perf hists: Move sort__has_parent into struct perf_hpp_list
[deliverable/linux.git] / tools / perf / util / machine.c
1 #include "callchain.h"
2 #include "debug.h"
3 #include "event.h"
4 #include "evsel.h"
5 #include "hist.h"
6 #include "machine.h"
7 #include "map.h"
8 #include "sort.h"
9 #include "strlist.h"
10 #include "thread.h"
11 #include "vdso.h"
12 #include <stdbool.h>
13 #include <symbol/kallsyms.h>
14 #include "unwind.h"
15 #include "linux/hash.h"
16
17 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
18
19 static void dsos__init(struct dsos *dsos)
20 {
21 INIT_LIST_HEAD(&dsos->head);
22 dsos->root = RB_ROOT;
23 pthread_rwlock_init(&dsos->lock, NULL);
24 }
25
26 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
27 {
28 memset(machine, 0, sizeof(*machine));
29 map_groups__init(&machine->kmaps, machine);
30 RB_CLEAR_NODE(&machine->rb_node);
31 dsos__init(&machine->dsos);
32
33 machine->threads = RB_ROOT;
34 pthread_rwlock_init(&machine->threads_lock, NULL);
35 machine->nr_threads = 0;
36 INIT_LIST_HEAD(&machine->dead_threads);
37 machine->last_match = NULL;
38
39 machine->vdso_info = NULL;
40 machine->env = NULL;
41
42 machine->pid = pid;
43
44 machine->symbol_filter = NULL;
45 machine->id_hdr_size = 0;
46 machine->comm_exec = false;
47 machine->kernel_start = 0;
48
49 memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
50
51 machine->root_dir = strdup(root_dir);
52 if (machine->root_dir == NULL)
53 return -ENOMEM;
54
55 if (pid != HOST_KERNEL_ID) {
56 struct thread *thread = machine__findnew_thread(machine, -1,
57 pid);
58 char comm[64];
59
60 if (thread == NULL)
61 return -ENOMEM;
62
63 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
64 thread__set_comm(thread, comm, 0);
65 thread__put(thread);
66 }
67
68 machine->current_tid = NULL;
69
70 return 0;
71 }
72
73 struct machine *machine__new_host(void)
74 {
75 struct machine *machine = malloc(sizeof(*machine));
76
77 if (machine != NULL) {
78 machine__init(machine, "", HOST_KERNEL_ID);
79
80 if (machine__create_kernel_maps(machine) < 0)
81 goto out_delete;
82 }
83
84 return machine;
85 out_delete:
86 free(machine);
87 return NULL;
88 }
89
90 static void dsos__purge(struct dsos *dsos)
91 {
92 struct dso *pos, *n;
93
94 pthread_rwlock_wrlock(&dsos->lock);
95
96 list_for_each_entry_safe(pos, n, &dsos->head, node) {
97 RB_CLEAR_NODE(&pos->rb_node);
98 pos->root = NULL;
99 list_del_init(&pos->node);
100 dso__put(pos);
101 }
102
103 pthread_rwlock_unlock(&dsos->lock);
104 }
105
106 static void dsos__exit(struct dsos *dsos)
107 {
108 dsos__purge(dsos);
109 pthread_rwlock_destroy(&dsos->lock);
110 }
111
112 void machine__delete_threads(struct machine *machine)
113 {
114 struct rb_node *nd;
115
116 pthread_rwlock_wrlock(&machine->threads_lock);
117 nd = rb_first(&machine->threads);
118 while (nd) {
119 struct thread *t = rb_entry(nd, struct thread, rb_node);
120
121 nd = rb_next(nd);
122 __machine__remove_thread(machine, t, false);
123 }
124 pthread_rwlock_unlock(&machine->threads_lock);
125 }
126
127 void machine__exit(struct machine *machine)
128 {
129 machine__destroy_kernel_maps(machine);
130 map_groups__exit(&machine->kmaps);
131 dsos__exit(&machine->dsos);
132 machine__exit_vdso(machine);
133 zfree(&machine->root_dir);
134 zfree(&machine->current_tid);
135 pthread_rwlock_destroy(&machine->threads_lock);
136 }
137
138 void machine__delete(struct machine *machine)
139 {
140 machine__exit(machine);
141 free(machine);
142 }
143
144 void machines__init(struct machines *machines)
145 {
146 machine__init(&machines->host, "", HOST_KERNEL_ID);
147 machines->guests = RB_ROOT;
148 machines->symbol_filter = NULL;
149 }
150
151 void machines__exit(struct machines *machines)
152 {
153 machine__exit(&machines->host);
154 /* XXX exit guest */
155 }
156
157 struct machine *machines__add(struct machines *machines, pid_t pid,
158 const char *root_dir)
159 {
160 struct rb_node **p = &machines->guests.rb_node;
161 struct rb_node *parent = NULL;
162 struct machine *pos, *machine = malloc(sizeof(*machine));
163
164 if (machine == NULL)
165 return NULL;
166
167 if (machine__init(machine, root_dir, pid) != 0) {
168 free(machine);
169 return NULL;
170 }
171
172 machine->symbol_filter = machines->symbol_filter;
173
174 while (*p != NULL) {
175 parent = *p;
176 pos = rb_entry(parent, struct machine, rb_node);
177 if (pid < pos->pid)
178 p = &(*p)->rb_left;
179 else
180 p = &(*p)->rb_right;
181 }
182
183 rb_link_node(&machine->rb_node, parent, p);
184 rb_insert_color(&machine->rb_node, &machines->guests);
185
186 return machine;
187 }
188
189 void machines__set_symbol_filter(struct machines *machines,
190 symbol_filter_t symbol_filter)
191 {
192 struct rb_node *nd;
193
194 machines->symbol_filter = symbol_filter;
195 machines->host.symbol_filter = symbol_filter;
196
197 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
198 struct machine *machine = rb_entry(nd, struct machine, rb_node);
199
200 machine->symbol_filter = symbol_filter;
201 }
202 }
203
204 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
205 {
206 struct rb_node *nd;
207
208 machines->host.comm_exec = comm_exec;
209
210 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
211 struct machine *machine = rb_entry(nd, struct machine, rb_node);
212
213 machine->comm_exec = comm_exec;
214 }
215 }
216
217 struct machine *machines__find(struct machines *machines, pid_t pid)
218 {
219 struct rb_node **p = &machines->guests.rb_node;
220 struct rb_node *parent = NULL;
221 struct machine *machine;
222 struct machine *default_machine = NULL;
223
224 if (pid == HOST_KERNEL_ID)
225 return &machines->host;
226
227 while (*p != NULL) {
228 parent = *p;
229 machine = rb_entry(parent, struct machine, rb_node);
230 if (pid < machine->pid)
231 p = &(*p)->rb_left;
232 else if (pid > machine->pid)
233 p = &(*p)->rb_right;
234 else
235 return machine;
236 if (!machine->pid)
237 default_machine = machine;
238 }
239
240 return default_machine;
241 }
242
243 struct machine *machines__findnew(struct machines *machines, pid_t pid)
244 {
245 char path[PATH_MAX];
246 const char *root_dir = "";
247 struct machine *machine = machines__find(machines, pid);
248
249 if (machine && (machine->pid == pid))
250 goto out;
251
252 if ((pid != HOST_KERNEL_ID) &&
253 (pid != DEFAULT_GUEST_KERNEL_ID) &&
254 (symbol_conf.guestmount)) {
255 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
256 if (access(path, R_OK)) {
257 static struct strlist *seen;
258
259 if (!seen)
260 seen = strlist__new(NULL, NULL);
261
262 if (!strlist__has_entry(seen, path)) {
263 pr_err("Can't access file %s\n", path);
264 strlist__add(seen, path);
265 }
266 machine = NULL;
267 goto out;
268 }
269 root_dir = path;
270 }
271
272 machine = machines__add(machines, pid, root_dir);
273 out:
274 return machine;
275 }
276
277 void machines__process_guests(struct machines *machines,
278 machine__process_t process, void *data)
279 {
280 struct rb_node *nd;
281
282 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
283 struct machine *pos = rb_entry(nd, struct machine, rb_node);
284 process(pos, data);
285 }
286 }
287
288 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
289 {
290 if (machine__is_host(machine))
291 snprintf(bf, size, "[%s]", "kernel.kallsyms");
292 else if (machine__is_default_guest(machine))
293 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
294 else {
295 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
296 machine->pid);
297 }
298
299 return bf;
300 }
301
302 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
303 {
304 struct rb_node *node;
305 struct machine *machine;
306
307 machines->host.id_hdr_size = id_hdr_size;
308
309 for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
310 machine = rb_entry(node, struct machine, rb_node);
311 machine->id_hdr_size = id_hdr_size;
312 }
313
314 return;
315 }
316
317 static void machine__update_thread_pid(struct machine *machine,
318 struct thread *th, pid_t pid)
319 {
320 struct thread *leader;
321
322 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
323 return;
324
325 th->pid_ = pid;
326
327 if (th->pid_ == th->tid)
328 return;
329
330 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
331 if (!leader)
332 goto out_err;
333
334 if (!leader->mg)
335 leader->mg = map_groups__new(machine);
336
337 if (!leader->mg)
338 goto out_err;
339
340 if (th->mg == leader->mg)
341 return;
342
343 if (th->mg) {
344 /*
345 * Maps are created from MMAP events which provide the pid and
346 * tid. Consequently there never should be any maps on a thread
347 * with an unknown pid. Just print an error if there are.
348 */
349 if (!map_groups__empty(th->mg))
350 pr_err("Discarding thread maps for %d:%d\n",
351 th->pid_, th->tid);
352 map_groups__put(th->mg);
353 }
354
355 th->mg = map_groups__get(leader->mg);
356 out_put:
357 thread__put(leader);
358 return;
359 out_err:
360 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
361 goto out_put;
362 }
363
364 /*
365 * Caller must eventually drop thread->refcnt returned with a successfull
366 * lookup/new thread inserted.
367 */
368 static struct thread *____machine__findnew_thread(struct machine *machine,
369 pid_t pid, pid_t tid,
370 bool create)
371 {
372 struct rb_node **p = &machine->threads.rb_node;
373 struct rb_node *parent = NULL;
374 struct thread *th;
375
376 /*
377 * Front-end cache - TID lookups come in blocks,
378 * so most of the time we dont have to look up
379 * the full rbtree:
380 */
381 th = machine->last_match;
382 if (th != NULL) {
383 if (th->tid == tid) {
384 machine__update_thread_pid(machine, th, pid);
385 return thread__get(th);
386 }
387
388 machine->last_match = NULL;
389 }
390
391 while (*p != NULL) {
392 parent = *p;
393 th = rb_entry(parent, struct thread, rb_node);
394
395 if (th->tid == tid) {
396 machine->last_match = th;
397 machine__update_thread_pid(machine, th, pid);
398 return thread__get(th);
399 }
400
401 if (tid < th->tid)
402 p = &(*p)->rb_left;
403 else
404 p = &(*p)->rb_right;
405 }
406
407 if (!create)
408 return NULL;
409
410 th = thread__new(pid, tid);
411 if (th != NULL) {
412 rb_link_node(&th->rb_node, parent, p);
413 rb_insert_color(&th->rb_node, &machine->threads);
414
415 /*
416 * We have to initialize map_groups separately
417 * after rb tree is updated.
418 *
419 * The reason is that we call machine__findnew_thread
420 * within thread__init_map_groups to find the thread
421 * leader and that would screwed the rb tree.
422 */
423 if (thread__init_map_groups(th, machine)) {
424 rb_erase_init(&th->rb_node, &machine->threads);
425 RB_CLEAR_NODE(&th->rb_node);
426 thread__put(th);
427 return NULL;
428 }
429 /*
430 * It is now in the rbtree, get a ref
431 */
432 thread__get(th);
433 machine->last_match = th;
434 ++machine->nr_threads;
435 }
436
437 return th;
438 }
439
440 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
441 {
442 return ____machine__findnew_thread(machine, pid, tid, true);
443 }
444
445 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
446 pid_t tid)
447 {
448 struct thread *th;
449
450 pthread_rwlock_wrlock(&machine->threads_lock);
451 th = __machine__findnew_thread(machine, pid, tid);
452 pthread_rwlock_unlock(&machine->threads_lock);
453 return th;
454 }
455
456 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
457 pid_t tid)
458 {
459 struct thread *th;
460 pthread_rwlock_rdlock(&machine->threads_lock);
461 th = ____machine__findnew_thread(machine, pid, tid, false);
462 pthread_rwlock_unlock(&machine->threads_lock);
463 return th;
464 }
465
466 struct comm *machine__thread_exec_comm(struct machine *machine,
467 struct thread *thread)
468 {
469 if (machine->comm_exec)
470 return thread__exec_comm(thread);
471 else
472 return thread__comm(thread);
473 }
474
475 int machine__process_comm_event(struct machine *machine, union perf_event *event,
476 struct perf_sample *sample)
477 {
478 struct thread *thread = machine__findnew_thread(machine,
479 event->comm.pid,
480 event->comm.tid);
481 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
482 int err = 0;
483
484 if (exec)
485 machine->comm_exec = true;
486
487 if (dump_trace)
488 perf_event__fprintf_comm(event, stdout);
489
490 if (thread == NULL ||
491 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
492 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
493 err = -1;
494 }
495
496 thread__put(thread);
497
498 return err;
499 }
500
501 int machine__process_lost_event(struct machine *machine __maybe_unused,
502 union perf_event *event, struct perf_sample *sample __maybe_unused)
503 {
504 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
505 event->lost.id, event->lost.lost);
506 return 0;
507 }
508
509 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
510 union perf_event *event, struct perf_sample *sample)
511 {
512 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
513 sample->id, event->lost_samples.lost);
514 return 0;
515 }
516
517 static struct dso *machine__findnew_module_dso(struct machine *machine,
518 struct kmod_path *m,
519 const char *filename)
520 {
521 struct dso *dso;
522
523 pthread_rwlock_wrlock(&machine->dsos.lock);
524
525 dso = __dsos__find(&machine->dsos, m->name, true);
526 if (!dso) {
527 dso = __dsos__addnew(&machine->dsos, m->name);
528 if (dso == NULL)
529 goto out_unlock;
530
531 if (machine__is_host(machine))
532 dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
533 else
534 dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
535
536 /* _KMODULE_COMP should be next to _KMODULE */
537 if (m->kmod && m->comp)
538 dso->symtab_type++;
539
540 dso__set_short_name(dso, strdup(m->name), true);
541 dso__set_long_name(dso, strdup(filename), true);
542 }
543
544 dso__get(dso);
545 out_unlock:
546 pthread_rwlock_unlock(&machine->dsos.lock);
547 return dso;
548 }
549
550 int machine__process_aux_event(struct machine *machine __maybe_unused,
551 union perf_event *event)
552 {
553 if (dump_trace)
554 perf_event__fprintf_aux(event, stdout);
555 return 0;
556 }
557
558 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
559 union perf_event *event)
560 {
561 if (dump_trace)
562 perf_event__fprintf_itrace_start(event, stdout);
563 return 0;
564 }
565
566 int machine__process_switch_event(struct machine *machine __maybe_unused,
567 union perf_event *event)
568 {
569 if (dump_trace)
570 perf_event__fprintf_switch(event, stdout);
571 return 0;
572 }
573
574 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
575 {
576 const char *dup_filename;
577
578 if (!filename || !dso || !dso->long_name)
579 return;
580 if (dso->long_name[0] != '[')
581 return;
582 if (!strchr(filename, '/'))
583 return;
584
585 dup_filename = strdup(filename);
586 if (!dup_filename)
587 return;
588
589 dso__set_long_name(dso, dup_filename, true);
590 }
591
592 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
593 const char *filename)
594 {
595 struct map *map = NULL;
596 struct dso *dso = NULL;
597 struct kmod_path m;
598
599 if (kmod_path__parse_name(&m, filename))
600 return NULL;
601
602 map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
603 m.name);
604 if (map) {
605 /*
606 * If the map's dso is an offline module, give dso__load()
607 * a chance to find the file path of that module by fixing
608 * long_name.
609 */
610 dso__adjust_kmod_long_name(map->dso, filename);
611 goto out;
612 }
613
614 dso = machine__findnew_module_dso(machine, &m, filename);
615 if (dso == NULL)
616 goto out;
617
618 map = map__new2(start, dso, MAP__FUNCTION);
619 if (map == NULL)
620 goto out;
621
622 map_groups__insert(&machine->kmaps, map);
623
624 /* Put the map here because map_groups__insert alread got it */
625 map__put(map);
626 out:
627 /* put the dso here, corresponding to machine__findnew_module_dso */
628 dso__put(dso);
629 free(m.name);
630 return map;
631 }
632
633 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
634 {
635 struct rb_node *nd;
636 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
637
638 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
639 struct machine *pos = rb_entry(nd, struct machine, rb_node);
640 ret += __dsos__fprintf(&pos->dsos.head, fp);
641 }
642
643 return ret;
644 }
645
646 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
647 bool (skip)(struct dso *dso, int parm), int parm)
648 {
649 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
650 }
651
652 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
653 bool (skip)(struct dso *dso, int parm), int parm)
654 {
655 struct rb_node *nd;
656 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
657
658 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
659 struct machine *pos = rb_entry(nd, struct machine, rb_node);
660 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
661 }
662 return ret;
663 }
664
665 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
666 {
667 int i;
668 size_t printed = 0;
669 struct dso *kdso = machine__kernel_map(machine)->dso;
670
671 if (kdso->has_build_id) {
672 char filename[PATH_MAX];
673 if (dso__build_id_filename(kdso, filename, sizeof(filename)))
674 printed += fprintf(fp, "[0] %s\n", filename);
675 }
676
677 for (i = 0; i < vmlinux_path__nr_entries; ++i)
678 printed += fprintf(fp, "[%d] %s\n",
679 i + kdso->has_build_id, vmlinux_path[i]);
680
681 return printed;
682 }
683
684 size_t machine__fprintf(struct machine *machine, FILE *fp)
685 {
686 size_t ret;
687 struct rb_node *nd;
688
689 pthread_rwlock_rdlock(&machine->threads_lock);
690
691 ret = fprintf(fp, "Threads: %u\n", machine->nr_threads);
692
693 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
694 struct thread *pos = rb_entry(nd, struct thread, rb_node);
695
696 ret += thread__fprintf(pos, fp);
697 }
698
699 pthread_rwlock_unlock(&machine->threads_lock);
700
701 return ret;
702 }
703
704 static struct dso *machine__get_kernel(struct machine *machine)
705 {
706 const char *vmlinux_name = NULL;
707 struct dso *kernel;
708
709 if (machine__is_host(machine)) {
710 vmlinux_name = symbol_conf.vmlinux_name;
711 if (!vmlinux_name)
712 vmlinux_name = "[kernel.kallsyms]";
713
714 kernel = machine__findnew_kernel(machine, vmlinux_name,
715 "[kernel]", DSO_TYPE_KERNEL);
716 } else {
717 char bf[PATH_MAX];
718
719 if (machine__is_default_guest(machine))
720 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
721 if (!vmlinux_name)
722 vmlinux_name = machine__mmap_name(machine, bf,
723 sizeof(bf));
724
725 kernel = machine__findnew_kernel(machine, vmlinux_name,
726 "[guest.kernel]",
727 DSO_TYPE_GUEST_KERNEL);
728 }
729
730 if (kernel != NULL && (!kernel->has_build_id))
731 dso__read_running_kernel_build_id(kernel, machine);
732
733 return kernel;
734 }
735
736 struct process_args {
737 u64 start;
738 };
739
740 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
741 size_t bufsz)
742 {
743 if (machine__is_default_guest(machine))
744 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
745 else
746 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
747 }
748
749 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
750
751 /* Figure out the start address of kernel map from /proc/kallsyms.
752 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
753 * symbol_name if it's not that important.
754 */
755 static u64 machine__get_running_kernel_start(struct machine *machine,
756 const char **symbol_name)
757 {
758 char filename[PATH_MAX];
759 int i;
760 const char *name;
761 u64 addr = 0;
762
763 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
764
765 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
766 return 0;
767
768 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
769 addr = kallsyms__get_function_start(filename, name);
770 if (addr)
771 break;
772 }
773
774 if (symbol_name)
775 *symbol_name = name;
776
777 return addr;
778 }
779
780 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
781 {
782 enum map_type type;
783 u64 start = machine__get_running_kernel_start(machine, NULL);
784
785 /* In case of renewal the kernel map, destroy previous one */
786 machine__destroy_kernel_maps(machine);
787
788 for (type = 0; type < MAP__NR_TYPES; ++type) {
789 struct kmap *kmap;
790 struct map *map;
791
792 machine->vmlinux_maps[type] = map__new2(start, kernel, type);
793 if (machine->vmlinux_maps[type] == NULL)
794 return -1;
795
796 machine->vmlinux_maps[type]->map_ip =
797 machine->vmlinux_maps[type]->unmap_ip =
798 identity__map_ip;
799 map = __machine__kernel_map(machine, type);
800 kmap = map__kmap(map);
801 if (!kmap)
802 return -1;
803
804 kmap->kmaps = &machine->kmaps;
805 map_groups__insert(&machine->kmaps, map);
806 }
807
808 return 0;
809 }
810
811 void machine__destroy_kernel_maps(struct machine *machine)
812 {
813 enum map_type type;
814
815 for (type = 0; type < MAP__NR_TYPES; ++type) {
816 struct kmap *kmap;
817 struct map *map = __machine__kernel_map(machine, type);
818
819 if (map == NULL)
820 continue;
821
822 kmap = map__kmap(map);
823 map_groups__remove(&machine->kmaps, map);
824 if (kmap && kmap->ref_reloc_sym) {
825 /*
826 * ref_reloc_sym is shared among all maps, so free just
827 * on one of them.
828 */
829 if (type == MAP__FUNCTION) {
830 zfree((char **)&kmap->ref_reloc_sym->name);
831 zfree(&kmap->ref_reloc_sym);
832 } else
833 kmap->ref_reloc_sym = NULL;
834 }
835
836 map__put(machine->vmlinux_maps[type]);
837 machine->vmlinux_maps[type] = NULL;
838 }
839 }
840
841 int machines__create_guest_kernel_maps(struct machines *machines)
842 {
843 int ret = 0;
844 struct dirent **namelist = NULL;
845 int i, items = 0;
846 char path[PATH_MAX];
847 pid_t pid;
848 char *endp;
849
850 if (symbol_conf.default_guest_vmlinux_name ||
851 symbol_conf.default_guest_modules ||
852 symbol_conf.default_guest_kallsyms) {
853 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
854 }
855
856 if (symbol_conf.guestmount) {
857 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
858 if (items <= 0)
859 return -ENOENT;
860 for (i = 0; i < items; i++) {
861 if (!isdigit(namelist[i]->d_name[0])) {
862 /* Filter out . and .. */
863 continue;
864 }
865 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
866 if ((*endp != '\0') ||
867 (endp == namelist[i]->d_name) ||
868 (errno == ERANGE)) {
869 pr_debug("invalid directory (%s). Skipping.\n",
870 namelist[i]->d_name);
871 continue;
872 }
873 sprintf(path, "%s/%s/proc/kallsyms",
874 symbol_conf.guestmount,
875 namelist[i]->d_name);
876 ret = access(path, R_OK);
877 if (ret) {
878 pr_debug("Can't access file %s\n", path);
879 goto failure;
880 }
881 machines__create_kernel_maps(machines, pid);
882 }
883 failure:
884 free(namelist);
885 }
886
887 return ret;
888 }
889
890 void machines__destroy_kernel_maps(struct machines *machines)
891 {
892 struct rb_node *next = rb_first(&machines->guests);
893
894 machine__destroy_kernel_maps(&machines->host);
895
896 while (next) {
897 struct machine *pos = rb_entry(next, struct machine, rb_node);
898
899 next = rb_next(&pos->rb_node);
900 rb_erase(&pos->rb_node, &machines->guests);
901 machine__delete(pos);
902 }
903 }
904
905 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
906 {
907 struct machine *machine = machines__findnew(machines, pid);
908
909 if (machine == NULL)
910 return -1;
911
912 return machine__create_kernel_maps(machine);
913 }
914
915 int __machine__load_kallsyms(struct machine *machine, const char *filename,
916 enum map_type type, bool no_kcore, symbol_filter_t filter)
917 {
918 struct map *map = machine__kernel_map(machine);
919 int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore, filter);
920
921 if (ret > 0) {
922 dso__set_loaded(map->dso, type);
923 /*
924 * Since /proc/kallsyms will have multiple sessions for the
925 * kernel, with modules between them, fixup the end of all
926 * sections.
927 */
928 __map_groups__fixup_end(&machine->kmaps, type);
929 }
930
931 return ret;
932 }
933
934 int machine__load_kallsyms(struct machine *machine, const char *filename,
935 enum map_type type, symbol_filter_t filter)
936 {
937 return __machine__load_kallsyms(machine, filename, type, false, filter);
938 }
939
940 int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
941 symbol_filter_t filter)
942 {
943 struct map *map = machine__kernel_map(machine);
944 int ret = dso__load_vmlinux_path(map->dso, map, filter);
945
946 if (ret > 0)
947 dso__set_loaded(map->dso, type);
948
949 return ret;
950 }
951
952 static void map_groups__fixup_end(struct map_groups *mg)
953 {
954 int i;
955 for (i = 0; i < MAP__NR_TYPES; ++i)
956 __map_groups__fixup_end(mg, i);
957 }
958
959 static char *get_kernel_version(const char *root_dir)
960 {
961 char version[PATH_MAX];
962 FILE *file;
963 char *name, *tmp;
964 const char *prefix = "Linux version ";
965
966 sprintf(version, "%s/proc/version", root_dir);
967 file = fopen(version, "r");
968 if (!file)
969 return NULL;
970
971 version[0] = '\0';
972 tmp = fgets(version, sizeof(version), file);
973 fclose(file);
974
975 name = strstr(version, prefix);
976 if (!name)
977 return NULL;
978 name += strlen(prefix);
979 tmp = strchr(name, ' ');
980 if (tmp)
981 *tmp = '\0';
982
983 return strdup(name);
984 }
985
986 static bool is_kmod_dso(struct dso *dso)
987 {
988 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
989 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
990 }
991
992 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
993 struct kmod_path *m)
994 {
995 struct map *map;
996 char *long_name;
997
998 map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
999 if (map == NULL)
1000 return 0;
1001
1002 long_name = strdup(path);
1003 if (long_name == NULL)
1004 return -ENOMEM;
1005
1006 dso__set_long_name(map->dso, long_name, true);
1007 dso__kernel_module_get_build_id(map->dso, "");
1008
1009 /*
1010 * Full name could reveal us kmod compression, so
1011 * we need to update the symtab_type if needed.
1012 */
1013 if (m->comp && is_kmod_dso(map->dso))
1014 map->dso->symtab_type++;
1015
1016 return 0;
1017 }
1018
1019 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1020 const char *dir_name, int depth)
1021 {
1022 struct dirent *dent;
1023 DIR *dir = opendir(dir_name);
1024 int ret = 0;
1025
1026 if (!dir) {
1027 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1028 return -1;
1029 }
1030
1031 while ((dent = readdir(dir)) != NULL) {
1032 char path[PATH_MAX];
1033 struct stat st;
1034
1035 /*sshfs might return bad dent->d_type, so we have to stat*/
1036 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1037 if (stat(path, &st))
1038 continue;
1039
1040 if (S_ISDIR(st.st_mode)) {
1041 if (!strcmp(dent->d_name, ".") ||
1042 !strcmp(dent->d_name, ".."))
1043 continue;
1044
1045 /* Do not follow top-level source and build symlinks */
1046 if (depth == 0) {
1047 if (!strcmp(dent->d_name, "source") ||
1048 !strcmp(dent->d_name, "build"))
1049 continue;
1050 }
1051
1052 ret = map_groups__set_modules_path_dir(mg, path,
1053 depth + 1);
1054 if (ret < 0)
1055 goto out;
1056 } else {
1057 struct kmod_path m;
1058
1059 ret = kmod_path__parse_name(&m, dent->d_name);
1060 if (ret)
1061 goto out;
1062
1063 if (m.kmod)
1064 ret = map_groups__set_module_path(mg, path, &m);
1065
1066 free(m.name);
1067
1068 if (ret)
1069 goto out;
1070 }
1071 }
1072
1073 out:
1074 closedir(dir);
1075 return ret;
1076 }
1077
1078 static int machine__set_modules_path(struct machine *machine)
1079 {
1080 char *version;
1081 char modules_path[PATH_MAX];
1082
1083 version = get_kernel_version(machine->root_dir);
1084 if (!version)
1085 return -1;
1086
1087 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1088 machine->root_dir, version);
1089 free(version);
1090
1091 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1092 }
1093
1094 static int machine__create_module(void *arg, const char *name, u64 start)
1095 {
1096 struct machine *machine = arg;
1097 struct map *map;
1098
1099 map = machine__findnew_module_map(machine, start, name);
1100 if (map == NULL)
1101 return -1;
1102
1103 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1104
1105 return 0;
1106 }
1107
1108 static int machine__create_modules(struct machine *machine)
1109 {
1110 const char *modules;
1111 char path[PATH_MAX];
1112
1113 if (machine__is_default_guest(machine)) {
1114 modules = symbol_conf.default_guest_modules;
1115 } else {
1116 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1117 modules = path;
1118 }
1119
1120 if (symbol__restricted_filename(modules, "/proc/modules"))
1121 return -1;
1122
1123 if (modules__parse(modules, machine, machine__create_module))
1124 return -1;
1125
1126 if (!machine__set_modules_path(machine))
1127 return 0;
1128
1129 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1130
1131 return 0;
1132 }
1133
1134 int machine__create_kernel_maps(struct machine *machine)
1135 {
1136 struct dso *kernel = machine__get_kernel(machine);
1137 const char *name;
1138 u64 addr = machine__get_running_kernel_start(machine, &name);
1139 int ret;
1140
1141 if (!addr || kernel == NULL)
1142 return -1;
1143
1144 ret = __machine__create_kernel_maps(machine, kernel);
1145 dso__put(kernel);
1146 if (ret < 0)
1147 return -1;
1148
1149 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1150 if (machine__is_host(machine))
1151 pr_debug("Problems creating module maps, "
1152 "continuing anyway...\n");
1153 else
1154 pr_debug("Problems creating module maps for guest %d, "
1155 "continuing anyway...\n", machine->pid);
1156 }
1157
1158 /*
1159 * Now that we have all the maps created, just set the ->end of them:
1160 */
1161 map_groups__fixup_end(&machine->kmaps);
1162
1163 if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name,
1164 addr)) {
1165 machine__destroy_kernel_maps(machine);
1166 return -1;
1167 }
1168
1169 return 0;
1170 }
1171
1172 static void machine__set_kernel_mmap_len(struct machine *machine,
1173 union perf_event *event)
1174 {
1175 int i;
1176
1177 for (i = 0; i < MAP__NR_TYPES; i++) {
1178 machine->vmlinux_maps[i]->start = event->mmap.start;
1179 machine->vmlinux_maps[i]->end = (event->mmap.start +
1180 event->mmap.len);
1181 /*
1182 * Be a bit paranoid here, some perf.data file came with
1183 * a zero sized synthesized MMAP event for the kernel.
1184 */
1185 if (machine->vmlinux_maps[i]->end == 0)
1186 machine->vmlinux_maps[i]->end = ~0ULL;
1187 }
1188 }
1189
1190 static bool machine__uses_kcore(struct machine *machine)
1191 {
1192 struct dso *dso;
1193
1194 list_for_each_entry(dso, &machine->dsos.head, node) {
1195 if (dso__is_kcore(dso))
1196 return true;
1197 }
1198
1199 return false;
1200 }
1201
1202 static int machine__process_kernel_mmap_event(struct machine *machine,
1203 union perf_event *event)
1204 {
1205 struct map *map;
1206 char kmmap_prefix[PATH_MAX];
1207 enum dso_kernel_type kernel_type;
1208 bool is_kernel_mmap;
1209
1210 /* If we have maps from kcore then we do not need or want any others */
1211 if (machine__uses_kcore(machine))
1212 return 0;
1213
1214 machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1215 if (machine__is_host(machine))
1216 kernel_type = DSO_TYPE_KERNEL;
1217 else
1218 kernel_type = DSO_TYPE_GUEST_KERNEL;
1219
1220 is_kernel_mmap = memcmp(event->mmap.filename,
1221 kmmap_prefix,
1222 strlen(kmmap_prefix) - 1) == 0;
1223 if (event->mmap.filename[0] == '/' ||
1224 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1225 map = machine__findnew_module_map(machine, event->mmap.start,
1226 event->mmap.filename);
1227 if (map == NULL)
1228 goto out_problem;
1229
1230 map->end = map->start + event->mmap.len;
1231 } else if (is_kernel_mmap) {
1232 const char *symbol_name = (event->mmap.filename +
1233 strlen(kmmap_prefix));
1234 /*
1235 * Should be there already, from the build-id table in
1236 * the header.
1237 */
1238 struct dso *kernel = NULL;
1239 struct dso *dso;
1240
1241 pthread_rwlock_rdlock(&machine->dsos.lock);
1242
1243 list_for_each_entry(dso, &machine->dsos.head, node) {
1244
1245 /*
1246 * The cpumode passed to is_kernel_module is not the
1247 * cpumode of *this* event. If we insist on passing
1248 * correct cpumode to is_kernel_module, we should
1249 * record the cpumode when we adding this dso to the
1250 * linked list.
1251 *
1252 * However we don't really need passing correct
1253 * cpumode. We know the correct cpumode must be kernel
1254 * mode (if not, we should not link it onto kernel_dsos
1255 * list).
1256 *
1257 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1258 * is_kernel_module() treats it as a kernel cpumode.
1259 */
1260
1261 if (!dso->kernel ||
1262 is_kernel_module(dso->long_name,
1263 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1264 continue;
1265
1266
1267 kernel = dso;
1268 break;
1269 }
1270
1271 pthread_rwlock_unlock(&machine->dsos.lock);
1272
1273 if (kernel == NULL)
1274 kernel = machine__findnew_dso(machine, kmmap_prefix);
1275 if (kernel == NULL)
1276 goto out_problem;
1277
1278 kernel->kernel = kernel_type;
1279 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1280 dso__put(kernel);
1281 goto out_problem;
1282 }
1283
1284 if (strstr(kernel->long_name, "vmlinux"))
1285 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1286
1287 machine__set_kernel_mmap_len(machine, event);
1288
1289 /*
1290 * Avoid using a zero address (kptr_restrict) for the ref reloc
1291 * symbol. Effectively having zero here means that at record
1292 * time /proc/sys/kernel/kptr_restrict was non zero.
1293 */
1294 if (event->mmap.pgoff != 0) {
1295 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1296 symbol_name,
1297 event->mmap.pgoff);
1298 }
1299
1300 if (machine__is_default_guest(machine)) {
1301 /*
1302 * preload dso of guest kernel and modules
1303 */
1304 dso__load(kernel, machine__kernel_map(machine), NULL);
1305 }
1306 }
1307 return 0;
1308 out_problem:
1309 return -1;
1310 }
1311
1312 int machine__process_mmap2_event(struct machine *machine,
1313 union perf_event *event,
1314 struct perf_sample *sample)
1315 {
1316 struct thread *thread;
1317 struct map *map;
1318 enum map_type type;
1319 int ret = 0;
1320
1321 if (dump_trace)
1322 perf_event__fprintf_mmap2(event, stdout);
1323
1324 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1325 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1326 ret = machine__process_kernel_mmap_event(machine, event);
1327 if (ret < 0)
1328 goto out_problem;
1329 return 0;
1330 }
1331
1332 thread = machine__findnew_thread(machine, event->mmap2.pid,
1333 event->mmap2.tid);
1334 if (thread == NULL)
1335 goto out_problem;
1336
1337 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1338 type = MAP__VARIABLE;
1339 else
1340 type = MAP__FUNCTION;
1341
1342 map = map__new(machine, event->mmap2.start,
1343 event->mmap2.len, event->mmap2.pgoff,
1344 event->mmap2.pid, event->mmap2.maj,
1345 event->mmap2.min, event->mmap2.ino,
1346 event->mmap2.ino_generation,
1347 event->mmap2.prot,
1348 event->mmap2.flags,
1349 event->mmap2.filename, type, thread);
1350
1351 if (map == NULL)
1352 goto out_problem_map;
1353
1354 thread__insert_map(thread, map);
1355 thread__put(thread);
1356 map__put(map);
1357 return 0;
1358
1359 out_problem_map:
1360 thread__put(thread);
1361 out_problem:
1362 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1363 return 0;
1364 }
1365
1366 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1367 struct perf_sample *sample)
1368 {
1369 struct thread *thread;
1370 struct map *map;
1371 enum map_type type;
1372 int ret = 0;
1373
1374 if (dump_trace)
1375 perf_event__fprintf_mmap(event, stdout);
1376
1377 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1378 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1379 ret = machine__process_kernel_mmap_event(machine, event);
1380 if (ret < 0)
1381 goto out_problem;
1382 return 0;
1383 }
1384
1385 thread = machine__findnew_thread(machine, event->mmap.pid,
1386 event->mmap.tid);
1387 if (thread == NULL)
1388 goto out_problem;
1389
1390 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1391 type = MAP__VARIABLE;
1392 else
1393 type = MAP__FUNCTION;
1394
1395 map = map__new(machine, event->mmap.start,
1396 event->mmap.len, event->mmap.pgoff,
1397 event->mmap.pid, 0, 0, 0, 0, 0, 0,
1398 event->mmap.filename,
1399 type, thread);
1400
1401 if (map == NULL)
1402 goto out_problem_map;
1403
1404 thread__insert_map(thread, map);
1405 thread__put(thread);
1406 map__put(map);
1407 return 0;
1408
1409 out_problem_map:
1410 thread__put(thread);
1411 out_problem:
1412 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1413 return 0;
1414 }
1415
1416 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1417 {
1418 if (machine->last_match == th)
1419 machine->last_match = NULL;
1420
1421 BUG_ON(atomic_read(&th->refcnt) == 0);
1422 if (lock)
1423 pthread_rwlock_wrlock(&machine->threads_lock);
1424 rb_erase_init(&th->rb_node, &machine->threads);
1425 RB_CLEAR_NODE(&th->rb_node);
1426 --machine->nr_threads;
1427 /*
1428 * Move it first to the dead_threads list, then drop the reference,
1429 * if this is the last reference, then the thread__delete destructor
1430 * will be called and we will remove it from the dead_threads list.
1431 */
1432 list_add_tail(&th->node, &machine->dead_threads);
1433 if (lock)
1434 pthread_rwlock_unlock(&machine->threads_lock);
1435 thread__put(th);
1436 }
1437
1438 void machine__remove_thread(struct machine *machine, struct thread *th)
1439 {
1440 return __machine__remove_thread(machine, th, true);
1441 }
1442
1443 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1444 struct perf_sample *sample)
1445 {
1446 struct thread *thread = machine__find_thread(machine,
1447 event->fork.pid,
1448 event->fork.tid);
1449 struct thread *parent = machine__findnew_thread(machine,
1450 event->fork.ppid,
1451 event->fork.ptid);
1452 int err = 0;
1453
1454 if (dump_trace)
1455 perf_event__fprintf_task(event, stdout);
1456
1457 /*
1458 * There may be an existing thread that is not actually the parent,
1459 * either because we are processing events out of order, or because the
1460 * (fork) event that would have removed the thread was lost. Assume the
1461 * latter case and continue on as best we can.
1462 */
1463 if (parent->pid_ != (pid_t)event->fork.ppid) {
1464 dump_printf("removing erroneous parent thread %d/%d\n",
1465 parent->pid_, parent->tid);
1466 machine__remove_thread(machine, parent);
1467 thread__put(parent);
1468 parent = machine__findnew_thread(machine, event->fork.ppid,
1469 event->fork.ptid);
1470 }
1471
1472 /* if a thread currently exists for the thread id remove it */
1473 if (thread != NULL) {
1474 machine__remove_thread(machine, thread);
1475 thread__put(thread);
1476 }
1477
1478 thread = machine__findnew_thread(machine, event->fork.pid,
1479 event->fork.tid);
1480
1481 if (thread == NULL || parent == NULL ||
1482 thread__fork(thread, parent, sample->time) < 0) {
1483 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1484 err = -1;
1485 }
1486 thread__put(thread);
1487 thread__put(parent);
1488
1489 return err;
1490 }
1491
1492 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1493 struct perf_sample *sample __maybe_unused)
1494 {
1495 struct thread *thread = machine__find_thread(machine,
1496 event->fork.pid,
1497 event->fork.tid);
1498
1499 if (dump_trace)
1500 perf_event__fprintf_task(event, stdout);
1501
1502 if (thread != NULL) {
1503 thread__exited(thread);
1504 thread__put(thread);
1505 }
1506
1507 return 0;
1508 }
1509
1510 int machine__process_event(struct machine *machine, union perf_event *event,
1511 struct perf_sample *sample)
1512 {
1513 int ret;
1514
1515 switch (event->header.type) {
1516 case PERF_RECORD_COMM:
1517 ret = machine__process_comm_event(machine, event, sample); break;
1518 case PERF_RECORD_MMAP:
1519 ret = machine__process_mmap_event(machine, event, sample); break;
1520 case PERF_RECORD_MMAP2:
1521 ret = machine__process_mmap2_event(machine, event, sample); break;
1522 case PERF_RECORD_FORK:
1523 ret = machine__process_fork_event(machine, event, sample); break;
1524 case PERF_RECORD_EXIT:
1525 ret = machine__process_exit_event(machine, event, sample); break;
1526 case PERF_RECORD_LOST:
1527 ret = machine__process_lost_event(machine, event, sample); break;
1528 case PERF_RECORD_AUX:
1529 ret = machine__process_aux_event(machine, event); break;
1530 case PERF_RECORD_ITRACE_START:
1531 ret = machine__process_itrace_start_event(machine, event); break;
1532 case PERF_RECORD_LOST_SAMPLES:
1533 ret = machine__process_lost_samples_event(machine, event, sample); break;
1534 case PERF_RECORD_SWITCH:
1535 case PERF_RECORD_SWITCH_CPU_WIDE:
1536 ret = machine__process_switch_event(machine, event); break;
1537 default:
1538 ret = -1;
1539 break;
1540 }
1541
1542 return ret;
1543 }
1544
1545 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1546 {
1547 if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1548 return 1;
1549 return 0;
1550 }
1551
1552 static void ip__resolve_ams(struct thread *thread,
1553 struct addr_map_symbol *ams,
1554 u64 ip)
1555 {
1556 struct addr_location al;
1557
1558 memset(&al, 0, sizeof(al));
1559 /*
1560 * We cannot use the header.misc hint to determine whether a
1561 * branch stack address is user, kernel, guest, hypervisor.
1562 * Branches may straddle the kernel/user/hypervisor boundaries.
1563 * Thus, we have to try consecutively until we find a match
1564 * or else, the symbol is unknown
1565 */
1566 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1567
1568 ams->addr = ip;
1569 ams->al_addr = al.addr;
1570 ams->sym = al.sym;
1571 ams->map = al.map;
1572 }
1573
1574 static void ip__resolve_data(struct thread *thread,
1575 u8 m, struct addr_map_symbol *ams, u64 addr)
1576 {
1577 struct addr_location al;
1578
1579 memset(&al, 0, sizeof(al));
1580
1581 thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1582 if (al.map == NULL) {
1583 /*
1584 * some shared data regions have execute bit set which puts
1585 * their mapping in the MAP__FUNCTION type array.
1586 * Check there as a fallback option before dropping the sample.
1587 */
1588 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1589 }
1590
1591 ams->addr = addr;
1592 ams->al_addr = al.addr;
1593 ams->sym = al.sym;
1594 ams->map = al.map;
1595 }
1596
1597 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1598 struct addr_location *al)
1599 {
1600 struct mem_info *mi = zalloc(sizeof(*mi));
1601
1602 if (!mi)
1603 return NULL;
1604
1605 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1606 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1607 mi->data_src.val = sample->data_src;
1608
1609 return mi;
1610 }
1611
1612 static int add_callchain_ip(struct thread *thread,
1613 struct callchain_cursor *cursor,
1614 struct symbol **parent,
1615 struct addr_location *root_al,
1616 u8 *cpumode,
1617 u64 ip)
1618 {
1619 struct addr_location al;
1620
1621 al.filtered = 0;
1622 al.sym = NULL;
1623 if (!cpumode) {
1624 thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1625 ip, &al);
1626 } else {
1627 if (ip >= PERF_CONTEXT_MAX) {
1628 switch (ip) {
1629 case PERF_CONTEXT_HV:
1630 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1631 break;
1632 case PERF_CONTEXT_KERNEL:
1633 *cpumode = PERF_RECORD_MISC_KERNEL;
1634 break;
1635 case PERF_CONTEXT_USER:
1636 *cpumode = PERF_RECORD_MISC_USER;
1637 break;
1638 default:
1639 pr_debug("invalid callchain context: "
1640 "%"PRId64"\n", (s64) ip);
1641 /*
1642 * It seems the callchain is corrupted.
1643 * Discard all.
1644 */
1645 callchain_cursor_reset(cursor);
1646 return 1;
1647 }
1648 return 0;
1649 }
1650 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1651 ip, &al);
1652 }
1653
1654 if (al.sym != NULL) {
1655 if (perf_hpp_list.parent && !*parent &&
1656 symbol__match_regex(al.sym, &parent_regex))
1657 *parent = al.sym;
1658 else if (have_ignore_callees && root_al &&
1659 symbol__match_regex(al.sym, &ignore_callees_regex)) {
1660 /* Treat this symbol as the root,
1661 forgetting its callees. */
1662 *root_al = al;
1663 callchain_cursor_reset(cursor);
1664 }
1665 }
1666
1667 if (symbol_conf.hide_unresolved && al.sym == NULL)
1668 return 0;
1669 return callchain_cursor_append(cursor, al.addr, al.map, al.sym);
1670 }
1671
1672 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1673 struct addr_location *al)
1674 {
1675 unsigned int i;
1676 const struct branch_stack *bs = sample->branch_stack;
1677 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1678
1679 if (!bi)
1680 return NULL;
1681
1682 for (i = 0; i < bs->nr; i++) {
1683 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1684 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1685 bi[i].flags = bs->entries[i].flags;
1686 }
1687 return bi;
1688 }
1689
1690 #define CHASHSZ 127
1691 #define CHASHBITS 7
1692 #define NO_ENTRY 0xff
1693
1694 #define PERF_MAX_BRANCH_DEPTH 127
1695
1696 /* Remove loops. */
1697 static int remove_loops(struct branch_entry *l, int nr)
1698 {
1699 int i, j, off;
1700 unsigned char chash[CHASHSZ];
1701
1702 memset(chash, NO_ENTRY, sizeof(chash));
1703
1704 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1705
1706 for (i = 0; i < nr; i++) {
1707 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1708
1709 /* no collision handling for now */
1710 if (chash[h] == NO_ENTRY) {
1711 chash[h] = i;
1712 } else if (l[chash[h]].from == l[i].from) {
1713 bool is_loop = true;
1714 /* check if it is a real loop */
1715 off = 0;
1716 for (j = chash[h]; j < i && i + off < nr; j++, off++)
1717 if (l[j].from != l[i + off].from) {
1718 is_loop = false;
1719 break;
1720 }
1721 if (is_loop) {
1722 memmove(l + i, l + i + off,
1723 (nr - (i + off)) * sizeof(*l));
1724 nr -= off;
1725 }
1726 }
1727 }
1728 return nr;
1729 }
1730
1731 /*
1732 * Recolve LBR callstack chain sample
1733 * Return:
1734 * 1 on success get LBR callchain information
1735 * 0 no available LBR callchain information, should try fp
1736 * negative error code on other errors.
1737 */
1738 static int resolve_lbr_callchain_sample(struct thread *thread,
1739 struct callchain_cursor *cursor,
1740 struct perf_sample *sample,
1741 struct symbol **parent,
1742 struct addr_location *root_al,
1743 int max_stack)
1744 {
1745 struct ip_callchain *chain = sample->callchain;
1746 int chain_nr = min(max_stack, (int)chain->nr);
1747 u8 cpumode = PERF_RECORD_MISC_USER;
1748 int i, j, err;
1749 u64 ip;
1750
1751 for (i = 0; i < chain_nr; i++) {
1752 if (chain->ips[i] == PERF_CONTEXT_USER)
1753 break;
1754 }
1755
1756 /* LBR only affects the user callchain */
1757 if (i != chain_nr) {
1758 struct branch_stack *lbr_stack = sample->branch_stack;
1759 int lbr_nr = lbr_stack->nr;
1760 /*
1761 * LBR callstack can only get user call chain.
1762 * The mix_chain_nr is kernel call chain
1763 * number plus LBR user call chain number.
1764 * i is kernel call chain number,
1765 * 1 is PERF_CONTEXT_USER,
1766 * lbr_nr + 1 is the user call chain number.
1767 * For details, please refer to the comments
1768 * in callchain__printf
1769 */
1770 int mix_chain_nr = i + 1 + lbr_nr + 1;
1771
1772 if (mix_chain_nr > (int)sysctl_perf_event_max_stack + PERF_MAX_BRANCH_DEPTH) {
1773 pr_warning("corrupted callchain. skipping...\n");
1774 return 0;
1775 }
1776
1777 for (j = 0; j < mix_chain_nr; j++) {
1778 if (callchain_param.order == ORDER_CALLEE) {
1779 if (j < i + 1)
1780 ip = chain->ips[j];
1781 else if (j > i + 1)
1782 ip = lbr_stack->entries[j - i - 2].from;
1783 else
1784 ip = lbr_stack->entries[0].to;
1785 } else {
1786 if (j < lbr_nr)
1787 ip = lbr_stack->entries[lbr_nr - j - 1].from;
1788 else if (j > lbr_nr)
1789 ip = chain->ips[i + 1 - (j - lbr_nr)];
1790 else
1791 ip = lbr_stack->entries[0].to;
1792 }
1793
1794 err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip);
1795 if (err)
1796 return (err < 0) ? err : 0;
1797 }
1798 return 1;
1799 }
1800
1801 return 0;
1802 }
1803
1804 static int thread__resolve_callchain_sample(struct thread *thread,
1805 struct callchain_cursor *cursor,
1806 struct perf_evsel *evsel,
1807 struct perf_sample *sample,
1808 struct symbol **parent,
1809 struct addr_location *root_al,
1810 int max_stack)
1811 {
1812 struct branch_stack *branch = sample->branch_stack;
1813 struct ip_callchain *chain = sample->callchain;
1814 int chain_nr = min(max_stack, (int)chain->nr);
1815 u8 cpumode = PERF_RECORD_MISC_USER;
1816 int i, j, err;
1817 int skip_idx = -1;
1818 int first_call = 0;
1819
1820 callchain_cursor_reset(cursor);
1821
1822 if (perf_evsel__has_branch_callstack(evsel)) {
1823 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
1824 root_al, max_stack);
1825 if (err)
1826 return (err < 0) ? err : 0;
1827 }
1828
1829 /*
1830 * Based on DWARF debug information, some architectures skip
1831 * a callchain entry saved by the kernel.
1832 */
1833 if (chain->nr < sysctl_perf_event_max_stack)
1834 skip_idx = arch_skip_callchain_idx(thread, chain);
1835
1836 /*
1837 * Add branches to call stack for easier browsing. This gives
1838 * more context for a sample than just the callers.
1839 *
1840 * This uses individual histograms of paths compared to the
1841 * aggregated histograms the normal LBR mode uses.
1842 *
1843 * Limitations for now:
1844 * - No extra filters
1845 * - No annotations (should annotate somehow)
1846 */
1847
1848 if (branch && callchain_param.branch_callstack) {
1849 int nr = min(max_stack, (int)branch->nr);
1850 struct branch_entry be[nr];
1851
1852 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1853 pr_warning("corrupted branch chain. skipping...\n");
1854 goto check_calls;
1855 }
1856
1857 for (i = 0; i < nr; i++) {
1858 if (callchain_param.order == ORDER_CALLEE) {
1859 be[i] = branch->entries[i];
1860 /*
1861 * Check for overlap into the callchain.
1862 * The return address is one off compared to
1863 * the branch entry. To adjust for this
1864 * assume the calling instruction is not longer
1865 * than 8 bytes.
1866 */
1867 if (i == skip_idx ||
1868 chain->ips[first_call] >= PERF_CONTEXT_MAX)
1869 first_call++;
1870 else if (be[i].from < chain->ips[first_call] &&
1871 be[i].from >= chain->ips[first_call] - 8)
1872 first_call++;
1873 } else
1874 be[i] = branch->entries[branch->nr - i - 1];
1875 }
1876
1877 nr = remove_loops(be, nr);
1878
1879 for (i = 0; i < nr; i++) {
1880 err = add_callchain_ip(thread, cursor, parent, root_al,
1881 NULL, be[i].to);
1882 if (!err)
1883 err = add_callchain_ip(thread, cursor, parent, root_al,
1884 NULL, be[i].from);
1885 if (err == -EINVAL)
1886 break;
1887 if (err)
1888 return err;
1889 }
1890 chain_nr -= nr;
1891 }
1892
1893 check_calls:
1894 if (chain->nr > sysctl_perf_event_max_stack && (int)chain->nr > max_stack) {
1895 pr_warning("corrupted callchain. skipping...\n");
1896 return 0;
1897 }
1898
1899 for (i = first_call; i < chain_nr; i++) {
1900 u64 ip;
1901
1902 if (callchain_param.order == ORDER_CALLEE)
1903 j = i;
1904 else
1905 j = chain->nr - i - 1;
1906
1907 #ifdef HAVE_SKIP_CALLCHAIN_IDX
1908 if (j == skip_idx)
1909 continue;
1910 #endif
1911 ip = chain->ips[j];
1912
1913 err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip);
1914
1915 if (err)
1916 return (err < 0) ? err : 0;
1917 }
1918
1919 return 0;
1920 }
1921
1922 static int unwind_entry(struct unwind_entry *entry, void *arg)
1923 {
1924 struct callchain_cursor *cursor = arg;
1925
1926 if (symbol_conf.hide_unresolved && entry->sym == NULL)
1927 return 0;
1928 return callchain_cursor_append(cursor, entry->ip,
1929 entry->map, entry->sym);
1930 }
1931
1932 int thread__resolve_callchain(struct thread *thread,
1933 struct callchain_cursor *cursor,
1934 struct perf_evsel *evsel,
1935 struct perf_sample *sample,
1936 struct symbol **parent,
1937 struct addr_location *root_al,
1938 int max_stack)
1939 {
1940 int ret = thread__resolve_callchain_sample(thread, cursor, evsel,
1941 sample, parent,
1942 root_al, max_stack);
1943 if (ret)
1944 return ret;
1945
1946 /* Can we do dwarf post unwind? */
1947 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1948 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1949 return 0;
1950
1951 /* Bail out if nothing was captured. */
1952 if ((!sample->user_regs.regs) ||
1953 (!sample->user_stack.size))
1954 return 0;
1955
1956 return unwind__get_entries(unwind_entry, cursor,
1957 thread, sample, max_stack);
1958
1959 }
1960
1961 int machine__for_each_thread(struct machine *machine,
1962 int (*fn)(struct thread *thread, void *p),
1963 void *priv)
1964 {
1965 struct rb_node *nd;
1966 struct thread *thread;
1967 int rc = 0;
1968
1969 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
1970 thread = rb_entry(nd, struct thread, rb_node);
1971 rc = fn(thread, priv);
1972 if (rc != 0)
1973 return rc;
1974 }
1975
1976 list_for_each_entry(thread, &machine->dead_threads, node) {
1977 rc = fn(thread, priv);
1978 if (rc != 0)
1979 return rc;
1980 }
1981 return rc;
1982 }
1983
1984 int machines__for_each_thread(struct machines *machines,
1985 int (*fn)(struct thread *thread, void *p),
1986 void *priv)
1987 {
1988 struct rb_node *nd;
1989 int rc = 0;
1990
1991 rc = machine__for_each_thread(&machines->host, fn, priv);
1992 if (rc != 0)
1993 return rc;
1994
1995 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
1996 struct machine *machine = rb_entry(nd, struct machine, rb_node);
1997
1998 rc = machine__for_each_thread(machine, fn, priv);
1999 if (rc != 0)
2000 return rc;
2001 }
2002 return rc;
2003 }
2004
2005 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2006 struct target *target, struct thread_map *threads,
2007 perf_event__handler_t process, bool data_mmap,
2008 unsigned int proc_map_timeout)
2009 {
2010 if (target__has_task(target))
2011 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2012 else if (target__has_cpu(target))
2013 return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2014 /* command specified */
2015 return 0;
2016 }
2017
2018 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2019 {
2020 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2021 return -1;
2022
2023 return machine->current_tid[cpu];
2024 }
2025
2026 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2027 pid_t tid)
2028 {
2029 struct thread *thread;
2030
2031 if (cpu < 0)
2032 return -EINVAL;
2033
2034 if (!machine->current_tid) {
2035 int i;
2036
2037 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2038 if (!machine->current_tid)
2039 return -ENOMEM;
2040 for (i = 0; i < MAX_NR_CPUS; i++)
2041 machine->current_tid[i] = -1;
2042 }
2043
2044 if (cpu >= MAX_NR_CPUS) {
2045 pr_err("Requested CPU %d too large. ", cpu);
2046 pr_err("Consider raising MAX_NR_CPUS\n");
2047 return -EINVAL;
2048 }
2049
2050 machine->current_tid[cpu] = tid;
2051
2052 thread = machine__findnew_thread(machine, pid, tid);
2053 if (!thread)
2054 return -ENOMEM;
2055
2056 thread->cpu = cpu;
2057 thread__put(thread);
2058
2059 return 0;
2060 }
2061
2062 int machine__get_kernel_start(struct machine *machine)
2063 {
2064 struct map *map = machine__kernel_map(machine);
2065 int err = 0;
2066
2067 /*
2068 * The only addresses above 2^63 are kernel addresses of a 64-bit
2069 * kernel. Note that addresses are unsigned so that on a 32-bit system
2070 * all addresses including kernel addresses are less than 2^32. In
2071 * that case (32-bit system), if the kernel mapping is unknown, all
2072 * addresses will be assumed to be in user space - see
2073 * machine__kernel_ip().
2074 */
2075 machine->kernel_start = 1ULL << 63;
2076 if (map) {
2077 err = map__load(map, machine->symbol_filter);
2078 if (map->start)
2079 machine->kernel_start = map->start;
2080 }
2081 return err;
2082 }
2083
2084 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2085 {
2086 return dsos__findnew(&machine->dsos, filename);
2087 }
2088
2089 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2090 {
2091 struct machine *machine = vmachine;
2092 struct map *map;
2093 struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map, NULL);
2094
2095 if (sym == NULL)
2096 return NULL;
2097
2098 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2099 *addrp = map->unmap_ip(map, sym->start);
2100 return sym->name;
2101 }
This page took 0.11881 seconds and 5 git commands to generate.