1407d5107480bb8c082ce2121a59c5fe6c397c76
[deliverable/linux.git] / tools / perf / util / machine.c
1 #include "callchain.h"
2 #include "debug.h"
3 #include "event.h"
4 #include "evsel.h"
5 #include "hist.h"
6 #include "machine.h"
7 #include "map.h"
8 #include "sort.h"
9 #include "strlist.h"
10 #include "thread.h"
11 #include "vdso.h"
12 #include <stdbool.h>
13 #include <symbol/kallsyms.h>
14 #include "unwind.h"
15 #include "linux/hash.h"
16
17 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
18
19 static void dsos__init(struct dsos *dsos)
20 {
21 INIT_LIST_HEAD(&dsos->head);
22 dsos->root = RB_ROOT;
23 pthread_rwlock_init(&dsos->lock, NULL);
24 }
25
26 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
27 {
28 memset(machine, 0, sizeof(*machine));
29 map_groups__init(&machine->kmaps, machine);
30 RB_CLEAR_NODE(&machine->rb_node);
31 dsos__init(&machine->dsos);
32
33 machine->threads = RB_ROOT;
34 pthread_rwlock_init(&machine->threads_lock, NULL);
35 INIT_LIST_HEAD(&machine->dead_threads);
36 machine->last_match = NULL;
37
38 machine->vdso_info = NULL;
39 machine->env = NULL;
40
41 machine->pid = pid;
42
43 machine->symbol_filter = NULL;
44 machine->id_hdr_size = 0;
45 machine->comm_exec = false;
46 machine->kernel_start = 0;
47
48 memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
49
50 machine->root_dir = strdup(root_dir);
51 if (machine->root_dir == NULL)
52 return -ENOMEM;
53
54 if (pid != HOST_KERNEL_ID) {
55 struct thread *thread = machine__findnew_thread(machine, -1,
56 pid);
57 char comm[64];
58
59 if (thread == NULL)
60 return -ENOMEM;
61
62 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
63 thread__set_comm(thread, comm, 0);
64 thread__put(thread);
65 }
66
67 machine->current_tid = NULL;
68
69 return 0;
70 }
71
72 struct machine *machine__new_host(void)
73 {
74 struct machine *machine = malloc(sizeof(*machine));
75
76 if (machine != NULL) {
77 machine__init(machine, "", HOST_KERNEL_ID);
78
79 if (machine__create_kernel_maps(machine) < 0)
80 goto out_delete;
81 }
82
83 return machine;
84 out_delete:
85 free(machine);
86 return NULL;
87 }
88
89 static void dsos__purge(struct dsos *dsos)
90 {
91 struct dso *pos, *n;
92
93 pthread_rwlock_wrlock(&dsos->lock);
94
95 list_for_each_entry_safe(pos, n, &dsos->head, node) {
96 RB_CLEAR_NODE(&pos->rb_node);
97 pos->root = NULL;
98 list_del_init(&pos->node);
99 dso__put(pos);
100 }
101
102 pthread_rwlock_unlock(&dsos->lock);
103 }
104
105 static void dsos__exit(struct dsos *dsos)
106 {
107 dsos__purge(dsos);
108 pthread_rwlock_destroy(&dsos->lock);
109 }
110
111 void machine__delete_threads(struct machine *machine)
112 {
113 struct rb_node *nd;
114
115 pthread_rwlock_wrlock(&machine->threads_lock);
116 nd = rb_first(&machine->threads);
117 while (nd) {
118 struct thread *t = rb_entry(nd, struct thread, rb_node);
119
120 nd = rb_next(nd);
121 __machine__remove_thread(machine, t, false);
122 }
123 pthread_rwlock_unlock(&machine->threads_lock);
124 }
125
126 void machine__exit(struct machine *machine)
127 {
128 machine__destroy_kernel_maps(machine);
129 map_groups__exit(&machine->kmaps);
130 dsos__exit(&machine->dsos);
131 machine__exit_vdso(machine);
132 zfree(&machine->root_dir);
133 zfree(&machine->current_tid);
134 pthread_rwlock_destroy(&machine->threads_lock);
135 }
136
137 void machine__delete(struct machine *machine)
138 {
139 machine__exit(machine);
140 free(machine);
141 }
142
143 void machines__init(struct machines *machines)
144 {
145 machine__init(&machines->host, "", HOST_KERNEL_ID);
146 machines->guests = RB_ROOT;
147 machines->symbol_filter = NULL;
148 }
149
150 void machines__exit(struct machines *machines)
151 {
152 machine__exit(&machines->host);
153 /* XXX exit guest */
154 }
155
156 struct machine *machines__add(struct machines *machines, pid_t pid,
157 const char *root_dir)
158 {
159 struct rb_node **p = &machines->guests.rb_node;
160 struct rb_node *parent = NULL;
161 struct machine *pos, *machine = malloc(sizeof(*machine));
162
163 if (machine == NULL)
164 return NULL;
165
166 if (machine__init(machine, root_dir, pid) != 0) {
167 free(machine);
168 return NULL;
169 }
170
171 machine->symbol_filter = machines->symbol_filter;
172
173 while (*p != NULL) {
174 parent = *p;
175 pos = rb_entry(parent, struct machine, rb_node);
176 if (pid < pos->pid)
177 p = &(*p)->rb_left;
178 else
179 p = &(*p)->rb_right;
180 }
181
182 rb_link_node(&machine->rb_node, parent, p);
183 rb_insert_color(&machine->rb_node, &machines->guests);
184
185 return machine;
186 }
187
188 void machines__set_symbol_filter(struct machines *machines,
189 symbol_filter_t symbol_filter)
190 {
191 struct rb_node *nd;
192
193 machines->symbol_filter = symbol_filter;
194 machines->host.symbol_filter = symbol_filter;
195
196 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
197 struct machine *machine = rb_entry(nd, struct machine, rb_node);
198
199 machine->symbol_filter = symbol_filter;
200 }
201 }
202
203 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
204 {
205 struct rb_node *nd;
206
207 machines->host.comm_exec = comm_exec;
208
209 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
210 struct machine *machine = rb_entry(nd, struct machine, rb_node);
211
212 machine->comm_exec = comm_exec;
213 }
214 }
215
216 struct machine *machines__find(struct machines *machines, pid_t pid)
217 {
218 struct rb_node **p = &machines->guests.rb_node;
219 struct rb_node *parent = NULL;
220 struct machine *machine;
221 struct machine *default_machine = NULL;
222
223 if (pid == HOST_KERNEL_ID)
224 return &machines->host;
225
226 while (*p != NULL) {
227 parent = *p;
228 machine = rb_entry(parent, struct machine, rb_node);
229 if (pid < machine->pid)
230 p = &(*p)->rb_left;
231 else if (pid > machine->pid)
232 p = &(*p)->rb_right;
233 else
234 return machine;
235 if (!machine->pid)
236 default_machine = machine;
237 }
238
239 return default_machine;
240 }
241
242 struct machine *machines__findnew(struct machines *machines, pid_t pid)
243 {
244 char path[PATH_MAX];
245 const char *root_dir = "";
246 struct machine *machine = machines__find(machines, pid);
247
248 if (machine && (machine->pid == pid))
249 goto out;
250
251 if ((pid != HOST_KERNEL_ID) &&
252 (pid != DEFAULT_GUEST_KERNEL_ID) &&
253 (symbol_conf.guestmount)) {
254 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
255 if (access(path, R_OK)) {
256 static struct strlist *seen;
257
258 if (!seen)
259 seen = strlist__new(NULL, NULL);
260
261 if (!strlist__has_entry(seen, path)) {
262 pr_err("Can't access file %s\n", path);
263 strlist__add(seen, path);
264 }
265 machine = NULL;
266 goto out;
267 }
268 root_dir = path;
269 }
270
271 machine = machines__add(machines, pid, root_dir);
272 out:
273 return machine;
274 }
275
276 void machines__process_guests(struct machines *machines,
277 machine__process_t process, void *data)
278 {
279 struct rb_node *nd;
280
281 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
282 struct machine *pos = rb_entry(nd, struct machine, rb_node);
283 process(pos, data);
284 }
285 }
286
287 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
288 {
289 if (machine__is_host(machine))
290 snprintf(bf, size, "[%s]", "kernel.kallsyms");
291 else if (machine__is_default_guest(machine))
292 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
293 else {
294 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
295 machine->pid);
296 }
297
298 return bf;
299 }
300
301 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
302 {
303 struct rb_node *node;
304 struct machine *machine;
305
306 machines->host.id_hdr_size = id_hdr_size;
307
308 for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
309 machine = rb_entry(node, struct machine, rb_node);
310 machine->id_hdr_size = id_hdr_size;
311 }
312
313 return;
314 }
315
316 static void machine__update_thread_pid(struct machine *machine,
317 struct thread *th, pid_t pid)
318 {
319 struct thread *leader;
320
321 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
322 return;
323
324 th->pid_ = pid;
325
326 if (th->pid_ == th->tid)
327 return;
328
329 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
330 if (!leader)
331 goto out_err;
332
333 if (!leader->mg)
334 leader->mg = map_groups__new(machine);
335
336 if (!leader->mg)
337 goto out_err;
338
339 if (th->mg == leader->mg)
340 return;
341
342 if (th->mg) {
343 /*
344 * Maps are created from MMAP events which provide the pid and
345 * tid. Consequently there never should be any maps on a thread
346 * with an unknown pid. Just print an error if there are.
347 */
348 if (!map_groups__empty(th->mg))
349 pr_err("Discarding thread maps for %d:%d\n",
350 th->pid_, th->tid);
351 map_groups__put(th->mg);
352 }
353
354 th->mg = map_groups__get(leader->mg);
355
356 return;
357
358 out_err:
359 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
360 }
361
362 static struct thread *____machine__findnew_thread(struct machine *machine,
363 pid_t pid, pid_t tid,
364 bool create)
365 {
366 struct rb_node **p = &machine->threads.rb_node;
367 struct rb_node *parent = NULL;
368 struct thread *th;
369
370 /*
371 * Front-end cache - TID lookups come in blocks,
372 * so most of the time we dont have to look up
373 * the full rbtree:
374 */
375 th = machine->last_match;
376 if (th != NULL) {
377 if (th->tid == tid) {
378 machine__update_thread_pid(machine, th, pid);
379 return th;
380 }
381
382 machine->last_match = NULL;
383 }
384
385 while (*p != NULL) {
386 parent = *p;
387 th = rb_entry(parent, struct thread, rb_node);
388
389 if (th->tid == tid) {
390 machine->last_match = th;
391 machine__update_thread_pid(machine, th, pid);
392 return th;
393 }
394
395 if (tid < th->tid)
396 p = &(*p)->rb_left;
397 else
398 p = &(*p)->rb_right;
399 }
400
401 if (!create)
402 return NULL;
403
404 th = thread__new(pid, tid);
405 if (th != NULL) {
406 rb_link_node(&th->rb_node, parent, p);
407 rb_insert_color(&th->rb_node, &machine->threads);
408
409 /*
410 * We have to initialize map_groups separately
411 * after rb tree is updated.
412 *
413 * The reason is that we call machine__findnew_thread
414 * within thread__init_map_groups to find the thread
415 * leader and that would screwed the rb tree.
416 */
417 if (thread__init_map_groups(th, machine)) {
418 rb_erase_init(&th->rb_node, &machine->threads);
419 RB_CLEAR_NODE(&th->rb_node);
420 thread__delete(th);
421 return NULL;
422 }
423 /*
424 * It is now in the rbtree, get a ref
425 */
426 thread__get(th);
427 machine->last_match = th;
428 }
429
430 return th;
431 }
432
433 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
434 {
435 return ____machine__findnew_thread(machine, pid, tid, true);
436 }
437
438 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
439 pid_t tid)
440 {
441 struct thread *th;
442
443 pthread_rwlock_wrlock(&machine->threads_lock);
444 th = thread__get(__machine__findnew_thread(machine, pid, tid));
445 pthread_rwlock_unlock(&machine->threads_lock);
446 return th;
447 }
448
449 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
450 pid_t tid)
451 {
452 struct thread *th;
453 pthread_rwlock_rdlock(&machine->threads_lock);
454 th = thread__get(____machine__findnew_thread(machine, pid, tid, false));
455 pthread_rwlock_unlock(&machine->threads_lock);
456 return th;
457 }
458
459 struct comm *machine__thread_exec_comm(struct machine *machine,
460 struct thread *thread)
461 {
462 if (machine->comm_exec)
463 return thread__exec_comm(thread);
464 else
465 return thread__comm(thread);
466 }
467
468 int machine__process_comm_event(struct machine *machine, union perf_event *event,
469 struct perf_sample *sample)
470 {
471 struct thread *thread = machine__findnew_thread(machine,
472 event->comm.pid,
473 event->comm.tid);
474 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
475 int err = 0;
476
477 if (exec)
478 machine->comm_exec = true;
479
480 if (dump_trace)
481 perf_event__fprintf_comm(event, stdout);
482
483 if (thread == NULL ||
484 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
485 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
486 err = -1;
487 }
488
489 thread__put(thread);
490
491 return err;
492 }
493
494 int machine__process_lost_event(struct machine *machine __maybe_unused,
495 union perf_event *event, struct perf_sample *sample __maybe_unused)
496 {
497 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
498 event->lost.id, event->lost.lost);
499 return 0;
500 }
501
502 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
503 union perf_event *event, struct perf_sample *sample)
504 {
505 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
506 sample->id, event->lost_samples.lost);
507 return 0;
508 }
509
510 static struct dso *machine__findnew_module_dso(struct machine *machine,
511 struct kmod_path *m,
512 const char *filename)
513 {
514 struct dso *dso;
515
516 pthread_rwlock_wrlock(&machine->dsos.lock);
517
518 dso = __dsos__find(&machine->dsos, m->name, true);
519 if (!dso) {
520 dso = __dsos__addnew(&machine->dsos, m->name);
521 if (dso == NULL)
522 goto out_unlock;
523
524 if (machine__is_host(machine))
525 dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
526 else
527 dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
528
529 /* _KMODULE_COMP should be next to _KMODULE */
530 if (m->kmod && m->comp)
531 dso->symtab_type++;
532
533 dso__set_short_name(dso, strdup(m->name), true);
534 dso__set_long_name(dso, strdup(filename), true);
535 }
536
537 dso__get(dso);
538 out_unlock:
539 pthread_rwlock_unlock(&machine->dsos.lock);
540 return dso;
541 }
542
543 int machine__process_aux_event(struct machine *machine __maybe_unused,
544 union perf_event *event)
545 {
546 if (dump_trace)
547 perf_event__fprintf_aux(event, stdout);
548 return 0;
549 }
550
551 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
552 union perf_event *event)
553 {
554 if (dump_trace)
555 perf_event__fprintf_itrace_start(event, stdout);
556 return 0;
557 }
558
559 int machine__process_switch_event(struct machine *machine __maybe_unused,
560 union perf_event *event)
561 {
562 if (dump_trace)
563 perf_event__fprintf_switch(event, stdout);
564 return 0;
565 }
566
567 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
568 {
569 const char *dup_filename;
570
571 if (!filename || !dso || !dso->long_name)
572 return;
573 if (dso->long_name[0] != '[')
574 return;
575 if (!strchr(filename, '/'))
576 return;
577
578 dup_filename = strdup(filename);
579 if (!dup_filename)
580 return;
581
582 dso__set_long_name(dso, dup_filename, true);
583 }
584
585 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
586 const char *filename)
587 {
588 struct map *map = NULL;
589 struct dso *dso = NULL;
590 struct kmod_path m;
591
592 if (kmod_path__parse_name(&m, filename))
593 return NULL;
594
595 map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
596 m.name);
597 if (map) {
598 /*
599 * If the map's dso is an offline module, give dso__load()
600 * a chance to find the file path of that module by fixing
601 * long_name.
602 */
603 dso__adjust_kmod_long_name(map->dso, filename);
604 goto out;
605 }
606
607 dso = machine__findnew_module_dso(machine, &m, filename);
608 if (dso == NULL)
609 goto out;
610
611 map = map__new2(start, dso, MAP__FUNCTION);
612 if (map == NULL)
613 goto out;
614
615 map_groups__insert(&machine->kmaps, map);
616
617 /* Put the map here because map_groups__insert alread got it */
618 map__put(map);
619 out:
620 /* put the dso here, corresponding to machine__findnew_module_dso */
621 dso__put(dso);
622 free(m.name);
623 return map;
624 }
625
626 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
627 {
628 struct rb_node *nd;
629 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
630
631 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
632 struct machine *pos = rb_entry(nd, struct machine, rb_node);
633 ret += __dsos__fprintf(&pos->dsos.head, fp);
634 }
635
636 return ret;
637 }
638
639 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
640 bool (skip)(struct dso *dso, int parm), int parm)
641 {
642 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
643 }
644
645 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
646 bool (skip)(struct dso *dso, int parm), int parm)
647 {
648 struct rb_node *nd;
649 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
650
651 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
652 struct machine *pos = rb_entry(nd, struct machine, rb_node);
653 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
654 }
655 return ret;
656 }
657
658 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
659 {
660 int i;
661 size_t printed = 0;
662 struct dso *kdso = machine__kernel_map(machine)->dso;
663
664 if (kdso->has_build_id) {
665 char filename[PATH_MAX];
666 if (dso__build_id_filename(kdso, filename, sizeof(filename)))
667 printed += fprintf(fp, "[0] %s\n", filename);
668 }
669
670 for (i = 0; i < vmlinux_path__nr_entries; ++i)
671 printed += fprintf(fp, "[%d] %s\n",
672 i + kdso->has_build_id, vmlinux_path[i]);
673
674 return printed;
675 }
676
677 size_t machine__fprintf(struct machine *machine, FILE *fp)
678 {
679 size_t ret = 0;
680 struct rb_node *nd;
681
682 pthread_rwlock_rdlock(&machine->threads_lock);
683
684 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
685 struct thread *pos = rb_entry(nd, struct thread, rb_node);
686
687 ret += thread__fprintf(pos, fp);
688 }
689
690 pthread_rwlock_unlock(&machine->threads_lock);
691
692 return ret;
693 }
694
695 static struct dso *machine__get_kernel(struct machine *machine)
696 {
697 const char *vmlinux_name = NULL;
698 struct dso *kernel;
699
700 if (machine__is_host(machine)) {
701 vmlinux_name = symbol_conf.vmlinux_name;
702 if (!vmlinux_name)
703 vmlinux_name = "[kernel.kallsyms]";
704
705 kernel = machine__findnew_kernel(machine, vmlinux_name,
706 "[kernel]", DSO_TYPE_KERNEL);
707 } else {
708 char bf[PATH_MAX];
709
710 if (machine__is_default_guest(machine))
711 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
712 if (!vmlinux_name)
713 vmlinux_name = machine__mmap_name(machine, bf,
714 sizeof(bf));
715
716 kernel = machine__findnew_kernel(machine, vmlinux_name,
717 "[guest.kernel]",
718 DSO_TYPE_GUEST_KERNEL);
719 }
720
721 if (kernel != NULL && (!kernel->has_build_id))
722 dso__read_running_kernel_build_id(kernel, machine);
723
724 return kernel;
725 }
726
727 struct process_args {
728 u64 start;
729 };
730
731 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
732 size_t bufsz)
733 {
734 if (machine__is_default_guest(machine))
735 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
736 else
737 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
738 }
739
740 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
741
742 /* Figure out the start address of kernel map from /proc/kallsyms.
743 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
744 * symbol_name if it's not that important.
745 */
746 static u64 machine__get_running_kernel_start(struct machine *machine,
747 const char **symbol_name)
748 {
749 char filename[PATH_MAX];
750 int i;
751 const char *name;
752 u64 addr = 0;
753
754 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
755
756 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
757 return 0;
758
759 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
760 addr = kallsyms__get_function_start(filename, name);
761 if (addr)
762 break;
763 }
764
765 if (symbol_name)
766 *symbol_name = name;
767
768 return addr;
769 }
770
771 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
772 {
773 enum map_type type;
774 u64 start = machine__get_running_kernel_start(machine, NULL);
775
776 /* In case of renewal the kernel map, destroy previous one */
777 machine__destroy_kernel_maps(machine);
778
779 for (type = 0; type < MAP__NR_TYPES; ++type) {
780 struct kmap *kmap;
781 struct map *map;
782
783 machine->vmlinux_maps[type] = map__new2(start, kernel, type);
784 if (machine->vmlinux_maps[type] == NULL)
785 return -1;
786
787 machine->vmlinux_maps[type]->map_ip =
788 machine->vmlinux_maps[type]->unmap_ip =
789 identity__map_ip;
790 map = __machine__kernel_map(machine, type);
791 kmap = map__kmap(map);
792 if (!kmap)
793 return -1;
794
795 kmap->kmaps = &machine->kmaps;
796 map_groups__insert(&machine->kmaps, map);
797 }
798
799 return 0;
800 }
801
802 void machine__destroy_kernel_maps(struct machine *machine)
803 {
804 enum map_type type;
805
806 for (type = 0; type < MAP__NR_TYPES; ++type) {
807 struct kmap *kmap;
808 struct map *map = __machine__kernel_map(machine, type);
809
810 if (map == NULL)
811 continue;
812
813 kmap = map__kmap(map);
814 map_groups__remove(&machine->kmaps, map);
815 if (kmap && kmap->ref_reloc_sym) {
816 /*
817 * ref_reloc_sym is shared among all maps, so free just
818 * on one of them.
819 */
820 if (type == MAP__FUNCTION) {
821 zfree((char **)&kmap->ref_reloc_sym->name);
822 zfree(&kmap->ref_reloc_sym);
823 } else
824 kmap->ref_reloc_sym = NULL;
825 }
826
827 map__put(machine->vmlinux_maps[type]);
828 machine->vmlinux_maps[type] = NULL;
829 }
830 }
831
832 int machines__create_guest_kernel_maps(struct machines *machines)
833 {
834 int ret = 0;
835 struct dirent **namelist = NULL;
836 int i, items = 0;
837 char path[PATH_MAX];
838 pid_t pid;
839 char *endp;
840
841 if (symbol_conf.default_guest_vmlinux_name ||
842 symbol_conf.default_guest_modules ||
843 symbol_conf.default_guest_kallsyms) {
844 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
845 }
846
847 if (symbol_conf.guestmount) {
848 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
849 if (items <= 0)
850 return -ENOENT;
851 for (i = 0; i < items; i++) {
852 if (!isdigit(namelist[i]->d_name[0])) {
853 /* Filter out . and .. */
854 continue;
855 }
856 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
857 if ((*endp != '\0') ||
858 (endp == namelist[i]->d_name) ||
859 (errno == ERANGE)) {
860 pr_debug("invalid directory (%s). Skipping.\n",
861 namelist[i]->d_name);
862 continue;
863 }
864 sprintf(path, "%s/%s/proc/kallsyms",
865 symbol_conf.guestmount,
866 namelist[i]->d_name);
867 ret = access(path, R_OK);
868 if (ret) {
869 pr_debug("Can't access file %s\n", path);
870 goto failure;
871 }
872 machines__create_kernel_maps(machines, pid);
873 }
874 failure:
875 free(namelist);
876 }
877
878 return ret;
879 }
880
881 void machines__destroy_kernel_maps(struct machines *machines)
882 {
883 struct rb_node *next = rb_first(&machines->guests);
884
885 machine__destroy_kernel_maps(&machines->host);
886
887 while (next) {
888 struct machine *pos = rb_entry(next, struct machine, rb_node);
889
890 next = rb_next(&pos->rb_node);
891 rb_erase(&pos->rb_node, &machines->guests);
892 machine__delete(pos);
893 }
894 }
895
896 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
897 {
898 struct machine *machine = machines__findnew(machines, pid);
899
900 if (machine == NULL)
901 return -1;
902
903 return machine__create_kernel_maps(machine);
904 }
905
906 int machine__load_kallsyms(struct machine *machine, const char *filename,
907 enum map_type type, symbol_filter_t filter)
908 {
909 struct map *map = machine__kernel_map(machine);
910 int ret = dso__load_kallsyms(map->dso, filename, map, filter);
911
912 if (ret > 0) {
913 dso__set_loaded(map->dso, type);
914 /*
915 * Since /proc/kallsyms will have multiple sessions for the
916 * kernel, with modules between them, fixup the end of all
917 * sections.
918 */
919 __map_groups__fixup_end(&machine->kmaps, type);
920 }
921
922 return ret;
923 }
924
925 int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
926 symbol_filter_t filter)
927 {
928 struct map *map = machine__kernel_map(machine);
929 int ret = dso__load_vmlinux_path(map->dso, map, filter);
930
931 if (ret > 0)
932 dso__set_loaded(map->dso, type);
933
934 return ret;
935 }
936
937 static void map_groups__fixup_end(struct map_groups *mg)
938 {
939 int i;
940 for (i = 0; i < MAP__NR_TYPES; ++i)
941 __map_groups__fixup_end(mg, i);
942 }
943
944 static char *get_kernel_version(const char *root_dir)
945 {
946 char version[PATH_MAX];
947 FILE *file;
948 char *name, *tmp;
949 const char *prefix = "Linux version ";
950
951 sprintf(version, "%s/proc/version", root_dir);
952 file = fopen(version, "r");
953 if (!file)
954 return NULL;
955
956 version[0] = '\0';
957 tmp = fgets(version, sizeof(version), file);
958 fclose(file);
959
960 name = strstr(version, prefix);
961 if (!name)
962 return NULL;
963 name += strlen(prefix);
964 tmp = strchr(name, ' ');
965 if (tmp)
966 *tmp = '\0';
967
968 return strdup(name);
969 }
970
971 static bool is_kmod_dso(struct dso *dso)
972 {
973 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
974 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
975 }
976
977 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
978 struct kmod_path *m)
979 {
980 struct map *map;
981 char *long_name;
982
983 map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
984 if (map == NULL)
985 return 0;
986
987 long_name = strdup(path);
988 if (long_name == NULL)
989 return -ENOMEM;
990
991 dso__set_long_name(map->dso, long_name, true);
992 dso__kernel_module_get_build_id(map->dso, "");
993
994 /*
995 * Full name could reveal us kmod compression, so
996 * we need to update the symtab_type if needed.
997 */
998 if (m->comp && is_kmod_dso(map->dso))
999 map->dso->symtab_type++;
1000
1001 return 0;
1002 }
1003
1004 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1005 const char *dir_name, int depth)
1006 {
1007 struct dirent *dent;
1008 DIR *dir = opendir(dir_name);
1009 int ret = 0;
1010
1011 if (!dir) {
1012 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1013 return -1;
1014 }
1015
1016 while ((dent = readdir(dir)) != NULL) {
1017 char path[PATH_MAX];
1018 struct stat st;
1019
1020 /*sshfs might return bad dent->d_type, so we have to stat*/
1021 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1022 if (stat(path, &st))
1023 continue;
1024
1025 if (S_ISDIR(st.st_mode)) {
1026 if (!strcmp(dent->d_name, ".") ||
1027 !strcmp(dent->d_name, ".."))
1028 continue;
1029
1030 /* Do not follow top-level source and build symlinks */
1031 if (depth == 0) {
1032 if (!strcmp(dent->d_name, "source") ||
1033 !strcmp(dent->d_name, "build"))
1034 continue;
1035 }
1036
1037 ret = map_groups__set_modules_path_dir(mg, path,
1038 depth + 1);
1039 if (ret < 0)
1040 goto out;
1041 } else {
1042 struct kmod_path m;
1043
1044 ret = kmod_path__parse_name(&m, dent->d_name);
1045 if (ret)
1046 goto out;
1047
1048 if (m.kmod)
1049 ret = map_groups__set_module_path(mg, path, &m);
1050
1051 free(m.name);
1052
1053 if (ret)
1054 goto out;
1055 }
1056 }
1057
1058 out:
1059 closedir(dir);
1060 return ret;
1061 }
1062
1063 static int machine__set_modules_path(struct machine *machine)
1064 {
1065 char *version;
1066 char modules_path[PATH_MAX];
1067
1068 version = get_kernel_version(machine->root_dir);
1069 if (!version)
1070 return -1;
1071
1072 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1073 machine->root_dir, version);
1074 free(version);
1075
1076 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1077 }
1078
1079 static int machine__create_module(void *arg, const char *name, u64 start)
1080 {
1081 struct machine *machine = arg;
1082 struct map *map;
1083
1084 map = machine__findnew_module_map(machine, start, name);
1085 if (map == NULL)
1086 return -1;
1087
1088 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1089
1090 return 0;
1091 }
1092
1093 static int machine__create_modules(struct machine *machine)
1094 {
1095 const char *modules;
1096 char path[PATH_MAX];
1097
1098 if (machine__is_default_guest(machine)) {
1099 modules = symbol_conf.default_guest_modules;
1100 } else {
1101 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1102 modules = path;
1103 }
1104
1105 if (symbol__restricted_filename(modules, "/proc/modules"))
1106 return -1;
1107
1108 if (modules__parse(modules, machine, machine__create_module))
1109 return -1;
1110
1111 if (!machine__set_modules_path(machine))
1112 return 0;
1113
1114 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1115
1116 return 0;
1117 }
1118
1119 int machine__create_kernel_maps(struct machine *machine)
1120 {
1121 struct dso *kernel = machine__get_kernel(machine);
1122 const char *name;
1123 u64 addr = machine__get_running_kernel_start(machine, &name);
1124 int ret;
1125
1126 if (!addr || kernel == NULL)
1127 return -1;
1128
1129 ret = __machine__create_kernel_maps(machine, kernel);
1130 dso__put(kernel);
1131 if (ret < 0)
1132 return -1;
1133
1134 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1135 if (machine__is_host(machine))
1136 pr_debug("Problems creating module maps, "
1137 "continuing anyway...\n");
1138 else
1139 pr_debug("Problems creating module maps for guest %d, "
1140 "continuing anyway...\n", machine->pid);
1141 }
1142
1143 /*
1144 * Now that we have all the maps created, just set the ->end of them:
1145 */
1146 map_groups__fixup_end(&machine->kmaps);
1147
1148 if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name,
1149 addr)) {
1150 machine__destroy_kernel_maps(machine);
1151 return -1;
1152 }
1153
1154 return 0;
1155 }
1156
1157 static void machine__set_kernel_mmap_len(struct machine *machine,
1158 union perf_event *event)
1159 {
1160 int i;
1161
1162 for (i = 0; i < MAP__NR_TYPES; i++) {
1163 machine->vmlinux_maps[i]->start = event->mmap.start;
1164 machine->vmlinux_maps[i]->end = (event->mmap.start +
1165 event->mmap.len);
1166 /*
1167 * Be a bit paranoid here, some perf.data file came with
1168 * a zero sized synthesized MMAP event for the kernel.
1169 */
1170 if (machine->vmlinux_maps[i]->end == 0)
1171 machine->vmlinux_maps[i]->end = ~0ULL;
1172 }
1173 }
1174
1175 static bool machine__uses_kcore(struct machine *machine)
1176 {
1177 struct dso *dso;
1178
1179 list_for_each_entry(dso, &machine->dsos.head, node) {
1180 if (dso__is_kcore(dso))
1181 return true;
1182 }
1183
1184 return false;
1185 }
1186
1187 static int machine__process_kernel_mmap_event(struct machine *machine,
1188 union perf_event *event)
1189 {
1190 struct map *map;
1191 char kmmap_prefix[PATH_MAX];
1192 enum dso_kernel_type kernel_type;
1193 bool is_kernel_mmap;
1194
1195 /* If we have maps from kcore then we do not need or want any others */
1196 if (machine__uses_kcore(machine))
1197 return 0;
1198
1199 machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1200 if (machine__is_host(machine))
1201 kernel_type = DSO_TYPE_KERNEL;
1202 else
1203 kernel_type = DSO_TYPE_GUEST_KERNEL;
1204
1205 is_kernel_mmap = memcmp(event->mmap.filename,
1206 kmmap_prefix,
1207 strlen(kmmap_prefix) - 1) == 0;
1208 if (event->mmap.filename[0] == '/' ||
1209 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1210 map = machine__findnew_module_map(machine, event->mmap.start,
1211 event->mmap.filename);
1212 if (map == NULL)
1213 goto out_problem;
1214
1215 map->end = map->start + event->mmap.len;
1216 } else if (is_kernel_mmap) {
1217 const char *symbol_name = (event->mmap.filename +
1218 strlen(kmmap_prefix));
1219 /*
1220 * Should be there already, from the build-id table in
1221 * the header.
1222 */
1223 struct dso *kernel = NULL;
1224 struct dso *dso;
1225
1226 pthread_rwlock_rdlock(&machine->dsos.lock);
1227
1228 list_for_each_entry(dso, &machine->dsos.head, node) {
1229
1230 /*
1231 * The cpumode passed to is_kernel_module is not the
1232 * cpumode of *this* event. If we insist on passing
1233 * correct cpumode to is_kernel_module, we should
1234 * record the cpumode when we adding this dso to the
1235 * linked list.
1236 *
1237 * However we don't really need passing correct
1238 * cpumode. We know the correct cpumode must be kernel
1239 * mode (if not, we should not link it onto kernel_dsos
1240 * list).
1241 *
1242 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1243 * is_kernel_module() treats it as a kernel cpumode.
1244 */
1245
1246 if (!dso->kernel ||
1247 is_kernel_module(dso->long_name,
1248 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1249 continue;
1250
1251
1252 kernel = dso;
1253 break;
1254 }
1255
1256 pthread_rwlock_unlock(&machine->dsos.lock);
1257
1258 if (kernel == NULL)
1259 kernel = machine__findnew_dso(machine, kmmap_prefix);
1260 if (kernel == NULL)
1261 goto out_problem;
1262
1263 kernel->kernel = kernel_type;
1264 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1265 dso__put(kernel);
1266 goto out_problem;
1267 }
1268
1269 if (strstr(kernel->long_name, "vmlinux"))
1270 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1271
1272 machine__set_kernel_mmap_len(machine, event);
1273
1274 /*
1275 * Avoid using a zero address (kptr_restrict) for the ref reloc
1276 * symbol. Effectively having zero here means that at record
1277 * time /proc/sys/kernel/kptr_restrict was non zero.
1278 */
1279 if (event->mmap.pgoff != 0) {
1280 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1281 symbol_name,
1282 event->mmap.pgoff);
1283 }
1284
1285 if (machine__is_default_guest(machine)) {
1286 /*
1287 * preload dso of guest kernel and modules
1288 */
1289 dso__load(kernel, machine__kernel_map(machine), NULL);
1290 }
1291 }
1292 return 0;
1293 out_problem:
1294 return -1;
1295 }
1296
1297 int machine__process_mmap2_event(struct machine *machine,
1298 union perf_event *event,
1299 struct perf_sample *sample __maybe_unused)
1300 {
1301 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1302 struct thread *thread;
1303 struct map *map;
1304 enum map_type type;
1305 int ret = 0;
1306
1307 if (dump_trace)
1308 perf_event__fprintf_mmap2(event, stdout);
1309
1310 if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1311 cpumode == PERF_RECORD_MISC_KERNEL) {
1312 ret = machine__process_kernel_mmap_event(machine, event);
1313 if (ret < 0)
1314 goto out_problem;
1315 return 0;
1316 }
1317
1318 thread = machine__findnew_thread(machine, event->mmap2.pid,
1319 event->mmap2.tid);
1320 if (thread == NULL)
1321 goto out_problem;
1322
1323 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1324 type = MAP__VARIABLE;
1325 else
1326 type = MAP__FUNCTION;
1327
1328 map = map__new(machine, event->mmap2.start,
1329 event->mmap2.len, event->mmap2.pgoff,
1330 event->mmap2.pid, event->mmap2.maj,
1331 event->mmap2.min, event->mmap2.ino,
1332 event->mmap2.ino_generation,
1333 event->mmap2.prot,
1334 event->mmap2.flags,
1335 event->mmap2.filename, type, thread);
1336
1337 if (map == NULL)
1338 goto out_problem_map;
1339
1340 thread__insert_map(thread, map);
1341 thread__put(thread);
1342 map__put(map);
1343 return 0;
1344
1345 out_problem_map:
1346 thread__put(thread);
1347 out_problem:
1348 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1349 return 0;
1350 }
1351
1352 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1353 struct perf_sample *sample __maybe_unused)
1354 {
1355 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1356 struct thread *thread;
1357 struct map *map;
1358 enum map_type type;
1359 int ret = 0;
1360
1361 if (dump_trace)
1362 perf_event__fprintf_mmap(event, stdout);
1363
1364 if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1365 cpumode == PERF_RECORD_MISC_KERNEL) {
1366 ret = machine__process_kernel_mmap_event(machine, event);
1367 if (ret < 0)
1368 goto out_problem;
1369 return 0;
1370 }
1371
1372 thread = machine__findnew_thread(machine, event->mmap.pid,
1373 event->mmap.tid);
1374 if (thread == NULL)
1375 goto out_problem;
1376
1377 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1378 type = MAP__VARIABLE;
1379 else
1380 type = MAP__FUNCTION;
1381
1382 map = map__new(machine, event->mmap.start,
1383 event->mmap.len, event->mmap.pgoff,
1384 event->mmap.pid, 0, 0, 0, 0, 0, 0,
1385 event->mmap.filename,
1386 type, thread);
1387
1388 if (map == NULL)
1389 goto out_problem_map;
1390
1391 thread__insert_map(thread, map);
1392 thread__put(thread);
1393 map__put(map);
1394 return 0;
1395
1396 out_problem_map:
1397 thread__put(thread);
1398 out_problem:
1399 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1400 return 0;
1401 }
1402
1403 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1404 {
1405 if (machine->last_match == th)
1406 machine->last_match = NULL;
1407
1408 BUG_ON(atomic_read(&th->refcnt) == 0);
1409 if (lock)
1410 pthread_rwlock_wrlock(&machine->threads_lock);
1411 rb_erase_init(&th->rb_node, &machine->threads);
1412 RB_CLEAR_NODE(&th->rb_node);
1413 /*
1414 * Move it first to the dead_threads list, then drop the reference,
1415 * if this is the last reference, then the thread__delete destructor
1416 * will be called and we will remove it from the dead_threads list.
1417 */
1418 list_add_tail(&th->node, &machine->dead_threads);
1419 if (lock)
1420 pthread_rwlock_unlock(&machine->threads_lock);
1421 thread__put(th);
1422 }
1423
1424 void machine__remove_thread(struct machine *machine, struct thread *th)
1425 {
1426 return __machine__remove_thread(machine, th, true);
1427 }
1428
1429 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1430 struct perf_sample *sample)
1431 {
1432 struct thread *thread = machine__find_thread(machine,
1433 event->fork.pid,
1434 event->fork.tid);
1435 struct thread *parent = machine__findnew_thread(machine,
1436 event->fork.ppid,
1437 event->fork.ptid);
1438 int err = 0;
1439
1440 if (dump_trace)
1441 perf_event__fprintf_task(event, stdout);
1442
1443 /*
1444 * There may be an existing thread that is not actually the parent,
1445 * either because we are processing events out of order, or because the
1446 * (fork) event that would have removed the thread was lost. Assume the
1447 * latter case and continue on as best we can.
1448 */
1449 if (parent->pid_ != (pid_t)event->fork.ppid) {
1450 dump_printf("removing erroneous parent thread %d/%d\n",
1451 parent->pid_, parent->tid);
1452 machine__remove_thread(machine, parent);
1453 thread__put(parent);
1454 parent = machine__findnew_thread(machine, event->fork.ppid,
1455 event->fork.ptid);
1456 }
1457
1458 /* if a thread currently exists for the thread id remove it */
1459 if (thread != NULL) {
1460 machine__remove_thread(machine, thread);
1461 thread__put(thread);
1462 }
1463
1464 thread = machine__findnew_thread(machine, event->fork.pid,
1465 event->fork.tid);
1466
1467 if (thread == NULL || parent == NULL ||
1468 thread__fork(thread, parent, sample->time) < 0) {
1469 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1470 err = -1;
1471 }
1472 thread__put(thread);
1473 thread__put(parent);
1474
1475 return err;
1476 }
1477
1478 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1479 struct perf_sample *sample __maybe_unused)
1480 {
1481 struct thread *thread = machine__find_thread(machine,
1482 event->fork.pid,
1483 event->fork.tid);
1484
1485 if (dump_trace)
1486 perf_event__fprintf_task(event, stdout);
1487
1488 if (thread != NULL) {
1489 thread__exited(thread);
1490 thread__put(thread);
1491 }
1492
1493 return 0;
1494 }
1495
1496 int machine__process_event(struct machine *machine, union perf_event *event,
1497 struct perf_sample *sample)
1498 {
1499 int ret;
1500
1501 switch (event->header.type) {
1502 case PERF_RECORD_COMM:
1503 ret = machine__process_comm_event(machine, event, sample); break;
1504 case PERF_RECORD_MMAP:
1505 ret = machine__process_mmap_event(machine, event, sample); break;
1506 case PERF_RECORD_MMAP2:
1507 ret = machine__process_mmap2_event(machine, event, sample); break;
1508 case PERF_RECORD_FORK:
1509 ret = machine__process_fork_event(machine, event, sample); break;
1510 case PERF_RECORD_EXIT:
1511 ret = machine__process_exit_event(machine, event, sample); break;
1512 case PERF_RECORD_LOST:
1513 ret = machine__process_lost_event(machine, event, sample); break;
1514 case PERF_RECORD_AUX:
1515 ret = machine__process_aux_event(machine, event); break;
1516 case PERF_RECORD_ITRACE_START:
1517 ret = machine__process_itrace_start_event(machine, event); break;
1518 case PERF_RECORD_LOST_SAMPLES:
1519 ret = machine__process_lost_samples_event(machine, event, sample); break;
1520 case PERF_RECORD_SWITCH:
1521 case PERF_RECORD_SWITCH_CPU_WIDE:
1522 ret = machine__process_switch_event(machine, event); break;
1523 default:
1524 ret = -1;
1525 break;
1526 }
1527
1528 return ret;
1529 }
1530
1531 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1532 {
1533 if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1534 return 1;
1535 return 0;
1536 }
1537
1538 static void ip__resolve_ams(struct thread *thread,
1539 struct addr_map_symbol *ams,
1540 u64 ip)
1541 {
1542 struct addr_location al;
1543
1544 memset(&al, 0, sizeof(al));
1545 /*
1546 * We cannot use the header.misc hint to determine whether a
1547 * branch stack address is user, kernel, guest, hypervisor.
1548 * Branches may straddle the kernel/user/hypervisor boundaries.
1549 * Thus, we have to try consecutively until we find a match
1550 * or else, the symbol is unknown
1551 */
1552 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1553
1554 ams->addr = ip;
1555 ams->al_addr = al.addr;
1556 ams->sym = al.sym;
1557 ams->map = al.map;
1558 }
1559
1560 static void ip__resolve_data(struct thread *thread,
1561 u8 m, struct addr_map_symbol *ams, u64 addr)
1562 {
1563 struct addr_location al;
1564
1565 memset(&al, 0, sizeof(al));
1566
1567 thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1568 if (al.map == NULL) {
1569 /*
1570 * some shared data regions have execute bit set which puts
1571 * their mapping in the MAP__FUNCTION type array.
1572 * Check there as a fallback option before dropping the sample.
1573 */
1574 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1575 }
1576
1577 ams->addr = addr;
1578 ams->al_addr = al.addr;
1579 ams->sym = al.sym;
1580 ams->map = al.map;
1581 }
1582
1583 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1584 struct addr_location *al)
1585 {
1586 struct mem_info *mi = zalloc(sizeof(*mi));
1587
1588 if (!mi)
1589 return NULL;
1590
1591 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1592 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1593 mi->data_src.val = sample->data_src;
1594
1595 return mi;
1596 }
1597
1598 static int add_callchain_ip(struct thread *thread,
1599 struct symbol **parent,
1600 struct addr_location *root_al,
1601 u8 *cpumode,
1602 u64 ip)
1603 {
1604 struct addr_location al;
1605
1606 al.filtered = 0;
1607 al.sym = NULL;
1608 if (!cpumode) {
1609 thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1610 ip, &al);
1611 } else {
1612 if (ip >= PERF_CONTEXT_MAX) {
1613 switch (ip) {
1614 case PERF_CONTEXT_HV:
1615 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1616 break;
1617 case PERF_CONTEXT_KERNEL:
1618 *cpumode = PERF_RECORD_MISC_KERNEL;
1619 break;
1620 case PERF_CONTEXT_USER:
1621 *cpumode = PERF_RECORD_MISC_USER;
1622 break;
1623 default:
1624 pr_debug("invalid callchain context: "
1625 "%"PRId64"\n", (s64) ip);
1626 /*
1627 * It seems the callchain is corrupted.
1628 * Discard all.
1629 */
1630 callchain_cursor_reset(&callchain_cursor);
1631 return 1;
1632 }
1633 return 0;
1634 }
1635 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1636 ip, &al);
1637 }
1638
1639 if (al.sym != NULL) {
1640 if (sort__has_parent && !*parent &&
1641 symbol__match_regex(al.sym, &parent_regex))
1642 *parent = al.sym;
1643 else if (have_ignore_callees && root_al &&
1644 symbol__match_regex(al.sym, &ignore_callees_regex)) {
1645 /* Treat this symbol as the root,
1646 forgetting its callees. */
1647 *root_al = al;
1648 callchain_cursor_reset(&callchain_cursor);
1649 }
1650 }
1651
1652 if (symbol_conf.hide_unresolved && al.sym == NULL)
1653 return 0;
1654 return callchain_cursor_append(&callchain_cursor, al.addr, al.map, al.sym);
1655 }
1656
1657 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1658 struct addr_location *al)
1659 {
1660 unsigned int i;
1661 const struct branch_stack *bs = sample->branch_stack;
1662 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1663
1664 if (!bi)
1665 return NULL;
1666
1667 for (i = 0; i < bs->nr; i++) {
1668 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1669 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1670 bi[i].flags = bs->entries[i].flags;
1671 }
1672 return bi;
1673 }
1674
1675 #define CHASHSZ 127
1676 #define CHASHBITS 7
1677 #define NO_ENTRY 0xff
1678
1679 #define PERF_MAX_BRANCH_DEPTH 127
1680
1681 /* Remove loops. */
1682 static int remove_loops(struct branch_entry *l, int nr)
1683 {
1684 int i, j, off;
1685 unsigned char chash[CHASHSZ];
1686
1687 memset(chash, NO_ENTRY, sizeof(chash));
1688
1689 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1690
1691 for (i = 0; i < nr; i++) {
1692 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1693
1694 /* no collision handling for now */
1695 if (chash[h] == NO_ENTRY) {
1696 chash[h] = i;
1697 } else if (l[chash[h]].from == l[i].from) {
1698 bool is_loop = true;
1699 /* check if it is a real loop */
1700 off = 0;
1701 for (j = chash[h]; j < i && i + off < nr; j++, off++)
1702 if (l[j].from != l[i + off].from) {
1703 is_loop = false;
1704 break;
1705 }
1706 if (is_loop) {
1707 memmove(l + i, l + i + off,
1708 (nr - (i + off)) * sizeof(*l));
1709 nr -= off;
1710 }
1711 }
1712 }
1713 return nr;
1714 }
1715
1716 /*
1717 * Recolve LBR callstack chain sample
1718 * Return:
1719 * 1 on success get LBR callchain information
1720 * 0 no available LBR callchain information, should try fp
1721 * negative error code on other errors.
1722 */
1723 static int resolve_lbr_callchain_sample(struct thread *thread,
1724 struct perf_sample *sample,
1725 struct symbol **parent,
1726 struct addr_location *root_al,
1727 int max_stack)
1728 {
1729 struct ip_callchain *chain = sample->callchain;
1730 int chain_nr = min(max_stack, (int)chain->nr);
1731 u8 cpumode = PERF_RECORD_MISC_USER;
1732 int i, j, err;
1733 u64 ip;
1734
1735 for (i = 0; i < chain_nr; i++) {
1736 if (chain->ips[i] == PERF_CONTEXT_USER)
1737 break;
1738 }
1739
1740 /* LBR only affects the user callchain */
1741 if (i != chain_nr) {
1742 struct branch_stack *lbr_stack = sample->branch_stack;
1743 int lbr_nr = lbr_stack->nr;
1744 /*
1745 * LBR callstack can only get user call chain.
1746 * The mix_chain_nr is kernel call chain
1747 * number plus LBR user call chain number.
1748 * i is kernel call chain number,
1749 * 1 is PERF_CONTEXT_USER,
1750 * lbr_nr + 1 is the user call chain number.
1751 * For details, please refer to the comments
1752 * in callchain__printf
1753 */
1754 int mix_chain_nr = i + 1 + lbr_nr + 1;
1755
1756 if (mix_chain_nr > PERF_MAX_STACK_DEPTH + PERF_MAX_BRANCH_DEPTH) {
1757 pr_warning("corrupted callchain. skipping...\n");
1758 return 0;
1759 }
1760
1761 for (j = 0; j < mix_chain_nr; j++) {
1762 if (callchain_param.order == ORDER_CALLEE) {
1763 if (j < i + 1)
1764 ip = chain->ips[j];
1765 else if (j > i + 1)
1766 ip = lbr_stack->entries[j - i - 2].from;
1767 else
1768 ip = lbr_stack->entries[0].to;
1769 } else {
1770 if (j < lbr_nr)
1771 ip = lbr_stack->entries[lbr_nr - j - 1].from;
1772 else if (j > lbr_nr)
1773 ip = chain->ips[i + 1 - (j - lbr_nr)];
1774 else
1775 ip = lbr_stack->entries[0].to;
1776 }
1777
1778 err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
1779 if (err)
1780 return (err < 0) ? err : 0;
1781 }
1782 return 1;
1783 }
1784
1785 return 0;
1786 }
1787
1788 static int thread__resolve_callchain_sample(struct thread *thread,
1789 struct perf_evsel *evsel,
1790 struct perf_sample *sample,
1791 struct symbol **parent,
1792 struct addr_location *root_al,
1793 int max_stack)
1794 {
1795 struct branch_stack *branch = sample->branch_stack;
1796 struct ip_callchain *chain = sample->callchain;
1797 int chain_nr = min(max_stack, (int)chain->nr);
1798 u8 cpumode = PERF_RECORD_MISC_USER;
1799 int i, j, err;
1800 int skip_idx = -1;
1801 int first_call = 0;
1802
1803 callchain_cursor_reset(&callchain_cursor);
1804
1805 if (has_branch_callstack(evsel)) {
1806 err = resolve_lbr_callchain_sample(thread, sample, parent,
1807 root_al, max_stack);
1808 if (err)
1809 return (err < 0) ? err : 0;
1810 }
1811
1812 /*
1813 * Based on DWARF debug information, some architectures skip
1814 * a callchain entry saved by the kernel.
1815 */
1816 if (chain->nr < PERF_MAX_STACK_DEPTH)
1817 skip_idx = arch_skip_callchain_idx(thread, chain);
1818
1819 /*
1820 * Add branches to call stack for easier browsing. This gives
1821 * more context for a sample than just the callers.
1822 *
1823 * This uses individual histograms of paths compared to the
1824 * aggregated histograms the normal LBR mode uses.
1825 *
1826 * Limitations for now:
1827 * - No extra filters
1828 * - No annotations (should annotate somehow)
1829 */
1830
1831 if (branch && callchain_param.branch_callstack) {
1832 int nr = min(max_stack, (int)branch->nr);
1833 struct branch_entry be[nr];
1834
1835 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1836 pr_warning("corrupted branch chain. skipping...\n");
1837 goto check_calls;
1838 }
1839
1840 for (i = 0; i < nr; i++) {
1841 if (callchain_param.order == ORDER_CALLEE) {
1842 be[i] = branch->entries[i];
1843 /*
1844 * Check for overlap into the callchain.
1845 * The return address is one off compared to
1846 * the branch entry. To adjust for this
1847 * assume the calling instruction is not longer
1848 * than 8 bytes.
1849 */
1850 if (i == skip_idx ||
1851 chain->ips[first_call] >= PERF_CONTEXT_MAX)
1852 first_call++;
1853 else if (be[i].from < chain->ips[first_call] &&
1854 be[i].from >= chain->ips[first_call] - 8)
1855 first_call++;
1856 } else
1857 be[i] = branch->entries[branch->nr - i - 1];
1858 }
1859
1860 nr = remove_loops(be, nr);
1861
1862 for (i = 0; i < nr; i++) {
1863 err = add_callchain_ip(thread, parent, root_al,
1864 NULL, be[i].to);
1865 if (!err)
1866 err = add_callchain_ip(thread, parent, root_al,
1867 NULL, be[i].from);
1868 if (err == -EINVAL)
1869 break;
1870 if (err)
1871 return err;
1872 }
1873 chain_nr -= nr;
1874 }
1875
1876 check_calls:
1877 if (chain->nr > PERF_MAX_STACK_DEPTH && (int)chain->nr > max_stack) {
1878 pr_warning("corrupted callchain. skipping...\n");
1879 return 0;
1880 }
1881
1882 for (i = first_call; i < chain_nr; i++) {
1883 u64 ip;
1884
1885 if (callchain_param.order == ORDER_CALLEE)
1886 j = i;
1887 else
1888 j = chain->nr - i - 1;
1889
1890 #ifdef HAVE_SKIP_CALLCHAIN_IDX
1891 if (j == skip_idx)
1892 continue;
1893 #endif
1894 ip = chain->ips[j];
1895
1896 err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
1897
1898 if (err)
1899 return (err < 0) ? err : 0;
1900 }
1901
1902 return 0;
1903 }
1904
1905 static int unwind_entry(struct unwind_entry *entry, void *arg)
1906 {
1907 struct callchain_cursor *cursor = arg;
1908
1909 if (symbol_conf.hide_unresolved && entry->sym == NULL)
1910 return 0;
1911 return callchain_cursor_append(cursor, entry->ip,
1912 entry->map, entry->sym);
1913 }
1914
1915 int thread__resolve_callchain(struct thread *thread,
1916 struct perf_evsel *evsel,
1917 struct perf_sample *sample,
1918 struct symbol **parent,
1919 struct addr_location *root_al,
1920 int max_stack)
1921 {
1922 int ret = thread__resolve_callchain_sample(thread, evsel,
1923 sample, parent,
1924 root_al, max_stack);
1925 if (ret)
1926 return ret;
1927
1928 /* Can we do dwarf post unwind? */
1929 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1930 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1931 return 0;
1932
1933 /* Bail out if nothing was captured. */
1934 if ((!sample->user_regs.regs) ||
1935 (!sample->user_stack.size))
1936 return 0;
1937
1938 return unwind__get_entries(unwind_entry, &callchain_cursor,
1939 thread, sample, max_stack);
1940
1941 }
1942
1943 int machine__for_each_thread(struct machine *machine,
1944 int (*fn)(struct thread *thread, void *p),
1945 void *priv)
1946 {
1947 struct rb_node *nd;
1948 struct thread *thread;
1949 int rc = 0;
1950
1951 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
1952 thread = rb_entry(nd, struct thread, rb_node);
1953 rc = fn(thread, priv);
1954 if (rc != 0)
1955 return rc;
1956 }
1957
1958 list_for_each_entry(thread, &machine->dead_threads, node) {
1959 rc = fn(thread, priv);
1960 if (rc != 0)
1961 return rc;
1962 }
1963 return rc;
1964 }
1965
1966 int machines__for_each_thread(struct machines *machines,
1967 int (*fn)(struct thread *thread, void *p),
1968 void *priv)
1969 {
1970 struct rb_node *nd;
1971 int rc = 0;
1972
1973 rc = machine__for_each_thread(&machines->host, fn, priv);
1974 if (rc != 0)
1975 return rc;
1976
1977 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
1978 struct machine *machine = rb_entry(nd, struct machine, rb_node);
1979
1980 rc = machine__for_each_thread(machine, fn, priv);
1981 if (rc != 0)
1982 return rc;
1983 }
1984 return rc;
1985 }
1986
1987 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
1988 struct target *target, struct thread_map *threads,
1989 perf_event__handler_t process, bool data_mmap,
1990 unsigned int proc_map_timeout)
1991 {
1992 if (target__has_task(target))
1993 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
1994 else if (target__has_cpu(target))
1995 return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
1996 /* command specified */
1997 return 0;
1998 }
1999
2000 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2001 {
2002 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2003 return -1;
2004
2005 return machine->current_tid[cpu];
2006 }
2007
2008 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2009 pid_t tid)
2010 {
2011 struct thread *thread;
2012
2013 if (cpu < 0)
2014 return -EINVAL;
2015
2016 if (!machine->current_tid) {
2017 int i;
2018
2019 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2020 if (!machine->current_tid)
2021 return -ENOMEM;
2022 for (i = 0; i < MAX_NR_CPUS; i++)
2023 machine->current_tid[i] = -1;
2024 }
2025
2026 if (cpu >= MAX_NR_CPUS) {
2027 pr_err("Requested CPU %d too large. ", cpu);
2028 pr_err("Consider raising MAX_NR_CPUS\n");
2029 return -EINVAL;
2030 }
2031
2032 machine->current_tid[cpu] = tid;
2033
2034 thread = machine__findnew_thread(machine, pid, tid);
2035 if (!thread)
2036 return -ENOMEM;
2037
2038 thread->cpu = cpu;
2039 thread__put(thread);
2040
2041 return 0;
2042 }
2043
2044 int machine__get_kernel_start(struct machine *machine)
2045 {
2046 struct map *map = machine__kernel_map(machine);
2047 int err = 0;
2048
2049 /*
2050 * The only addresses above 2^63 are kernel addresses of a 64-bit
2051 * kernel. Note that addresses are unsigned so that on a 32-bit system
2052 * all addresses including kernel addresses are less than 2^32. In
2053 * that case (32-bit system), if the kernel mapping is unknown, all
2054 * addresses will be assumed to be in user space - see
2055 * machine__kernel_ip().
2056 */
2057 machine->kernel_start = 1ULL << 63;
2058 if (map) {
2059 err = map__load(map, machine->symbol_filter);
2060 if (map->start)
2061 machine->kernel_start = map->start;
2062 }
2063 return err;
2064 }
2065
2066 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2067 {
2068 return dsos__findnew(&machine->dsos, filename);
2069 }
2070
2071 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2072 {
2073 struct machine *machine = vmachine;
2074 struct map *map;
2075 struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map, NULL);
2076
2077 if (sym == NULL)
2078 return NULL;
2079
2080 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2081 *addrp = map->unmap_ip(map, sym->start);
2082 return sym->name;
2083 }
This page took 0.071547 seconds and 4 git commands to generate.