31c4641fe5ff06641588bef5e4448641685e49f5
[deliverable/linux.git] / tools / perf / util / hist.c
1 #include "util.h"
2 #include "build-id.h"
3 #include "hist.h"
4 #include "session.h"
5 #include "sort.h"
6 #include "evlist.h"
7 #include "evsel.h"
8 #include "annotate.h"
9 #include "ui/progress.h"
10 #include <math.h>
11
12 static bool hists__filter_entry_by_dso(struct hists *hists,
13 struct hist_entry *he);
14 static bool hists__filter_entry_by_thread(struct hists *hists,
15 struct hist_entry *he);
16 static bool hists__filter_entry_by_symbol(struct hists *hists,
17 struct hist_entry *he);
18 static bool hists__filter_entry_by_socket(struct hists *hists,
19 struct hist_entry *he);
20
21 u16 hists__col_len(struct hists *hists, enum hist_column col)
22 {
23 return hists->col_len[col];
24 }
25
26 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
27 {
28 hists->col_len[col] = len;
29 }
30
31 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
32 {
33 if (len > hists__col_len(hists, col)) {
34 hists__set_col_len(hists, col, len);
35 return true;
36 }
37 return false;
38 }
39
40 void hists__reset_col_len(struct hists *hists)
41 {
42 enum hist_column col;
43
44 for (col = 0; col < HISTC_NR_COLS; ++col)
45 hists__set_col_len(hists, col, 0);
46 }
47
48 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
49 {
50 const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
51
52 if (hists__col_len(hists, dso) < unresolved_col_width &&
53 !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
54 !symbol_conf.dso_list)
55 hists__set_col_len(hists, dso, unresolved_col_width);
56 }
57
58 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
59 {
60 const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
61 int symlen;
62 u16 len;
63
64 /*
65 * +4 accounts for '[x] ' priv level info
66 * +2 accounts for 0x prefix on raw addresses
67 * +3 accounts for ' y ' symtab origin info
68 */
69 if (h->ms.sym) {
70 symlen = h->ms.sym->namelen + 4;
71 if (verbose)
72 symlen += BITS_PER_LONG / 4 + 2 + 3;
73 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
74 } else {
75 symlen = unresolved_col_width + 4 + 2;
76 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
77 hists__set_unres_dso_col_len(hists, HISTC_DSO);
78 }
79
80 len = thread__comm_len(h->thread);
81 if (hists__new_col_len(hists, HISTC_COMM, len))
82 hists__set_col_len(hists, HISTC_THREAD, len + 6);
83
84 if (h->ms.map) {
85 len = dso__name_len(h->ms.map->dso);
86 hists__new_col_len(hists, HISTC_DSO, len);
87 }
88
89 if (h->parent)
90 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
91
92 if (h->branch_info) {
93 if (h->branch_info->from.sym) {
94 symlen = (int)h->branch_info->from.sym->namelen + 4;
95 if (verbose)
96 symlen += BITS_PER_LONG / 4 + 2 + 3;
97 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
98
99 symlen = dso__name_len(h->branch_info->from.map->dso);
100 hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
101 } else {
102 symlen = unresolved_col_width + 4 + 2;
103 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
104 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
105 }
106
107 if (h->branch_info->to.sym) {
108 symlen = (int)h->branch_info->to.sym->namelen + 4;
109 if (verbose)
110 symlen += BITS_PER_LONG / 4 + 2 + 3;
111 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
112
113 symlen = dso__name_len(h->branch_info->to.map->dso);
114 hists__new_col_len(hists, HISTC_DSO_TO, symlen);
115 } else {
116 symlen = unresolved_col_width + 4 + 2;
117 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
118 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
119 }
120 }
121
122 if (h->mem_info) {
123 if (h->mem_info->daddr.sym) {
124 symlen = (int)h->mem_info->daddr.sym->namelen + 4
125 + unresolved_col_width + 2;
126 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
127 symlen);
128 hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
129 symlen + 1);
130 } else {
131 symlen = unresolved_col_width + 4 + 2;
132 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
133 symlen);
134 hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
135 symlen);
136 }
137
138 if (h->mem_info->iaddr.sym) {
139 symlen = (int)h->mem_info->iaddr.sym->namelen + 4
140 + unresolved_col_width + 2;
141 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
142 symlen);
143 } else {
144 symlen = unresolved_col_width + 4 + 2;
145 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
146 symlen);
147 }
148
149 if (h->mem_info->daddr.map) {
150 symlen = dso__name_len(h->mem_info->daddr.map->dso);
151 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
152 symlen);
153 } else {
154 symlen = unresolved_col_width + 4 + 2;
155 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
156 }
157 } else {
158 symlen = unresolved_col_width + 4 + 2;
159 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
160 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
161 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
162 }
163
164 hists__new_col_len(hists, HISTC_CPU, 3);
165 hists__new_col_len(hists, HISTC_SOCKET, 6);
166 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
167 hists__new_col_len(hists, HISTC_MEM_TLB, 22);
168 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
169 hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
170 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
171 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
172
173 if (h->srcline)
174 hists__new_col_len(hists, HISTC_SRCLINE, strlen(h->srcline));
175
176 if (h->srcfile)
177 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
178
179 if (h->transaction)
180 hists__new_col_len(hists, HISTC_TRANSACTION,
181 hist_entry__transaction_len());
182
183 if (h->trace_output)
184 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
185 }
186
187 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
188 {
189 struct rb_node *next = rb_first(&hists->entries);
190 struct hist_entry *n;
191 int row = 0;
192
193 hists__reset_col_len(hists);
194
195 while (next && row++ < max_rows) {
196 n = rb_entry(next, struct hist_entry, rb_node);
197 if (!n->filtered)
198 hists__calc_col_len(hists, n);
199 next = rb_next(&n->rb_node);
200 }
201 }
202
203 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
204 unsigned int cpumode, u64 period)
205 {
206 switch (cpumode) {
207 case PERF_RECORD_MISC_KERNEL:
208 he_stat->period_sys += period;
209 break;
210 case PERF_RECORD_MISC_USER:
211 he_stat->period_us += period;
212 break;
213 case PERF_RECORD_MISC_GUEST_KERNEL:
214 he_stat->period_guest_sys += period;
215 break;
216 case PERF_RECORD_MISC_GUEST_USER:
217 he_stat->period_guest_us += period;
218 break;
219 default:
220 break;
221 }
222 }
223
224 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
225 u64 weight)
226 {
227
228 he_stat->period += period;
229 he_stat->weight += weight;
230 he_stat->nr_events += 1;
231 }
232
233 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
234 {
235 dest->period += src->period;
236 dest->period_sys += src->period_sys;
237 dest->period_us += src->period_us;
238 dest->period_guest_sys += src->period_guest_sys;
239 dest->period_guest_us += src->period_guest_us;
240 dest->nr_events += src->nr_events;
241 dest->weight += src->weight;
242 }
243
244 static void he_stat__decay(struct he_stat *he_stat)
245 {
246 he_stat->period = (he_stat->period * 7) / 8;
247 he_stat->nr_events = (he_stat->nr_events * 7) / 8;
248 /* XXX need decay for weight too? */
249 }
250
251 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
252
253 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
254 {
255 u64 prev_period = he->stat.period;
256 u64 diff;
257
258 if (prev_period == 0)
259 return true;
260
261 he_stat__decay(&he->stat);
262 if (symbol_conf.cumulate_callchain)
263 he_stat__decay(he->stat_acc);
264 decay_callchain(he->callchain);
265
266 diff = prev_period - he->stat.period;
267
268 if (!he->depth) {
269 hists->stats.total_period -= diff;
270 if (!he->filtered)
271 hists->stats.total_non_filtered_period -= diff;
272 }
273
274 if (!he->leaf) {
275 struct hist_entry *child;
276 struct rb_node *node = rb_first(&he->hroot_out);
277 while (node) {
278 child = rb_entry(node, struct hist_entry, rb_node);
279 node = rb_next(node);
280
281 if (hists__decay_entry(hists, child))
282 hists__delete_entry(hists, child);
283 }
284 }
285
286 return he->stat.period == 0;
287 }
288
289 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
290 {
291 struct rb_root *root_in;
292 struct rb_root *root_out;
293
294 if (he->parent_he) {
295 root_in = &he->parent_he->hroot_in;
296 root_out = &he->parent_he->hroot_out;
297 } else {
298 if (sort__need_collapse)
299 root_in = &hists->entries_collapsed;
300 else
301 root_in = hists->entries_in;
302 root_out = &hists->entries;
303 }
304
305 rb_erase(&he->rb_node_in, root_in);
306 rb_erase(&he->rb_node, root_out);
307
308 --hists->nr_entries;
309 if (!he->filtered)
310 --hists->nr_non_filtered_entries;
311
312 hist_entry__delete(he);
313 }
314
315 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
316 {
317 struct rb_node *next = rb_first(&hists->entries);
318 struct hist_entry *n;
319
320 while (next) {
321 n = rb_entry(next, struct hist_entry, rb_node);
322 next = rb_next(&n->rb_node);
323 if (((zap_user && n->level == '.') ||
324 (zap_kernel && n->level != '.') ||
325 hists__decay_entry(hists, n))) {
326 hists__delete_entry(hists, n);
327 }
328 }
329 }
330
331 void hists__delete_entries(struct hists *hists)
332 {
333 struct rb_node *next = rb_first(&hists->entries);
334 struct hist_entry *n;
335
336 while (next) {
337 n = rb_entry(next, struct hist_entry, rb_node);
338 next = rb_next(&n->rb_node);
339
340 hists__delete_entry(hists, n);
341 }
342 }
343
344 /*
345 * histogram, sorted on item, collects periods
346 */
347
348 static struct hist_entry *hist_entry__new(struct hist_entry *template,
349 bool sample_self)
350 {
351 size_t callchain_size = 0;
352 struct hist_entry *he;
353
354 if (symbol_conf.use_callchain)
355 callchain_size = sizeof(struct callchain_root);
356
357 he = zalloc(sizeof(*he) + callchain_size);
358
359 if (he != NULL) {
360 *he = *template;
361
362 if (symbol_conf.cumulate_callchain) {
363 he->stat_acc = malloc(sizeof(he->stat));
364 if (he->stat_acc == NULL) {
365 free(he);
366 return NULL;
367 }
368 memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
369 if (!sample_self)
370 memset(&he->stat, 0, sizeof(he->stat));
371 }
372
373 map__get(he->ms.map);
374
375 if (he->branch_info) {
376 /*
377 * This branch info is (a part of) allocated from
378 * sample__resolve_bstack() and will be freed after
379 * adding new entries. So we need to save a copy.
380 */
381 he->branch_info = malloc(sizeof(*he->branch_info));
382 if (he->branch_info == NULL) {
383 map__zput(he->ms.map);
384 free(he->stat_acc);
385 free(he);
386 return NULL;
387 }
388
389 memcpy(he->branch_info, template->branch_info,
390 sizeof(*he->branch_info));
391
392 map__get(he->branch_info->from.map);
393 map__get(he->branch_info->to.map);
394 }
395
396 if (he->mem_info) {
397 map__get(he->mem_info->iaddr.map);
398 map__get(he->mem_info->daddr.map);
399 }
400
401 if (symbol_conf.use_callchain)
402 callchain_init(he->callchain);
403
404 if (he->raw_data) {
405 he->raw_data = memdup(he->raw_data, he->raw_size);
406
407 if (he->raw_data == NULL) {
408 map__put(he->ms.map);
409 if (he->branch_info) {
410 map__put(he->branch_info->from.map);
411 map__put(he->branch_info->to.map);
412 free(he->branch_info);
413 }
414 if (he->mem_info) {
415 map__put(he->mem_info->iaddr.map);
416 map__put(he->mem_info->daddr.map);
417 }
418 free(he->stat_acc);
419 free(he);
420 return NULL;
421 }
422 }
423 INIT_LIST_HEAD(&he->pairs.node);
424 thread__get(he->thread);
425
426 if (!symbol_conf.report_hierarchy)
427 he->leaf = true;
428 }
429
430 return he;
431 }
432
433 static u8 symbol__parent_filter(const struct symbol *parent)
434 {
435 if (symbol_conf.exclude_other && parent == NULL)
436 return 1 << HIST_FILTER__PARENT;
437 return 0;
438 }
439
440 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
441 {
442 if (!symbol_conf.use_callchain)
443 return;
444
445 he->hists->callchain_period += period;
446 if (!he->filtered)
447 he->hists->callchain_non_filtered_period += period;
448 }
449
450 static struct hist_entry *hists__findnew_entry(struct hists *hists,
451 struct hist_entry *entry,
452 struct addr_location *al,
453 bool sample_self)
454 {
455 struct rb_node **p;
456 struct rb_node *parent = NULL;
457 struct hist_entry *he;
458 int64_t cmp;
459 u64 period = entry->stat.period;
460 u64 weight = entry->stat.weight;
461
462 p = &hists->entries_in->rb_node;
463
464 while (*p != NULL) {
465 parent = *p;
466 he = rb_entry(parent, struct hist_entry, rb_node_in);
467
468 /*
469 * Make sure that it receives arguments in a same order as
470 * hist_entry__collapse() so that we can use an appropriate
471 * function when searching an entry regardless which sort
472 * keys were used.
473 */
474 cmp = hist_entry__cmp(he, entry);
475
476 if (!cmp) {
477 if (sample_self) {
478 he_stat__add_period(&he->stat, period, weight);
479 hist_entry__add_callchain_period(he, period);
480 }
481 if (symbol_conf.cumulate_callchain)
482 he_stat__add_period(he->stat_acc, period, weight);
483
484 /*
485 * This mem info was allocated from sample__resolve_mem
486 * and will not be used anymore.
487 */
488 zfree(&entry->mem_info);
489
490 /* If the map of an existing hist_entry has
491 * become out-of-date due to an exec() or
492 * similar, update it. Otherwise we will
493 * mis-adjust symbol addresses when computing
494 * the history counter to increment.
495 */
496 if (he->ms.map != entry->ms.map) {
497 map__put(he->ms.map);
498 he->ms.map = map__get(entry->ms.map);
499 }
500 goto out;
501 }
502
503 if (cmp < 0)
504 p = &(*p)->rb_left;
505 else
506 p = &(*p)->rb_right;
507 }
508
509 he = hist_entry__new(entry, sample_self);
510 if (!he)
511 return NULL;
512
513 if (sample_self)
514 hist_entry__add_callchain_period(he, period);
515 hists->nr_entries++;
516
517 rb_link_node(&he->rb_node_in, parent, p);
518 rb_insert_color(&he->rb_node_in, hists->entries_in);
519 out:
520 if (sample_self)
521 he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
522 if (symbol_conf.cumulate_callchain)
523 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
524 return he;
525 }
526
527 struct hist_entry *__hists__add_entry(struct hists *hists,
528 struct addr_location *al,
529 struct symbol *sym_parent,
530 struct branch_info *bi,
531 struct mem_info *mi,
532 struct perf_sample *sample,
533 bool sample_self)
534 {
535 struct hist_entry entry = {
536 .thread = al->thread,
537 .comm = thread__comm(al->thread),
538 .ms = {
539 .map = al->map,
540 .sym = al->sym,
541 },
542 .socket = al->socket,
543 .cpu = al->cpu,
544 .cpumode = al->cpumode,
545 .ip = al->addr,
546 .level = al->level,
547 .stat = {
548 .nr_events = 1,
549 .period = sample->period,
550 .weight = sample->weight,
551 },
552 .parent = sym_parent,
553 .filtered = symbol__parent_filter(sym_parent) | al->filtered,
554 .hists = hists,
555 .branch_info = bi,
556 .mem_info = mi,
557 .transaction = sample->transaction,
558 .raw_data = sample->raw_data,
559 .raw_size = sample->raw_size,
560 };
561
562 return hists__findnew_entry(hists, &entry, al, sample_self);
563 }
564
565 static int
566 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
567 struct addr_location *al __maybe_unused)
568 {
569 return 0;
570 }
571
572 static int
573 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
574 struct addr_location *al __maybe_unused)
575 {
576 return 0;
577 }
578
579 static int
580 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
581 {
582 struct perf_sample *sample = iter->sample;
583 struct mem_info *mi;
584
585 mi = sample__resolve_mem(sample, al);
586 if (mi == NULL)
587 return -ENOMEM;
588
589 iter->priv = mi;
590 return 0;
591 }
592
593 static int
594 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
595 {
596 u64 cost;
597 struct mem_info *mi = iter->priv;
598 struct hists *hists = evsel__hists(iter->evsel);
599 struct perf_sample *sample = iter->sample;
600 struct hist_entry *he;
601
602 if (mi == NULL)
603 return -EINVAL;
604
605 cost = sample->weight;
606 if (!cost)
607 cost = 1;
608
609 /*
610 * must pass period=weight in order to get the correct
611 * sorting from hists__collapse_resort() which is solely
612 * based on periods. We want sorting be done on nr_events * weight
613 * and this is indirectly achieved by passing period=weight here
614 * and the he_stat__add_period() function.
615 */
616 sample->period = cost;
617
618 he = __hists__add_entry(hists, al, iter->parent, NULL, mi,
619 sample, true);
620 if (!he)
621 return -ENOMEM;
622
623 iter->he = he;
624 return 0;
625 }
626
627 static int
628 iter_finish_mem_entry(struct hist_entry_iter *iter,
629 struct addr_location *al __maybe_unused)
630 {
631 struct perf_evsel *evsel = iter->evsel;
632 struct hists *hists = evsel__hists(evsel);
633 struct hist_entry *he = iter->he;
634 int err = -EINVAL;
635
636 if (he == NULL)
637 goto out;
638
639 hists__inc_nr_samples(hists, he->filtered);
640
641 err = hist_entry__append_callchain(he, iter->sample);
642
643 out:
644 /*
645 * We don't need to free iter->priv (mem_info) here since the mem info
646 * was either already freed in hists__findnew_entry() or passed to a
647 * new hist entry by hist_entry__new().
648 */
649 iter->priv = NULL;
650
651 iter->he = NULL;
652 return err;
653 }
654
655 static int
656 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
657 {
658 struct branch_info *bi;
659 struct perf_sample *sample = iter->sample;
660
661 bi = sample__resolve_bstack(sample, al);
662 if (!bi)
663 return -ENOMEM;
664
665 iter->curr = 0;
666 iter->total = sample->branch_stack->nr;
667
668 iter->priv = bi;
669 return 0;
670 }
671
672 static int
673 iter_add_single_branch_entry(struct hist_entry_iter *iter,
674 struct addr_location *al __maybe_unused)
675 {
676 /* to avoid calling callback function */
677 iter->he = NULL;
678
679 return 0;
680 }
681
682 static int
683 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
684 {
685 struct branch_info *bi = iter->priv;
686 int i = iter->curr;
687
688 if (bi == NULL)
689 return 0;
690
691 if (iter->curr >= iter->total)
692 return 0;
693
694 al->map = bi[i].to.map;
695 al->sym = bi[i].to.sym;
696 al->addr = bi[i].to.addr;
697 return 1;
698 }
699
700 static int
701 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
702 {
703 struct branch_info *bi;
704 struct perf_evsel *evsel = iter->evsel;
705 struct hists *hists = evsel__hists(evsel);
706 struct perf_sample *sample = iter->sample;
707 struct hist_entry *he = NULL;
708 int i = iter->curr;
709 int err = 0;
710
711 bi = iter->priv;
712
713 if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
714 goto out;
715
716 /*
717 * The report shows the percentage of total branches captured
718 * and not events sampled. Thus we use a pseudo period of 1.
719 */
720 sample->period = 1;
721 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
722
723 he = __hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
724 sample, true);
725 if (he == NULL)
726 return -ENOMEM;
727
728 hists__inc_nr_samples(hists, he->filtered);
729
730 out:
731 iter->he = he;
732 iter->curr++;
733 return err;
734 }
735
736 static int
737 iter_finish_branch_entry(struct hist_entry_iter *iter,
738 struct addr_location *al __maybe_unused)
739 {
740 zfree(&iter->priv);
741 iter->he = NULL;
742
743 return iter->curr >= iter->total ? 0 : -1;
744 }
745
746 static int
747 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
748 struct addr_location *al __maybe_unused)
749 {
750 return 0;
751 }
752
753 static int
754 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
755 {
756 struct perf_evsel *evsel = iter->evsel;
757 struct perf_sample *sample = iter->sample;
758 struct hist_entry *he;
759
760 he = __hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
761 sample, true);
762 if (he == NULL)
763 return -ENOMEM;
764
765 iter->he = he;
766 return 0;
767 }
768
769 static int
770 iter_finish_normal_entry(struct hist_entry_iter *iter,
771 struct addr_location *al __maybe_unused)
772 {
773 struct hist_entry *he = iter->he;
774 struct perf_evsel *evsel = iter->evsel;
775 struct perf_sample *sample = iter->sample;
776
777 if (he == NULL)
778 return 0;
779
780 iter->he = NULL;
781
782 hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
783
784 return hist_entry__append_callchain(he, sample);
785 }
786
787 static int
788 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
789 struct addr_location *al __maybe_unused)
790 {
791 struct hist_entry **he_cache;
792
793 callchain_cursor_commit(&callchain_cursor);
794
795 /*
796 * This is for detecting cycles or recursions so that they're
797 * cumulated only one time to prevent entries more than 100%
798 * overhead.
799 */
800 he_cache = malloc(sizeof(*he_cache) * (iter->max_stack + 1));
801 if (he_cache == NULL)
802 return -ENOMEM;
803
804 iter->priv = he_cache;
805 iter->curr = 0;
806
807 return 0;
808 }
809
810 static int
811 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
812 struct addr_location *al)
813 {
814 struct perf_evsel *evsel = iter->evsel;
815 struct hists *hists = evsel__hists(evsel);
816 struct perf_sample *sample = iter->sample;
817 struct hist_entry **he_cache = iter->priv;
818 struct hist_entry *he;
819 int err = 0;
820
821 he = __hists__add_entry(hists, al, iter->parent, NULL, NULL,
822 sample, true);
823 if (he == NULL)
824 return -ENOMEM;
825
826 iter->he = he;
827 he_cache[iter->curr++] = he;
828
829 hist_entry__append_callchain(he, sample);
830
831 /*
832 * We need to re-initialize the cursor since callchain_append()
833 * advanced the cursor to the end.
834 */
835 callchain_cursor_commit(&callchain_cursor);
836
837 hists__inc_nr_samples(hists, he->filtered);
838
839 return err;
840 }
841
842 static int
843 iter_next_cumulative_entry(struct hist_entry_iter *iter,
844 struct addr_location *al)
845 {
846 struct callchain_cursor_node *node;
847
848 node = callchain_cursor_current(&callchain_cursor);
849 if (node == NULL)
850 return 0;
851
852 return fill_callchain_info(al, node, iter->hide_unresolved);
853 }
854
855 static int
856 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
857 struct addr_location *al)
858 {
859 struct perf_evsel *evsel = iter->evsel;
860 struct perf_sample *sample = iter->sample;
861 struct hist_entry **he_cache = iter->priv;
862 struct hist_entry *he;
863 struct hist_entry he_tmp = {
864 .hists = evsel__hists(evsel),
865 .cpu = al->cpu,
866 .thread = al->thread,
867 .comm = thread__comm(al->thread),
868 .ip = al->addr,
869 .ms = {
870 .map = al->map,
871 .sym = al->sym,
872 },
873 .parent = iter->parent,
874 .raw_data = sample->raw_data,
875 .raw_size = sample->raw_size,
876 };
877 int i;
878 struct callchain_cursor cursor;
879
880 callchain_cursor_snapshot(&cursor, &callchain_cursor);
881
882 callchain_cursor_advance(&callchain_cursor);
883
884 /*
885 * Check if there's duplicate entries in the callchain.
886 * It's possible that it has cycles or recursive calls.
887 */
888 for (i = 0; i < iter->curr; i++) {
889 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
890 /* to avoid calling callback function */
891 iter->he = NULL;
892 return 0;
893 }
894 }
895
896 he = __hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
897 sample, false);
898 if (he == NULL)
899 return -ENOMEM;
900
901 iter->he = he;
902 he_cache[iter->curr++] = he;
903
904 if (symbol_conf.use_callchain)
905 callchain_append(he->callchain, &cursor, sample->period);
906 return 0;
907 }
908
909 static int
910 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
911 struct addr_location *al __maybe_unused)
912 {
913 zfree(&iter->priv);
914 iter->he = NULL;
915
916 return 0;
917 }
918
919 const struct hist_iter_ops hist_iter_mem = {
920 .prepare_entry = iter_prepare_mem_entry,
921 .add_single_entry = iter_add_single_mem_entry,
922 .next_entry = iter_next_nop_entry,
923 .add_next_entry = iter_add_next_nop_entry,
924 .finish_entry = iter_finish_mem_entry,
925 };
926
927 const struct hist_iter_ops hist_iter_branch = {
928 .prepare_entry = iter_prepare_branch_entry,
929 .add_single_entry = iter_add_single_branch_entry,
930 .next_entry = iter_next_branch_entry,
931 .add_next_entry = iter_add_next_branch_entry,
932 .finish_entry = iter_finish_branch_entry,
933 };
934
935 const struct hist_iter_ops hist_iter_normal = {
936 .prepare_entry = iter_prepare_normal_entry,
937 .add_single_entry = iter_add_single_normal_entry,
938 .next_entry = iter_next_nop_entry,
939 .add_next_entry = iter_add_next_nop_entry,
940 .finish_entry = iter_finish_normal_entry,
941 };
942
943 const struct hist_iter_ops hist_iter_cumulative = {
944 .prepare_entry = iter_prepare_cumulative_entry,
945 .add_single_entry = iter_add_single_cumulative_entry,
946 .next_entry = iter_next_cumulative_entry,
947 .add_next_entry = iter_add_next_cumulative_entry,
948 .finish_entry = iter_finish_cumulative_entry,
949 };
950
951 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
952 int max_stack_depth, void *arg)
953 {
954 int err, err2;
955
956 err = sample__resolve_callchain(iter->sample, &iter->parent,
957 iter->evsel, al, max_stack_depth);
958 if (err)
959 return err;
960
961 iter->max_stack = max_stack_depth;
962
963 err = iter->ops->prepare_entry(iter, al);
964 if (err)
965 goto out;
966
967 err = iter->ops->add_single_entry(iter, al);
968 if (err)
969 goto out;
970
971 if (iter->he && iter->add_entry_cb) {
972 err = iter->add_entry_cb(iter, al, true, arg);
973 if (err)
974 goto out;
975 }
976
977 while (iter->ops->next_entry(iter, al)) {
978 err = iter->ops->add_next_entry(iter, al);
979 if (err)
980 break;
981
982 if (iter->he && iter->add_entry_cb) {
983 err = iter->add_entry_cb(iter, al, false, arg);
984 if (err)
985 goto out;
986 }
987 }
988
989 out:
990 err2 = iter->ops->finish_entry(iter, al);
991 if (!err)
992 err = err2;
993
994 return err;
995 }
996
997 int64_t
998 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
999 {
1000 struct hists *hists = left->hists;
1001 struct perf_hpp_fmt *fmt;
1002 int64_t cmp = 0;
1003
1004 hists__for_each_sort_list(hists, fmt) {
1005 if (perf_hpp__is_dynamic_entry(fmt) &&
1006 !perf_hpp__defined_dynamic_entry(fmt, hists))
1007 continue;
1008
1009 cmp = fmt->cmp(fmt, left, right);
1010 if (cmp)
1011 break;
1012 }
1013
1014 return cmp;
1015 }
1016
1017 int64_t
1018 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1019 {
1020 struct hists *hists = left->hists;
1021 struct perf_hpp_fmt *fmt;
1022 int64_t cmp = 0;
1023
1024 hists__for_each_sort_list(hists, fmt) {
1025 if (perf_hpp__is_dynamic_entry(fmt) &&
1026 !perf_hpp__defined_dynamic_entry(fmt, hists))
1027 continue;
1028
1029 cmp = fmt->collapse(fmt, left, right);
1030 if (cmp)
1031 break;
1032 }
1033
1034 return cmp;
1035 }
1036
1037 void hist_entry__delete(struct hist_entry *he)
1038 {
1039 thread__zput(he->thread);
1040 map__zput(he->ms.map);
1041
1042 if (he->branch_info) {
1043 map__zput(he->branch_info->from.map);
1044 map__zput(he->branch_info->to.map);
1045 zfree(&he->branch_info);
1046 }
1047
1048 if (he->mem_info) {
1049 map__zput(he->mem_info->iaddr.map);
1050 map__zput(he->mem_info->daddr.map);
1051 zfree(&he->mem_info);
1052 }
1053
1054 zfree(&he->stat_acc);
1055 free_srcline(he->srcline);
1056 if (he->srcfile && he->srcfile[0])
1057 free(he->srcfile);
1058 free_callchain(he->callchain);
1059 free(he->trace_output);
1060 free(he->raw_data);
1061 free(he);
1062 }
1063
1064 /*
1065 * If this is not the last column, then we need to pad it according to the
1066 * pre-calculated max lenght for this column, otherwise don't bother adding
1067 * spaces because that would break viewing this with, for instance, 'less',
1068 * that would show tons of trailing spaces when a long C++ demangled method
1069 * names is sampled.
1070 */
1071 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1072 struct perf_hpp_fmt *fmt, int printed)
1073 {
1074 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1075 const int width = fmt->width(fmt, hpp, hists_to_evsel(he->hists));
1076 if (printed < width) {
1077 advance_hpp(hpp, printed);
1078 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1079 }
1080 }
1081
1082 return printed;
1083 }
1084
1085 /*
1086 * collapse the histogram
1087 */
1088
1089 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1090 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1091 enum hist_filter type);
1092
1093 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1094
1095 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1096 {
1097 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1098 }
1099
1100 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1101 enum hist_filter type,
1102 fmt_chk_fn check)
1103 {
1104 struct perf_hpp_fmt *fmt;
1105 bool type_match = false;
1106 struct hist_entry *parent = he->parent_he;
1107
1108 switch (type) {
1109 case HIST_FILTER__THREAD:
1110 if (symbol_conf.comm_list == NULL &&
1111 symbol_conf.pid_list == NULL &&
1112 symbol_conf.tid_list == NULL)
1113 return;
1114 break;
1115 case HIST_FILTER__DSO:
1116 if (symbol_conf.dso_list == NULL)
1117 return;
1118 break;
1119 case HIST_FILTER__SYMBOL:
1120 if (symbol_conf.sym_list == NULL)
1121 return;
1122 break;
1123 case HIST_FILTER__PARENT:
1124 case HIST_FILTER__GUEST:
1125 case HIST_FILTER__HOST:
1126 case HIST_FILTER__SOCKET:
1127 default:
1128 return;
1129 }
1130
1131 /* if it's filtered by own fmt, it has to have filter bits */
1132 perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1133 if (check(fmt)) {
1134 type_match = true;
1135 break;
1136 }
1137 }
1138
1139 if (type_match) {
1140 /*
1141 * If the filter is for current level entry, propagate
1142 * filter marker to parents. The marker bit was
1143 * already set by default so it only needs to clear
1144 * non-filtered entries.
1145 */
1146 if (!(he->filtered & (1 << type))) {
1147 while (parent) {
1148 parent->filtered &= ~(1 << type);
1149 parent = parent->parent_he;
1150 }
1151 }
1152 } else {
1153 /*
1154 * If current entry doesn't have matching formats, set
1155 * filter marker for upper level entries. it will be
1156 * cleared if its lower level entries is not filtered.
1157 *
1158 * For lower-level entries, it inherits parent's
1159 * filter bit so that lower level entries of a
1160 * non-filtered entry won't set the filter marker.
1161 */
1162 if (parent == NULL)
1163 he->filtered |= (1 << type);
1164 else
1165 he->filtered |= (parent->filtered & (1 << type));
1166 }
1167 }
1168
1169 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1170 {
1171 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1172 check_thread_entry);
1173
1174 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1175 perf_hpp__is_dso_entry);
1176
1177 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1178 perf_hpp__is_sym_entry);
1179
1180 hists__apply_filters(he->hists, he);
1181 }
1182
1183 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1184 struct rb_root *root,
1185 struct hist_entry *he,
1186 struct hist_entry *parent_he,
1187 struct perf_hpp_list *hpp_list)
1188 {
1189 struct rb_node **p = &root->rb_node;
1190 struct rb_node *parent = NULL;
1191 struct hist_entry *iter, *new;
1192 struct perf_hpp_fmt *fmt;
1193 int64_t cmp;
1194
1195 while (*p != NULL) {
1196 parent = *p;
1197 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1198
1199 cmp = 0;
1200 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1201 cmp = fmt->collapse(fmt, iter, he);
1202 if (cmp)
1203 break;
1204 }
1205
1206 if (!cmp) {
1207 he_stat__add_stat(&iter->stat, &he->stat);
1208 return iter;
1209 }
1210
1211 if (cmp < 0)
1212 p = &parent->rb_left;
1213 else
1214 p = &parent->rb_right;
1215 }
1216
1217 new = hist_entry__new(he, true);
1218 if (new == NULL)
1219 return NULL;
1220
1221 hists->nr_entries++;
1222
1223 /* save related format list for output */
1224 new->hpp_list = hpp_list;
1225 new->parent_he = parent_he;
1226
1227 hist_entry__apply_hierarchy_filters(new);
1228
1229 /* some fields are now passed to 'new' */
1230 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1231 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1232 he->trace_output = NULL;
1233 else
1234 new->trace_output = NULL;
1235
1236 if (perf_hpp__is_srcline_entry(fmt))
1237 he->srcline = NULL;
1238 else
1239 new->srcline = NULL;
1240
1241 if (perf_hpp__is_srcfile_entry(fmt))
1242 he->srcfile = NULL;
1243 else
1244 new->srcfile = NULL;
1245 }
1246
1247 rb_link_node(&new->rb_node_in, parent, p);
1248 rb_insert_color(&new->rb_node_in, root);
1249 return new;
1250 }
1251
1252 static int hists__hierarchy_insert_entry(struct hists *hists,
1253 struct rb_root *root,
1254 struct hist_entry *he)
1255 {
1256 struct perf_hpp_list_node *node;
1257 struct hist_entry *new_he = NULL;
1258 struct hist_entry *parent = NULL;
1259 int depth = 0;
1260 int ret = 0;
1261
1262 list_for_each_entry(node, &hists->hpp_formats, list) {
1263 /* skip period (overhead) and elided columns */
1264 if (node->level == 0 || node->skip)
1265 continue;
1266
1267 /* insert copy of 'he' for each fmt into the hierarchy */
1268 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1269 if (new_he == NULL) {
1270 ret = -1;
1271 break;
1272 }
1273
1274 root = &new_he->hroot_in;
1275 new_he->depth = depth++;
1276 parent = new_he;
1277 }
1278
1279 if (new_he) {
1280 new_he->leaf = true;
1281
1282 if (symbol_conf.use_callchain) {
1283 callchain_cursor_reset(&callchain_cursor);
1284 if (callchain_merge(&callchain_cursor,
1285 new_he->callchain,
1286 he->callchain) < 0)
1287 ret = -1;
1288 }
1289 }
1290
1291 /* 'he' is no longer used */
1292 hist_entry__delete(he);
1293
1294 /* return 0 (or -1) since it already applied filters */
1295 return ret;
1296 }
1297
1298 int hists__collapse_insert_entry(struct hists *hists, struct rb_root *root,
1299 struct hist_entry *he)
1300 {
1301 struct rb_node **p = &root->rb_node;
1302 struct rb_node *parent = NULL;
1303 struct hist_entry *iter;
1304 int64_t cmp;
1305
1306 if (symbol_conf.report_hierarchy)
1307 return hists__hierarchy_insert_entry(hists, root, he);
1308
1309 while (*p != NULL) {
1310 parent = *p;
1311 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1312
1313 cmp = hist_entry__collapse(iter, he);
1314
1315 if (!cmp) {
1316 int ret = 0;
1317
1318 he_stat__add_stat(&iter->stat, &he->stat);
1319 if (symbol_conf.cumulate_callchain)
1320 he_stat__add_stat(iter->stat_acc, he->stat_acc);
1321
1322 if (symbol_conf.use_callchain) {
1323 callchain_cursor_reset(&callchain_cursor);
1324 if (callchain_merge(&callchain_cursor,
1325 iter->callchain,
1326 he->callchain) < 0)
1327 ret = -1;
1328 }
1329 hist_entry__delete(he);
1330 return ret;
1331 }
1332
1333 if (cmp < 0)
1334 p = &(*p)->rb_left;
1335 else
1336 p = &(*p)->rb_right;
1337 }
1338 hists->nr_entries++;
1339
1340 rb_link_node(&he->rb_node_in, parent, p);
1341 rb_insert_color(&he->rb_node_in, root);
1342 return 1;
1343 }
1344
1345 struct rb_root *hists__get_rotate_entries_in(struct hists *hists)
1346 {
1347 struct rb_root *root;
1348
1349 pthread_mutex_lock(&hists->lock);
1350
1351 root = hists->entries_in;
1352 if (++hists->entries_in > &hists->entries_in_array[1])
1353 hists->entries_in = &hists->entries_in_array[0];
1354
1355 pthread_mutex_unlock(&hists->lock);
1356
1357 return root;
1358 }
1359
1360 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1361 {
1362 hists__filter_entry_by_dso(hists, he);
1363 hists__filter_entry_by_thread(hists, he);
1364 hists__filter_entry_by_symbol(hists, he);
1365 hists__filter_entry_by_socket(hists, he);
1366 }
1367
1368 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1369 {
1370 struct rb_root *root;
1371 struct rb_node *next;
1372 struct hist_entry *n;
1373 int ret;
1374
1375 if (!sort__need_collapse)
1376 return 0;
1377
1378 hists->nr_entries = 0;
1379
1380 root = hists__get_rotate_entries_in(hists);
1381
1382 next = rb_first(root);
1383
1384 while (next) {
1385 if (session_done())
1386 break;
1387 n = rb_entry(next, struct hist_entry, rb_node_in);
1388 next = rb_next(&n->rb_node_in);
1389
1390 rb_erase(&n->rb_node_in, root);
1391 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1392 if (ret < 0)
1393 return -1;
1394
1395 if (ret) {
1396 /*
1397 * If it wasn't combined with one of the entries already
1398 * collapsed, we need to apply the filters that may have
1399 * been set by, say, the hist_browser.
1400 */
1401 hists__apply_filters(hists, n);
1402 }
1403 if (prog)
1404 ui_progress__update(prog, 1);
1405 }
1406 return 0;
1407 }
1408
1409 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1410 {
1411 struct hists *hists = a->hists;
1412 struct perf_hpp_fmt *fmt;
1413 int64_t cmp = 0;
1414
1415 hists__for_each_sort_list(hists, fmt) {
1416 if (perf_hpp__should_skip(fmt, a->hists))
1417 continue;
1418
1419 cmp = fmt->sort(fmt, a, b);
1420 if (cmp)
1421 break;
1422 }
1423
1424 return cmp;
1425 }
1426
1427 static void hists__reset_filter_stats(struct hists *hists)
1428 {
1429 hists->nr_non_filtered_entries = 0;
1430 hists->stats.total_non_filtered_period = 0;
1431 }
1432
1433 void hists__reset_stats(struct hists *hists)
1434 {
1435 hists->nr_entries = 0;
1436 hists->stats.total_period = 0;
1437
1438 hists__reset_filter_stats(hists);
1439 }
1440
1441 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1442 {
1443 hists->nr_non_filtered_entries++;
1444 hists->stats.total_non_filtered_period += h->stat.period;
1445 }
1446
1447 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1448 {
1449 if (!h->filtered)
1450 hists__inc_filter_stats(hists, h);
1451
1452 hists->nr_entries++;
1453 hists->stats.total_period += h->stat.period;
1454 }
1455
1456 static void hierarchy_recalc_total_periods(struct hists *hists)
1457 {
1458 struct rb_node *node;
1459 struct hist_entry *he;
1460
1461 node = rb_first(&hists->entries);
1462
1463 hists->stats.total_period = 0;
1464 hists->stats.total_non_filtered_period = 0;
1465
1466 /*
1467 * recalculate total period using top-level entries only
1468 * since lower level entries only see non-filtered entries
1469 * but upper level entries have sum of both entries.
1470 */
1471 while (node) {
1472 he = rb_entry(node, struct hist_entry, rb_node);
1473 node = rb_next(node);
1474
1475 hists->stats.total_period += he->stat.period;
1476 if (!he->filtered)
1477 hists->stats.total_non_filtered_period += he->stat.period;
1478 }
1479 }
1480
1481 static void hierarchy_insert_output_entry(struct rb_root *root,
1482 struct hist_entry *he)
1483 {
1484 struct rb_node **p = &root->rb_node;
1485 struct rb_node *parent = NULL;
1486 struct hist_entry *iter;
1487 struct perf_hpp_fmt *fmt;
1488
1489 while (*p != NULL) {
1490 parent = *p;
1491 iter = rb_entry(parent, struct hist_entry, rb_node);
1492
1493 if (hist_entry__sort(he, iter) > 0)
1494 p = &parent->rb_left;
1495 else
1496 p = &parent->rb_right;
1497 }
1498
1499 rb_link_node(&he->rb_node, parent, p);
1500 rb_insert_color(&he->rb_node, root);
1501
1502 /* update column width of dynamic entry */
1503 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1504 if (perf_hpp__is_dynamic_entry(fmt))
1505 fmt->sort(fmt, he, NULL);
1506 }
1507 }
1508
1509 static void hists__hierarchy_output_resort(struct hists *hists,
1510 struct ui_progress *prog,
1511 struct rb_root *root_in,
1512 struct rb_root *root_out,
1513 u64 min_callchain_hits,
1514 bool use_callchain)
1515 {
1516 struct rb_node *node;
1517 struct hist_entry *he;
1518
1519 *root_out = RB_ROOT;
1520 node = rb_first(root_in);
1521
1522 while (node) {
1523 he = rb_entry(node, struct hist_entry, rb_node_in);
1524 node = rb_next(node);
1525
1526 hierarchy_insert_output_entry(root_out, he);
1527
1528 if (prog)
1529 ui_progress__update(prog, 1);
1530
1531 if (!he->leaf) {
1532 hists__hierarchy_output_resort(hists, prog,
1533 &he->hroot_in,
1534 &he->hroot_out,
1535 min_callchain_hits,
1536 use_callchain);
1537 hists->nr_entries++;
1538 if (!he->filtered) {
1539 hists->nr_non_filtered_entries++;
1540 hists__calc_col_len(hists, he);
1541 }
1542
1543 continue;
1544 }
1545
1546 if (!use_callchain)
1547 continue;
1548
1549 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1550 u64 total = he->stat.period;
1551
1552 if (symbol_conf.cumulate_callchain)
1553 total = he->stat_acc->period;
1554
1555 min_callchain_hits = total * (callchain_param.min_percent / 100);
1556 }
1557
1558 callchain_param.sort(&he->sorted_chain, he->callchain,
1559 min_callchain_hits, &callchain_param);
1560 }
1561 }
1562
1563 static void __hists__insert_output_entry(struct rb_root *entries,
1564 struct hist_entry *he,
1565 u64 min_callchain_hits,
1566 bool use_callchain)
1567 {
1568 struct rb_node **p = &entries->rb_node;
1569 struct rb_node *parent = NULL;
1570 struct hist_entry *iter;
1571 struct perf_hpp_fmt *fmt;
1572
1573 if (use_callchain) {
1574 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1575 u64 total = he->stat.period;
1576
1577 if (symbol_conf.cumulate_callchain)
1578 total = he->stat_acc->period;
1579
1580 min_callchain_hits = total * (callchain_param.min_percent / 100);
1581 }
1582 callchain_param.sort(&he->sorted_chain, he->callchain,
1583 min_callchain_hits, &callchain_param);
1584 }
1585
1586 while (*p != NULL) {
1587 parent = *p;
1588 iter = rb_entry(parent, struct hist_entry, rb_node);
1589
1590 if (hist_entry__sort(he, iter) > 0)
1591 p = &(*p)->rb_left;
1592 else
1593 p = &(*p)->rb_right;
1594 }
1595
1596 rb_link_node(&he->rb_node, parent, p);
1597 rb_insert_color(&he->rb_node, entries);
1598
1599 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1600 if (perf_hpp__is_dynamic_entry(fmt) &&
1601 perf_hpp__defined_dynamic_entry(fmt, he->hists))
1602 fmt->sort(fmt, he, NULL); /* update column width */
1603 }
1604 }
1605
1606 static void output_resort(struct hists *hists, struct ui_progress *prog,
1607 bool use_callchain)
1608 {
1609 struct rb_root *root;
1610 struct rb_node *next;
1611 struct hist_entry *n;
1612 u64 callchain_total;
1613 u64 min_callchain_hits;
1614
1615 callchain_total = hists->callchain_period;
1616 if (symbol_conf.filter_relative)
1617 callchain_total = hists->callchain_non_filtered_period;
1618
1619 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1620
1621 hists__reset_stats(hists);
1622 hists__reset_col_len(hists);
1623
1624 if (symbol_conf.report_hierarchy) {
1625 hists__hierarchy_output_resort(hists, prog,
1626 &hists->entries_collapsed,
1627 &hists->entries,
1628 min_callchain_hits,
1629 use_callchain);
1630 hierarchy_recalc_total_periods(hists);
1631 return;
1632 }
1633
1634 if (sort__need_collapse)
1635 root = &hists->entries_collapsed;
1636 else
1637 root = hists->entries_in;
1638
1639 next = rb_first(root);
1640 hists->entries = RB_ROOT;
1641
1642 while (next) {
1643 n = rb_entry(next, struct hist_entry, rb_node_in);
1644 next = rb_next(&n->rb_node_in);
1645
1646 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1647 hists__inc_stats(hists, n);
1648
1649 if (!n->filtered)
1650 hists__calc_col_len(hists, n);
1651
1652 if (prog)
1653 ui_progress__update(prog, 1);
1654 }
1655 }
1656
1657 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog)
1658 {
1659 bool use_callchain;
1660
1661 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1662 use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN;
1663 else
1664 use_callchain = symbol_conf.use_callchain;
1665
1666 output_resort(evsel__hists(evsel), prog, use_callchain);
1667 }
1668
1669 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1670 {
1671 output_resort(hists, prog, symbol_conf.use_callchain);
1672 }
1673
1674 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1675 {
1676 if (he->leaf || hmd == HMD_FORCE_SIBLING)
1677 return false;
1678
1679 if (he->unfolded || hmd == HMD_FORCE_CHILD)
1680 return true;
1681
1682 return false;
1683 }
1684
1685 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1686 {
1687 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1688
1689 while (can_goto_child(he, HMD_NORMAL)) {
1690 node = rb_last(&he->hroot_out);
1691 he = rb_entry(node, struct hist_entry, rb_node);
1692 }
1693 return node;
1694 }
1695
1696 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1697 {
1698 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1699
1700 if (can_goto_child(he, hmd))
1701 node = rb_first(&he->hroot_out);
1702 else
1703 node = rb_next(node);
1704
1705 while (node == NULL) {
1706 he = he->parent_he;
1707 if (he == NULL)
1708 break;
1709
1710 node = rb_next(&he->rb_node);
1711 }
1712 return node;
1713 }
1714
1715 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1716 {
1717 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1718
1719 node = rb_prev(node);
1720 if (node)
1721 return rb_hierarchy_last(node);
1722
1723 he = he->parent_he;
1724 if (he == NULL)
1725 return NULL;
1726
1727 return &he->rb_node;
1728 }
1729
1730 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1731 {
1732 struct rb_node *node;
1733 struct hist_entry *child;
1734 float percent;
1735
1736 if (he->leaf)
1737 return false;
1738
1739 node = rb_first(&he->hroot_out);
1740 child = rb_entry(node, struct hist_entry, rb_node);
1741
1742 while (node && child->filtered) {
1743 node = rb_next(node);
1744 child = rb_entry(node, struct hist_entry, rb_node);
1745 }
1746
1747 if (node)
1748 percent = hist_entry__get_percent_limit(child);
1749 else
1750 percent = 0;
1751
1752 return node && percent >= limit;
1753 }
1754
1755 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1756 enum hist_filter filter)
1757 {
1758 h->filtered &= ~(1 << filter);
1759
1760 if (symbol_conf.report_hierarchy) {
1761 struct hist_entry *parent = h->parent_he;
1762
1763 while (parent) {
1764 he_stat__add_stat(&parent->stat, &h->stat);
1765
1766 parent->filtered &= ~(1 << filter);
1767
1768 if (parent->filtered)
1769 goto next;
1770
1771 /* force fold unfiltered entry for simplicity */
1772 parent->unfolded = false;
1773 parent->has_no_entry = false;
1774 parent->row_offset = 0;
1775 parent->nr_rows = 0;
1776 next:
1777 parent = parent->parent_he;
1778 }
1779 }
1780
1781 if (h->filtered)
1782 return;
1783
1784 /* force fold unfiltered entry for simplicity */
1785 h->unfolded = false;
1786 h->has_no_entry = false;
1787 h->row_offset = 0;
1788 h->nr_rows = 0;
1789
1790 hists->stats.nr_non_filtered_samples += h->stat.nr_events;
1791
1792 hists__inc_filter_stats(hists, h);
1793 hists__calc_col_len(hists, h);
1794 }
1795
1796
1797 static bool hists__filter_entry_by_dso(struct hists *hists,
1798 struct hist_entry *he)
1799 {
1800 if (hists->dso_filter != NULL &&
1801 (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
1802 he->filtered |= (1 << HIST_FILTER__DSO);
1803 return true;
1804 }
1805
1806 return false;
1807 }
1808
1809 static bool hists__filter_entry_by_thread(struct hists *hists,
1810 struct hist_entry *he)
1811 {
1812 if (hists->thread_filter != NULL &&
1813 he->thread != hists->thread_filter) {
1814 he->filtered |= (1 << HIST_FILTER__THREAD);
1815 return true;
1816 }
1817
1818 return false;
1819 }
1820
1821 static bool hists__filter_entry_by_symbol(struct hists *hists,
1822 struct hist_entry *he)
1823 {
1824 if (hists->symbol_filter_str != NULL &&
1825 (!he->ms.sym || strstr(he->ms.sym->name,
1826 hists->symbol_filter_str) == NULL)) {
1827 he->filtered |= (1 << HIST_FILTER__SYMBOL);
1828 return true;
1829 }
1830
1831 return false;
1832 }
1833
1834 static bool hists__filter_entry_by_socket(struct hists *hists,
1835 struct hist_entry *he)
1836 {
1837 if ((hists->socket_filter > -1) &&
1838 (he->socket != hists->socket_filter)) {
1839 he->filtered |= (1 << HIST_FILTER__SOCKET);
1840 return true;
1841 }
1842
1843 return false;
1844 }
1845
1846 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
1847
1848 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
1849 {
1850 struct rb_node *nd;
1851
1852 hists->stats.nr_non_filtered_samples = 0;
1853
1854 hists__reset_filter_stats(hists);
1855 hists__reset_col_len(hists);
1856
1857 for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) {
1858 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1859
1860 if (filter(hists, h))
1861 continue;
1862
1863 hists__remove_entry_filter(hists, h, type);
1864 }
1865 }
1866
1867 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he)
1868 {
1869 struct rb_node **p = &root->rb_node;
1870 struct rb_node *parent = NULL;
1871 struct hist_entry *iter;
1872 struct rb_root new_root = RB_ROOT;
1873 struct rb_node *nd;
1874
1875 while (*p != NULL) {
1876 parent = *p;
1877 iter = rb_entry(parent, struct hist_entry, rb_node);
1878
1879 if (hist_entry__sort(he, iter) > 0)
1880 p = &(*p)->rb_left;
1881 else
1882 p = &(*p)->rb_right;
1883 }
1884
1885 rb_link_node(&he->rb_node, parent, p);
1886 rb_insert_color(&he->rb_node, root);
1887
1888 if (he->leaf || he->filtered)
1889 return;
1890
1891 nd = rb_first(&he->hroot_out);
1892 while (nd) {
1893 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1894
1895 nd = rb_next(nd);
1896 rb_erase(&h->rb_node, &he->hroot_out);
1897
1898 resort_filtered_entry(&new_root, h);
1899 }
1900
1901 he->hroot_out = new_root;
1902 }
1903
1904 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
1905 {
1906 struct rb_node *nd;
1907 struct rb_root new_root = RB_ROOT;
1908
1909 hists->stats.nr_non_filtered_samples = 0;
1910
1911 hists__reset_filter_stats(hists);
1912 hists__reset_col_len(hists);
1913
1914 nd = rb_first(&hists->entries);
1915 while (nd) {
1916 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1917 int ret;
1918
1919 ret = hist_entry__filter(h, type, arg);
1920
1921 /*
1922 * case 1. non-matching type
1923 * zero out the period, set filter marker and move to child
1924 */
1925 if (ret < 0) {
1926 memset(&h->stat, 0, sizeof(h->stat));
1927 h->filtered |= (1 << type);
1928
1929 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
1930 }
1931 /*
1932 * case 2. matched type (filter out)
1933 * set filter marker and move to next
1934 */
1935 else if (ret == 1) {
1936 h->filtered |= (1 << type);
1937
1938 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
1939 }
1940 /*
1941 * case 3. ok (not filtered)
1942 * add period to hists and parents, erase the filter marker
1943 * and move to next sibling
1944 */
1945 else {
1946 hists__remove_entry_filter(hists, h, type);
1947
1948 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
1949 }
1950 }
1951
1952 hierarchy_recalc_total_periods(hists);
1953
1954 /*
1955 * resort output after applying a new filter since filter in a lower
1956 * hierarchy can change periods in a upper hierarchy.
1957 */
1958 nd = rb_first(&hists->entries);
1959 while (nd) {
1960 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1961
1962 nd = rb_next(nd);
1963 rb_erase(&h->rb_node, &hists->entries);
1964
1965 resort_filtered_entry(&new_root, h);
1966 }
1967
1968 hists->entries = new_root;
1969 }
1970
1971 void hists__filter_by_thread(struct hists *hists)
1972 {
1973 if (symbol_conf.report_hierarchy)
1974 hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
1975 hists->thread_filter);
1976 else
1977 hists__filter_by_type(hists, HIST_FILTER__THREAD,
1978 hists__filter_entry_by_thread);
1979 }
1980
1981 void hists__filter_by_dso(struct hists *hists)
1982 {
1983 if (symbol_conf.report_hierarchy)
1984 hists__filter_hierarchy(hists, HIST_FILTER__DSO,
1985 hists->dso_filter);
1986 else
1987 hists__filter_by_type(hists, HIST_FILTER__DSO,
1988 hists__filter_entry_by_dso);
1989 }
1990
1991 void hists__filter_by_symbol(struct hists *hists)
1992 {
1993 if (symbol_conf.report_hierarchy)
1994 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
1995 hists->symbol_filter_str);
1996 else
1997 hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
1998 hists__filter_entry_by_symbol);
1999 }
2000
2001 void hists__filter_by_socket(struct hists *hists)
2002 {
2003 if (symbol_conf.report_hierarchy)
2004 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2005 &hists->socket_filter);
2006 else
2007 hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2008 hists__filter_entry_by_socket);
2009 }
2010
2011 void events_stats__inc(struct events_stats *stats, u32 type)
2012 {
2013 ++stats->nr_events[0];
2014 ++stats->nr_events[type];
2015 }
2016
2017 void hists__inc_nr_events(struct hists *hists, u32 type)
2018 {
2019 events_stats__inc(&hists->stats, type);
2020 }
2021
2022 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2023 {
2024 events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2025 if (!filtered)
2026 hists->stats.nr_non_filtered_samples++;
2027 }
2028
2029 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2030 struct hist_entry *pair)
2031 {
2032 struct rb_root *root;
2033 struct rb_node **p;
2034 struct rb_node *parent = NULL;
2035 struct hist_entry *he;
2036 int64_t cmp;
2037
2038 if (sort__need_collapse)
2039 root = &hists->entries_collapsed;
2040 else
2041 root = hists->entries_in;
2042
2043 p = &root->rb_node;
2044
2045 while (*p != NULL) {
2046 parent = *p;
2047 he = rb_entry(parent, struct hist_entry, rb_node_in);
2048
2049 cmp = hist_entry__collapse(he, pair);
2050
2051 if (!cmp)
2052 goto out;
2053
2054 if (cmp < 0)
2055 p = &(*p)->rb_left;
2056 else
2057 p = &(*p)->rb_right;
2058 }
2059
2060 he = hist_entry__new(pair, true);
2061 if (he) {
2062 memset(&he->stat, 0, sizeof(he->stat));
2063 he->hists = hists;
2064 rb_link_node(&he->rb_node_in, parent, p);
2065 rb_insert_color(&he->rb_node_in, root);
2066 hists__inc_stats(hists, he);
2067 he->dummy = true;
2068 }
2069 out:
2070 return he;
2071 }
2072
2073 static struct hist_entry *hists__find_entry(struct hists *hists,
2074 struct hist_entry *he)
2075 {
2076 struct rb_node *n;
2077
2078 if (sort__need_collapse)
2079 n = hists->entries_collapsed.rb_node;
2080 else
2081 n = hists->entries_in->rb_node;
2082
2083 while (n) {
2084 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2085 int64_t cmp = hist_entry__collapse(iter, he);
2086
2087 if (cmp < 0)
2088 n = n->rb_left;
2089 else if (cmp > 0)
2090 n = n->rb_right;
2091 else
2092 return iter;
2093 }
2094
2095 return NULL;
2096 }
2097
2098 /*
2099 * Look for pairs to link to the leader buckets (hist_entries):
2100 */
2101 void hists__match(struct hists *leader, struct hists *other)
2102 {
2103 struct rb_root *root;
2104 struct rb_node *nd;
2105 struct hist_entry *pos, *pair;
2106
2107 if (sort__need_collapse)
2108 root = &leader->entries_collapsed;
2109 else
2110 root = leader->entries_in;
2111
2112 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2113 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2114 pair = hists__find_entry(other, pos);
2115
2116 if (pair)
2117 hist_entry__add_pair(pair, pos);
2118 }
2119 }
2120
2121 /*
2122 * Look for entries in the other hists that are not present in the leader, if
2123 * we find them, just add a dummy entry on the leader hists, with period=0,
2124 * nr_events=0, to serve as the list header.
2125 */
2126 int hists__link(struct hists *leader, struct hists *other)
2127 {
2128 struct rb_root *root;
2129 struct rb_node *nd;
2130 struct hist_entry *pos, *pair;
2131
2132 if (sort__need_collapse)
2133 root = &other->entries_collapsed;
2134 else
2135 root = other->entries_in;
2136
2137 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2138 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2139
2140 if (!hist_entry__has_pairs(pos)) {
2141 pair = hists__add_dummy_entry(leader, pos);
2142 if (pair == NULL)
2143 return -1;
2144 hist_entry__add_pair(pos, pair);
2145 }
2146 }
2147
2148 return 0;
2149 }
2150
2151 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2152 struct perf_sample *sample, bool nonany_branch_mode)
2153 {
2154 struct branch_info *bi;
2155
2156 /* If we have branch cycles always annotate them. */
2157 if (bs && bs->nr && bs->entries[0].flags.cycles) {
2158 int i;
2159
2160 bi = sample__resolve_bstack(sample, al);
2161 if (bi) {
2162 struct addr_map_symbol *prev = NULL;
2163
2164 /*
2165 * Ignore errors, still want to process the
2166 * other entries.
2167 *
2168 * For non standard branch modes always
2169 * force no IPC (prev == NULL)
2170 *
2171 * Note that perf stores branches reversed from
2172 * program order!
2173 */
2174 for (i = bs->nr - 1; i >= 0; i--) {
2175 addr_map_symbol__account_cycles(&bi[i].from,
2176 nonany_branch_mode ? NULL : prev,
2177 bi[i].flags.cycles);
2178 prev = &bi[i].to;
2179 }
2180 free(bi);
2181 }
2182 }
2183 }
2184
2185 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp)
2186 {
2187 struct perf_evsel *pos;
2188 size_t ret = 0;
2189
2190 evlist__for_each(evlist, pos) {
2191 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2192 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2193 }
2194
2195 return ret;
2196 }
2197
2198
2199 u64 hists__total_period(struct hists *hists)
2200 {
2201 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2202 hists->stats.total_period;
2203 }
2204
2205 int parse_filter_percentage(const struct option *opt __maybe_unused,
2206 const char *arg, int unset __maybe_unused)
2207 {
2208 if (!strcmp(arg, "relative"))
2209 symbol_conf.filter_relative = true;
2210 else if (!strcmp(arg, "absolute"))
2211 symbol_conf.filter_relative = false;
2212 else
2213 return -1;
2214
2215 return 0;
2216 }
2217
2218 int perf_hist_config(const char *var, const char *value)
2219 {
2220 if (!strcmp(var, "hist.percentage"))
2221 return parse_filter_percentage(NULL, value, 0);
2222
2223 return 0;
2224 }
2225
2226 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2227 {
2228 memset(hists, 0, sizeof(*hists));
2229 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
2230 hists->entries_in = &hists->entries_in_array[0];
2231 hists->entries_collapsed = RB_ROOT;
2232 hists->entries = RB_ROOT;
2233 pthread_mutex_init(&hists->lock, NULL);
2234 hists->socket_filter = -1;
2235 hists->hpp_list = hpp_list;
2236 INIT_LIST_HEAD(&hists->hpp_formats);
2237 return 0;
2238 }
2239
2240 static void hists__delete_remaining_entries(struct rb_root *root)
2241 {
2242 struct rb_node *node;
2243 struct hist_entry *he;
2244
2245 while (!RB_EMPTY_ROOT(root)) {
2246 node = rb_first(root);
2247 rb_erase(node, root);
2248
2249 he = rb_entry(node, struct hist_entry, rb_node_in);
2250 hist_entry__delete(he);
2251 }
2252 }
2253
2254 static void hists__delete_all_entries(struct hists *hists)
2255 {
2256 hists__delete_entries(hists);
2257 hists__delete_remaining_entries(&hists->entries_in_array[0]);
2258 hists__delete_remaining_entries(&hists->entries_in_array[1]);
2259 hists__delete_remaining_entries(&hists->entries_collapsed);
2260 }
2261
2262 static void hists_evsel__exit(struct perf_evsel *evsel)
2263 {
2264 struct hists *hists = evsel__hists(evsel);
2265 struct perf_hpp_fmt *fmt, *pos;
2266 struct perf_hpp_list_node *node, *tmp;
2267
2268 hists__delete_all_entries(hists);
2269
2270 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2271 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2272 list_del(&fmt->list);
2273 free(fmt);
2274 }
2275 list_del(&node->list);
2276 free(node);
2277 }
2278 }
2279
2280 static int hists_evsel__init(struct perf_evsel *evsel)
2281 {
2282 struct hists *hists = evsel__hists(evsel);
2283
2284 __hists__init(hists, &perf_hpp_list);
2285 return 0;
2286 }
2287
2288 /*
2289 * XXX We probably need a hists_evsel__exit() to free the hist_entries
2290 * stored in the rbtree...
2291 */
2292
2293 int hists__init(void)
2294 {
2295 int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2296 hists_evsel__init,
2297 hists_evsel__exit);
2298 if (err)
2299 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2300
2301 return err;
2302 }
2303
2304 void perf_hpp_list__init(struct perf_hpp_list *list)
2305 {
2306 INIT_LIST_HEAD(&list->fields);
2307 INIT_LIST_HEAD(&list->sorts);
2308 }
This page took 0.108141 seconds and 4 git commands to generate.