Merge tag 'perf-core-for-mingo-20160606' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / tools / perf / util / evsel.c
1 /*
2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3 *
4 * Parts came from builtin-{top,stat,record}.c, see those files for further
5 * copyright notes.
6 *
7 * Released under the GPL v2. (and only v2, not any later version)
8 */
9
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/tracing_path.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <linux/err.h>
17 #include <sys/resource.h>
18 #include "asm/bug.h"
19 #include "callchain.h"
20 #include "cgroup.h"
21 #include "evsel.h"
22 #include "evlist.h"
23 #include "util.h"
24 #include "cpumap.h"
25 #include "thread_map.h"
26 #include "target.h"
27 #include "perf_regs.h"
28 #include "debug.h"
29 #include "trace-event.h"
30 #include "stat.h"
31
32 static struct {
33 bool sample_id_all;
34 bool exclude_guest;
35 bool mmap2;
36 bool cloexec;
37 bool clockid;
38 bool clockid_wrong;
39 bool lbr_flags;
40 bool write_backward;
41 } perf_missing_features;
42
43 static clockid_t clockid;
44
45 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
46 {
47 return 0;
48 }
49
50 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
51 {
52 }
53
54 static struct {
55 size_t size;
56 int (*init)(struct perf_evsel *evsel);
57 void (*fini)(struct perf_evsel *evsel);
58 } perf_evsel__object = {
59 .size = sizeof(struct perf_evsel),
60 .init = perf_evsel__no_extra_init,
61 .fini = perf_evsel__no_extra_fini,
62 };
63
64 int perf_evsel__object_config(size_t object_size,
65 int (*init)(struct perf_evsel *evsel),
66 void (*fini)(struct perf_evsel *evsel))
67 {
68
69 if (object_size == 0)
70 goto set_methods;
71
72 if (perf_evsel__object.size > object_size)
73 return -EINVAL;
74
75 perf_evsel__object.size = object_size;
76
77 set_methods:
78 if (init != NULL)
79 perf_evsel__object.init = init;
80
81 if (fini != NULL)
82 perf_evsel__object.fini = fini;
83
84 return 0;
85 }
86
87 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
88
89 int __perf_evsel__sample_size(u64 sample_type)
90 {
91 u64 mask = sample_type & PERF_SAMPLE_MASK;
92 int size = 0;
93 int i;
94
95 for (i = 0; i < 64; i++) {
96 if (mask & (1ULL << i))
97 size++;
98 }
99
100 size *= sizeof(u64);
101
102 return size;
103 }
104
105 /**
106 * __perf_evsel__calc_id_pos - calculate id_pos.
107 * @sample_type: sample type
108 *
109 * This function returns the position of the event id (PERF_SAMPLE_ID or
110 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
111 * sample_event.
112 */
113 static int __perf_evsel__calc_id_pos(u64 sample_type)
114 {
115 int idx = 0;
116
117 if (sample_type & PERF_SAMPLE_IDENTIFIER)
118 return 0;
119
120 if (!(sample_type & PERF_SAMPLE_ID))
121 return -1;
122
123 if (sample_type & PERF_SAMPLE_IP)
124 idx += 1;
125
126 if (sample_type & PERF_SAMPLE_TID)
127 idx += 1;
128
129 if (sample_type & PERF_SAMPLE_TIME)
130 idx += 1;
131
132 if (sample_type & PERF_SAMPLE_ADDR)
133 idx += 1;
134
135 return idx;
136 }
137
138 /**
139 * __perf_evsel__calc_is_pos - calculate is_pos.
140 * @sample_type: sample type
141 *
142 * This function returns the position (counting backwards) of the event id
143 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
144 * sample_id_all is used there is an id sample appended to non-sample events.
145 */
146 static int __perf_evsel__calc_is_pos(u64 sample_type)
147 {
148 int idx = 1;
149
150 if (sample_type & PERF_SAMPLE_IDENTIFIER)
151 return 1;
152
153 if (!(sample_type & PERF_SAMPLE_ID))
154 return -1;
155
156 if (sample_type & PERF_SAMPLE_CPU)
157 idx += 1;
158
159 if (sample_type & PERF_SAMPLE_STREAM_ID)
160 idx += 1;
161
162 return idx;
163 }
164
165 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
166 {
167 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
168 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
169 }
170
171 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
172 enum perf_event_sample_format bit)
173 {
174 if (!(evsel->attr.sample_type & bit)) {
175 evsel->attr.sample_type |= bit;
176 evsel->sample_size += sizeof(u64);
177 perf_evsel__calc_id_pos(evsel);
178 }
179 }
180
181 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
182 enum perf_event_sample_format bit)
183 {
184 if (evsel->attr.sample_type & bit) {
185 evsel->attr.sample_type &= ~bit;
186 evsel->sample_size -= sizeof(u64);
187 perf_evsel__calc_id_pos(evsel);
188 }
189 }
190
191 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
192 bool can_sample_identifier)
193 {
194 if (can_sample_identifier) {
195 perf_evsel__reset_sample_bit(evsel, ID);
196 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
197 } else {
198 perf_evsel__set_sample_bit(evsel, ID);
199 }
200 evsel->attr.read_format |= PERF_FORMAT_ID;
201 }
202
203 void perf_evsel__init(struct perf_evsel *evsel,
204 struct perf_event_attr *attr, int idx)
205 {
206 evsel->idx = idx;
207 evsel->tracking = !idx;
208 evsel->attr = *attr;
209 evsel->leader = evsel;
210 evsel->unit = "";
211 evsel->scale = 1.0;
212 evsel->evlist = NULL;
213 evsel->bpf_fd = -1;
214 INIT_LIST_HEAD(&evsel->node);
215 INIT_LIST_HEAD(&evsel->config_terms);
216 perf_evsel__object.init(evsel);
217 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
218 perf_evsel__calc_id_pos(evsel);
219 evsel->cmdline_group_boundary = false;
220 }
221
222 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
223 {
224 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
225
226 if (evsel != NULL)
227 perf_evsel__init(evsel, attr, idx);
228
229 if (perf_evsel__is_bpf_output(evsel)) {
230 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
231 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
232 evsel->attr.sample_period = 1;
233 }
234
235 return evsel;
236 }
237
238 /*
239 * Returns pointer with encoded error via <linux/err.h> interface.
240 */
241 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
242 {
243 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
244 int err = -ENOMEM;
245
246 if (evsel == NULL) {
247 goto out_err;
248 } else {
249 struct perf_event_attr attr = {
250 .type = PERF_TYPE_TRACEPOINT,
251 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
252 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
253 };
254
255 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
256 goto out_free;
257
258 evsel->tp_format = trace_event__tp_format(sys, name);
259 if (IS_ERR(evsel->tp_format)) {
260 err = PTR_ERR(evsel->tp_format);
261 goto out_free;
262 }
263
264 event_attr_init(&attr);
265 attr.config = evsel->tp_format->id;
266 attr.sample_period = 1;
267 perf_evsel__init(evsel, &attr, idx);
268 }
269
270 return evsel;
271
272 out_free:
273 zfree(&evsel->name);
274 free(evsel);
275 out_err:
276 return ERR_PTR(err);
277 }
278
279 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
280 "cycles",
281 "instructions",
282 "cache-references",
283 "cache-misses",
284 "branches",
285 "branch-misses",
286 "bus-cycles",
287 "stalled-cycles-frontend",
288 "stalled-cycles-backend",
289 "ref-cycles",
290 };
291
292 static const char *__perf_evsel__hw_name(u64 config)
293 {
294 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
295 return perf_evsel__hw_names[config];
296
297 return "unknown-hardware";
298 }
299
300 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
301 {
302 int colon = 0, r = 0;
303 struct perf_event_attr *attr = &evsel->attr;
304 bool exclude_guest_default = false;
305
306 #define MOD_PRINT(context, mod) do { \
307 if (!attr->exclude_##context) { \
308 if (!colon) colon = ++r; \
309 r += scnprintf(bf + r, size - r, "%c", mod); \
310 } } while(0)
311
312 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
313 MOD_PRINT(kernel, 'k');
314 MOD_PRINT(user, 'u');
315 MOD_PRINT(hv, 'h');
316 exclude_guest_default = true;
317 }
318
319 if (attr->precise_ip) {
320 if (!colon)
321 colon = ++r;
322 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
323 exclude_guest_default = true;
324 }
325
326 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
327 MOD_PRINT(host, 'H');
328 MOD_PRINT(guest, 'G');
329 }
330 #undef MOD_PRINT
331 if (colon)
332 bf[colon - 1] = ':';
333 return r;
334 }
335
336 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
337 {
338 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
339 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
340 }
341
342 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
343 "cpu-clock",
344 "task-clock",
345 "page-faults",
346 "context-switches",
347 "cpu-migrations",
348 "minor-faults",
349 "major-faults",
350 "alignment-faults",
351 "emulation-faults",
352 "dummy",
353 };
354
355 static const char *__perf_evsel__sw_name(u64 config)
356 {
357 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
358 return perf_evsel__sw_names[config];
359 return "unknown-software";
360 }
361
362 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
363 {
364 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
365 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
366 }
367
368 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
369 {
370 int r;
371
372 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
373
374 if (type & HW_BREAKPOINT_R)
375 r += scnprintf(bf + r, size - r, "r");
376
377 if (type & HW_BREAKPOINT_W)
378 r += scnprintf(bf + r, size - r, "w");
379
380 if (type & HW_BREAKPOINT_X)
381 r += scnprintf(bf + r, size - r, "x");
382
383 return r;
384 }
385
386 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
387 {
388 struct perf_event_attr *attr = &evsel->attr;
389 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
390 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
391 }
392
393 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
394 [PERF_EVSEL__MAX_ALIASES] = {
395 { "L1-dcache", "l1-d", "l1d", "L1-data", },
396 { "L1-icache", "l1-i", "l1i", "L1-instruction", },
397 { "LLC", "L2", },
398 { "dTLB", "d-tlb", "Data-TLB", },
399 { "iTLB", "i-tlb", "Instruction-TLB", },
400 { "branch", "branches", "bpu", "btb", "bpc", },
401 { "node", },
402 };
403
404 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
405 [PERF_EVSEL__MAX_ALIASES] = {
406 { "load", "loads", "read", },
407 { "store", "stores", "write", },
408 { "prefetch", "prefetches", "speculative-read", "speculative-load", },
409 };
410
411 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
412 [PERF_EVSEL__MAX_ALIASES] = {
413 { "refs", "Reference", "ops", "access", },
414 { "misses", "miss", },
415 };
416
417 #define C(x) PERF_COUNT_HW_CACHE_##x
418 #define CACHE_READ (1 << C(OP_READ))
419 #define CACHE_WRITE (1 << C(OP_WRITE))
420 #define CACHE_PREFETCH (1 << C(OP_PREFETCH))
421 #define COP(x) (1 << x)
422
423 /*
424 * cache operartion stat
425 * L1I : Read and prefetch only
426 * ITLB and BPU : Read-only
427 */
428 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
429 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
430 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH),
431 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
432 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
433 [C(ITLB)] = (CACHE_READ),
434 [C(BPU)] = (CACHE_READ),
435 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
436 };
437
438 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
439 {
440 if (perf_evsel__hw_cache_stat[type] & COP(op))
441 return true; /* valid */
442 else
443 return false; /* invalid */
444 }
445
446 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
447 char *bf, size_t size)
448 {
449 if (result) {
450 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
451 perf_evsel__hw_cache_op[op][0],
452 perf_evsel__hw_cache_result[result][0]);
453 }
454
455 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
456 perf_evsel__hw_cache_op[op][1]);
457 }
458
459 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
460 {
461 u8 op, result, type = (config >> 0) & 0xff;
462 const char *err = "unknown-ext-hardware-cache-type";
463
464 if (type > PERF_COUNT_HW_CACHE_MAX)
465 goto out_err;
466
467 op = (config >> 8) & 0xff;
468 err = "unknown-ext-hardware-cache-op";
469 if (op > PERF_COUNT_HW_CACHE_OP_MAX)
470 goto out_err;
471
472 result = (config >> 16) & 0xff;
473 err = "unknown-ext-hardware-cache-result";
474 if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
475 goto out_err;
476
477 err = "invalid-cache";
478 if (!perf_evsel__is_cache_op_valid(type, op))
479 goto out_err;
480
481 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
482 out_err:
483 return scnprintf(bf, size, "%s", err);
484 }
485
486 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
487 {
488 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
489 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
490 }
491
492 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
493 {
494 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
495 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
496 }
497
498 const char *perf_evsel__name(struct perf_evsel *evsel)
499 {
500 char bf[128];
501
502 if (evsel->name)
503 return evsel->name;
504
505 switch (evsel->attr.type) {
506 case PERF_TYPE_RAW:
507 perf_evsel__raw_name(evsel, bf, sizeof(bf));
508 break;
509
510 case PERF_TYPE_HARDWARE:
511 perf_evsel__hw_name(evsel, bf, sizeof(bf));
512 break;
513
514 case PERF_TYPE_HW_CACHE:
515 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
516 break;
517
518 case PERF_TYPE_SOFTWARE:
519 perf_evsel__sw_name(evsel, bf, sizeof(bf));
520 break;
521
522 case PERF_TYPE_TRACEPOINT:
523 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
524 break;
525
526 case PERF_TYPE_BREAKPOINT:
527 perf_evsel__bp_name(evsel, bf, sizeof(bf));
528 break;
529
530 default:
531 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
532 evsel->attr.type);
533 break;
534 }
535
536 evsel->name = strdup(bf);
537
538 return evsel->name ?: "unknown";
539 }
540
541 const char *perf_evsel__group_name(struct perf_evsel *evsel)
542 {
543 return evsel->group_name ?: "anon group";
544 }
545
546 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
547 {
548 int ret;
549 struct perf_evsel *pos;
550 const char *group_name = perf_evsel__group_name(evsel);
551
552 ret = scnprintf(buf, size, "%s", group_name);
553
554 ret += scnprintf(buf + ret, size - ret, " { %s",
555 perf_evsel__name(evsel));
556
557 for_each_group_member(pos, evsel)
558 ret += scnprintf(buf + ret, size - ret, ", %s",
559 perf_evsel__name(pos));
560
561 ret += scnprintf(buf + ret, size - ret, " }");
562
563 return ret;
564 }
565
566 void perf_evsel__config_callchain(struct perf_evsel *evsel,
567 struct record_opts *opts,
568 struct callchain_param *param)
569 {
570 bool function = perf_evsel__is_function_event(evsel);
571 struct perf_event_attr *attr = &evsel->attr;
572
573 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
574
575 attr->sample_max_stack = param->max_stack;
576
577 if (param->record_mode == CALLCHAIN_LBR) {
578 if (!opts->branch_stack) {
579 if (attr->exclude_user) {
580 pr_warning("LBR callstack option is only available "
581 "to get user callchain information. "
582 "Falling back to framepointers.\n");
583 } else {
584 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
585 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
586 PERF_SAMPLE_BRANCH_CALL_STACK |
587 PERF_SAMPLE_BRANCH_NO_CYCLES |
588 PERF_SAMPLE_BRANCH_NO_FLAGS;
589 }
590 } else
591 pr_warning("Cannot use LBR callstack with branch stack. "
592 "Falling back to framepointers.\n");
593 }
594
595 if (param->record_mode == CALLCHAIN_DWARF) {
596 if (!function) {
597 perf_evsel__set_sample_bit(evsel, REGS_USER);
598 perf_evsel__set_sample_bit(evsel, STACK_USER);
599 attr->sample_regs_user = PERF_REGS_MASK;
600 attr->sample_stack_user = param->dump_size;
601 attr->exclude_callchain_user = 1;
602 } else {
603 pr_info("Cannot use DWARF unwind for function trace event,"
604 " falling back to framepointers.\n");
605 }
606 }
607
608 if (function) {
609 pr_info("Disabling user space callchains for function trace event.\n");
610 attr->exclude_callchain_user = 1;
611 }
612 }
613
614 static void
615 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
616 struct callchain_param *param)
617 {
618 struct perf_event_attr *attr = &evsel->attr;
619
620 perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
621 if (param->record_mode == CALLCHAIN_LBR) {
622 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
623 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
624 PERF_SAMPLE_BRANCH_CALL_STACK);
625 }
626 if (param->record_mode == CALLCHAIN_DWARF) {
627 perf_evsel__reset_sample_bit(evsel, REGS_USER);
628 perf_evsel__reset_sample_bit(evsel, STACK_USER);
629 }
630 }
631
632 static void apply_config_terms(struct perf_evsel *evsel,
633 struct record_opts *opts)
634 {
635 struct perf_evsel_config_term *term;
636 struct list_head *config_terms = &evsel->config_terms;
637 struct perf_event_attr *attr = &evsel->attr;
638 struct callchain_param param;
639 u32 dump_size = 0;
640 int max_stack = 0;
641 const char *callgraph_buf = NULL;
642
643 /* callgraph default */
644 param.record_mode = callchain_param.record_mode;
645
646 list_for_each_entry(term, config_terms, list) {
647 switch (term->type) {
648 case PERF_EVSEL__CONFIG_TERM_PERIOD:
649 attr->sample_period = term->val.period;
650 attr->freq = 0;
651 break;
652 case PERF_EVSEL__CONFIG_TERM_FREQ:
653 attr->sample_freq = term->val.freq;
654 attr->freq = 1;
655 break;
656 case PERF_EVSEL__CONFIG_TERM_TIME:
657 if (term->val.time)
658 perf_evsel__set_sample_bit(evsel, TIME);
659 else
660 perf_evsel__reset_sample_bit(evsel, TIME);
661 break;
662 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
663 callgraph_buf = term->val.callgraph;
664 break;
665 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
666 dump_size = term->val.stack_user;
667 break;
668 case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
669 max_stack = term->val.max_stack;
670 break;
671 case PERF_EVSEL__CONFIG_TERM_INHERIT:
672 /*
673 * attr->inherit should has already been set by
674 * perf_evsel__config. If user explicitly set
675 * inherit using config terms, override global
676 * opt->no_inherit setting.
677 */
678 attr->inherit = term->val.inherit ? 1 : 0;
679 break;
680 default:
681 break;
682 }
683 }
684
685 /* User explicitly set per-event callgraph, clear the old setting and reset. */
686 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
687 if (max_stack) {
688 param.max_stack = max_stack;
689 if (callgraph_buf == NULL)
690 callgraph_buf = "fp";
691 }
692
693 /* parse callgraph parameters */
694 if (callgraph_buf != NULL) {
695 if (!strcmp(callgraph_buf, "no")) {
696 param.enabled = false;
697 param.record_mode = CALLCHAIN_NONE;
698 } else {
699 param.enabled = true;
700 if (parse_callchain_record(callgraph_buf, &param)) {
701 pr_err("per-event callgraph setting for %s failed. "
702 "Apply callgraph global setting for it\n",
703 evsel->name);
704 return;
705 }
706 }
707 }
708 if (dump_size > 0) {
709 dump_size = round_up(dump_size, sizeof(u64));
710 param.dump_size = dump_size;
711 }
712
713 /* If global callgraph set, clear it */
714 if (callchain_param.enabled)
715 perf_evsel__reset_callgraph(evsel, &callchain_param);
716
717 /* set perf-event callgraph */
718 if (param.enabled)
719 perf_evsel__config_callchain(evsel, opts, &param);
720 }
721 }
722
723 /*
724 * The enable_on_exec/disabled value strategy:
725 *
726 * 1) For any type of traced program:
727 * - all independent events and group leaders are disabled
728 * - all group members are enabled
729 *
730 * Group members are ruled by group leaders. They need to
731 * be enabled, because the group scheduling relies on that.
732 *
733 * 2) For traced programs executed by perf:
734 * - all independent events and group leaders have
735 * enable_on_exec set
736 * - we don't specifically enable or disable any event during
737 * the record command
738 *
739 * Independent events and group leaders are initially disabled
740 * and get enabled by exec. Group members are ruled by group
741 * leaders as stated in 1).
742 *
743 * 3) For traced programs attached by perf (pid/tid):
744 * - we specifically enable or disable all events during
745 * the record command
746 *
747 * When attaching events to already running traced we
748 * enable/disable events specifically, as there's no
749 * initial traced exec call.
750 */
751 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
752 struct callchain_param *callchain)
753 {
754 struct perf_evsel *leader = evsel->leader;
755 struct perf_event_attr *attr = &evsel->attr;
756 int track = evsel->tracking;
757 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
758
759 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
760 attr->inherit = !opts->no_inherit;
761
762 perf_evsel__set_sample_bit(evsel, IP);
763 perf_evsel__set_sample_bit(evsel, TID);
764
765 if (evsel->sample_read) {
766 perf_evsel__set_sample_bit(evsel, READ);
767
768 /*
769 * We need ID even in case of single event, because
770 * PERF_SAMPLE_READ process ID specific data.
771 */
772 perf_evsel__set_sample_id(evsel, false);
773
774 /*
775 * Apply group format only if we belong to group
776 * with more than one members.
777 */
778 if (leader->nr_members > 1) {
779 attr->read_format |= PERF_FORMAT_GROUP;
780 attr->inherit = 0;
781 }
782 }
783
784 /*
785 * We default some events to have a default interval. But keep
786 * it a weak assumption overridable by the user.
787 */
788 if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
789 opts->user_interval != ULLONG_MAX)) {
790 if (opts->freq) {
791 perf_evsel__set_sample_bit(evsel, PERIOD);
792 attr->freq = 1;
793 attr->sample_freq = opts->freq;
794 } else {
795 attr->sample_period = opts->default_interval;
796 }
797 }
798
799 /*
800 * Disable sampling for all group members other
801 * than leader in case leader 'leads' the sampling.
802 */
803 if ((leader != evsel) && leader->sample_read) {
804 attr->sample_freq = 0;
805 attr->sample_period = 0;
806 }
807
808 if (opts->no_samples)
809 attr->sample_freq = 0;
810
811 if (opts->inherit_stat)
812 attr->inherit_stat = 1;
813
814 if (opts->sample_address) {
815 perf_evsel__set_sample_bit(evsel, ADDR);
816 attr->mmap_data = track;
817 }
818
819 /*
820 * We don't allow user space callchains for function trace
821 * event, due to issues with page faults while tracing page
822 * fault handler and its overall trickiness nature.
823 */
824 if (perf_evsel__is_function_event(evsel))
825 evsel->attr.exclude_callchain_user = 1;
826
827 if (callchain && callchain->enabled && !evsel->no_aux_samples)
828 perf_evsel__config_callchain(evsel, opts, callchain);
829
830 if (opts->sample_intr_regs) {
831 attr->sample_regs_intr = opts->sample_intr_regs;
832 perf_evsel__set_sample_bit(evsel, REGS_INTR);
833 }
834
835 if (target__has_cpu(&opts->target))
836 perf_evsel__set_sample_bit(evsel, CPU);
837
838 if (opts->period)
839 perf_evsel__set_sample_bit(evsel, PERIOD);
840
841 /*
842 * When the user explicitly disabled time don't force it here.
843 */
844 if (opts->sample_time &&
845 (!perf_missing_features.sample_id_all &&
846 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
847 opts->sample_time_set)))
848 perf_evsel__set_sample_bit(evsel, TIME);
849
850 if (opts->raw_samples && !evsel->no_aux_samples) {
851 perf_evsel__set_sample_bit(evsel, TIME);
852 perf_evsel__set_sample_bit(evsel, RAW);
853 perf_evsel__set_sample_bit(evsel, CPU);
854 }
855
856 if (opts->sample_address)
857 perf_evsel__set_sample_bit(evsel, DATA_SRC);
858
859 if (opts->no_buffering) {
860 attr->watermark = 0;
861 attr->wakeup_events = 1;
862 }
863 if (opts->branch_stack && !evsel->no_aux_samples) {
864 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
865 attr->branch_sample_type = opts->branch_stack;
866 }
867
868 if (opts->sample_weight)
869 perf_evsel__set_sample_bit(evsel, WEIGHT);
870
871 attr->task = track;
872 attr->mmap = track;
873 attr->mmap2 = track && !perf_missing_features.mmap2;
874 attr->comm = track;
875
876 if (opts->record_switch_events)
877 attr->context_switch = track;
878
879 if (opts->sample_transaction)
880 perf_evsel__set_sample_bit(evsel, TRANSACTION);
881
882 if (opts->running_time) {
883 evsel->attr.read_format |=
884 PERF_FORMAT_TOTAL_TIME_ENABLED |
885 PERF_FORMAT_TOTAL_TIME_RUNNING;
886 }
887
888 /*
889 * XXX see the function comment above
890 *
891 * Disabling only independent events or group leaders,
892 * keeping group members enabled.
893 */
894 if (perf_evsel__is_group_leader(evsel))
895 attr->disabled = 1;
896
897 /*
898 * Setting enable_on_exec for independent events and
899 * group leaders for traced executed by perf.
900 */
901 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
902 !opts->initial_delay)
903 attr->enable_on_exec = 1;
904
905 if (evsel->immediate) {
906 attr->disabled = 0;
907 attr->enable_on_exec = 0;
908 }
909
910 clockid = opts->clockid;
911 if (opts->use_clockid) {
912 attr->use_clockid = 1;
913 attr->clockid = opts->clockid;
914 }
915
916 if (evsel->precise_max)
917 perf_event_attr__set_max_precise_ip(attr);
918
919 if (opts->all_user) {
920 attr->exclude_kernel = 1;
921 attr->exclude_user = 0;
922 }
923
924 if (opts->all_kernel) {
925 attr->exclude_kernel = 0;
926 attr->exclude_user = 1;
927 }
928
929 /*
930 * Apply event specific term settings,
931 * it overloads any global configuration.
932 */
933 apply_config_terms(evsel, opts);
934 }
935
936 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
937 {
938 int cpu, thread;
939
940 if (evsel->system_wide)
941 nthreads = 1;
942
943 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
944
945 if (evsel->fd) {
946 for (cpu = 0; cpu < ncpus; cpu++) {
947 for (thread = 0; thread < nthreads; thread++) {
948 FD(evsel, cpu, thread) = -1;
949 }
950 }
951 }
952
953 return evsel->fd != NULL ? 0 : -ENOMEM;
954 }
955
956 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
957 int ioc, void *arg)
958 {
959 int cpu, thread;
960
961 if (evsel->system_wide)
962 nthreads = 1;
963
964 for (cpu = 0; cpu < ncpus; cpu++) {
965 for (thread = 0; thread < nthreads; thread++) {
966 int fd = FD(evsel, cpu, thread),
967 err = ioctl(fd, ioc, arg);
968
969 if (err)
970 return err;
971 }
972 }
973
974 return 0;
975 }
976
977 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
978 const char *filter)
979 {
980 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
981 PERF_EVENT_IOC_SET_FILTER,
982 (void *)filter);
983 }
984
985 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
986 {
987 char *new_filter = strdup(filter);
988
989 if (new_filter != NULL) {
990 free(evsel->filter);
991 evsel->filter = new_filter;
992 return 0;
993 }
994
995 return -1;
996 }
997
998 int perf_evsel__append_filter(struct perf_evsel *evsel,
999 const char *op, const char *filter)
1000 {
1001 char *new_filter;
1002
1003 if (evsel->filter == NULL)
1004 return perf_evsel__set_filter(evsel, filter);
1005
1006 if (asprintf(&new_filter,"(%s) %s (%s)", evsel->filter, op, filter) > 0) {
1007 free(evsel->filter);
1008 evsel->filter = new_filter;
1009 return 0;
1010 }
1011
1012 return -1;
1013 }
1014
1015 int perf_evsel__enable(struct perf_evsel *evsel)
1016 {
1017 int nthreads = thread_map__nr(evsel->threads);
1018 int ncpus = cpu_map__nr(evsel->cpus);
1019
1020 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1021 PERF_EVENT_IOC_ENABLE,
1022 0);
1023 }
1024
1025 int perf_evsel__disable(struct perf_evsel *evsel)
1026 {
1027 int nthreads = thread_map__nr(evsel->threads);
1028 int ncpus = cpu_map__nr(evsel->cpus);
1029
1030 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1031 PERF_EVENT_IOC_DISABLE,
1032 0);
1033 }
1034
1035 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1036 {
1037 if (ncpus == 0 || nthreads == 0)
1038 return 0;
1039
1040 if (evsel->system_wide)
1041 nthreads = 1;
1042
1043 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1044 if (evsel->sample_id == NULL)
1045 return -ENOMEM;
1046
1047 evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1048 if (evsel->id == NULL) {
1049 xyarray__delete(evsel->sample_id);
1050 evsel->sample_id = NULL;
1051 return -ENOMEM;
1052 }
1053
1054 return 0;
1055 }
1056
1057 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1058 {
1059 xyarray__delete(evsel->fd);
1060 evsel->fd = NULL;
1061 }
1062
1063 static void perf_evsel__free_id(struct perf_evsel *evsel)
1064 {
1065 xyarray__delete(evsel->sample_id);
1066 evsel->sample_id = NULL;
1067 zfree(&evsel->id);
1068 }
1069
1070 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1071 {
1072 struct perf_evsel_config_term *term, *h;
1073
1074 list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1075 list_del(&term->list);
1076 free(term);
1077 }
1078 }
1079
1080 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1081 {
1082 int cpu, thread;
1083
1084 if (evsel->system_wide)
1085 nthreads = 1;
1086
1087 for (cpu = 0; cpu < ncpus; cpu++)
1088 for (thread = 0; thread < nthreads; ++thread) {
1089 close(FD(evsel, cpu, thread));
1090 FD(evsel, cpu, thread) = -1;
1091 }
1092 }
1093
1094 void perf_evsel__exit(struct perf_evsel *evsel)
1095 {
1096 assert(list_empty(&evsel->node));
1097 assert(evsel->evlist == NULL);
1098 perf_evsel__free_fd(evsel);
1099 perf_evsel__free_id(evsel);
1100 perf_evsel__free_config_terms(evsel);
1101 close_cgroup(evsel->cgrp);
1102 cpu_map__put(evsel->cpus);
1103 cpu_map__put(evsel->own_cpus);
1104 thread_map__put(evsel->threads);
1105 zfree(&evsel->group_name);
1106 zfree(&evsel->name);
1107 perf_evsel__object.fini(evsel);
1108 }
1109
1110 void perf_evsel__delete(struct perf_evsel *evsel)
1111 {
1112 perf_evsel__exit(evsel);
1113 free(evsel);
1114 }
1115
1116 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1117 struct perf_counts_values *count)
1118 {
1119 struct perf_counts_values tmp;
1120
1121 if (!evsel->prev_raw_counts)
1122 return;
1123
1124 if (cpu == -1) {
1125 tmp = evsel->prev_raw_counts->aggr;
1126 evsel->prev_raw_counts->aggr = *count;
1127 } else {
1128 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1129 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1130 }
1131
1132 count->val = count->val - tmp.val;
1133 count->ena = count->ena - tmp.ena;
1134 count->run = count->run - tmp.run;
1135 }
1136
1137 void perf_counts_values__scale(struct perf_counts_values *count,
1138 bool scale, s8 *pscaled)
1139 {
1140 s8 scaled = 0;
1141
1142 if (scale) {
1143 if (count->run == 0) {
1144 scaled = -1;
1145 count->val = 0;
1146 } else if (count->run < count->ena) {
1147 scaled = 1;
1148 count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1149 }
1150 } else
1151 count->ena = count->run = 0;
1152
1153 if (pscaled)
1154 *pscaled = scaled;
1155 }
1156
1157 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1158 struct perf_counts_values *count)
1159 {
1160 memset(count, 0, sizeof(*count));
1161
1162 if (FD(evsel, cpu, thread) < 0)
1163 return -EINVAL;
1164
1165 if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) < 0)
1166 return -errno;
1167
1168 return 0;
1169 }
1170
1171 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1172 int cpu, int thread, bool scale)
1173 {
1174 struct perf_counts_values count;
1175 size_t nv = scale ? 3 : 1;
1176
1177 if (FD(evsel, cpu, thread) < 0)
1178 return -EINVAL;
1179
1180 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1181 return -ENOMEM;
1182
1183 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
1184 return -errno;
1185
1186 perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1187 perf_counts_values__scale(&count, scale, NULL);
1188 *perf_counts(evsel->counts, cpu, thread) = count;
1189 return 0;
1190 }
1191
1192 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1193 {
1194 struct perf_evsel *leader = evsel->leader;
1195 int fd;
1196
1197 if (perf_evsel__is_group_leader(evsel))
1198 return -1;
1199
1200 /*
1201 * Leader must be already processed/open,
1202 * if not it's a bug.
1203 */
1204 BUG_ON(!leader->fd);
1205
1206 fd = FD(leader, cpu, thread);
1207 BUG_ON(fd == -1);
1208
1209 return fd;
1210 }
1211
1212 struct bit_names {
1213 int bit;
1214 const char *name;
1215 };
1216
1217 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1218 {
1219 bool first_bit = true;
1220 int i = 0;
1221
1222 do {
1223 if (value & bits[i].bit) {
1224 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1225 first_bit = false;
1226 }
1227 } while (bits[++i].name != NULL);
1228 }
1229
1230 static void __p_sample_type(char *buf, size_t size, u64 value)
1231 {
1232 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1233 struct bit_names bits[] = {
1234 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1235 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1236 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1237 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1238 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1239 bit_name(WEIGHT),
1240 { .name = NULL, }
1241 };
1242 #undef bit_name
1243 __p_bits(buf, size, value, bits);
1244 }
1245
1246 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1247 {
1248 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1249 struct bit_names bits[] = {
1250 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1251 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1252 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1253 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1254 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1255 { .name = NULL, }
1256 };
1257 #undef bit_name
1258 __p_bits(buf, size, value, bits);
1259 }
1260
1261 static void __p_read_format(char *buf, size_t size, u64 value)
1262 {
1263 #define bit_name(n) { PERF_FORMAT_##n, #n }
1264 struct bit_names bits[] = {
1265 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1266 bit_name(ID), bit_name(GROUP),
1267 { .name = NULL, }
1268 };
1269 #undef bit_name
1270 __p_bits(buf, size, value, bits);
1271 }
1272
1273 #define BUF_SIZE 1024
1274
1275 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1276 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1277 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1278 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val)
1279 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1280 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val)
1281
1282 #define PRINT_ATTRn(_n, _f, _p) \
1283 do { \
1284 if (attr->_f) { \
1285 _p(attr->_f); \
1286 ret += attr__fprintf(fp, _n, buf, priv);\
1287 } \
1288 } while (0)
1289
1290 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p)
1291
1292 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1293 attr__fprintf_f attr__fprintf, void *priv)
1294 {
1295 char buf[BUF_SIZE];
1296 int ret = 0;
1297
1298 PRINT_ATTRf(type, p_unsigned);
1299 PRINT_ATTRf(size, p_unsigned);
1300 PRINT_ATTRf(config, p_hex);
1301 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1302 PRINT_ATTRf(sample_type, p_sample_type);
1303 PRINT_ATTRf(read_format, p_read_format);
1304
1305 PRINT_ATTRf(disabled, p_unsigned);
1306 PRINT_ATTRf(inherit, p_unsigned);
1307 PRINT_ATTRf(pinned, p_unsigned);
1308 PRINT_ATTRf(exclusive, p_unsigned);
1309 PRINT_ATTRf(exclude_user, p_unsigned);
1310 PRINT_ATTRf(exclude_kernel, p_unsigned);
1311 PRINT_ATTRf(exclude_hv, p_unsigned);
1312 PRINT_ATTRf(exclude_idle, p_unsigned);
1313 PRINT_ATTRf(mmap, p_unsigned);
1314 PRINT_ATTRf(comm, p_unsigned);
1315 PRINT_ATTRf(freq, p_unsigned);
1316 PRINT_ATTRf(inherit_stat, p_unsigned);
1317 PRINT_ATTRf(enable_on_exec, p_unsigned);
1318 PRINT_ATTRf(task, p_unsigned);
1319 PRINT_ATTRf(watermark, p_unsigned);
1320 PRINT_ATTRf(precise_ip, p_unsigned);
1321 PRINT_ATTRf(mmap_data, p_unsigned);
1322 PRINT_ATTRf(sample_id_all, p_unsigned);
1323 PRINT_ATTRf(exclude_host, p_unsigned);
1324 PRINT_ATTRf(exclude_guest, p_unsigned);
1325 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1326 PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1327 PRINT_ATTRf(mmap2, p_unsigned);
1328 PRINT_ATTRf(comm_exec, p_unsigned);
1329 PRINT_ATTRf(use_clockid, p_unsigned);
1330 PRINT_ATTRf(context_switch, p_unsigned);
1331 PRINT_ATTRf(write_backward, p_unsigned);
1332
1333 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1334 PRINT_ATTRf(bp_type, p_unsigned);
1335 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1336 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1337 PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1338 PRINT_ATTRf(sample_regs_user, p_hex);
1339 PRINT_ATTRf(sample_stack_user, p_unsigned);
1340 PRINT_ATTRf(clockid, p_signed);
1341 PRINT_ATTRf(sample_regs_intr, p_hex);
1342 PRINT_ATTRf(aux_watermark, p_unsigned);
1343 PRINT_ATTRf(sample_max_stack, p_unsigned);
1344
1345 return ret;
1346 }
1347
1348 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1349 void *priv __attribute__((unused)))
1350 {
1351 return fprintf(fp, " %-32s %s\n", name, val);
1352 }
1353
1354 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1355 struct thread_map *threads)
1356 {
1357 int cpu, thread, nthreads;
1358 unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1359 int pid = -1, err;
1360 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1361
1362 if (evsel->system_wide)
1363 nthreads = 1;
1364 else
1365 nthreads = threads->nr;
1366
1367 if (evsel->fd == NULL &&
1368 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1369 return -ENOMEM;
1370
1371 if (evsel->cgrp) {
1372 flags |= PERF_FLAG_PID_CGROUP;
1373 pid = evsel->cgrp->fd;
1374 }
1375
1376 fallback_missing_features:
1377 if (perf_missing_features.clockid_wrong)
1378 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1379 if (perf_missing_features.clockid) {
1380 evsel->attr.use_clockid = 0;
1381 evsel->attr.clockid = 0;
1382 }
1383 if (perf_missing_features.cloexec)
1384 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1385 if (perf_missing_features.mmap2)
1386 evsel->attr.mmap2 = 0;
1387 if (perf_missing_features.exclude_guest)
1388 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1389 if (perf_missing_features.lbr_flags)
1390 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1391 PERF_SAMPLE_BRANCH_NO_CYCLES);
1392 if (perf_missing_features.write_backward)
1393 evsel->attr.write_backward = false;
1394 retry_sample_id:
1395 if (perf_missing_features.sample_id_all)
1396 evsel->attr.sample_id_all = 0;
1397
1398 if (verbose >= 2) {
1399 fprintf(stderr, "%.60s\n", graph_dotted_line);
1400 fprintf(stderr, "perf_event_attr:\n");
1401 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1402 fprintf(stderr, "%.60s\n", graph_dotted_line);
1403 }
1404
1405 for (cpu = 0; cpu < cpus->nr; cpu++) {
1406
1407 for (thread = 0; thread < nthreads; thread++) {
1408 int group_fd;
1409
1410 if (!evsel->cgrp && !evsel->system_wide)
1411 pid = thread_map__pid(threads, thread);
1412
1413 group_fd = get_group_fd(evsel, cpu, thread);
1414 retry_open:
1415 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx\n",
1416 pid, cpus->map[cpu], group_fd, flags);
1417
1418 FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1419 pid,
1420 cpus->map[cpu],
1421 group_fd, flags);
1422 if (FD(evsel, cpu, thread) < 0) {
1423 err = -errno;
1424 pr_debug2("sys_perf_event_open failed, error %d\n",
1425 err);
1426 goto try_fallback;
1427 }
1428
1429 if (evsel->bpf_fd >= 0) {
1430 int evt_fd = FD(evsel, cpu, thread);
1431 int bpf_fd = evsel->bpf_fd;
1432
1433 err = ioctl(evt_fd,
1434 PERF_EVENT_IOC_SET_BPF,
1435 bpf_fd);
1436 if (err && errno != EEXIST) {
1437 pr_err("failed to attach bpf fd %d: %s\n",
1438 bpf_fd, strerror(errno));
1439 err = -EINVAL;
1440 goto out_close;
1441 }
1442 }
1443
1444 set_rlimit = NO_CHANGE;
1445
1446 /*
1447 * If we succeeded but had to kill clockid, fail and
1448 * have perf_evsel__open_strerror() print us a nice
1449 * error.
1450 */
1451 if (perf_missing_features.clockid ||
1452 perf_missing_features.clockid_wrong) {
1453 err = -EINVAL;
1454 goto out_close;
1455 }
1456
1457 if (evsel->overwrite &&
1458 perf_missing_features.write_backward) {
1459 err = -EINVAL;
1460 goto out_close;
1461 }
1462 }
1463 }
1464
1465 return 0;
1466
1467 try_fallback:
1468 /*
1469 * perf stat needs between 5 and 22 fds per CPU. When we run out
1470 * of them try to increase the limits.
1471 */
1472 if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1473 struct rlimit l;
1474 int old_errno = errno;
1475
1476 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1477 if (set_rlimit == NO_CHANGE)
1478 l.rlim_cur = l.rlim_max;
1479 else {
1480 l.rlim_cur = l.rlim_max + 1000;
1481 l.rlim_max = l.rlim_cur;
1482 }
1483 if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1484 set_rlimit++;
1485 errno = old_errno;
1486 goto retry_open;
1487 }
1488 }
1489 errno = old_errno;
1490 }
1491
1492 if (err != -EINVAL || cpu > 0 || thread > 0)
1493 goto out_close;
1494
1495 /*
1496 * Must probe features in the order they were added to the
1497 * perf_event_attr interface.
1498 */
1499 if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1500 perf_missing_features.clockid_wrong = true;
1501 goto fallback_missing_features;
1502 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1503 perf_missing_features.clockid = true;
1504 goto fallback_missing_features;
1505 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1506 perf_missing_features.cloexec = true;
1507 goto fallback_missing_features;
1508 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1509 perf_missing_features.mmap2 = true;
1510 goto fallback_missing_features;
1511 } else if (!perf_missing_features.exclude_guest &&
1512 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1513 perf_missing_features.exclude_guest = true;
1514 goto fallback_missing_features;
1515 } else if (!perf_missing_features.sample_id_all) {
1516 perf_missing_features.sample_id_all = true;
1517 goto retry_sample_id;
1518 } else if (!perf_missing_features.lbr_flags &&
1519 (evsel->attr.branch_sample_type &
1520 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1521 PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1522 perf_missing_features.lbr_flags = true;
1523 goto fallback_missing_features;
1524 } else if (!perf_missing_features.write_backward &&
1525 evsel->attr.write_backward) {
1526 perf_missing_features.write_backward = true;
1527 goto fallback_missing_features;
1528 }
1529
1530 out_close:
1531 do {
1532 while (--thread >= 0) {
1533 close(FD(evsel, cpu, thread));
1534 FD(evsel, cpu, thread) = -1;
1535 }
1536 thread = nthreads;
1537 } while (--cpu >= 0);
1538 return err;
1539 }
1540
1541 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1542 {
1543 if (evsel->fd == NULL)
1544 return;
1545
1546 perf_evsel__close_fd(evsel, ncpus, nthreads);
1547 perf_evsel__free_fd(evsel);
1548 }
1549
1550 static struct {
1551 struct cpu_map map;
1552 int cpus[1];
1553 } empty_cpu_map = {
1554 .map.nr = 1,
1555 .cpus = { -1, },
1556 };
1557
1558 static struct {
1559 struct thread_map map;
1560 int threads[1];
1561 } empty_thread_map = {
1562 .map.nr = 1,
1563 .threads = { -1, },
1564 };
1565
1566 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1567 struct thread_map *threads)
1568 {
1569 if (cpus == NULL) {
1570 /* Work around old compiler warnings about strict aliasing */
1571 cpus = &empty_cpu_map.map;
1572 }
1573
1574 if (threads == NULL)
1575 threads = &empty_thread_map.map;
1576
1577 return __perf_evsel__open(evsel, cpus, threads);
1578 }
1579
1580 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1581 struct cpu_map *cpus)
1582 {
1583 return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1584 }
1585
1586 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1587 struct thread_map *threads)
1588 {
1589 return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1590 }
1591
1592 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1593 const union perf_event *event,
1594 struct perf_sample *sample)
1595 {
1596 u64 type = evsel->attr.sample_type;
1597 const u64 *array = event->sample.array;
1598 bool swapped = evsel->needs_swap;
1599 union u64_swap u;
1600
1601 array += ((event->header.size -
1602 sizeof(event->header)) / sizeof(u64)) - 1;
1603
1604 if (type & PERF_SAMPLE_IDENTIFIER) {
1605 sample->id = *array;
1606 array--;
1607 }
1608
1609 if (type & PERF_SAMPLE_CPU) {
1610 u.val64 = *array;
1611 if (swapped) {
1612 /* undo swap of u64, then swap on individual u32s */
1613 u.val64 = bswap_64(u.val64);
1614 u.val32[0] = bswap_32(u.val32[0]);
1615 }
1616
1617 sample->cpu = u.val32[0];
1618 array--;
1619 }
1620
1621 if (type & PERF_SAMPLE_STREAM_ID) {
1622 sample->stream_id = *array;
1623 array--;
1624 }
1625
1626 if (type & PERF_SAMPLE_ID) {
1627 sample->id = *array;
1628 array--;
1629 }
1630
1631 if (type & PERF_SAMPLE_TIME) {
1632 sample->time = *array;
1633 array--;
1634 }
1635
1636 if (type & PERF_SAMPLE_TID) {
1637 u.val64 = *array;
1638 if (swapped) {
1639 /* undo swap of u64, then swap on individual u32s */
1640 u.val64 = bswap_64(u.val64);
1641 u.val32[0] = bswap_32(u.val32[0]);
1642 u.val32[1] = bswap_32(u.val32[1]);
1643 }
1644
1645 sample->pid = u.val32[0];
1646 sample->tid = u.val32[1];
1647 array--;
1648 }
1649
1650 return 0;
1651 }
1652
1653 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1654 u64 size)
1655 {
1656 return size > max_size || offset + size > endp;
1657 }
1658
1659 #define OVERFLOW_CHECK(offset, size, max_size) \
1660 do { \
1661 if (overflow(endp, (max_size), (offset), (size))) \
1662 return -EFAULT; \
1663 } while (0)
1664
1665 #define OVERFLOW_CHECK_u64(offset) \
1666 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1667
1668 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1669 struct perf_sample *data)
1670 {
1671 u64 type = evsel->attr.sample_type;
1672 bool swapped = evsel->needs_swap;
1673 const u64 *array;
1674 u16 max_size = event->header.size;
1675 const void *endp = (void *)event + max_size;
1676 u64 sz;
1677
1678 /*
1679 * used for cross-endian analysis. See git commit 65014ab3
1680 * for why this goofiness is needed.
1681 */
1682 union u64_swap u;
1683
1684 memset(data, 0, sizeof(*data));
1685 data->cpu = data->pid = data->tid = -1;
1686 data->stream_id = data->id = data->time = -1ULL;
1687 data->period = evsel->attr.sample_period;
1688 data->weight = 0;
1689 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1690
1691 if (event->header.type != PERF_RECORD_SAMPLE) {
1692 if (!evsel->attr.sample_id_all)
1693 return 0;
1694 return perf_evsel__parse_id_sample(evsel, event, data);
1695 }
1696
1697 array = event->sample.array;
1698
1699 /*
1700 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1701 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
1702 * check the format does not go past the end of the event.
1703 */
1704 if (evsel->sample_size + sizeof(event->header) > event->header.size)
1705 return -EFAULT;
1706
1707 data->id = -1ULL;
1708 if (type & PERF_SAMPLE_IDENTIFIER) {
1709 data->id = *array;
1710 array++;
1711 }
1712
1713 if (type & PERF_SAMPLE_IP) {
1714 data->ip = *array;
1715 array++;
1716 }
1717
1718 if (type & PERF_SAMPLE_TID) {
1719 u.val64 = *array;
1720 if (swapped) {
1721 /* undo swap of u64, then swap on individual u32s */
1722 u.val64 = bswap_64(u.val64);
1723 u.val32[0] = bswap_32(u.val32[0]);
1724 u.val32[1] = bswap_32(u.val32[1]);
1725 }
1726
1727 data->pid = u.val32[0];
1728 data->tid = u.val32[1];
1729 array++;
1730 }
1731
1732 if (type & PERF_SAMPLE_TIME) {
1733 data->time = *array;
1734 array++;
1735 }
1736
1737 data->addr = 0;
1738 if (type & PERF_SAMPLE_ADDR) {
1739 data->addr = *array;
1740 array++;
1741 }
1742
1743 if (type & PERF_SAMPLE_ID) {
1744 data->id = *array;
1745 array++;
1746 }
1747
1748 if (type & PERF_SAMPLE_STREAM_ID) {
1749 data->stream_id = *array;
1750 array++;
1751 }
1752
1753 if (type & PERF_SAMPLE_CPU) {
1754
1755 u.val64 = *array;
1756 if (swapped) {
1757 /* undo swap of u64, then swap on individual u32s */
1758 u.val64 = bswap_64(u.val64);
1759 u.val32[0] = bswap_32(u.val32[0]);
1760 }
1761
1762 data->cpu = u.val32[0];
1763 array++;
1764 }
1765
1766 if (type & PERF_SAMPLE_PERIOD) {
1767 data->period = *array;
1768 array++;
1769 }
1770
1771 if (type & PERF_SAMPLE_READ) {
1772 u64 read_format = evsel->attr.read_format;
1773
1774 OVERFLOW_CHECK_u64(array);
1775 if (read_format & PERF_FORMAT_GROUP)
1776 data->read.group.nr = *array;
1777 else
1778 data->read.one.value = *array;
1779
1780 array++;
1781
1782 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1783 OVERFLOW_CHECK_u64(array);
1784 data->read.time_enabled = *array;
1785 array++;
1786 }
1787
1788 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1789 OVERFLOW_CHECK_u64(array);
1790 data->read.time_running = *array;
1791 array++;
1792 }
1793
1794 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1795 if (read_format & PERF_FORMAT_GROUP) {
1796 const u64 max_group_nr = UINT64_MAX /
1797 sizeof(struct sample_read_value);
1798
1799 if (data->read.group.nr > max_group_nr)
1800 return -EFAULT;
1801 sz = data->read.group.nr *
1802 sizeof(struct sample_read_value);
1803 OVERFLOW_CHECK(array, sz, max_size);
1804 data->read.group.values =
1805 (struct sample_read_value *)array;
1806 array = (void *)array + sz;
1807 } else {
1808 OVERFLOW_CHECK_u64(array);
1809 data->read.one.id = *array;
1810 array++;
1811 }
1812 }
1813
1814 if (type & PERF_SAMPLE_CALLCHAIN) {
1815 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1816
1817 OVERFLOW_CHECK_u64(array);
1818 data->callchain = (struct ip_callchain *)array++;
1819 if (data->callchain->nr > max_callchain_nr)
1820 return -EFAULT;
1821 sz = data->callchain->nr * sizeof(u64);
1822 OVERFLOW_CHECK(array, sz, max_size);
1823 array = (void *)array + sz;
1824 }
1825
1826 if (type & PERF_SAMPLE_RAW) {
1827 OVERFLOW_CHECK_u64(array);
1828 u.val64 = *array;
1829 if (WARN_ONCE(swapped,
1830 "Endianness of raw data not corrected!\n")) {
1831 /* undo swap of u64, then swap on individual u32s */
1832 u.val64 = bswap_64(u.val64);
1833 u.val32[0] = bswap_32(u.val32[0]);
1834 u.val32[1] = bswap_32(u.val32[1]);
1835 }
1836 data->raw_size = u.val32[0];
1837 array = (void *)array + sizeof(u32);
1838
1839 OVERFLOW_CHECK(array, data->raw_size, max_size);
1840 data->raw_data = (void *)array;
1841 array = (void *)array + data->raw_size;
1842 }
1843
1844 if (type & PERF_SAMPLE_BRANCH_STACK) {
1845 const u64 max_branch_nr = UINT64_MAX /
1846 sizeof(struct branch_entry);
1847
1848 OVERFLOW_CHECK_u64(array);
1849 data->branch_stack = (struct branch_stack *)array++;
1850
1851 if (data->branch_stack->nr > max_branch_nr)
1852 return -EFAULT;
1853 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1854 OVERFLOW_CHECK(array, sz, max_size);
1855 array = (void *)array + sz;
1856 }
1857
1858 if (type & PERF_SAMPLE_REGS_USER) {
1859 OVERFLOW_CHECK_u64(array);
1860 data->user_regs.abi = *array;
1861 array++;
1862
1863 if (data->user_regs.abi) {
1864 u64 mask = evsel->attr.sample_regs_user;
1865
1866 sz = hweight_long(mask) * sizeof(u64);
1867 OVERFLOW_CHECK(array, sz, max_size);
1868 data->user_regs.mask = mask;
1869 data->user_regs.regs = (u64 *)array;
1870 array = (void *)array + sz;
1871 }
1872 }
1873
1874 if (type & PERF_SAMPLE_STACK_USER) {
1875 OVERFLOW_CHECK_u64(array);
1876 sz = *array++;
1877
1878 data->user_stack.offset = ((char *)(array - 1)
1879 - (char *) event);
1880
1881 if (!sz) {
1882 data->user_stack.size = 0;
1883 } else {
1884 OVERFLOW_CHECK(array, sz, max_size);
1885 data->user_stack.data = (char *)array;
1886 array = (void *)array + sz;
1887 OVERFLOW_CHECK_u64(array);
1888 data->user_stack.size = *array++;
1889 if (WARN_ONCE(data->user_stack.size > sz,
1890 "user stack dump failure\n"))
1891 return -EFAULT;
1892 }
1893 }
1894
1895 data->weight = 0;
1896 if (type & PERF_SAMPLE_WEIGHT) {
1897 OVERFLOW_CHECK_u64(array);
1898 data->weight = *array;
1899 array++;
1900 }
1901
1902 data->data_src = PERF_MEM_DATA_SRC_NONE;
1903 if (type & PERF_SAMPLE_DATA_SRC) {
1904 OVERFLOW_CHECK_u64(array);
1905 data->data_src = *array;
1906 array++;
1907 }
1908
1909 data->transaction = 0;
1910 if (type & PERF_SAMPLE_TRANSACTION) {
1911 OVERFLOW_CHECK_u64(array);
1912 data->transaction = *array;
1913 array++;
1914 }
1915
1916 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
1917 if (type & PERF_SAMPLE_REGS_INTR) {
1918 OVERFLOW_CHECK_u64(array);
1919 data->intr_regs.abi = *array;
1920 array++;
1921
1922 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
1923 u64 mask = evsel->attr.sample_regs_intr;
1924
1925 sz = hweight_long(mask) * sizeof(u64);
1926 OVERFLOW_CHECK(array, sz, max_size);
1927 data->intr_regs.mask = mask;
1928 data->intr_regs.regs = (u64 *)array;
1929 array = (void *)array + sz;
1930 }
1931 }
1932
1933 return 0;
1934 }
1935
1936 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1937 u64 read_format)
1938 {
1939 size_t sz, result = sizeof(struct sample_event);
1940
1941 if (type & PERF_SAMPLE_IDENTIFIER)
1942 result += sizeof(u64);
1943
1944 if (type & PERF_SAMPLE_IP)
1945 result += sizeof(u64);
1946
1947 if (type & PERF_SAMPLE_TID)
1948 result += sizeof(u64);
1949
1950 if (type & PERF_SAMPLE_TIME)
1951 result += sizeof(u64);
1952
1953 if (type & PERF_SAMPLE_ADDR)
1954 result += sizeof(u64);
1955
1956 if (type & PERF_SAMPLE_ID)
1957 result += sizeof(u64);
1958
1959 if (type & PERF_SAMPLE_STREAM_ID)
1960 result += sizeof(u64);
1961
1962 if (type & PERF_SAMPLE_CPU)
1963 result += sizeof(u64);
1964
1965 if (type & PERF_SAMPLE_PERIOD)
1966 result += sizeof(u64);
1967
1968 if (type & PERF_SAMPLE_READ) {
1969 result += sizeof(u64);
1970 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1971 result += sizeof(u64);
1972 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1973 result += sizeof(u64);
1974 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1975 if (read_format & PERF_FORMAT_GROUP) {
1976 sz = sample->read.group.nr *
1977 sizeof(struct sample_read_value);
1978 result += sz;
1979 } else {
1980 result += sizeof(u64);
1981 }
1982 }
1983
1984 if (type & PERF_SAMPLE_CALLCHAIN) {
1985 sz = (sample->callchain->nr + 1) * sizeof(u64);
1986 result += sz;
1987 }
1988
1989 if (type & PERF_SAMPLE_RAW) {
1990 result += sizeof(u32);
1991 result += sample->raw_size;
1992 }
1993
1994 if (type & PERF_SAMPLE_BRANCH_STACK) {
1995 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1996 sz += sizeof(u64);
1997 result += sz;
1998 }
1999
2000 if (type & PERF_SAMPLE_REGS_USER) {
2001 if (sample->user_regs.abi) {
2002 result += sizeof(u64);
2003 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2004 result += sz;
2005 } else {
2006 result += sizeof(u64);
2007 }
2008 }
2009
2010 if (type & PERF_SAMPLE_STACK_USER) {
2011 sz = sample->user_stack.size;
2012 result += sizeof(u64);
2013 if (sz) {
2014 result += sz;
2015 result += sizeof(u64);
2016 }
2017 }
2018
2019 if (type & PERF_SAMPLE_WEIGHT)
2020 result += sizeof(u64);
2021
2022 if (type & PERF_SAMPLE_DATA_SRC)
2023 result += sizeof(u64);
2024
2025 if (type & PERF_SAMPLE_TRANSACTION)
2026 result += sizeof(u64);
2027
2028 if (type & PERF_SAMPLE_REGS_INTR) {
2029 if (sample->intr_regs.abi) {
2030 result += sizeof(u64);
2031 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2032 result += sz;
2033 } else {
2034 result += sizeof(u64);
2035 }
2036 }
2037
2038 return result;
2039 }
2040
2041 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2042 u64 read_format,
2043 const struct perf_sample *sample,
2044 bool swapped)
2045 {
2046 u64 *array;
2047 size_t sz;
2048 /*
2049 * used for cross-endian analysis. See git commit 65014ab3
2050 * for why this goofiness is needed.
2051 */
2052 union u64_swap u;
2053
2054 array = event->sample.array;
2055
2056 if (type & PERF_SAMPLE_IDENTIFIER) {
2057 *array = sample->id;
2058 array++;
2059 }
2060
2061 if (type & PERF_SAMPLE_IP) {
2062 *array = sample->ip;
2063 array++;
2064 }
2065
2066 if (type & PERF_SAMPLE_TID) {
2067 u.val32[0] = sample->pid;
2068 u.val32[1] = sample->tid;
2069 if (swapped) {
2070 /*
2071 * Inverse of what is done in perf_evsel__parse_sample
2072 */
2073 u.val32[0] = bswap_32(u.val32[0]);
2074 u.val32[1] = bswap_32(u.val32[1]);
2075 u.val64 = bswap_64(u.val64);
2076 }
2077
2078 *array = u.val64;
2079 array++;
2080 }
2081
2082 if (type & PERF_SAMPLE_TIME) {
2083 *array = sample->time;
2084 array++;
2085 }
2086
2087 if (type & PERF_SAMPLE_ADDR) {
2088 *array = sample->addr;
2089 array++;
2090 }
2091
2092 if (type & PERF_SAMPLE_ID) {
2093 *array = sample->id;
2094 array++;
2095 }
2096
2097 if (type & PERF_SAMPLE_STREAM_ID) {
2098 *array = sample->stream_id;
2099 array++;
2100 }
2101
2102 if (type & PERF_SAMPLE_CPU) {
2103 u.val32[0] = sample->cpu;
2104 if (swapped) {
2105 /*
2106 * Inverse of what is done in perf_evsel__parse_sample
2107 */
2108 u.val32[0] = bswap_32(u.val32[0]);
2109 u.val64 = bswap_64(u.val64);
2110 }
2111 *array = u.val64;
2112 array++;
2113 }
2114
2115 if (type & PERF_SAMPLE_PERIOD) {
2116 *array = sample->period;
2117 array++;
2118 }
2119
2120 if (type & PERF_SAMPLE_READ) {
2121 if (read_format & PERF_FORMAT_GROUP)
2122 *array = sample->read.group.nr;
2123 else
2124 *array = sample->read.one.value;
2125 array++;
2126
2127 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2128 *array = sample->read.time_enabled;
2129 array++;
2130 }
2131
2132 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2133 *array = sample->read.time_running;
2134 array++;
2135 }
2136
2137 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2138 if (read_format & PERF_FORMAT_GROUP) {
2139 sz = sample->read.group.nr *
2140 sizeof(struct sample_read_value);
2141 memcpy(array, sample->read.group.values, sz);
2142 array = (void *)array + sz;
2143 } else {
2144 *array = sample->read.one.id;
2145 array++;
2146 }
2147 }
2148
2149 if (type & PERF_SAMPLE_CALLCHAIN) {
2150 sz = (sample->callchain->nr + 1) * sizeof(u64);
2151 memcpy(array, sample->callchain, sz);
2152 array = (void *)array + sz;
2153 }
2154
2155 if (type & PERF_SAMPLE_RAW) {
2156 u.val32[0] = sample->raw_size;
2157 if (WARN_ONCE(swapped,
2158 "Endianness of raw data not corrected!\n")) {
2159 /*
2160 * Inverse of what is done in perf_evsel__parse_sample
2161 */
2162 u.val32[0] = bswap_32(u.val32[0]);
2163 u.val32[1] = bswap_32(u.val32[1]);
2164 u.val64 = bswap_64(u.val64);
2165 }
2166 *array = u.val64;
2167 array = (void *)array + sizeof(u32);
2168
2169 memcpy(array, sample->raw_data, sample->raw_size);
2170 array = (void *)array + sample->raw_size;
2171 }
2172
2173 if (type & PERF_SAMPLE_BRANCH_STACK) {
2174 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2175 sz += sizeof(u64);
2176 memcpy(array, sample->branch_stack, sz);
2177 array = (void *)array + sz;
2178 }
2179
2180 if (type & PERF_SAMPLE_REGS_USER) {
2181 if (sample->user_regs.abi) {
2182 *array++ = sample->user_regs.abi;
2183 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2184 memcpy(array, sample->user_regs.regs, sz);
2185 array = (void *)array + sz;
2186 } else {
2187 *array++ = 0;
2188 }
2189 }
2190
2191 if (type & PERF_SAMPLE_STACK_USER) {
2192 sz = sample->user_stack.size;
2193 *array++ = sz;
2194 if (sz) {
2195 memcpy(array, sample->user_stack.data, sz);
2196 array = (void *)array + sz;
2197 *array++ = sz;
2198 }
2199 }
2200
2201 if (type & PERF_SAMPLE_WEIGHT) {
2202 *array = sample->weight;
2203 array++;
2204 }
2205
2206 if (type & PERF_SAMPLE_DATA_SRC) {
2207 *array = sample->data_src;
2208 array++;
2209 }
2210
2211 if (type & PERF_SAMPLE_TRANSACTION) {
2212 *array = sample->transaction;
2213 array++;
2214 }
2215
2216 if (type & PERF_SAMPLE_REGS_INTR) {
2217 if (sample->intr_regs.abi) {
2218 *array++ = sample->intr_regs.abi;
2219 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2220 memcpy(array, sample->intr_regs.regs, sz);
2221 array = (void *)array + sz;
2222 } else {
2223 *array++ = 0;
2224 }
2225 }
2226
2227 return 0;
2228 }
2229
2230 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2231 {
2232 return pevent_find_field(evsel->tp_format, name);
2233 }
2234
2235 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2236 const char *name)
2237 {
2238 struct format_field *field = perf_evsel__field(evsel, name);
2239 int offset;
2240
2241 if (!field)
2242 return NULL;
2243
2244 offset = field->offset;
2245
2246 if (field->flags & FIELD_IS_DYNAMIC) {
2247 offset = *(int *)(sample->raw_data + field->offset);
2248 offset &= 0xffff;
2249 }
2250
2251 return sample->raw_data + offset;
2252 }
2253
2254 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2255 bool needs_swap)
2256 {
2257 u64 value;
2258 void *ptr = sample->raw_data + field->offset;
2259
2260 switch (field->size) {
2261 case 1:
2262 return *(u8 *)ptr;
2263 case 2:
2264 value = *(u16 *)ptr;
2265 break;
2266 case 4:
2267 value = *(u32 *)ptr;
2268 break;
2269 case 8:
2270 memcpy(&value, ptr, sizeof(u64));
2271 break;
2272 default:
2273 return 0;
2274 }
2275
2276 if (!needs_swap)
2277 return value;
2278
2279 switch (field->size) {
2280 case 2:
2281 return bswap_16(value);
2282 case 4:
2283 return bswap_32(value);
2284 case 8:
2285 return bswap_64(value);
2286 default:
2287 return 0;
2288 }
2289
2290 return 0;
2291 }
2292
2293 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2294 const char *name)
2295 {
2296 struct format_field *field = perf_evsel__field(evsel, name);
2297
2298 if (!field)
2299 return 0;
2300
2301 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2302 }
2303
2304 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2305 char *msg, size_t msgsize)
2306 {
2307 int paranoid;
2308
2309 if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2310 evsel->attr.type == PERF_TYPE_HARDWARE &&
2311 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2312 /*
2313 * If it's cycles then fall back to hrtimer based
2314 * cpu-clock-tick sw counter, which is always available even if
2315 * no PMU support.
2316 *
2317 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2318 * b0a873e).
2319 */
2320 scnprintf(msg, msgsize, "%s",
2321 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2322
2323 evsel->attr.type = PERF_TYPE_SOFTWARE;
2324 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2325
2326 zfree(&evsel->name);
2327 return true;
2328 } else if (err == EACCES && !evsel->attr.exclude_kernel &&
2329 (paranoid = perf_event_paranoid()) > 1) {
2330 const char *name = perf_evsel__name(evsel);
2331 char *new_name;
2332
2333 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2334 return false;
2335
2336 if (evsel->name)
2337 free(evsel->name);
2338 evsel->name = new_name;
2339 scnprintf(msg, msgsize,
2340 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2341 evsel->attr.exclude_kernel = 1;
2342
2343 return true;
2344 }
2345
2346 return false;
2347 }
2348
2349 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2350 int err, char *msg, size_t size)
2351 {
2352 char sbuf[STRERR_BUFSIZE];
2353
2354 switch (err) {
2355 case EPERM:
2356 case EACCES:
2357 return scnprintf(msg, size,
2358 "You may not have permission to collect %sstats.\n\n"
2359 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2360 "which controls use of the performance events system by\n"
2361 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2362 "The current value is %d:\n\n"
2363 " -1: Allow use of (almost) all events by all users\n"
2364 ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n"
2365 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2366 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN",
2367 target->system_wide ? "system-wide " : "",
2368 perf_event_paranoid());
2369 case ENOENT:
2370 return scnprintf(msg, size, "The %s event is not supported.",
2371 perf_evsel__name(evsel));
2372 case EMFILE:
2373 return scnprintf(msg, size, "%s",
2374 "Too many events are opened.\n"
2375 "Probably the maximum number of open file descriptors has been reached.\n"
2376 "Hint: Try again after reducing the number of events.\n"
2377 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2378 case ENOMEM:
2379 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2380 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2381 return scnprintf(msg, size,
2382 "Not enough memory to setup event with callchain.\n"
2383 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2384 "Hint: Current value: %d", sysctl_perf_event_max_stack);
2385 break;
2386 case ENODEV:
2387 if (target->cpu_list)
2388 return scnprintf(msg, size, "%s",
2389 "No such device - did you specify an out-of-range profile CPU?");
2390 break;
2391 case EOPNOTSUPP:
2392 if (evsel->attr.sample_period != 0)
2393 return scnprintf(msg, size, "%s",
2394 "PMU Hardware doesn't support sampling/overflow-interrupts.");
2395 if (evsel->attr.precise_ip)
2396 return scnprintf(msg, size, "%s",
2397 "\'precise\' request may not be supported. Try removing 'p' modifier.");
2398 #if defined(__i386__) || defined(__x86_64__)
2399 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2400 return scnprintf(msg, size, "%s",
2401 "No hardware sampling interrupt available.\n"
2402 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2403 #endif
2404 break;
2405 case EBUSY:
2406 if (find_process("oprofiled"))
2407 return scnprintf(msg, size,
2408 "The PMU counters are busy/taken by another profiler.\n"
2409 "We found oprofile daemon running, please stop it and try again.");
2410 break;
2411 case EINVAL:
2412 if (perf_missing_features.clockid)
2413 return scnprintf(msg, size, "clockid feature not supported.");
2414 if (perf_missing_features.clockid_wrong)
2415 return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2416 break;
2417 default:
2418 break;
2419 }
2420
2421 return scnprintf(msg, size,
2422 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2423 "/bin/dmesg may provide additional information.\n"
2424 "No CONFIG_PERF_EVENTS=y kernel support configured?",
2425 err, strerror_r(err, sbuf, sizeof(sbuf)),
2426 perf_evsel__name(evsel));
2427 }
This page took 0.081393 seconds and 6 git commands to generate.