1] = bswap_32(u.val32[1]);
1529 }
1530
1531 sample->pid = u.val32[0];
1532 sample->tid = u.val32[1];
1533 array--;
1534 }
1535
1536 return 0;
1537 }
1538
1539 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1540 u64 size)
1541 {
1542 return size > max_size || offset + size > endp;
1543 }
1544
1545 #define OVERFLOW_CHECK(offset, size, max_size) \
1546 do { \
1547 if (overflow(endp, (max_size), (offset), (size))) \
1548 return -EFAULT; \
1549 } while (0)
1550
1551 #define OVERFLOW_CHECK_u64(offset) \
1552 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1553
1554 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1555 struct perf_sample *data)
1556 {
1557 u64 type = evsel->attr.sample_type;
1558 bool swapped = evsel->needs_swap;
1559 const u64 *array;
1560 u16 max_size = event->header.size;
1561 const void *endp = (void *)event + max_size;
1562 u64 sz;
1563
1564 /*
1565 * used for cross-endian analysis. See git commit 65014ab3
1566 * for why this goofiness is needed.
1567 */
1568 union u64_swap u;
1569
1570 memset(data, 0, sizeof(*data));
1571 data->cpu = data->pid = data->tid = -1;
1572 data->stream_id = data->id = data->time = -1ULL;
1573 data->period = evsel->attr.sample_period;
1574 data->weight = 0;
1575
1576 if (event->header.type != PERF_RECORD_SAMPLE) {
1577 if (!evsel->attr.sample_id_all)
1578 return 0;
1579 return perf_evsel__parse_id_sample(evsel, event, data);
1580 }
1581
1582 array = event->sample.array;
1583
1584 /*
1585 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1586 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
1587 * check the format does not go past the end of the event.
1588 */
1589 if (evsel->sample_size + sizeof(event->header) > event->header.size)
1590 return -EFAULT;
1591
1592 data->id = -1ULL;
1593 if (type & PERF_SAMPLE_IDENTIFIER) {
1594 data->id = *array;
1595 array++;
1596 }
1597
1598 if (type & PERF_SAMPLE_IP) {
1599 data->ip = *array;
1600 array++;
1601 }
1602
1603 if (type & PERF_SAMPLE_TID) {
1604 u.val64 = *array;
1605 if (swapped) {
1606 /* undo swap of u64, then swap on individual u32s */
1607 u.val64 = bswap_64(u.val64);
1608 u.val32[0] = bswap_32(u.val32[0]);
1609 u.val32[1] = bswap_32(u.val32[1]);
1610 }
1611
1612 data->pid = u.val32[0];
1613 data->tid = u.val32[1];
1614 array++;
1615 }
1616
1617 if (type & PERF_SAMPLE_TIME) {
1618 data->time = *array;
1619 array++;
1620 }
1621
1622 data->addr = 0;
1623 if (type & PERF_SAMPLE_ADDR) {
1624 data->addr = *array;
1625 array++;
1626 }
1627
1628 if (type & PERF_SAMPLE_ID) {
1629 data->id = *array;
1630 array++;
1631 }
1632
1633 if (type & PERF_SAMPLE_STREAM_ID) {
1634 data->stream_id = *array;
1635 array++;
1636 }
1637
1638 if (type & PERF_SAMPLE_CPU) {
1639
1640 u.val64 = *array;
1641 if (swapped) {
1642 /* undo swap of u64, then swap on individual u32s */
1643 u.val64 = bswap_64(u.val64);
1644 u.val32[0] = bswap_32(u.val32[0]);
1645 }
1646
1647 data->cpu = u.val32[0];
1648 array++;
1649 }
1650
1651 if (type & PERF_SAMPLE_PERIOD) {
1652 data->period = *array;
1653 array++;
1654 }
1655
1656 if (type & PERF_SAMPLE_READ) {
1657 u64 read_format = evsel->attr.read_format;
1658
1659 OVERFLOW_CHECK_u64(array);
1660 if (read_format & PERF_FORMAT_GROUP)
1661 data->read.group.nr = *array;
1662 else
1663 data->read.one.value = *array;
1664
1665 array++;
1666
1667 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1668 OVERFLOW_CHECK_u64(array);
1669 data->read.time_enabled = *array;
1670 array++;
1671 }
1672
1673 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1674 OVERFLOW_CHECK_u64(array);
1675 data->read.time_running = *array;
1676 array++;
1677 }
1678
1679 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1680 if (read_format & PERF_FORMAT_GROUP) {
1681 const u64 max_group_nr = UINT64_MAX /
1682 sizeof(struct sample_read_value);
1683
1684 if (data->read.group.nr > max_group_nr)
1685 return -EFAULT;
1686 sz = data->read.group.nr *
1687 sizeof(struct sample_read_value);
1688 OVERFLOW_CHECK(array, sz, max_size);
1689 data->read.group.values =
1690 (struct sample_read_value *)array;
1691 array = (void *)array + sz;
1692 } else {
1693 OVERFLOW_CHECK_u64(array);
1694 data->read.one.id = *array;
1695 array++;
1696 }
1697 }
1698
1699 if (type & PERF_SAMPLE_CALLCHAIN) {
1700 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1701
1702 OVERFLOW_CHECK_u64(array);
1703 data->callchain = (struct ip_callchain *)array++;
1704 if (data->callchain->nr > max_callchain_nr)
1705 return -EFAULT;
1706 sz = data->callchain->nr * sizeof(u64);
1707 OVERFLOW_CHECK(array, sz, max_size);
1708 array = (void *)array + sz;
1709 }
1710
1711 if (type & PERF_SAMPLE_RAW) {
1712 OVERFLOW_CHECK_u64(array);
1713 u.val64 = *array;
1714 if (WARN_ONCE(swapped,
1715 "Endianness of raw data not corrected!\n")) {
1716 /* undo swap of u64, then swap on individual u32s */
1717 u.val64 = bswap_64(u.val64);
1718 u.val32[0] = bswap_32(u.val32[0]);
1719 u.val32[1] = bswap_32(u.val32[1]);
1720 }
1721 data->raw_size = u.val32[0];
1722 array = (void *)array + sizeof(u32);
1723
1724 OVERFLOW_CHECK(array, data->raw_size, max_size);
1725 data->raw_data = (void *)array;
1726 array = (void *)array + data->raw_size;
1727 }
1728
1729 if (type & PERF_SAMPLE_BRANCH_STACK) {
1730 const u64 max_branch_nr = UINT64_MAX /
1731 sizeof(struct branch_entry);
1732
1733 OVERFLOW_CHECK_u64(array);
1734 data->branch_stack = (struct branch_stack *)array++;
1735
1736 if (data->branch_stack->nr > max_branch_nr)
1737 return -EFAULT;
1738 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1739 OVERFLOW_CHECK(array, sz, max_size);
1740 array = (void *)array + sz;
1741 }
1742
1743 if (type & PERF_SAMPLE_REGS_USER) {
1744 OVERFLOW_CHECK_u64(array);
1745 data->user_regs.abi = *array;
1746 array++;
1747
1748 if (data->user_regs.abi) {
1749 u64 mask = evsel->attr.sample_regs_user;
1750
1751 sz = hweight_long(mask) * sizeof(u64);
1752 OVERFLOW_CHECK(array, sz, max_size);
1753 data->user_regs.mask = mask;
1754 data->user_regs.regs = (u64 *)array;
1755 array = (void *)array + sz;
1756 }
1757 }
1758
1759 if (type & PERF_SAMPLE_STACK_USER) {
1760 OVERFLOW_CHECK_u64(array);
1761 sz = *array++;
1762
1763 data->user_stack.offset = ((char *)(array - 1)
1764 - (char *) event);
1765
1766 if (!sz) {
1767 data->user_stack.size = 0;
1768 } else {
1769 OVERFLOW_CHECK(array, sz, max_size);
1770 data->user_stack.data = (char *)array;
1771 array = (void *)array + sz;
1772 OVERFLOW_CHECK_u64(array);
1773 data->user_stack.size = *array++;
1774 if (WARN_ONCE(data->user_stack.size > sz,
1775 "user stack dump failure\n"))
1776 return -EFAULT;
1777 }
1778 }
1779
1780 data->weight = 0;
1781 if (type & PERF_SAMPLE_WEIGHT) {
1782 OVERFLOW_CHECK_u64(array);
1783 data->weight = *array;
1784 array++;
1785 }
1786
1787 data->data_src = PERF_MEM_DATA_SRC_NONE;
1788 if (type & PERF_SAMPLE_DATA_SRC) {
1789 OVERFLOW_CHECK_u64(array);
1790 data->data_src = *array;
1791 array++;
1792 }
1793
1794 data->transaction = 0;
1795 if (type & PERF_SAMPLE_TRANSACTION) {
1796 OVERFLOW_CHECK_u64(array);
1797 data->transaction = *array;
1798 array++;
1799 }
1800
1801 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
1802 if (type & PERF_SAMPLE_REGS_INTR) {
1803 OVERFLOW_CHECK_u64(array);
1804 data->intr_regs.abi = *array;
1805 array++;
1806
1807 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
1808 u64 mask = evsel->attr.sample_regs_intr;
1809
1810 sz = hweight_long(mask) * sizeof(u64);
1811 OVERFLOW_CHECK(array, sz, max_size);
1812 data->intr_regs.mask = mask;
1813 data->intr_regs.regs = (u64 *)array;
1814 array = (void *)array + sz;
1815 }
1816 }
1817
1818 return 0;
1819 }
1820
1821 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1822 u64 read_format)
1823 {
1824 size_t sz, result = sizeof(struct sample_event);
1825
1826 if (type & PERF_SAMPLE_IDENTIFIER)
1827 result += sizeof(u64);
1828
1829 if (type & PERF_SAMPLE_IP)
1830 result += sizeof(u64);
1831
1832 if (type & PERF_SAMPLE_TID)
1833 result += sizeof(u64);
1834
1835 if (type & PERF_SAMPLE_TIME)
1836 result += sizeof(u64);
1837
1838 if (type & PERF_SAMPLE_ADDR)
1839 result += sizeof(u64);
1840
1841 if (type & PERF_SAMPLE_ID)
1842 result += sizeof(u64);
1843
1844 if (type & PERF_SAMPLE_STREAM_ID)
1845 result += sizeof(u64);
1846
1847 if (type & PERF_SAMPLE_CPU)
1848 result += sizeof(u64);
1849
1850 if (type & PERF_SAMPLE_PERIOD)
1851 result += sizeof(u64);
1852
1853 if (type & PERF_SAMPLE_READ) {
1854 result += sizeof(u64);
1855 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1856 result += sizeof(u64);
1857 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1858 result += sizeof(u64);
1859 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1860 if (read_format & PERF_FORMAT_GROUP) {
1861 sz = sample->read.group.nr *
1862 sizeof(struct sample_read_value);
1863 result += sz;
1864 } else {
1865 result += sizeof(u64);
1866 }
1867 }
1868
1869 if (type & PERF_SAMPLE_CALLCHAIN) {
1870 sz = (sample->callchain->nr + 1) * sizeof(u64);
1871 result += sz;
1872 }
1873
1874 if (type & PERF_SAMPLE_RAW) {
1875 result += sizeof(u32);
1876 result += sample->raw_size;
1877 }
1878
1879 if (type & PERF_SAMPLE_BRANCH_STACK) {
1880 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1881 sz += sizeof(u64);
1882 result += sz;
1883 }
1884
1885 if (type & PERF_SAMPLE_REGS_USER) {
1886 if (sample->user_regs.abi) {
1887 result += sizeof(u64);
1888 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1889 result += sz;
1890 } else {
1891 result += sizeof(u64);
1892 }
1893 }
1894
1895 if (type & PERF_SAMPLE_STACK_USER) {
1896 sz = sample->user_stack.size;
1897 result += sizeof(u64);
1898 if (sz) {
1899 result += sz;
1900 result += sizeof(u64);
1901 }
1902 }
1903
1904 if (type & PERF_SAMPLE_WEIGHT)
1905 result += sizeof(u64);
1906
1907 if (type & PERF_SAMPLE_DATA_SRC)
1908 result += sizeof(u64);
1909
1910 if (type & PERF_SAMPLE_TRANSACTION)
1911 result += sizeof(u64);
1912
1913 if (type & PERF_SAMPLE_REGS_INTR) {
1914 if (sample->intr_regs.abi) {
1915 result += sizeof(u64);
1916 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
1917 result += sz;
1918 } else {
1919 result += sizeof(u64);
1920 }
1921 }
1922
1923 return result;
1924 }
1925
1926 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1927 u64 read_format,
1928 const struct perf_sample *sample,
1929 bool swapped)
1930 {
1931 u64 *array;
1932 size_t sz;
1933 /*
1934 * used for cross-endian analysis. See git commit 65014ab3
1935 * for why this goofiness is needed.
1936 */
1937 union u64_swap u;
1938
1939 array = event->sample.array;
1940
1941 if (type & PERF_SAMPLE_IDENTIFIER) {
1942 *array = sample->id;
1943 array++;
1944 }
1945
1946 if (type & PERF_SAMPLE_IP) {
1947 *array = sample->ip;
1948 array++;
1949 }
1950
1951 if (type & PERF_SAMPLE_TID) {
1952 u.val32[0] = sample->pid;
1953 u.val32[1] = sample->tid;
1954 if (swapped) {
1955 /*
1956 * Inverse of what is done in perf_evsel__parse_sample
1957 */
1958 u.val32[0] = bswap_32(u.val32[0]);
1959 u.val32[1] = bswap_32(u.val32[1]);
1960 u.val64 = bswap_64(u.val64);
1961 }
1962
1963 *array = u.val64;
1964 array++;
1965 }
1966
1967 if (type & PERF_SAMPLE_TIME) {
1968 *array = sample->time;
1969 array++;
1970 }
1971
1972 if (type & PERF_SAMPLE_ADDR) {
1973 *array = sample->addr;
1974 array++;
1975 }
1976
1977 if (type & PERF_SAMPLE_ID) {
1978 *array = sample->id;
1979 array++;
1980 }
1981
1982 if (type & PERF_SAMPLE_STREAM_ID) {
1983 *array = sample->stream_id;
1984 array++;
1985 }
1986
1987 if (type & PERF_SAMPLE_CPU) {
1988 u.val32[0] = sample->cpu;
1989 if (swapped) {
1990 /*
1991 * Inverse of what is done in perf_evsel__parse_sample
1992 */
1993 u.val32[0] = bswap_32(u.val32[0]);
1994 u.val64 = bswap_64(u.val64);
1995 }
1996 *array = u.val64;
1997 array++;
1998 }
1999
2000 if (type & PERF_SAMPLE_PERIOD) {
2001 *array = sample->period;
2002 array++;
2003 }
2004
2005 if (type & PERF_SAMPLE_READ) {
2006 if (read_format & PERF_FORMAT_GROUP)
2007 *array = sample->read.group.nr;
2008 else
2009 *array = sample->read.one.value;
2010 array++;
2011
2012 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2013 *array = sample->read.time_enabled;
2014 array++;
2015 }
2016
2017 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2018 *array = sample->read.time_running;
2019 array++;
2020 }
2021
2022 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2023 if (read_format & PERF_FORMAT_GROUP) {
2024 sz = sample->read.group.nr *
2025 sizeof(struct sample_read_value);
2026 memcpy(array, sample->read.group.values, sz);
2027 array = (void *)array + sz;
2028 } else {
2029 *array = sample->read.one.id;
2030 array++;
2031 }
2032 }
2033
2034 if (type & PERF_SAMPLE_CALLCHAIN) {
2035 sz = (sample->callchain->nr + 1) * sizeof(u64);
2036 memcpy(array, sample->callchain, sz);
2037 array = (void *)array + sz;
2038 }
2039
2040 if (type & PERF_SAMPLE_RAW) {
2041 u.val32[0] = sample->raw_size;
2042 if (WARN_ONCE(swapped,
2043 "Endianness of raw data not corrected!\n")) {
2044 /*
2045 * Inverse of what is done in perf_evsel__parse_sample
2046 */
2047 u.val32[0] = bswap_32(u.val32[0]);
2048 u.val32[1] = bswap_32(u.val32[1]);
2049 u.val64 = bswap_64(u.val64);
2050 }
2051 *array = u.val64;
2052 array = (void *)array + sizeof(u32);
2053
2054 memcpy(array, sample->raw_data, sample->raw_size);
2055 array = (void *)array + sample->raw_size;
2056 }
2057
2058 if (type & PERF_SAMPLE_BRANCH_STACK) {
2059 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2060 sz += sizeof(u64);
2061 memcpy(array, sample->branch_stack, sz);
2062 array = (void *)array + sz;
2063 }
2064
2065 if (type & PERF_SAMPLE_REGS_USER) {
2066 if (sample->user_regs.abi) {
2067 *array++ = sample->user_regs.abi;
2068 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2069 memcpy(array, sample->user_regs.regs, sz);
2070 array = (void *)array + sz;
2071 } else {
2072 *array++ = 0;
2073 }
2074 }
2075
2076 if (type & PERF_SAMPLE_STACK_USER) {
2077 sz = sample->user_stack.size;
2078 *array++ = sz;
2079 if (sz) {
2080 memcpy(array, sample->user_stack.data, sz);
2081 array = (void *)array + sz;
2082 *array++ = sz;
2083 }
2084 }
2085
2086 if (type & PERF_SAMPLE_WEIGHT) {
2087 *array = sample->weight;
2088 array++;
2089 }
2090
2091 if (type & PERF_SAMPLE_DATA_SRC) {
2092 *array = sample->data_src;
2093 array++;
2094 }
2095
2096 if (type & PERF_SAMPLE_TRANSACTION) {
2097 *array = sample->transaction;
2098 array++;
2099 }
2100
2101 if (type & PERF_SAMPLE_REGS_INTR) {
2102 if (sample->intr_regs.abi) {
2103 *array++ = sample->intr_regs.abi;
2104 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2105 memcpy(array, sample->intr_regs.regs, sz);
2106 array = (void *)array + sz;
2107 } else {
2108 *array++ = 0;
2109 }
2110 }
2111
2112 return 0;
2113 }
2114
2115 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2116 {
2117 return pevent_find_field(evsel->tp_format, name);
2118 }
2119
2120 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2121 const char *name)
2122 {
2123 struct format_field *field = perf_evsel__field(evsel, name);
2124 int offset;
2125
2126 if (!field)
2127 return NULL;
2128
2129 offset = field->offset;
2130
2131 if (field->flags & FIELD_IS_DYNAMIC) {
2132 offset = *(int *)(sample->raw_data + field->offset);
2133 offset &= 0xffff;
2134 }
2135
2136 return sample->raw_data + offset;
2137 }
2138
2139 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2140 const char *name)
2141 {
2142 struct format_field *field = perf_evsel__field(evsel, name);
2143 void *ptr;
2144 u64 value;
2145
2146 if (!field)
2147 return 0;
2148
2149 ptr = sample->raw_data + field->offset;
2150
2151 switch (field->size) {
2152 case 1:
2153 return *(u8 *)ptr;
2154 case 2:
2155 value = *(u16 *)ptr;
2156 break;
2157 case 4:
2158 value = *(u32 *)ptr;
2159 break;
2160 case 8:
2161 memcpy(&value, ptr, sizeof(u64));
2162 break;
2163 default:
2164 return 0;
2165 }
2166
2167 if (!evsel->needs_swap)
2168 return value;
2169
2170 switch (field->size) {
2171 case 2:
2172 return bswap_16(value);
2173 case 4:
2174 return bswap_32(value);
2175 case 8:
2176 return bswap_64(value);
2177 default:
2178 return 0;
2179 }
2180
2181 return 0;
2182 }
2183
2184 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
2185 {
2186 va_list args;
2187 int ret = 0;
2188
2189 if (!*first) {
2190 ret += fprintf(fp, ",");
2191 } else {
2192 ret += fprintf(fp, ":");
2193 *first = false;
2194 }
2195
2196 va_start(args, fmt);
2197 ret += vfprintf(fp, fmt, args);
2198 va_end(args);
2199 return ret;
2200 }
2201
2202 static int __print_attr__fprintf(FILE *fp, const char *name, const char *val, void *priv)
2203 {
2204 return comma_fprintf(fp, (bool *)priv, " %s: %s", name, val);
2205 }
2206
2207 int perf_evsel__fprintf(struct perf_evsel *evsel,
2208 struct perf_attr_details *details, FILE *fp)
2209 {
2210 bool first = true;
2211 int printed = 0;
2212
2213 if (details->event_group) {
2214 struct perf_evsel *pos;
2215
2216 if (!perf_evsel__is_group_leader(evsel))
2217 return 0;
2218
2219 if (evsel->nr_members > 1)
2220 printed += fprintf(fp, "%s{", evsel->group_name ?: "");
2221
2222 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2223 for_each_group_member(pos, evsel)
2224 printed += fprintf(fp, ",%s", perf_evsel__name(pos));
2225
2226 if (evsel->nr_members > 1)
2227 printed += fprintf(fp, "}");
2228 goto out;
2229 }
2230
2231 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2232
2233 if (details->verbose) {
2234 printed += perf_event_attr__fprintf(fp, &evsel->attr,
2235 __print_attr__fprintf, &first);
2236 } else if (details->freq) {
2237 const char *term = "sample_freq";
2238
2239 if (!evsel->attr.freq)
2240 term = "sample_period";
2241
2242 printed += comma_fprintf(fp, &first, " %s=%" PRIu64,
2243 term, (u64)evsel->attr.sample_freq);
2244 }
2245 out:
2246 fputc('\n', fp);
2247 return ++printed;
2248 }
2249
2250 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2251 char *msg, size_t msgsize)
2252 {
2253 if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2254 evsel->attr.type == PERF_TYPE_HARDWARE &&
2255 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2256 /*
2257 * If it's cycles then fall back to hrtimer based
2258 * cpu-clock-tick sw counter, which is always available even if
2259 * no PMU support.
2260 *
2261 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2262 * b0a873e).
2263 */
2264 scnprintf(msg, msgsize, "%s",
2265 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2266
2267 evsel->attr.type = PERF_TYPE_SOFTWARE;
2268 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2269
2270 zfree(&evsel->name);
2271 return true;
2272 }
2273
2274 return false;
2275 }
2276
2277 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2278 int err, char *msg, size_t size)
2279 {
2280 char sbuf[STRERR_BUFSIZE];
2281
2282 switch (err) {
2283 case EPERM:
2284 case EACCES:
2285 return scnprintf(msg, size,
2286 "You may not have permission to collect %sstats.\n"
2287 "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
2288 " -1 - Not paranoid at all\n"
2289 " 0 - Disallow raw tracepoint access for unpriv\n"
2290 " 1 - Disallow cpu events for unpriv\n"
2291 " 2 - Disallow kernel profiling for unpriv",
2292 target->system_wide ? "system-wide " : "");
2293 case ENOENT:
2294 return scnprintf(msg, size, "The %s event is not supported.",
2295 perf_evsel__name(evsel));
2296 case EMFILE:
2297 return scnprintf(msg, size, "%s",
2298 "Too many events are opened.\n"
2299 "Probably the maximum number of open file descriptors has been reached.\n"
2300 "Hint: Try again after reducing the number of events.\n"
2301 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2302 case ENODEV:
2303 if (target->cpu_list)
2304 return scnprintf(msg, size, "%s",
2305 "No such device - did you specify an out-of-range profile CPU?\n");
2306 break;
2307 case EOPNOTSUPP:
2308 if (evsel->attr.precise_ip)
2309 return scnprintf(msg, size, "%s",
2310 "\'precise\' request may not be supported. Try removing 'p' modifier.");
2311 #if defined(__i386__) || defined(__x86_64__)
2312 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2313 return scnprintf(msg, size, "%s",
2314 "No hardware sampling interrupt available.\n"
2315 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2316 #endif
2317 break;
2318 case EBUSY:
2319 if (find_process("oprofiled"))
2320 return scnprintf(msg, size,
2321 "The PMU counters are busy/taken by another profiler.\n"
2322 "We found oprofile daemon running, please stop it and try again.");
2323 break;
2324 case EINVAL:
2325 if (perf_missing_features.clockid)
2326 return scnprintf(msg, size, "clockid feature not supported.");
2327 if (perf_missing_features.clockid_wrong)
2328 return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2329 break;
2330 default:
2331 break;
2332 }
2333
2334 return scnprintf(msg, size,
2335 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2336 "/bin/dmesg may provide additional information.\n"
2337 "No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2338 err, strerror_r(err, sbuf, sizeof(sbuf)),
2339 perf_evsel__name(evsel));
2340 }
This page took 0.079842 seconds and 5 git commands to generate.