2cb95bbf9ea67cb85ee3ce53240dab0bcb984f14
[deliverable/linux.git] / tools / perf / util / machine.c
1 #include "callchain.h"
2 #include "debug.h"
3 #include "event.h"
4 #include "evsel.h"
5 #include "hist.h"
6 #include "machine.h"
7 #include "map.h"
8 #include "sort.h"
9 #include "strlist.h"
10 #include "thread.h"
11 #include "vdso.h"
12 #include <stdbool.h>
13 #include <symbol/kallsyms.h>
14 #include "unwind.h"
15 #include "linux/hash.h"
16
17 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
18
19 static void dsos__init(struct dsos *dsos)
20 {
21 INIT_LIST_HEAD(&dsos->head);
22 dsos->root = RB_ROOT;
23 pthread_rwlock_init(&dsos->lock, NULL);
24 }
25
26 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
27 {
28 memset(machine, 0, sizeof(*machine));
29 map_groups__init(&machine->kmaps, machine);
30 RB_CLEAR_NODE(&machine->rb_node);
31 dsos__init(&machine->dsos);
32
33 machine->threads = RB_ROOT;
34 pthread_rwlock_init(&machine->threads_lock, NULL);
35 INIT_LIST_HEAD(&machine->dead_threads);
36 machine->last_match = NULL;
37
38 machine->vdso_info = NULL;
39 machine->env = NULL;
40
41 machine->pid = pid;
42
43 machine->symbol_filter = NULL;
44 machine->id_hdr_size = 0;
45 machine->comm_exec = false;
46 machine->kernel_start = 0;
47
48 memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
49
50 machine->root_dir = strdup(root_dir);
51 if (machine->root_dir == NULL)
52 return -ENOMEM;
53
54 if (pid != HOST_KERNEL_ID) {
55 struct thread *thread = machine__findnew_thread(machine, -1,
56 pid);
57 char comm[64];
58
59 if (thread == NULL)
60 return -ENOMEM;
61
62 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
63 thread__set_comm(thread, comm, 0);
64 thread__put(thread);
65 }
66
67 machine->current_tid = NULL;
68
69 return 0;
70 }
71
72 struct machine *machine__new_host(void)
73 {
74 struct machine *machine = malloc(sizeof(*machine));
75
76 if (machine != NULL) {
77 machine__init(machine, "", HOST_KERNEL_ID);
78
79 if (machine__create_kernel_maps(machine) < 0)
80 goto out_delete;
81 }
82
83 return machine;
84 out_delete:
85 free(machine);
86 return NULL;
87 }
88
89 static void dsos__purge(struct dsos *dsos)
90 {
91 struct dso *pos, *n;
92
93 pthread_rwlock_wrlock(&dsos->lock);
94
95 list_for_each_entry_safe(pos, n, &dsos->head, node) {
96 RB_CLEAR_NODE(&pos->rb_node);
97 pos->root = NULL;
98 list_del_init(&pos->node);
99 dso__put(pos);
100 }
101
102 pthread_rwlock_unlock(&dsos->lock);
103 }
104
105 static void dsos__exit(struct dsos *dsos)
106 {
107 dsos__purge(dsos);
108 pthread_rwlock_destroy(&dsos->lock);
109 }
110
111 void machine__delete_threads(struct machine *machine)
112 {
113 struct rb_node *nd;
114
115 pthread_rwlock_wrlock(&machine->threads_lock);
116 nd = rb_first(&machine->threads);
117 while (nd) {
118 struct thread *t = rb_entry(nd, struct thread, rb_node);
119
120 nd = rb_next(nd);
121 __machine__remove_thread(machine, t, false);
122 }
123 pthread_rwlock_unlock(&machine->threads_lock);
124 }
125
126 void machine__exit(struct machine *machine)
127 {
128 machine__destroy_kernel_maps(machine);
129 map_groups__exit(&machine->kmaps);
130 dsos__exit(&machine->dsos);
131 machine__exit_vdso(machine);
132 zfree(&machine->root_dir);
133 zfree(&machine->current_tid);
134 pthread_rwlock_destroy(&machine->threads_lock);
135 }
136
137 void machine__delete(struct machine *machine)
138 {
139 machine__exit(machine);
140 free(machine);
141 }
142
143 void machines__init(struct machines *machines)
144 {
145 machine__init(&machines->host, "", HOST_KERNEL_ID);
146 machines->guests = RB_ROOT;
147 machines->symbol_filter = NULL;
148 }
149
150 void machines__exit(struct machines *machines)
151 {
152 machine__exit(&machines->host);
153 /* XXX exit guest */
154 }
155
156 struct machine *machines__add(struct machines *machines, pid_t pid,
157 const char *root_dir)
158 {
159 struct rb_node **p = &machines->guests.rb_node;
160 struct rb_node *parent = NULL;
161 struct machine *pos, *machine = malloc(sizeof(*machine));
162
163 if (machine == NULL)
164 return NULL;
165
166 if (machine__init(machine, root_dir, pid) != 0) {
167 free(machine);
168 return NULL;
169 }
170
171 machine->symbol_filter = machines->symbol_filter;
172
173 while (*p != NULL) {
174 parent = *p;
175 pos = rb_entry(parent, struct machine, rb_node);
176 if (pid < pos->pid)
177 p = &(*p)->rb_left;
178 else
179 p = &(*p)->rb_right;
180 }
181
182 rb_link_node(&machine->rb_node, parent, p);
183 rb_insert_color(&machine->rb_node, &machines->guests);
184
185 return machine;
186 }
187
188 void machines__set_symbol_filter(struct machines *machines,
189 symbol_filter_t symbol_filter)
190 {
191 struct rb_node *nd;
192
193 machines->symbol_filter = symbol_filter;
194 machines->host.symbol_filter = symbol_filter;
195
196 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
197 struct machine *machine = rb_entry(nd, struct machine, rb_node);
198
199 machine->symbol_filter = symbol_filter;
200 }
201 }
202
203 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
204 {
205 struct rb_node *nd;
206
207 machines->host.comm_exec = comm_exec;
208
209 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
210 struct machine *machine = rb_entry(nd, struct machine, rb_node);
211
212 machine->comm_exec = comm_exec;
213 }
214 }
215
216 struct machine *machines__find(struct machines *machines, pid_t pid)
217 {
218 struct rb_node **p = &machines->guests.rb_node;
219 struct rb_node *parent = NULL;
220 struct machine *machine;
221 struct machine *default_machine = NULL;
222
223 if (pid == HOST_KERNEL_ID)
224 return &machines->host;
225
226 while (*p != NULL) {
227 parent = *p;
228 machine = rb_entry(parent, struct machine, rb_node);
229 if (pid < machine->pid)
230 p = &(*p)->rb_left;
231 else if (pid > machine->pid)
232 p = &(*p)->rb_right;
233 else
234 return machine;
235 if (!machine->pid)
236 default_machine = machine;
237 }
238
239 return default_machine;
240 }
241
242 struct machine *machines__findnew(struct machines *machines, pid_t pid)
243 {
244 char path[PATH_MAX];
245 const char *root_dir = "";
246 struct machine *machine = machines__find(machines, pid);
247
248 if (machine && (machine->pid == pid))
249 goto out;
250
251 if ((pid != HOST_KERNEL_ID) &&
252 (pid != DEFAULT_GUEST_KERNEL_ID) &&
253 (symbol_conf.guestmount)) {
254 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
255 if (access(path, R_OK)) {
256 static struct strlist *seen;
257
258 if (!seen)
259 seen = strlist__new(NULL, NULL);
260
261 if (!strlist__has_entry(seen, path)) {
262 pr_err("Can't access file %s\n", path);
263 strlist__add(seen, path);
264 }
265 machine = NULL;
266 goto out;
267 }
268 root_dir = path;
269 }
270
271 machine = machines__add(machines, pid, root_dir);
272 out:
273 return machine;
274 }
275
276 void machines__process_guests(struct machines *machines,
277 machine__process_t process, void *data)
278 {
279 struct rb_node *nd;
280
281 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
282 struct machine *pos = rb_entry(nd, struct machine, rb_node);
283 process(pos, data);
284 }
285 }
286
287 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
288 {
289 if (machine__is_host(machine))
290 snprintf(bf, size, "[%s]", "kernel.kallsyms");
291 else if (machine__is_default_guest(machine))
292 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
293 else {
294 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
295 machine->pid);
296 }
297
298 return bf;
299 }
300
301 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
302 {
303 struct rb_node *node;
304 struct machine *machine;
305
306 machines->host.id_hdr_size = id_hdr_size;
307
308 for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
309 machine = rb_entry(node, struct machine, rb_node);
310 machine->id_hdr_size = id_hdr_size;
311 }
312
313 return;
314 }
315
316 static void machine__update_thread_pid(struct machine *machine,
317 struct thread *th, pid_t pid)
318 {
319 struct thread *leader;
320
321 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
322 return;
323
324 th->pid_ = pid;
325
326 if (th->pid_ == th->tid)
327 return;
328
329 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
330 if (!leader)
331 goto out_err;
332
333 if (!leader->mg)
334 leader->mg = map_groups__new(machine);
335
336 if (!leader->mg)
337 goto out_err;
338
339 if (th->mg == leader->mg)
340 return;
341
342 if (th->mg) {
343 /*
344 * Maps are created from MMAP events which provide the pid and
345 * tid. Consequently there never should be any maps on a thread
346 * with an unknown pid. Just print an error if there are.
347 */
348 if (!map_groups__empty(th->mg))
349 pr_err("Discarding thread maps for %d:%d\n",
350 th->pid_, th->tid);
351 map_groups__put(th->mg);
352 }
353
354 th->mg = map_groups__get(leader->mg);
355 out_put:
356 thread__put(leader);
357 return;
358 out_err:
359 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
360 goto out_put;
361 }
362
363 /*
364 * Caller must eventually drop thread->refcnt returned with a successfull
365 * lookup/new thread inserted.
366 */
367 static struct thread *____machine__findnew_thread(struct machine *machine,
368 pid_t pid, pid_t tid,
369 bool create)
370 {
371 struct rb_node **p = &machine->threads.rb_node;
372 struct rb_node *parent = NULL;
373 struct thread *th;
374
375 /*
376 * Front-end cache - TID lookups come in blocks,
377 * so most of the time we dont have to look up
378 * the full rbtree:
379 */
380 th = machine->last_match;
381 if (th != NULL) {
382 if (th->tid == tid) {
383 machine__update_thread_pid(machine, th, pid);
384 return thread__get(th);
385 }
386
387 machine->last_match = NULL;
388 }
389
390 while (*p != NULL) {
391 parent = *p;
392 th = rb_entry(parent, struct thread, rb_node);
393
394 if (th->tid == tid) {
395 machine->last_match = th;
396 machine__update_thread_pid(machine, th, pid);
397 return thread__get(th);
398 }
399
400 if (tid < th->tid)
401 p = &(*p)->rb_left;
402 else
403 p = &(*p)->rb_right;
404 }
405
406 if (!create)
407 return NULL;
408
409 th = thread__new(pid, tid);
410 if (th != NULL) {
411 rb_link_node(&th->rb_node, parent, p);
412 rb_insert_color(&th->rb_node, &machine->threads);
413
414 /*
415 * We have to initialize map_groups separately
416 * after rb tree is updated.
417 *
418 * The reason is that we call machine__findnew_thread
419 * within thread__init_map_groups to find the thread
420 * leader and that would screwed the rb tree.
421 */
422 if (thread__init_map_groups(th, machine)) {
423 rb_erase_init(&th->rb_node, &machine->threads);
424 RB_CLEAR_NODE(&th->rb_node);
425 thread__put(th);
426 return NULL;
427 }
428 /*
429 * It is now in the rbtree, get a ref
430 */
431 thread__get(th);
432 machine->last_match = th;
433 }
434
435 return th;
436 }
437
438 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
439 {
440 return ____machine__findnew_thread(machine, pid, tid, true);
441 }
442
443 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
444 pid_t tid)
445 {
446 struct thread *th;
447
448 pthread_rwlock_wrlock(&machine->threads_lock);
449 th = __machine__findnew_thread(machine, pid, tid);
450 pthread_rwlock_unlock(&machine->threads_lock);
451 return th;
452 }
453
454 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
455 pid_t tid)
456 {
457 struct thread *th;
458 pthread_rwlock_rdlock(&machine->threads_lock);
459 th = ____machine__findnew_thread(machine, pid, tid, false);
460 pthread_rwlock_unlock(&machine->threads_lock);
461 return th;
462 }
463
464 struct comm *machine__thread_exec_comm(struct machine *machine,
465 struct thread *thread)
466 {
467 if (machine->comm_exec)
468 return thread__exec_comm(thread);
469 else
470 return thread__comm(thread);
471 }
472
473 int machine__process_comm_event(struct machine *machine, union perf_event *event,
474 struct perf_sample *sample)
475 {
476 struct thread *thread = machine__findnew_thread(machine,
477 event->comm.pid,
478 event->comm.tid);
479 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
480 int err = 0;
481
482 if (exec)
483 machine->comm_exec = true;
484
485 if (dump_trace)
486 perf_event__fprintf_comm(event, stdout);
487
488 if (thread == NULL ||
489 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
490 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
491 err = -1;
492 }
493
494 thread__put(thread);
495
496 return err;
497 }
498
499 int machine__process_lost_event(struct machine *machine __maybe_unused,
500 union perf_event *event, struct perf_sample *sample __maybe_unused)
501 {
502 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
503 event->lost.id, event->lost.lost);
504 return 0;
505 }
506
507 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
508 union perf_event *event, struct perf_sample *sample)
509 {
510 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
511 sample->id, event->lost_samples.lost);
512 return 0;
513 }
514
515 static struct dso *machine__findnew_module_dso(struct machine *machine,
516 struct kmod_path *m,
517 const char *filename)
518 {
519 struct dso *dso;
520
521 pthread_rwlock_wrlock(&machine->dsos.lock);
522
523 dso = __dsos__find(&machine->dsos, m->name, true);
524 if (!dso) {
525 dso = __dsos__addnew(&machine->dsos, m->name);
526 if (dso == NULL)
527 goto out_unlock;
528
529 if (machine__is_host(machine))
530 dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
531 else
532 dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
533
534 /* _KMODULE_COMP should be next to _KMODULE */
535 if (m->kmod && m->comp)
536 dso->symtab_type++;
537
538 dso__set_short_name(dso, strdup(m->name), true);
539 dso__set_long_name(dso, strdup(filename), true);
540 }
541
542 dso__get(dso);
543 out_unlock:
544 pthread_rwlock_unlock(&machine->dsos.lock);
545 return dso;
546 }
547
548 int machine__process_aux_event(struct machine *machine __maybe_unused,
549 union perf_event *event)
550 {
551 if (dump_trace)
552 perf_event__fprintf_aux(event, stdout);
553 return 0;
554 }
555
556 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
557 union perf_event *event)
558 {
559 if (dump_trace)
560 perf_event__fprintf_itrace_start(event, stdout);
561 return 0;
562 }
563
564 int machine__process_switch_event(struct machine *machine __maybe_unused,
565 union perf_event *event)
566 {
567 if (dump_trace)
568 perf_event__fprintf_switch(event, stdout);
569 return 0;
570 }
571
572 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
573 {
574 const char *dup_filename;
575
576 if (!filename || !dso || !dso->long_name)
577 return;
578 if (dso->long_name[0] != '[')
579 return;
580 if (!strchr(filename, '/'))
581 return;
582
583 dup_filename = strdup(filename);
584 if (!dup_filename)
585 return;
586
587 dso__set_long_name(dso, dup_filename, true);
588 }
589
590 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
591 const char *filename)
592 {
593 struct map *map = NULL;
594 struct dso *dso = NULL;
595 struct kmod_path m;
596
597 if (kmod_path__parse_name(&m, filename))
598 return NULL;
599
600 map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
601 m.name);
602 if (map) {
603 /*
604 * If the map's dso is an offline module, give dso__load()
605 * a chance to find the file path of that module by fixing
606 * long_name.
607 */
608 dso__adjust_kmod_long_name(map->dso, filename);
609 goto out;
610 }
611
612 dso = machine__findnew_module_dso(machine, &m, filename);
613 if (dso == NULL)
614 goto out;
615
616 map = map__new2(start, dso, MAP__FUNCTION);
617 if (map == NULL)
618 goto out;
619
620 map_groups__insert(&machine->kmaps, map);
621
622 /* Put the map here because map_groups__insert alread got it */
623 map__put(map);
624 out:
625 /* put the dso here, corresponding to machine__findnew_module_dso */
626 dso__put(dso);
627 free(m.name);
628 return map;
629 }
630
631 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
632 {
633 struct rb_node *nd;
634 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
635
636 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
637 struct machine *pos = rb_entry(nd, struct machine, rb_node);
638 ret += __dsos__fprintf(&pos->dsos.head, fp);
639 }
640
641 return ret;
642 }
643
644 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
645 bool (skip)(struct dso *dso, int parm), int parm)
646 {
647 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
648 }
649
650 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
651 bool (skip)(struct dso *dso, int parm), int parm)
652 {
653 struct rb_node *nd;
654 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
655
656 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
657 struct machine *pos = rb_entry(nd, struct machine, rb_node);
658 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
659 }
660 return ret;
661 }
662
663 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
664 {
665 int i;
666 size_t printed = 0;
667 struct dso *kdso = machine__kernel_map(machine)->dso;
668
669 if (kdso->has_build_id) {
670 char filename[PATH_MAX];
671 if (dso__build_id_filename(kdso, filename, sizeof(filename)))
672 printed += fprintf(fp, "[0] %s\n", filename);
673 }
674
675 for (i = 0; i < vmlinux_path__nr_entries; ++i)
676 printed += fprintf(fp, "[%d] %s\n",
677 i + kdso->has_build_id, vmlinux_path[i]);
678
679 return printed;
680 }
681
682 size_t machine__fprintf(struct machine *machine, FILE *fp)
683 {
684 size_t ret = 0;
685 struct rb_node *nd;
686
687 pthread_rwlock_rdlock(&machine->threads_lock);
688
689 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
690 struct thread *pos = rb_entry(nd, struct thread, rb_node);
691
692 ret += thread__fprintf(pos, fp);
693 }
694
695 pthread_rwlock_unlock(&machine->threads_lock);
696
697 return ret;
698 }
699
700 static struct dso *machine__get_kernel(struct machine *machine)
701 {
702 const char *vmlinux_name = NULL;
703 struct dso *kernel;
704
705 if (machine__is_host(machine)) {
706 vmlinux_name = symbol_conf.vmlinux_name;
707 if (!vmlinux_name)
708 vmlinux_name = "[kernel.kallsyms]";
709
710 kernel = machine__findnew_kernel(machine, vmlinux_name,
711 "[kernel]", DSO_TYPE_KERNEL);
712 } else {
713 char bf[PATH_MAX];
714
715 if (machine__is_default_guest(machine))
716 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
717 if (!vmlinux_name)
718 vmlinux_name = machine__mmap_name(machine, bf,
719 sizeof(bf));
720
721 kernel = machine__findnew_kernel(machine, vmlinux_name,
722 "[guest.kernel]",
723 DSO_TYPE_GUEST_KERNEL);
724 }
725
726 if (kernel != NULL && (!kernel->has_build_id))
727 dso__read_running_kernel_build_id(kernel, machine);
728
729 return kernel;
730 }
731
732 struct process_args {
733 u64 start;
734 };
735
736 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
737 size_t bufsz)
738 {
739 if (machine__is_default_guest(machine))
740 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
741 else
742 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
743 }
744
745 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
746
747 /* Figure out the start address of kernel map from /proc/kallsyms.
748 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
749 * symbol_name if it's not that important.
750 */
751 static u64 machine__get_running_kernel_start(struct machine *machine,
752 const char **symbol_name)
753 {
754 char filename[PATH_MAX];
755 int i;
756 const char *name;
757 u64 addr = 0;
758
759 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
760
761 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
762 return 0;
763
764 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
765 addr = kallsyms__get_function_start(filename, name);
766 if (addr)
767 break;
768 }
769
770 if (symbol_name)
771 *symbol_name = name;
772
773 return addr;
774 }
775
776 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
777 {
778 enum map_type type;
779 u64 start = machine__get_running_kernel_start(machine, NULL);
780
781 /* In case of renewal the kernel map, destroy previous one */
782 machine__destroy_kernel_maps(machine);
783
784 for (type = 0; type < MAP__NR_TYPES; ++type) {
785 struct kmap *kmap;
786 struct map *map;
787
788 machine->vmlinux_maps[type] = map__new2(start, kernel, type);
789 if (machine->vmlinux_maps[type] == NULL)
790 return -1;
791
792 machine->vmlinux_maps[type]->map_ip =
793 machine->vmlinux_maps[type]->unmap_ip =
794 identity__map_ip;
795 map = __machine__kernel_map(machine, type);
796 kmap = map__kmap(map);
797 if (!kmap)
798 return -1;
799
800 kmap->kmaps = &machine->kmaps;
801 map_groups__insert(&machine->kmaps, map);
802 }
803
804 return 0;
805 }
806
807 void machine__destroy_kernel_maps(struct machine *machine)
808 {
809 enum map_type type;
810
811 for (type = 0; type < MAP__NR_TYPES; ++type) {
812 struct kmap *kmap;
813 struct map *map = __machine__kernel_map(machine, type);
814
815 if (map == NULL)
816 continue;
817
818 kmap = map__kmap(map);
819 map_groups__remove(&machine->kmaps, map);
820 if (kmap && kmap->ref_reloc_sym) {
821 /*
822 * ref_reloc_sym is shared among all maps, so free just
823 * on one of them.
824 */
825 if (type == MAP__FUNCTION) {
826 zfree((char **)&kmap->ref_reloc_sym->name);
827 zfree(&kmap->ref_reloc_sym);
828 } else
829 kmap->ref_reloc_sym = NULL;
830 }
831
832 map__put(machine->vmlinux_maps[type]);
833 machine->vmlinux_maps[type] = NULL;
834 }
835 }
836
837 int machines__create_guest_kernel_maps(struct machines *machines)
838 {
839 int ret = 0;
840 struct dirent **namelist = NULL;
841 int i, items = 0;
842 char path[PATH_MAX];
843 pid_t pid;
844 char *endp;
845
846 if (symbol_conf.default_guest_vmlinux_name ||
847 symbol_conf.default_guest_modules ||
848 symbol_conf.default_guest_kallsyms) {
849 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
850 }
851
852 if (symbol_conf.guestmount) {
853 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
854 if (items <= 0)
855 return -ENOENT;
856 for (i = 0; i < items; i++) {
857 if (!isdigit(namelist[i]->d_name[0])) {
858 /* Filter out . and .. */
859 continue;
860 }
861 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
862 if ((*endp != '\0') ||
863 (endp == namelist[i]->d_name) ||
864 (errno == ERANGE)) {
865 pr_debug("invalid directory (%s). Skipping.\n",
866 namelist[i]->d_name);
867 continue;
868 }
869 sprintf(path, "%s/%s/proc/kallsyms",
870 symbol_conf.guestmount,
871 namelist[i]->d_name);
872 ret = access(path, R_OK);
873 if (ret) {
874 pr_debug("Can't access file %s\n", path);
875 goto failure;
876 }
877 machines__create_kernel_maps(machines, pid);
878 }
879 failure:
880 free(namelist);
881 }
882
883 return ret;
884 }
885
886 void machines__destroy_kernel_maps(struct machines *machines)
887 {
888 struct rb_node *next = rb_first(&machines->guests);
889
890 machine__destroy_kernel_maps(&machines->host);
891
892 while (next) {
893 struct machine *pos = rb_entry(next, struct machine, rb_node);
894
895 next = rb_next(&pos->rb_node);
896 rb_erase(&pos->rb_node, &machines->guests);
897 machine__delete(pos);
898 }
899 }
900
901 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
902 {
903 struct machine *machine = machines__findnew(machines, pid);
904
905 if (machine == NULL)
906 return -1;
907
908 return machine__create_kernel_maps(machine);
909 }
910
911 int __machine__load_kallsyms(struct machine *machine, const char *filename,
912 enum map_type type, bool no_kcore, symbol_filter_t filter)
913 {
914 struct map *map = machine__kernel_map(machine);
915 int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore, filter);
916
917 if (ret > 0) {
918 dso__set_loaded(map->dso, type);
919 /*
920 * Since /proc/kallsyms will have multiple sessions for the
921 * kernel, with modules between them, fixup the end of all
922 * sections.
923 */
924 __map_groups__fixup_end(&machine->kmaps, type);
925 }
926
927 return ret;
928 }
929
930 int machine__load_kallsyms(struct machine *machine, const char *filename,
931 enum map_type type, symbol_filter_t filter)
932 {
933 return __machine__load_kallsyms(machine, filename, type, false, filter);
934 }
935
936 int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
937 symbol_filter_t filter)
938 {
939 struct map *map = machine__kernel_map(machine);
940 int ret = dso__load_vmlinux_path(map->dso, map, filter);
941
942 if (ret > 0)
943 dso__set_loaded(map->dso, type);
944
945 return ret;
946 }
947
948 static void map_groups__fixup_end(struct map_groups *mg)
949 {
950 int i;
951 for (i = 0; i < MAP__NR_TYPES; ++i)
952 __map_groups__fixup_end(mg, i);
953 }
954
955 static char *get_kernel_version(const char *root_dir)
956 {
957 char version[PATH_MAX];
958 FILE *file;
959 char *name, *tmp;
960 const char *prefix = "Linux version ";
961
962 sprintf(version, "%s/proc/version", root_dir);
963 file = fopen(version, "r");
964 if (!file)
965 return NULL;
966
967 version[0] = '\0';
968 tmp = fgets(version, sizeof(version), file);
969 fclose(file);
970
971 name = strstr(version, prefix);
972 if (!name)
973 return NULL;
974 name += strlen(prefix);
975 tmp = strchr(name, ' ');
976 if (tmp)
977 *tmp = '\0';
978
979 return strdup(name);
980 }
981
982 static bool is_kmod_dso(struct dso *dso)
983 {
984 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
985 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
986 }
987
988 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
989 struct kmod_path *m)
990 {
991 struct map *map;
992 char *long_name;
993
994 map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
995 if (map == NULL)
996 return 0;
997
998 long_name = strdup(path);
999 if (long_name == NULL)
1000 return -ENOMEM;
1001
1002 dso__set_long_name(map->dso, long_name, true);
1003 dso__kernel_module_get_build_id(map->dso, "");
1004
1005 /*
1006 * Full name could reveal us kmod compression, so
1007 * we need to update the symtab_type if needed.
1008 */
1009 if (m->comp && is_kmod_dso(map->dso))
1010 map->dso->symtab_type++;
1011
1012 return 0;
1013 }
1014
1015 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1016 const char *dir_name, int depth)
1017 {
1018 struct dirent *dent;
1019 DIR *dir = opendir(dir_name);
1020 int ret = 0;
1021
1022 if (!dir) {
1023 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1024 return -1;
1025 }
1026
1027 while ((dent = readdir(dir)) != NULL) {
1028 char path[PATH_MAX];
1029 struct stat st;
1030
1031 /*sshfs might return bad dent->d_type, so we have to stat*/
1032 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1033 if (stat(path, &st))
1034 continue;
1035
1036 if (S_ISDIR(st.st_mode)) {
1037 if (!strcmp(dent->d_name, ".") ||
1038 !strcmp(dent->d_name, ".."))
1039 continue;
1040
1041 /* Do not follow top-level source and build symlinks */
1042 if (depth == 0) {
1043 if (!strcmp(dent->d_name, "source") ||
1044 !strcmp(dent->d_name, "build"))
1045 continue;
1046 }
1047
1048 ret = map_groups__set_modules_path_dir(mg, path,
1049 depth + 1);
1050 if (ret < 0)
1051 goto out;
1052 } else {
1053 struct kmod_path m;
1054
1055 ret = kmod_path__parse_name(&m, dent->d_name);
1056 if (ret)
1057 goto out;
1058
1059 if (m.kmod)
1060 ret = map_groups__set_module_path(mg, path, &m);
1061
1062 free(m.name);
1063
1064 if (ret)
1065 goto out;
1066 }
1067 }
1068
1069 out:
1070 closedir(dir);
1071 return ret;
1072 }
1073
1074 static int machine__set_modules_path(struct machine *machine)
1075 {
1076 char *version;
1077 char modules_path[PATH_MAX];
1078
1079 version = get_kernel_version(machine->root_dir);
1080 if (!version)
1081 return -1;
1082
1083 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1084 machine->root_dir, version);
1085 free(version);
1086
1087 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1088 }
1089
1090 static int machine__create_module(void *arg, const char *name, u64 start)
1091 {
1092 struct machine *machine = arg;
1093 struct map *map;
1094
1095 map = machine__findnew_module_map(machine, start, name);
1096 if (map == NULL)
1097 return -1;
1098
1099 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1100
1101 return 0;
1102 }
1103
1104 static int machine__create_modules(struct machine *machine)
1105 {
1106 const char *modules;
1107 char path[PATH_MAX];
1108
1109 if (machine__is_default_guest(machine)) {
1110 modules = symbol_conf.default_guest_modules;
1111 } else {
1112 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1113 modules = path;
1114 }
1115
1116 if (symbol__restricted_filename(modules, "/proc/modules"))
1117 return -1;
1118
1119 if (modules__parse(modules, machine, machine__create_module))
1120 return -1;
1121
1122 if (!machine__set_modules_path(machine))
1123 return 0;
1124
1125 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1126
1127 return 0;
1128 }
1129
1130 int machine__create_kernel_maps(struct machine *machine)
1131 {
1132 struct dso *kernel = machine__get_kernel(machine);
1133 const char *name;
1134 u64 addr = machine__get_running_kernel_start(machine, &name);
1135 int ret;
1136
1137 if (!addr || kernel == NULL)
1138 return -1;
1139
1140 ret = __machine__create_kernel_maps(machine, kernel);
1141 dso__put(kernel);
1142 if (ret < 0)
1143 return -1;
1144
1145 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1146 if (machine__is_host(machine))
1147 pr_debug("Problems creating module maps, "
1148 "continuing anyway...\n");
1149 else
1150 pr_debug("Problems creating module maps for guest %d, "
1151 "continuing anyway...\n", machine->pid);
1152 }
1153
1154 /*
1155 * Now that we have all the maps created, just set the ->end of them:
1156 */
1157 map_groups__fixup_end(&machine->kmaps);
1158
1159 if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name,
1160 addr)) {
1161 machine__destroy_kernel_maps(machine);
1162 return -1;
1163 }
1164
1165 return 0;
1166 }
1167
1168 static void machine__set_kernel_mmap_len(struct machine *machine,
1169 union perf_event *event)
1170 {
1171 int i;
1172
1173 for (i = 0; i < MAP__NR_TYPES; i++) {
1174 machine->vmlinux_maps[i]->start = event->mmap.start;
1175 machine->vmlinux_maps[i]->end = (event->mmap.start +
1176 event->mmap.len);
1177 /*
1178 * Be a bit paranoid here, some perf.data file came with
1179 * a zero sized synthesized MMAP event for the kernel.
1180 */
1181 if (machine->vmlinux_maps[i]->end == 0)
1182 machine->vmlinux_maps[i]->end = ~0ULL;
1183 }
1184 }
1185
1186 static bool machine__uses_kcore(struct machine *machine)
1187 {
1188 struct dso *dso;
1189
1190 list_for_each_entry(dso, &machine->dsos.head, node) {
1191 if (dso__is_kcore(dso))
1192 return true;
1193 }
1194
1195 return false;
1196 }
1197
1198 static int machine__process_kernel_mmap_event(struct machine *machine,
1199 union perf_event *event)
1200 {
1201 struct map *map;
1202 char kmmap_prefix[PATH_MAX];
1203 enum dso_kernel_type kernel_type;
1204 bool is_kernel_mmap;
1205
1206 /* If we have maps from kcore then we do not need or want any others */
1207 if (machine__uses_kcore(machine))
1208 return 0;
1209
1210 machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1211 if (machine__is_host(machine))
1212 kernel_type = DSO_TYPE_KERNEL;
1213 else
1214 kernel_type = DSO_TYPE_GUEST_KERNEL;
1215
1216 is_kernel_mmap = memcmp(event->mmap.filename,
1217 kmmap_prefix,
1218 strlen(kmmap_prefix) - 1) == 0;
1219 if (event->mmap.filename[0] == '/' ||
1220 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1221 map = machine__findnew_module_map(machine, event->mmap.start,
1222 event->mmap.filename);
1223 if (map == NULL)
1224 goto out_problem;
1225
1226 map->end = map->start + event->mmap.len;
1227 } else if (is_kernel_mmap) {
1228 const char *symbol_name = (event->mmap.filename +
1229 strlen(kmmap_prefix));
1230 /*
1231 * Should be there already, from the build-id table in
1232 * the header.
1233 */
1234 struct dso *kernel = NULL;
1235 struct dso *dso;
1236
1237 pthread_rwlock_rdlock(&machine->dsos.lock);
1238
1239 list_for_each_entry(dso, &machine->dsos.head, node) {
1240
1241 /*
1242 * The cpumode passed to is_kernel_module is not the
1243 * cpumode of *this* event. If we insist on passing
1244 * correct cpumode to is_kernel_module, we should
1245 * record the cpumode when we adding this dso to the
1246 * linked list.
1247 *
1248 * However we don't really need passing correct
1249 * cpumode. We know the correct cpumode must be kernel
1250 * mode (if not, we should not link it onto kernel_dsos
1251 * list).
1252 *
1253 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1254 * is_kernel_module() treats it as a kernel cpumode.
1255 */
1256
1257 if (!dso->kernel ||
1258 is_kernel_module(dso->long_name,
1259 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1260 continue;
1261
1262
1263 kernel = dso;
1264 break;
1265 }
1266
1267 pthread_rwlock_unlock(&machine->dsos.lock);
1268
1269 if (kernel == NULL)
1270 kernel = machine__findnew_dso(machine, kmmap_prefix);
1271 if (kernel == NULL)
1272 goto out_problem;
1273
1274 kernel->kernel = kernel_type;
1275 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1276 dso__put(kernel);
1277 goto out_problem;
1278 }
1279
1280 if (strstr(kernel->long_name, "vmlinux"))
1281 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1282
1283 machine__set_kernel_mmap_len(machine, event);
1284
1285 /*
1286 * Avoid using a zero address (kptr_restrict) for the ref reloc
1287 * symbol. Effectively having zero here means that at record
1288 * time /proc/sys/kernel/kptr_restrict was non zero.
1289 */
1290 if (event->mmap.pgoff != 0) {
1291 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1292 symbol_name,
1293 event->mmap.pgoff);
1294 }
1295
1296 if (machine__is_default_guest(machine)) {
1297 /*
1298 * preload dso of guest kernel and modules
1299 */
1300 dso__load(kernel, machine__kernel_map(machine), NULL);
1301 }
1302 }
1303 return 0;
1304 out_problem:
1305 return -1;
1306 }
1307
1308 int machine__process_mmap2_event(struct machine *machine,
1309 union perf_event *event,
1310 struct perf_sample *sample)
1311 {
1312 struct thread *thread;
1313 struct map *map;
1314 enum map_type type;
1315 int ret = 0;
1316
1317 if (dump_trace)
1318 perf_event__fprintf_mmap2(event, stdout);
1319
1320 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1321 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1322 ret = machine__process_kernel_mmap_event(machine, event);
1323 if (ret < 0)
1324 goto out_problem;
1325 return 0;
1326 }
1327
1328 thread = machine__findnew_thread(machine, event->mmap2.pid,
1329 event->mmap2.tid);
1330 if (thread == NULL)
1331 goto out_problem;
1332
1333 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1334 type = MAP__VARIABLE;
1335 else
1336 type = MAP__FUNCTION;
1337
1338 map = map__new(machine, event->mmap2.start,
1339 event->mmap2.len, event->mmap2.pgoff,
1340 event->mmap2.pid, event->mmap2.maj,
1341 event->mmap2.min, event->mmap2.ino,
1342 event->mmap2.ino_generation,
1343 event->mmap2.prot,
1344 event->mmap2.flags,
1345 event->mmap2.filename, type, thread);
1346
1347 if (map == NULL)
1348 goto out_problem_map;
1349
1350 thread__insert_map(thread, map);
1351 thread__put(thread);
1352 map__put(map);
1353 return 0;
1354
1355 out_problem_map:
1356 thread__put(thread);
1357 out_problem:
1358 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1359 return 0;
1360 }
1361
1362 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1363 struct perf_sample *sample)
1364 {
1365 struct thread *thread;
1366 struct map *map;
1367 enum map_type type;
1368 int ret = 0;
1369
1370 if (dump_trace)
1371 perf_event__fprintf_mmap(event, stdout);
1372
1373 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1374 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1375 ret = machine__process_kernel_mmap_event(machine, event);
1376 if (ret < 0)
1377 goto out_problem;
1378 return 0;
1379 }
1380
1381 thread = machine__findnew_thread(machine, event->mmap.pid,
1382 event->mmap.tid);
1383 if (thread == NULL)
1384 goto out_problem;
1385
1386 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1387 type = MAP__VARIABLE;
1388 else
1389 type = MAP__FUNCTION;
1390
1391 map = map__new(machine, event->mmap.start,
1392 event->mmap.len, event->mmap.pgoff,
1393 event->mmap.pid, 0, 0, 0, 0, 0, 0,
1394 event->mmap.filename,
1395 type, thread);
1396
1397 if (map == NULL)
1398 goto out_problem_map;
1399
1400 thread__insert_map(thread, map);
1401 thread__put(thread);
1402 map__put(map);
1403 return 0;
1404
1405 out_problem_map:
1406 thread__put(thread);
1407 out_problem:
1408 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1409 return 0;
1410 }
1411
1412 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1413 {
1414 if (machine->last_match == th)
1415 machine->last_match = NULL;
1416
1417 BUG_ON(atomic_read(&th->refcnt) == 0);
1418 if (lock)
1419 pthread_rwlock_wrlock(&machine->threads_lock);
1420 rb_erase_init(&th->rb_node, &machine->threads);
1421 RB_CLEAR_NODE(&th->rb_node);
1422 /*
1423 * Move it first to the dead_threads list, then drop the reference,
1424 * if this is the last reference, then the thread__delete destructor
1425 * will be called and we will remove it from the dead_threads list.
1426 */
1427 list_add_tail(&th->node, &machine->dead_threads);
1428 if (lock)
1429 pthread_rwlock_unlock(&machine->threads_lock);
1430 thread__put(th);
1431 }
1432
1433 void machine__remove_thread(struct machine *machine, struct thread *th)
1434 {
1435 return __machine__remove_thread(machine, th, true);
1436 }
1437
1438 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1439 struct perf_sample *sample)
1440 {
1441 struct thread *thread = machine__find_thread(machine,
1442 event->fork.pid,
1443 event->fork.tid);
1444 struct thread *parent = machine__findnew_thread(machine,
1445 event->fork.ppid,
1446 event->fork.ptid);
1447 int err = 0;
1448
1449 if (dump_trace)
1450 perf_event__fprintf_task(event, stdout);
1451
1452 /*
1453 * There may be an existing thread that is not actually the parent,
1454 * either because we are processing events out of order, or because the
1455 * (fork) event that would have removed the thread was lost. Assume the
1456 * latter case and continue on as best we can.
1457 */
1458 if (parent->pid_ != (pid_t)event->fork.ppid) {
1459 dump_printf("removing erroneous parent thread %d/%d\n",
1460 parent->pid_, parent->tid);
1461 machine__remove_thread(machine, parent);
1462 thread__put(parent);
1463 parent = machine__findnew_thread(machine, event->fork.ppid,
1464 event->fork.ptid);
1465 }
1466
1467 /* if a thread currently exists for the thread id remove it */
1468 if (thread != NULL) {
1469 machine__remove_thread(machine, thread);
1470 thread__put(thread);
1471 }
1472
1473 thread = machine__findnew_thread(machine, event->fork.pid,
1474 event->fork.tid);
1475
1476 if (thread == NULL || parent == NULL ||
1477 thread__fork(thread, parent, sample->time) < 0) {
1478 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1479 err = -1;
1480 }
1481 thread__put(thread);
1482 thread__put(parent);
1483
1484 return err;
1485 }
1486
1487 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1488 struct perf_sample *sample __maybe_unused)
1489 {
1490 struct thread *thread = machine__find_thread(machine,
1491 event->fork.pid,
1492 event->fork.tid);
1493
1494 if (dump_trace)
1495 perf_event__fprintf_task(event, stdout);
1496
1497 if (thread != NULL) {
1498 thread__exited(thread);
1499 thread__put(thread);
1500 }
1501
1502 return 0;
1503 }
1504
1505 int machine__process_event(struct machine *machine, union perf_event *event,
1506 struct perf_sample *sample)
1507 {
1508 int ret;
1509
1510 switch (event->header.type) {
1511 case PERF_RECORD_COMM:
1512 ret = machine__process_comm_event(machine, event, sample); break;
1513 case PERF_RECORD_MMAP:
1514 ret = machine__process_mmap_event(machine, event, sample); break;
1515 case PERF_RECORD_MMAP2:
1516 ret = machine__process_mmap2_event(machine, event, sample); break;
1517 case PERF_RECORD_FORK:
1518 ret = machine__process_fork_event(machine, event, sample); break;
1519 case PERF_RECORD_EXIT:
1520 ret = machine__process_exit_event(machine, event, sample); break;
1521 case PERF_RECORD_LOST:
1522 ret = machine__process_lost_event(machine, event, sample); break;
1523 case PERF_RECORD_AUX:
1524 ret = machine__process_aux_event(machine, event); break;
1525 case PERF_RECORD_ITRACE_START:
1526 ret = machine__process_itrace_start_event(machine, event); break;
1527 case PERF_RECORD_LOST_SAMPLES:
1528 ret = machine__process_lost_samples_event(machine, event, sample); break;
1529 case PERF_RECORD_SWITCH:
1530 case PERF_RECORD_SWITCH_CPU_WIDE:
1531 ret = machine__process_switch_event(machine, event); break;
1532 default:
1533 ret = -1;
1534 break;
1535 }
1536
1537 return ret;
1538 }
1539
1540 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1541 {
1542 if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1543 return 1;
1544 return 0;
1545 }
1546
1547 static void ip__resolve_ams(struct thread *thread,
1548 struct addr_map_symbol *ams,
1549 u64 ip)
1550 {
1551 struct addr_location al;
1552
1553 memset(&al, 0, sizeof(al));
1554 /*
1555 * We cannot use the header.misc hint to determine whether a
1556 * branch stack address is user, kernel, guest, hypervisor.
1557 * Branches may straddle the kernel/user/hypervisor boundaries.
1558 * Thus, we have to try consecutively until we find a match
1559 * or else, the symbol is unknown
1560 */
1561 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1562
1563 ams->addr = ip;
1564 ams->al_addr = al.addr;
1565 ams->sym = al.sym;
1566 ams->map = al.map;
1567 }
1568
1569 static void ip__resolve_data(struct thread *thread,
1570 u8 m, struct addr_map_symbol *ams, u64 addr)
1571 {
1572 struct addr_location al;
1573
1574 memset(&al, 0, sizeof(al));
1575
1576 thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1577 if (al.map == NULL) {
1578 /*
1579 * some shared data regions have execute bit set which puts
1580 * their mapping in the MAP__FUNCTION type array.
1581 * Check there as a fallback option before dropping the sample.
1582 */
1583 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1584 }
1585
1586 ams->addr = addr;
1587 ams->al_addr = al.addr;
1588 ams->sym = al.sym;
1589 ams->map = al.map;
1590 }
1591
1592 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1593 struct addr_location *al)
1594 {
1595 struct mem_info *mi = zalloc(sizeof(*mi));
1596
1597 if (!mi)
1598 return NULL;
1599
1600 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1601 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1602 mi->data_src.val = sample->data_src;
1603
1604 return mi;
1605 }
1606
1607 static int add_callchain_ip(struct thread *thread,
1608 struct callchain_cursor *cursor,
1609 struct symbol **parent,
1610 struct addr_location *root_al,
1611 u8 *cpumode,
1612 u64 ip)
1613 {
1614 struct addr_location al;
1615
1616 al.filtered = 0;
1617 al.sym = NULL;
1618 if (!cpumode) {
1619 thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1620 ip, &al);
1621 } else {
1622 if (ip >= PERF_CONTEXT_MAX) {
1623 switch (ip) {
1624 case PERF_CONTEXT_HV:
1625 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1626 break;
1627 case PERF_CONTEXT_KERNEL:
1628 *cpumode = PERF_RECORD_MISC_KERNEL;
1629 break;
1630 case PERF_CONTEXT_USER:
1631 *cpumode = PERF_RECORD_MISC_USER;
1632 break;
1633 default:
1634 pr_debug("invalid callchain context: "
1635 "%"PRId64"\n", (s64) ip);
1636 /*
1637 * It seems the callchain is corrupted.
1638 * Discard all.
1639 */
1640 callchain_cursor_reset(cursor);
1641 return 1;
1642 }
1643 return 0;
1644 }
1645 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1646 ip, &al);
1647 }
1648
1649 if (al.sym != NULL) {
1650 if (sort__has_parent && !*parent &&
1651 symbol__match_regex(al.sym, &parent_regex))
1652 *parent = al.sym;
1653 else if (have_ignore_callees && root_al &&
1654 symbol__match_regex(al.sym, &ignore_callees_regex)) {
1655 /* Treat this symbol as the root,
1656 forgetting its callees. */
1657 *root_al = al;
1658 callchain_cursor_reset(cursor);
1659 }
1660 }
1661
1662 if (symbol_conf.hide_unresolved && al.sym == NULL)
1663 return 0;
1664 return callchain_cursor_append(cursor, al.addr, al.map, al.sym);
1665 }
1666
1667 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1668 struct addr_location *al)
1669 {
1670 unsigned int i;
1671 const struct branch_stack *bs = sample->branch_stack;
1672 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1673
1674 if (!bi)
1675 return NULL;
1676
1677 for (i = 0; i < bs->nr; i++) {
1678 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1679 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1680 bi[i].flags = bs->entries[i].flags;
1681 }
1682 return bi;
1683 }
1684
1685 #define CHASHSZ 127
1686 #define CHASHBITS 7
1687 #define NO_ENTRY 0xff
1688
1689 #define PERF_MAX_BRANCH_DEPTH 127
1690
1691 /* Remove loops. */
1692 static int remove_loops(struct branch_entry *l, int nr)
1693 {
1694 int i, j, off;
1695 unsigned char chash[CHASHSZ];
1696
1697 memset(chash, NO_ENTRY, sizeof(chash));
1698
1699 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1700
1701 for (i = 0; i < nr; i++) {
1702 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1703
1704 /* no collision handling for now */
1705 if (chash[h] == NO_ENTRY) {
1706 chash[h] = i;
1707 } else if (l[chash[h]].from == l[i].from) {
1708 bool is_loop = true;
1709 /* check if it is a real loop */
1710 off = 0;
1711 for (j = chash[h]; j < i && i + off < nr; j++, off++)
1712 if (l[j].from != l[i + off].from) {
1713 is_loop = false;
1714 break;
1715 }
1716 if (is_loop) {
1717 memmove(l + i, l + i + off,
1718 (nr - (i + off)) * sizeof(*l));
1719 nr -= off;
1720 }
1721 }
1722 }
1723 return nr;
1724 }
1725
1726 /*
1727 * Recolve LBR callstack chain sample
1728 * Return:
1729 * 1 on success get LBR callchain information
1730 * 0 no available LBR callchain information, should try fp
1731 * negative error code on other errors.
1732 */
1733 static int resolve_lbr_callchain_sample(struct thread *thread,
1734 struct callchain_cursor *cursor,
1735 struct perf_sample *sample,
1736 struct symbol **parent,
1737 struct addr_location *root_al,
1738 int max_stack)
1739 {
1740 struct ip_callchain *chain = sample->callchain;
1741 int chain_nr = min(max_stack, (int)chain->nr);
1742 u8 cpumode = PERF_RECORD_MISC_USER;
1743 int i, j, err;
1744 u64 ip;
1745
1746 for (i = 0; i < chain_nr; i++) {
1747 if (chain->ips[i] == PERF_CONTEXT_USER)
1748 break;
1749 }
1750
1751 /* LBR only affects the user callchain */
1752 if (i != chain_nr) {
1753 struct branch_stack *lbr_stack = sample->branch_stack;
1754 int lbr_nr = lbr_stack->nr;
1755 /*
1756 * LBR callstack can only get user call chain.
1757 * The mix_chain_nr is kernel call chain
1758 * number plus LBR user call chain number.
1759 * i is kernel call chain number,
1760 * 1 is PERF_CONTEXT_USER,
1761 * lbr_nr + 1 is the user call chain number.
1762 * For details, please refer to the comments
1763 * in callchain__printf
1764 */
1765 int mix_chain_nr = i + 1 + lbr_nr + 1;
1766
1767 if (mix_chain_nr > (int)sysctl_perf_event_max_stack + PERF_MAX_BRANCH_DEPTH) {
1768 pr_warning("corrupted callchain. skipping...\n");
1769 return 0;
1770 }
1771
1772 for (j = 0; j < mix_chain_nr; j++) {
1773 if (callchain_param.order == ORDER_CALLEE) {
1774 if (j < i + 1)
1775 ip = chain->ips[j];
1776 else if (j > i + 1)
1777 ip = lbr_stack->entries[j - i - 2].from;
1778 else
1779 ip = lbr_stack->entries[0].to;
1780 } else {
1781 if (j < lbr_nr)
1782 ip = lbr_stack->entries[lbr_nr - j - 1].from;
1783 else if (j > lbr_nr)
1784 ip = chain->ips[i + 1 - (j - lbr_nr)];
1785 else
1786 ip = lbr_stack->entries[0].to;
1787 }
1788
1789 err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip);
1790 if (err)
1791 return (err < 0) ? err : 0;
1792 }
1793 return 1;
1794 }
1795
1796 return 0;
1797 }
1798
1799 static int thread__resolve_callchain_sample(struct thread *thread,
1800 struct callchain_cursor *cursor,
1801 struct perf_evsel *evsel,
1802 struct perf_sample *sample,
1803 struct symbol **parent,
1804 struct addr_location *root_al,
1805 int max_stack)
1806 {
1807 struct branch_stack *branch = sample->branch_stack;
1808 struct ip_callchain *chain = sample->callchain;
1809 int chain_nr = min(max_stack, (int)chain->nr);
1810 u8 cpumode = PERF_RECORD_MISC_USER;
1811 int i, j, err;
1812 int skip_idx = -1;
1813 int first_call = 0;
1814
1815 callchain_cursor_reset(cursor);
1816
1817 if (perf_evsel__has_branch_callstack(evsel)) {
1818 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
1819 root_al, max_stack);
1820 if (err)
1821 return (err < 0) ? err : 0;
1822 }
1823
1824 /*
1825 * Based on DWARF debug information, some architectures skip
1826 * a callchain entry saved by the kernel.
1827 */
1828 if (chain->nr < sysctl_perf_event_max_stack)
1829 skip_idx = arch_skip_callchain_idx(thread, chain);
1830
1831 /*
1832 * Add branches to call stack for easier browsing. This gives
1833 * more context for a sample than just the callers.
1834 *
1835 * This uses individual histograms of paths compared to the
1836 * aggregated histograms the normal LBR mode uses.
1837 *
1838 * Limitations for now:
1839 * - No extra filters
1840 * - No annotations (should annotate somehow)
1841 */
1842
1843 if (branch && callchain_param.branch_callstack) {
1844 int nr = min(max_stack, (int)branch->nr);
1845 struct branch_entry be[nr];
1846
1847 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1848 pr_warning("corrupted branch chain. skipping...\n");
1849 goto check_calls;
1850 }
1851
1852 for (i = 0; i < nr; i++) {
1853 if (callchain_param.order == ORDER_CALLEE) {
1854 be[i] = branch->entries[i];
1855 /*
1856 * Check for overlap into the callchain.
1857 * The return address is one off compared to
1858 * the branch entry. To adjust for this
1859 * assume the calling instruction is not longer
1860 * than 8 bytes.
1861 */
1862 if (i == skip_idx ||
1863 chain->ips[first_call] >= PERF_CONTEXT_MAX)
1864 first_call++;
1865 else if (be[i].from < chain->ips[first_call] &&
1866 be[i].from >= chain->ips[first_call] - 8)
1867 first_call++;
1868 } else
1869 be[i] = branch->entries[branch->nr - i - 1];
1870 }
1871
1872 nr = remove_loops(be, nr);
1873
1874 for (i = 0; i < nr; i++) {
1875 err = add_callchain_ip(thread, cursor, parent, root_al,
1876 NULL, be[i].to);
1877 if (!err)
1878 err = add_callchain_ip(thread, cursor, parent, root_al,
1879 NULL, be[i].from);
1880 if (err == -EINVAL)
1881 break;
1882 if (err)
1883 return err;
1884 }
1885 chain_nr -= nr;
1886 }
1887
1888 check_calls:
1889 if (chain->nr > sysctl_perf_event_max_stack && (int)chain->nr > max_stack) {
1890 pr_warning("corrupted callchain. skipping...\n");
1891 return 0;
1892 }
1893
1894 for (i = first_call; i < chain_nr; i++) {
1895 u64 ip;
1896
1897 if (callchain_param.order == ORDER_CALLEE)
1898 j = i;
1899 else
1900 j = chain->nr - i - 1;
1901
1902 #ifdef HAVE_SKIP_CALLCHAIN_IDX
1903 if (j == skip_idx)
1904 continue;
1905 #endif
1906 ip = chain->ips[j];
1907
1908 err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip);
1909
1910 if (err)
1911 return (err < 0) ? err : 0;
1912 }
1913
1914 return 0;
1915 }
1916
1917 static int unwind_entry(struct unwind_entry *entry, void *arg)
1918 {
1919 struct callchain_cursor *cursor = arg;
1920
1921 if (symbol_conf.hide_unresolved && entry->sym == NULL)
1922 return 0;
1923 return callchain_cursor_append(cursor, entry->ip,
1924 entry->map, entry->sym);
1925 }
1926
1927 int thread__resolve_callchain(struct thread *thread,
1928 struct callchain_cursor *cursor,
1929 struct perf_evsel *evsel,
1930 struct perf_sample *sample,
1931 struct symbol **parent,
1932 struct addr_location *root_al,
1933 int max_stack)
1934 {
1935 int ret = thread__resolve_callchain_sample(thread, cursor, evsel,
1936 sample, parent,
1937 root_al, max_stack);
1938 if (ret)
1939 return ret;
1940
1941 /* Can we do dwarf post unwind? */
1942 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1943 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1944 return 0;
1945
1946 /* Bail out if nothing was captured. */
1947 if ((!sample->user_regs.regs) ||
1948 (!sample->user_stack.size))
1949 return 0;
1950
1951 return unwind__get_entries(unwind_entry, cursor,
1952 thread, sample, max_stack);
1953
1954 }
1955
1956 int machine__for_each_thread(struct machine *machine,
1957 int (*fn)(struct thread *thread, void *p),
1958 void *priv)
1959 {
1960 struct rb_node *nd;
1961 struct thread *thread;
1962 int rc = 0;
1963
1964 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
1965 thread = rb_entry(nd, struct thread, rb_node);
1966 rc = fn(thread, priv);
1967 if (rc != 0)
1968 return rc;
1969 }
1970
1971 list_for_each_entry(thread, &machine->dead_threads, node) {
1972 rc = fn(thread, priv);
1973 if (rc != 0)
1974 return rc;
1975 }
1976 return rc;
1977 }
1978
1979 int machines__for_each_thread(struct machines *machines,
1980 int (*fn)(struct thread *thread, void *p),
1981 void *priv)
1982 {
1983 struct rb_node *nd;
1984 int rc = 0;
1985
1986 rc = machine__for_each_thread(&machines->host, fn, priv);
1987 if (rc != 0)
1988 return rc;
1989
1990 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
1991 struct machine *machine = rb_entry(nd, struct machine, rb_node);
1992
1993 rc = machine__for_each_thread(machine, fn, priv);
1994 if (rc != 0)
1995 return rc;
1996 }
1997 return rc;
1998 }
1999
2000 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2001 struct target *target, struct thread_map *threads,
2002 perf_event__handler_t process, bool data_mmap,
2003 unsigned int proc_map_timeout)
2004 {
2005 if (target__has_task(target))
2006 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2007 else if (target__has_cpu(target))
2008 return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2009 /* command specified */
2010 return 0;
2011 }
2012
2013 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2014 {
2015 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2016 return -1;
2017
2018 return machine->current_tid[cpu];
2019 }
2020
2021 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2022 pid_t tid)
2023 {
2024 struct thread *thread;
2025
2026 if (cpu < 0)
2027 return -EINVAL;
2028
2029 if (!machine->current_tid) {
2030 int i;
2031
2032 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2033 if (!machine->current_tid)
2034 return -ENOMEM;
2035 for (i = 0; i < MAX_NR_CPUS; i++)
2036 machine->current_tid[i] = -1;
2037 }
2038
2039 if (cpu >= MAX_NR_CPUS) {
2040 pr_err("Requested CPU %d too large. ", cpu);
2041 pr_err("Consider raising MAX_NR_CPUS\n");
2042 return -EINVAL;
2043 }
2044
2045 machine->current_tid[cpu] = tid;
2046
2047 thread = machine__findnew_thread(machine, pid, tid);
2048 if (!thread)
2049 return -ENOMEM;
2050
2051 thread->cpu = cpu;
2052 thread__put(thread);
2053
2054 return 0;
2055 }
2056
2057 int machine__get_kernel_start(struct machine *machine)
2058 {
2059 struct map *map = machine__kernel_map(machine);
2060 int err = 0;
2061
2062 /*
2063 * The only addresses above 2^63 are kernel addresses of a 64-bit
2064 * kernel. Note that addresses are unsigned so that on a 32-bit system
2065 * all addresses including kernel addresses are less than 2^32. In
2066 * that case (32-bit system), if the kernel mapping is unknown, all
2067 * addresses will be assumed to be in user space - see
2068 * machine__kernel_ip().
2069 */
2070 machine->kernel_start = 1ULL << 63;
2071 if (map) {
2072 err = map__load(map, machine->symbol_filter);
2073 if (map->start)
2074 machine->kernel_start = map->start;
2075 }
2076 return err;
2077 }
2078
2079 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2080 {
2081 return dsos__findnew(&machine->dsos, filename);
2082 }
2083
2084 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2085 {
2086 struct machine *machine = vmachine;
2087 struct map *map;
2088 struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map, NULL);
2089
2090 if (sym == NULL)
2091 return NULL;
2092
2093 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2094 *addrp = map->unmap_ip(map, sym->start);
2095 return sym->name;
2096 }
This page took 0.069381 seconds and 4 git commands to generate.