x86: Move call to print_modules() out of show_regs()
[deliverable/linux.git] / tools / perf / util / session.c
1 #define _FILE_OFFSET_BITS 64
2
3 #include <linux/kernel.h>
4
5 #include <byteswap.h>
6 #include <unistd.h>
7 #include <sys/types.h>
8 #include <sys/mman.h>
9
10 #include "evlist.h"
11 #include "evsel.h"
12 #include "session.h"
13 #include "tool.h"
14 #include "sort.h"
15 #include "util.h"
16 #include "cpumap.h"
17
18 static int perf_session__open(struct perf_session *self, bool force)
19 {
20 struct stat input_stat;
21
22 if (!strcmp(self->filename, "-")) {
23 self->fd_pipe = true;
24 self->fd = STDIN_FILENO;
25
26 if (perf_session__read_header(self, self->fd) < 0)
27 pr_err("incompatible file format (rerun with -v to learn more)");
28
29 return 0;
30 }
31
32 self->fd = open(self->filename, O_RDONLY);
33 if (self->fd < 0) {
34 int err = errno;
35
36 pr_err("failed to open %s: %s", self->filename, strerror(err));
37 if (err == ENOENT && !strcmp(self->filename, "perf.data"))
38 pr_err(" (try 'perf record' first)");
39 pr_err("\n");
40 return -errno;
41 }
42
43 if (fstat(self->fd, &input_stat) < 0)
44 goto out_close;
45
46 if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
47 pr_err("file %s not owned by current user or root\n",
48 self->filename);
49 goto out_close;
50 }
51
52 if (!input_stat.st_size) {
53 pr_info("zero-sized file (%s), nothing to do!\n",
54 self->filename);
55 goto out_close;
56 }
57
58 if (perf_session__read_header(self, self->fd) < 0) {
59 pr_err("incompatible file format (rerun with -v to learn more)");
60 goto out_close;
61 }
62
63 if (!perf_evlist__valid_sample_type(self->evlist)) {
64 pr_err("non matching sample_type");
65 goto out_close;
66 }
67
68 if (!perf_evlist__valid_sample_id_all(self->evlist)) {
69 pr_err("non matching sample_id_all");
70 goto out_close;
71 }
72
73 self->size = input_stat.st_size;
74 return 0;
75
76 out_close:
77 close(self->fd);
78 self->fd = -1;
79 return -1;
80 }
81
82 void perf_session__update_sample_type(struct perf_session *self)
83 {
84 self->sample_type = perf_evlist__sample_type(self->evlist);
85 self->sample_size = __perf_evsel__sample_size(self->sample_type);
86 self->sample_id_all = perf_evlist__sample_id_all(self->evlist);
87 self->id_hdr_size = perf_evlist__id_hdr_size(self->evlist);
88 self->host_machine.id_hdr_size = self->id_hdr_size;
89 }
90
91 int perf_session__create_kernel_maps(struct perf_session *self)
92 {
93 int ret = machine__create_kernel_maps(&self->host_machine);
94
95 if (ret >= 0)
96 ret = machines__create_guest_kernel_maps(&self->machines);
97 return ret;
98 }
99
100 static void perf_session__destroy_kernel_maps(struct perf_session *self)
101 {
102 machine__destroy_kernel_maps(&self->host_machine);
103 machines__destroy_guest_kernel_maps(&self->machines);
104 }
105
106 struct perf_session *perf_session__new(const char *filename, int mode,
107 bool force, bool repipe,
108 struct perf_tool *tool)
109 {
110 struct perf_session *self;
111 struct stat st;
112 size_t len;
113
114 if (!filename || !strlen(filename)) {
115 if (!fstat(STDIN_FILENO, &st) && S_ISFIFO(st.st_mode))
116 filename = "-";
117 else
118 filename = "perf.data";
119 }
120
121 len = strlen(filename);
122 self = zalloc(sizeof(*self) + len);
123
124 if (self == NULL)
125 goto out;
126
127 memcpy(self->filename, filename, len);
128 /*
129 * On 64bit we can mmap the data file in one go. No need for tiny mmap
130 * slices. On 32bit we use 32MB.
131 */
132 #if BITS_PER_LONG == 64
133 self->mmap_window = ULLONG_MAX;
134 #else
135 self->mmap_window = 32 * 1024 * 1024ULL;
136 #endif
137 self->machines = RB_ROOT;
138 self->repipe = repipe;
139 INIT_LIST_HEAD(&self->ordered_samples.samples);
140 INIT_LIST_HEAD(&self->ordered_samples.sample_cache);
141 INIT_LIST_HEAD(&self->ordered_samples.to_free);
142 machine__init(&self->host_machine, "", HOST_KERNEL_ID);
143 hists__init(&self->hists);
144
145 if (mode == O_RDONLY) {
146 if (perf_session__open(self, force) < 0)
147 goto out_delete;
148 perf_session__update_sample_type(self);
149 } else if (mode == O_WRONLY) {
150 /*
151 * In O_RDONLY mode this will be performed when reading the
152 * kernel MMAP event, in perf_event__process_mmap().
153 */
154 if (perf_session__create_kernel_maps(self) < 0)
155 goto out_delete;
156 }
157
158 if (tool && tool->ordering_requires_timestamps &&
159 tool->ordered_samples && !self->sample_id_all) {
160 dump_printf("WARNING: No sample_id_all support, falling back to unordered processing\n");
161 tool->ordered_samples = false;
162 }
163
164 out:
165 return self;
166 out_delete:
167 perf_session__delete(self);
168 return NULL;
169 }
170
171 static void machine__delete_dead_threads(struct machine *machine)
172 {
173 struct thread *n, *t;
174
175 list_for_each_entry_safe(t, n, &machine->dead_threads, node) {
176 list_del(&t->node);
177 thread__delete(t);
178 }
179 }
180
181 static void perf_session__delete_dead_threads(struct perf_session *session)
182 {
183 machine__delete_dead_threads(&session->host_machine);
184 }
185
186 static void machine__delete_threads(struct machine *self)
187 {
188 struct rb_node *nd = rb_first(&self->threads);
189
190 while (nd) {
191 struct thread *t = rb_entry(nd, struct thread, rb_node);
192
193 rb_erase(&t->rb_node, &self->threads);
194 nd = rb_next(nd);
195 thread__delete(t);
196 }
197 }
198
199 static void perf_session__delete_threads(struct perf_session *session)
200 {
201 machine__delete_threads(&session->host_machine);
202 }
203
204 void perf_session__delete(struct perf_session *self)
205 {
206 perf_session__destroy_kernel_maps(self);
207 perf_session__delete_dead_threads(self);
208 perf_session__delete_threads(self);
209 machine__exit(&self->host_machine);
210 close(self->fd);
211 free(self);
212 }
213
214 void machine__remove_thread(struct machine *self, struct thread *th)
215 {
216 self->last_match = NULL;
217 rb_erase(&th->rb_node, &self->threads);
218 /*
219 * We may have references to this thread, for instance in some hist_entry
220 * instances, so just move them to a separate list.
221 */
222 list_add_tail(&th->node, &self->dead_threads);
223 }
224
225 static bool symbol__match_parent_regex(struct symbol *sym)
226 {
227 if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
228 return 1;
229
230 return 0;
231 }
232
233 static const u8 cpumodes[] = {
234 PERF_RECORD_MISC_USER,
235 PERF_RECORD_MISC_KERNEL,
236 PERF_RECORD_MISC_GUEST_USER,
237 PERF_RECORD_MISC_GUEST_KERNEL
238 };
239 #define NCPUMODES (sizeof(cpumodes)/sizeof(u8))
240
241 static void ip__resolve_ams(struct machine *self, struct thread *thread,
242 struct addr_map_symbol *ams,
243 u64 ip)
244 {
245 struct addr_location al;
246 size_t i;
247 u8 m;
248
249 memset(&al, 0, sizeof(al));
250
251 for (i = 0; i < NCPUMODES; i++) {
252 m = cpumodes[i];
253 /*
254 * We cannot use the header.misc hint to determine whether a
255 * branch stack address is user, kernel, guest, hypervisor.
256 * Branches may straddle the kernel/user/hypervisor boundaries.
257 * Thus, we have to try consecutively until we find a match
258 * or else, the symbol is unknown
259 */
260 thread__find_addr_location(thread, self, m, MAP__FUNCTION,
261 ip, &al, NULL);
262 if (al.sym)
263 goto found;
264 }
265 found:
266 ams->addr = ip;
267 ams->al_addr = al.addr;
268 ams->sym = al.sym;
269 ams->map = al.map;
270 }
271
272 struct branch_info *machine__resolve_bstack(struct machine *self,
273 struct thread *thr,
274 struct branch_stack *bs)
275 {
276 struct branch_info *bi;
277 unsigned int i;
278
279 bi = calloc(bs->nr, sizeof(struct branch_info));
280 if (!bi)
281 return NULL;
282
283 for (i = 0; i < bs->nr; i++) {
284 ip__resolve_ams(self, thr, &bi[i].to, bs->entries[i].to);
285 ip__resolve_ams(self, thr, &bi[i].from, bs->entries[i].from);
286 bi[i].flags = bs->entries[i].flags;
287 }
288 return bi;
289 }
290
291 int machine__resolve_callchain(struct machine *self,
292 struct perf_evsel *evsel __used,
293 struct thread *thread,
294 struct ip_callchain *chain,
295 struct symbol **parent)
296 {
297 u8 cpumode = PERF_RECORD_MISC_USER;
298 unsigned int i;
299 int err;
300
301 callchain_cursor_reset(&callchain_cursor);
302
303 if (chain->nr > PERF_MAX_STACK_DEPTH) {
304 pr_warning("corrupted callchain. skipping...\n");
305 return 0;
306 }
307
308 for (i = 0; i < chain->nr; i++) {
309 u64 ip;
310 struct addr_location al;
311
312 if (callchain_param.order == ORDER_CALLEE)
313 ip = chain->ips[i];
314 else
315 ip = chain->ips[chain->nr - i - 1];
316
317 if (ip >= PERF_CONTEXT_MAX) {
318 switch (ip) {
319 case PERF_CONTEXT_HV:
320 cpumode = PERF_RECORD_MISC_HYPERVISOR; break;
321 case PERF_CONTEXT_KERNEL:
322 cpumode = PERF_RECORD_MISC_KERNEL; break;
323 case PERF_CONTEXT_USER:
324 cpumode = PERF_RECORD_MISC_USER; break;
325 default:
326 pr_debug("invalid callchain context: "
327 "%"PRId64"\n", (s64) ip);
328 /*
329 * It seems the callchain is corrupted.
330 * Discard all.
331 */
332 callchain_cursor_reset(&callchain_cursor);
333 return 0;
334 }
335 continue;
336 }
337
338 al.filtered = false;
339 thread__find_addr_location(thread, self, cpumode,
340 MAP__FUNCTION, ip, &al, NULL);
341 if (al.sym != NULL) {
342 if (sort__has_parent && !*parent &&
343 symbol__match_parent_regex(al.sym))
344 *parent = al.sym;
345 if (!symbol_conf.use_callchain)
346 break;
347 }
348
349 err = callchain_cursor_append(&callchain_cursor,
350 ip, al.map, al.sym);
351 if (err)
352 return err;
353 }
354
355 return 0;
356 }
357
358 static int process_event_synth_tracing_data_stub(union perf_event *event __used,
359 struct perf_session *session __used)
360 {
361 dump_printf(": unhandled!\n");
362 return 0;
363 }
364
365 static int process_event_synth_attr_stub(union perf_event *event __used,
366 struct perf_evlist **pevlist __used)
367 {
368 dump_printf(": unhandled!\n");
369 return 0;
370 }
371
372 static int process_event_sample_stub(struct perf_tool *tool __used,
373 union perf_event *event __used,
374 struct perf_sample *sample __used,
375 struct perf_evsel *evsel __used,
376 struct machine *machine __used)
377 {
378 dump_printf(": unhandled!\n");
379 return 0;
380 }
381
382 static int process_event_stub(struct perf_tool *tool __used,
383 union perf_event *event __used,
384 struct perf_sample *sample __used,
385 struct machine *machine __used)
386 {
387 dump_printf(": unhandled!\n");
388 return 0;
389 }
390
391 static int process_finished_round_stub(struct perf_tool *tool __used,
392 union perf_event *event __used,
393 struct perf_session *perf_session __used)
394 {
395 dump_printf(": unhandled!\n");
396 return 0;
397 }
398
399 static int process_event_type_stub(struct perf_tool *tool __used,
400 union perf_event *event __used)
401 {
402 dump_printf(": unhandled!\n");
403 return 0;
404 }
405
406 static int process_finished_round(struct perf_tool *tool,
407 union perf_event *event,
408 struct perf_session *session);
409
410 static void perf_tool__fill_defaults(struct perf_tool *tool)
411 {
412 if (tool->sample == NULL)
413 tool->sample = process_event_sample_stub;
414 if (tool->mmap == NULL)
415 tool->mmap = process_event_stub;
416 if (tool->comm == NULL)
417 tool->comm = process_event_stub;
418 if (tool->fork == NULL)
419 tool->fork = process_event_stub;
420 if (tool->exit == NULL)
421 tool->exit = process_event_stub;
422 if (tool->lost == NULL)
423 tool->lost = perf_event__process_lost;
424 if (tool->read == NULL)
425 tool->read = process_event_sample_stub;
426 if (tool->throttle == NULL)
427 tool->throttle = process_event_stub;
428 if (tool->unthrottle == NULL)
429 tool->unthrottle = process_event_stub;
430 if (tool->attr == NULL)
431 tool->attr = process_event_synth_attr_stub;
432 if (tool->event_type == NULL)
433 tool->event_type = process_event_type_stub;
434 if (tool->tracing_data == NULL)
435 tool->tracing_data = process_event_synth_tracing_data_stub;
436 if (tool->build_id == NULL)
437 tool->build_id = process_finished_round_stub;
438 if (tool->finished_round == NULL) {
439 if (tool->ordered_samples)
440 tool->finished_round = process_finished_round;
441 else
442 tool->finished_round = process_finished_round_stub;
443 }
444 }
445
446 void mem_bswap_64(void *src, int byte_size)
447 {
448 u64 *m = src;
449
450 while (byte_size > 0) {
451 *m = bswap_64(*m);
452 byte_size -= sizeof(u64);
453 ++m;
454 }
455 }
456
457 static void swap_sample_id_all(union perf_event *event, void *data)
458 {
459 void *end = (void *) event + event->header.size;
460 int size = end - data;
461
462 BUG_ON(size % sizeof(u64));
463 mem_bswap_64(data, size);
464 }
465
466 static void perf_event__all64_swap(union perf_event *event,
467 bool sample_id_all __used)
468 {
469 struct perf_event_header *hdr = &event->header;
470 mem_bswap_64(hdr + 1, event->header.size - sizeof(*hdr));
471 }
472
473 static void perf_event__comm_swap(union perf_event *event, bool sample_id_all)
474 {
475 event->comm.pid = bswap_32(event->comm.pid);
476 event->comm.tid = bswap_32(event->comm.tid);
477
478 if (sample_id_all) {
479 void *data = &event->comm.comm;
480
481 data += ALIGN(strlen(data) + 1, sizeof(u64));
482 swap_sample_id_all(event, data);
483 }
484 }
485
486 static void perf_event__mmap_swap(union perf_event *event,
487 bool sample_id_all)
488 {
489 event->mmap.pid = bswap_32(event->mmap.pid);
490 event->mmap.tid = bswap_32(event->mmap.tid);
491 event->mmap.start = bswap_64(event->mmap.start);
492 event->mmap.len = bswap_64(event->mmap.len);
493 event->mmap.pgoff = bswap_64(event->mmap.pgoff);
494
495 if (sample_id_all) {
496 void *data = &event->mmap.filename;
497
498 data += ALIGN(strlen(data) + 1, sizeof(u64));
499 swap_sample_id_all(event, data);
500 }
501 }
502
503 static void perf_event__task_swap(union perf_event *event, bool sample_id_all)
504 {
505 event->fork.pid = bswap_32(event->fork.pid);
506 event->fork.tid = bswap_32(event->fork.tid);
507 event->fork.ppid = bswap_32(event->fork.ppid);
508 event->fork.ptid = bswap_32(event->fork.ptid);
509 event->fork.time = bswap_64(event->fork.time);
510
511 if (sample_id_all)
512 swap_sample_id_all(event, &event->fork + 1);
513 }
514
515 static void perf_event__read_swap(union perf_event *event, bool sample_id_all)
516 {
517 event->read.pid = bswap_32(event->read.pid);
518 event->read.tid = bswap_32(event->read.tid);
519 event->read.value = bswap_64(event->read.value);
520 event->read.time_enabled = bswap_64(event->read.time_enabled);
521 event->read.time_running = bswap_64(event->read.time_running);
522 event->read.id = bswap_64(event->read.id);
523
524 if (sample_id_all)
525 swap_sample_id_all(event, &event->read + 1);
526 }
527
528 static u8 revbyte(u8 b)
529 {
530 int rev = (b >> 4) | ((b & 0xf) << 4);
531 rev = ((rev & 0xcc) >> 2) | ((rev & 0x33) << 2);
532 rev = ((rev & 0xaa) >> 1) | ((rev & 0x55) << 1);
533 return (u8) rev;
534 }
535
536 /*
537 * XXX this is hack in attempt to carry flags bitfield
538 * throught endian village. ABI says:
539 *
540 * Bit-fields are allocated from right to left (least to most significant)
541 * on little-endian implementations and from left to right (most to least
542 * significant) on big-endian implementations.
543 *
544 * The above seems to be byte specific, so we need to reverse each
545 * byte of the bitfield. 'Internet' also says this might be implementation
546 * specific and we probably need proper fix and carry perf_event_attr
547 * bitfield flags in separate data file FEAT_ section. Thought this seems
548 * to work for now.
549 */
550 static void swap_bitfield(u8 *p, unsigned len)
551 {
552 unsigned i;
553
554 for (i = 0; i < len; i++) {
555 *p = revbyte(*p);
556 p++;
557 }
558 }
559
560 /* exported for swapping attributes in file header */
561 void perf_event__attr_swap(struct perf_event_attr *attr)
562 {
563 attr->type = bswap_32(attr->type);
564 attr->size = bswap_32(attr->size);
565 attr->config = bswap_64(attr->config);
566 attr->sample_period = bswap_64(attr->sample_period);
567 attr->sample_type = bswap_64(attr->sample_type);
568 attr->read_format = bswap_64(attr->read_format);
569 attr->wakeup_events = bswap_32(attr->wakeup_events);
570 attr->bp_type = bswap_32(attr->bp_type);
571 attr->bp_addr = bswap_64(attr->bp_addr);
572 attr->bp_len = bswap_64(attr->bp_len);
573
574 swap_bitfield((u8 *) (&attr->read_format + 1), sizeof(u64));
575 }
576
577 static void perf_event__hdr_attr_swap(union perf_event *event,
578 bool sample_id_all __used)
579 {
580 size_t size;
581
582 perf_event__attr_swap(&event->attr.attr);
583
584 size = event->header.size;
585 size -= (void *)&event->attr.id - (void *)event;
586 mem_bswap_64(event->attr.id, size);
587 }
588
589 static void perf_event__event_type_swap(union perf_event *event,
590 bool sample_id_all __used)
591 {
592 event->event_type.event_type.event_id =
593 bswap_64(event->event_type.event_type.event_id);
594 }
595
596 static void perf_event__tracing_data_swap(union perf_event *event,
597 bool sample_id_all __used)
598 {
599 event->tracing_data.size = bswap_32(event->tracing_data.size);
600 }
601
602 typedef void (*perf_event__swap_op)(union perf_event *event,
603 bool sample_id_all);
604
605 static perf_event__swap_op perf_event__swap_ops[] = {
606 [PERF_RECORD_MMAP] = perf_event__mmap_swap,
607 [PERF_RECORD_COMM] = perf_event__comm_swap,
608 [PERF_RECORD_FORK] = perf_event__task_swap,
609 [PERF_RECORD_EXIT] = perf_event__task_swap,
610 [PERF_RECORD_LOST] = perf_event__all64_swap,
611 [PERF_RECORD_READ] = perf_event__read_swap,
612 [PERF_RECORD_SAMPLE] = perf_event__all64_swap,
613 [PERF_RECORD_HEADER_ATTR] = perf_event__hdr_attr_swap,
614 [PERF_RECORD_HEADER_EVENT_TYPE] = perf_event__event_type_swap,
615 [PERF_RECORD_HEADER_TRACING_DATA] = perf_event__tracing_data_swap,
616 [PERF_RECORD_HEADER_BUILD_ID] = NULL,
617 [PERF_RECORD_HEADER_MAX] = NULL,
618 };
619
620 struct sample_queue {
621 u64 timestamp;
622 u64 file_offset;
623 union perf_event *event;
624 struct list_head list;
625 };
626
627 static void perf_session_free_sample_buffers(struct perf_session *session)
628 {
629 struct ordered_samples *os = &session->ordered_samples;
630
631 while (!list_empty(&os->to_free)) {
632 struct sample_queue *sq;
633
634 sq = list_entry(os->to_free.next, struct sample_queue, list);
635 list_del(&sq->list);
636 free(sq);
637 }
638 }
639
640 static int perf_session_deliver_event(struct perf_session *session,
641 union perf_event *event,
642 struct perf_sample *sample,
643 struct perf_tool *tool,
644 u64 file_offset);
645
646 static void flush_sample_queue(struct perf_session *s,
647 struct perf_tool *tool)
648 {
649 struct ordered_samples *os = &s->ordered_samples;
650 struct list_head *head = &os->samples;
651 struct sample_queue *tmp, *iter;
652 struct perf_sample sample;
653 u64 limit = os->next_flush;
654 u64 last_ts = os->last_sample ? os->last_sample->timestamp : 0ULL;
655 unsigned idx = 0, progress_next = os->nr_samples / 16;
656 int ret;
657
658 if (!tool->ordered_samples || !limit)
659 return;
660
661 list_for_each_entry_safe(iter, tmp, head, list) {
662 if (iter->timestamp > limit)
663 break;
664
665 ret = perf_session__parse_sample(s, iter->event, &sample);
666 if (ret)
667 pr_err("Can't parse sample, err = %d\n", ret);
668 else
669 perf_session_deliver_event(s, iter->event, &sample, tool,
670 iter->file_offset);
671
672 os->last_flush = iter->timestamp;
673 list_del(&iter->list);
674 list_add(&iter->list, &os->sample_cache);
675 if (++idx >= progress_next) {
676 progress_next += os->nr_samples / 16;
677 ui_progress__update(idx, os->nr_samples,
678 "Processing time ordered events...");
679 }
680 }
681
682 if (list_empty(head)) {
683 os->last_sample = NULL;
684 } else if (last_ts <= limit) {
685 os->last_sample =
686 list_entry(head->prev, struct sample_queue, list);
687 }
688
689 os->nr_samples = 0;
690 }
691
692 /*
693 * When perf record finishes a pass on every buffers, it records this pseudo
694 * event.
695 * We record the max timestamp t found in the pass n.
696 * Assuming these timestamps are monotonic across cpus, we know that if
697 * a buffer still has events with timestamps below t, they will be all
698 * available and then read in the pass n + 1.
699 * Hence when we start to read the pass n + 2, we can safely flush every
700 * events with timestamps below t.
701 *
702 * ============ PASS n =================
703 * CPU 0 | CPU 1
704 * |
705 * cnt1 timestamps | cnt2 timestamps
706 * 1 | 2
707 * 2 | 3
708 * - | 4 <--- max recorded
709 *
710 * ============ PASS n + 1 ==============
711 * CPU 0 | CPU 1
712 * |
713 * cnt1 timestamps | cnt2 timestamps
714 * 3 | 5
715 * 4 | 6
716 * 5 | 7 <---- max recorded
717 *
718 * Flush every events below timestamp 4
719 *
720 * ============ PASS n + 2 ==============
721 * CPU 0 | CPU 1
722 * |
723 * cnt1 timestamps | cnt2 timestamps
724 * 6 | 8
725 * 7 | 9
726 * - | 10
727 *
728 * Flush every events below timestamp 7
729 * etc...
730 */
731 static int process_finished_round(struct perf_tool *tool,
732 union perf_event *event __used,
733 struct perf_session *session)
734 {
735 flush_sample_queue(session, tool);
736 session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
737
738 return 0;
739 }
740
741 /* The queue is ordered by time */
742 static void __queue_event(struct sample_queue *new, struct perf_session *s)
743 {
744 struct ordered_samples *os = &s->ordered_samples;
745 struct sample_queue *sample = os->last_sample;
746 u64 timestamp = new->timestamp;
747 struct list_head *p;
748
749 ++os->nr_samples;
750 os->last_sample = new;
751
752 if (!sample) {
753 list_add(&new->list, &os->samples);
754 os->max_timestamp = timestamp;
755 return;
756 }
757
758 /*
759 * last_sample might point to some random place in the list as it's
760 * the last queued event. We expect that the new event is close to
761 * this.
762 */
763 if (sample->timestamp <= timestamp) {
764 while (sample->timestamp <= timestamp) {
765 p = sample->list.next;
766 if (p == &os->samples) {
767 list_add_tail(&new->list, &os->samples);
768 os->max_timestamp = timestamp;
769 return;
770 }
771 sample = list_entry(p, struct sample_queue, list);
772 }
773 list_add_tail(&new->list, &sample->list);
774 } else {
775 while (sample->timestamp > timestamp) {
776 p = sample->list.prev;
777 if (p == &os->samples) {
778 list_add(&new->list, &os->samples);
779 return;
780 }
781 sample = list_entry(p, struct sample_queue, list);
782 }
783 list_add(&new->list, &sample->list);
784 }
785 }
786
787 #define MAX_SAMPLE_BUFFER (64 * 1024 / sizeof(struct sample_queue))
788
789 static int perf_session_queue_event(struct perf_session *s, union perf_event *event,
790 struct perf_sample *sample, u64 file_offset)
791 {
792 struct ordered_samples *os = &s->ordered_samples;
793 struct list_head *sc = &os->sample_cache;
794 u64 timestamp = sample->time;
795 struct sample_queue *new;
796
797 if (!timestamp || timestamp == ~0ULL)
798 return -ETIME;
799
800 if (timestamp < s->ordered_samples.last_flush) {
801 printf("Warning: Timestamp below last timeslice flush\n");
802 return -EINVAL;
803 }
804
805 if (!list_empty(sc)) {
806 new = list_entry(sc->next, struct sample_queue, list);
807 list_del(&new->list);
808 } else if (os->sample_buffer) {
809 new = os->sample_buffer + os->sample_buffer_idx;
810 if (++os->sample_buffer_idx == MAX_SAMPLE_BUFFER)
811 os->sample_buffer = NULL;
812 } else {
813 os->sample_buffer = malloc(MAX_SAMPLE_BUFFER * sizeof(*new));
814 if (!os->sample_buffer)
815 return -ENOMEM;
816 list_add(&os->sample_buffer->list, &os->to_free);
817 os->sample_buffer_idx = 2;
818 new = os->sample_buffer + 1;
819 }
820
821 new->timestamp = timestamp;
822 new->file_offset = file_offset;
823 new->event = event;
824
825 __queue_event(new, s);
826
827 return 0;
828 }
829
830 static void callchain__printf(struct perf_sample *sample)
831 {
832 unsigned int i;
833
834 printf("... chain: nr:%" PRIu64 "\n", sample->callchain->nr);
835
836 for (i = 0; i < sample->callchain->nr; i++)
837 printf("..... %2d: %016" PRIx64 "\n",
838 i, sample->callchain->ips[i]);
839 }
840
841 static void branch_stack__printf(struct perf_sample *sample)
842 {
843 uint64_t i;
844
845 printf("... branch stack: nr:%" PRIu64 "\n", sample->branch_stack->nr);
846
847 for (i = 0; i < sample->branch_stack->nr; i++)
848 printf("..... %2"PRIu64": %016" PRIx64 " -> %016" PRIx64 "\n",
849 i, sample->branch_stack->entries[i].from,
850 sample->branch_stack->entries[i].to);
851 }
852
853 static void perf_session__print_tstamp(struct perf_session *session,
854 union perf_event *event,
855 struct perf_sample *sample)
856 {
857 if (event->header.type != PERF_RECORD_SAMPLE &&
858 !session->sample_id_all) {
859 fputs("-1 -1 ", stdout);
860 return;
861 }
862
863 if ((session->sample_type & PERF_SAMPLE_CPU))
864 printf("%u ", sample->cpu);
865
866 if (session->sample_type & PERF_SAMPLE_TIME)
867 printf("%" PRIu64 " ", sample->time);
868 }
869
870 static void dump_event(struct perf_session *session, union perf_event *event,
871 u64 file_offset, struct perf_sample *sample)
872 {
873 if (!dump_trace)
874 return;
875
876 printf("\n%#" PRIx64 " [%#x]: event: %d\n",
877 file_offset, event->header.size, event->header.type);
878
879 trace_event(event);
880
881 if (sample)
882 perf_session__print_tstamp(session, event, sample);
883
884 printf("%#" PRIx64 " [%#x]: PERF_RECORD_%s", file_offset,
885 event->header.size, perf_event__name(event->header.type));
886 }
887
888 static void dump_sample(struct perf_session *session, union perf_event *event,
889 struct perf_sample *sample)
890 {
891 if (!dump_trace)
892 return;
893
894 printf("(IP, %d): %d/%d: %#" PRIx64 " period: %" PRIu64 " addr: %#" PRIx64 "\n",
895 event->header.misc, sample->pid, sample->tid, sample->ip,
896 sample->period, sample->addr);
897
898 if (session->sample_type & PERF_SAMPLE_CALLCHAIN)
899 callchain__printf(sample);
900
901 if (session->sample_type & PERF_SAMPLE_BRANCH_STACK)
902 branch_stack__printf(sample);
903 }
904
905 static struct machine *
906 perf_session__find_machine_for_cpumode(struct perf_session *session,
907 union perf_event *event)
908 {
909 const u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
910
911 if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL && perf_guest) {
912 u32 pid;
913
914 if (event->header.type == PERF_RECORD_MMAP)
915 pid = event->mmap.pid;
916 else
917 pid = event->ip.pid;
918
919 return perf_session__find_machine(session, pid);
920 }
921
922 return perf_session__find_host_machine(session);
923 }
924
925 static int perf_session_deliver_event(struct perf_session *session,
926 union perf_event *event,
927 struct perf_sample *sample,
928 struct perf_tool *tool,
929 u64 file_offset)
930 {
931 struct perf_evsel *evsel;
932 struct machine *machine;
933
934 dump_event(session, event, file_offset, sample);
935
936 evsel = perf_evlist__id2evsel(session->evlist, sample->id);
937 if (evsel != NULL && event->header.type != PERF_RECORD_SAMPLE) {
938 /*
939 * XXX We're leaving PERF_RECORD_SAMPLE unnacounted here
940 * because the tools right now may apply filters, discarding
941 * some of the samples. For consistency, in the future we
942 * should have something like nr_filtered_samples and remove
943 * the sample->period from total_sample_period, etc, KISS for
944 * now tho.
945 *
946 * Also testing against NULL allows us to handle files without
947 * attr.sample_id_all and/or without PERF_SAMPLE_ID. In the
948 * future probably it'll be a good idea to restrict event
949 * processing via perf_session to files with both set.
950 */
951 hists__inc_nr_events(&evsel->hists, event->header.type);
952 }
953
954 machine = perf_session__find_machine_for_cpumode(session, event);
955
956 switch (event->header.type) {
957 case PERF_RECORD_SAMPLE:
958 dump_sample(session, event, sample);
959 if (evsel == NULL) {
960 ++session->hists.stats.nr_unknown_id;
961 return 0;
962 }
963 if (machine == NULL) {
964 ++session->hists.stats.nr_unprocessable_samples;
965 return 0;
966 }
967 return tool->sample(tool, event, sample, evsel, machine);
968 case PERF_RECORD_MMAP:
969 return tool->mmap(tool, event, sample, machine);
970 case PERF_RECORD_COMM:
971 return tool->comm(tool, event, sample, machine);
972 case PERF_RECORD_FORK:
973 return tool->fork(tool, event, sample, machine);
974 case PERF_RECORD_EXIT:
975 return tool->exit(tool, event, sample, machine);
976 case PERF_RECORD_LOST:
977 if (tool->lost == perf_event__process_lost)
978 session->hists.stats.total_lost += event->lost.lost;
979 return tool->lost(tool, event, sample, machine);
980 case PERF_RECORD_READ:
981 return tool->read(tool, event, sample, evsel, machine);
982 case PERF_RECORD_THROTTLE:
983 return tool->throttle(tool, event, sample, machine);
984 case PERF_RECORD_UNTHROTTLE:
985 return tool->unthrottle(tool, event, sample, machine);
986 default:
987 ++session->hists.stats.nr_unknown_events;
988 return -1;
989 }
990 }
991
992 static int perf_session__preprocess_sample(struct perf_session *session,
993 union perf_event *event, struct perf_sample *sample)
994 {
995 if (event->header.type != PERF_RECORD_SAMPLE ||
996 !(session->sample_type & PERF_SAMPLE_CALLCHAIN))
997 return 0;
998
999 if (!ip_callchain__valid(sample->callchain, event)) {
1000 pr_debug("call-chain problem with event, skipping it.\n");
1001 ++session->hists.stats.nr_invalid_chains;
1002 session->hists.stats.total_invalid_chains += sample->period;
1003 return -EINVAL;
1004 }
1005 return 0;
1006 }
1007
1008 static int perf_session__process_user_event(struct perf_session *session, union perf_event *event,
1009 struct perf_tool *tool, u64 file_offset)
1010 {
1011 int err;
1012
1013 dump_event(session, event, file_offset, NULL);
1014
1015 /* These events are processed right away */
1016 switch (event->header.type) {
1017 case PERF_RECORD_HEADER_ATTR:
1018 err = tool->attr(event, &session->evlist);
1019 if (err == 0)
1020 perf_session__update_sample_type(session);
1021 return err;
1022 case PERF_RECORD_HEADER_EVENT_TYPE:
1023 return tool->event_type(tool, event);
1024 case PERF_RECORD_HEADER_TRACING_DATA:
1025 /* setup for reading amidst mmap */
1026 lseek(session->fd, file_offset, SEEK_SET);
1027 return tool->tracing_data(event, session);
1028 case PERF_RECORD_HEADER_BUILD_ID:
1029 return tool->build_id(tool, event, session);
1030 case PERF_RECORD_FINISHED_ROUND:
1031 return tool->finished_round(tool, event, session);
1032 default:
1033 return -EINVAL;
1034 }
1035 }
1036
1037 static void event_swap(union perf_event *event, bool sample_id_all)
1038 {
1039 perf_event__swap_op swap;
1040
1041 swap = perf_event__swap_ops[event->header.type];
1042 if (swap)
1043 swap(event, sample_id_all);
1044 }
1045
1046 static int perf_session__process_event(struct perf_session *session,
1047 union perf_event *event,
1048 struct perf_tool *tool,
1049 u64 file_offset)
1050 {
1051 struct perf_sample sample;
1052 int ret;
1053
1054 if (session->header.needs_swap)
1055 event_swap(event, session->sample_id_all);
1056
1057 if (event->header.type >= PERF_RECORD_HEADER_MAX)
1058 return -EINVAL;
1059
1060 hists__inc_nr_events(&session->hists, event->header.type);
1061
1062 if (event->header.type >= PERF_RECORD_USER_TYPE_START)
1063 return perf_session__process_user_event(session, event, tool, file_offset);
1064
1065 /*
1066 * For all kernel events we get the sample data
1067 */
1068 ret = perf_session__parse_sample(session, event, &sample);
1069 if (ret)
1070 return ret;
1071
1072 /* Preprocess sample records - precheck callchains */
1073 if (perf_session__preprocess_sample(session, event, &sample))
1074 return 0;
1075
1076 if (tool->ordered_samples) {
1077 ret = perf_session_queue_event(session, event, &sample,
1078 file_offset);
1079 if (ret != -ETIME)
1080 return ret;
1081 }
1082
1083 return perf_session_deliver_event(session, event, &sample, tool,
1084 file_offset);
1085 }
1086
1087 void perf_event_header__bswap(struct perf_event_header *self)
1088 {
1089 self->type = bswap_32(self->type);
1090 self->misc = bswap_16(self->misc);
1091 self->size = bswap_16(self->size);
1092 }
1093
1094 struct thread *perf_session__findnew(struct perf_session *session, pid_t pid)
1095 {
1096 return machine__findnew_thread(&session->host_machine, pid);
1097 }
1098
1099 static struct thread *perf_session__register_idle_thread(struct perf_session *self)
1100 {
1101 struct thread *thread = perf_session__findnew(self, 0);
1102
1103 if (thread == NULL || thread__set_comm(thread, "swapper")) {
1104 pr_err("problem inserting idle task.\n");
1105 thread = NULL;
1106 }
1107
1108 return thread;
1109 }
1110
1111 static void perf_session__warn_about_errors(const struct perf_session *session,
1112 const struct perf_tool *tool)
1113 {
1114 if (tool->lost == perf_event__process_lost &&
1115 session->hists.stats.nr_events[PERF_RECORD_LOST] != 0) {
1116 ui__warning("Processed %d events and lost %d chunks!\n\n"
1117 "Check IO/CPU overload!\n\n",
1118 session->hists.stats.nr_events[0],
1119 session->hists.stats.nr_events[PERF_RECORD_LOST]);
1120 }
1121
1122 if (session->hists.stats.nr_unknown_events != 0) {
1123 ui__warning("Found %u unknown events!\n\n"
1124 "Is this an older tool processing a perf.data "
1125 "file generated by a more recent tool?\n\n"
1126 "If that is not the case, consider "
1127 "reporting to linux-kernel@vger.kernel.org.\n\n",
1128 session->hists.stats.nr_unknown_events);
1129 }
1130
1131 if (session->hists.stats.nr_unknown_id != 0) {
1132 ui__warning("%u samples with id not present in the header\n",
1133 session->hists.stats.nr_unknown_id);
1134 }
1135
1136 if (session->hists.stats.nr_invalid_chains != 0) {
1137 ui__warning("Found invalid callchains!\n\n"
1138 "%u out of %u events were discarded for this reason.\n\n"
1139 "Consider reporting to linux-kernel@vger.kernel.org.\n\n",
1140 session->hists.stats.nr_invalid_chains,
1141 session->hists.stats.nr_events[PERF_RECORD_SAMPLE]);
1142 }
1143
1144 if (session->hists.stats.nr_unprocessable_samples != 0) {
1145 ui__warning("%u unprocessable samples recorded.\n"
1146 "Do you have a KVM guest running and not using 'perf kvm'?\n",
1147 session->hists.stats.nr_unprocessable_samples);
1148 }
1149 }
1150
1151 #define session_done() (*(volatile int *)(&session_done))
1152 volatile int session_done;
1153
1154 static int __perf_session__process_pipe_events(struct perf_session *self,
1155 struct perf_tool *tool)
1156 {
1157 union perf_event *event;
1158 uint32_t size, cur_size = 0;
1159 void *buf = NULL;
1160 int skip = 0;
1161 u64 head;
1162 int err;
1163 void *p;
1164
1165 perf_tool__fill_defaults(tool);
1166
1167 head = 0;
1168 cur_size = sizeof(union perf_event);
1169
1170 buf = malloc(cur_size);
1171 if (!buf)
1172 return -errno;
1173 more:
1174 event = buf;
1175 err = readn(self->fd, event, sizeof(struct perf_event_header));
1176 if (err <= 0) {
1177 if (err == 0)
1178 goto done;
1179
1180 pr_err("failed to read event header\n");
1181 goto out_err;
1182 }
1183
1184 if (self->header.needs_swap)
1185 perf_event_header__bswap(&event->header);
1186
1187 size = event->header.size;
1188 if (size == 0)
1189 size = 8;
1190
1191 if (size > cur_size) {
1192 void *new = realloc(buf, size);
1193 if (!new) {
1194 pr_err("failed to allocate memory to read event\n");
1195 goto out_err;
1196 }
1197 buf = new;
1198 cur_size = size;
1199 event = buf;
1200 }
1201 p = event;
1202 p += sizeof(struct perf_event_header);
1203
1204 if (size - sizeof(struct perf_event_header)) {
1205 err = readn(self->fd, p, size - sizeof(struct perf_event_header));
1206 if (err <= 0) {
1207 if (err == 0) {
1208 pr_err("unexpected end of event stream\n");
1209 goto done;
1210 }
1211
1212 pr_err("failed to read event data\n");
1213 goto out_err;
1214 }
1215 }
1216
1217 if ((skip = perf_session__process_event(self, event, tool, head)) < 0) {
1218 pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
1219 head, event->header.size, event->header.type);
1220 err = -EINVAL;
1221 goto out_err;
1222 }
1223
1224 head += size;
1225
1226 if (skip > 0)
1227 head += skip;
1228
1229 if (!session_done())
1230 goto more;
1231 done:
1232 err = 0;
1233 out_err:
1234 free(buf);
1235 perf_session__warn_about_errors(self, tool);
1236 perf_session_free_sample_buffers(self);
1237 return err;
1238 }
1239
1240 static union perf_event *
1241 fetch_mmaped_event(struct perf_session *session,
1242 u64 head, size_t mmap_size, char *buf)
1243 {
1244 union perf_event *event;
1245
1246 /*
1247 * Ensure we have enough space remaining to read
1248 * the size of the event in the headers.
1249 */
1250 if (head + sizeof(event->header) > mmap_size)
1251 return NULL;
1252
1253 event = (union perf_event *)(buf + head);
1254
1255 if (session->header.needs_swap)
1256 perf_event_header__bswap(&event->header);
1257
1258 if (head + event->header.size > mmap_size)
1259 return NULL;
1260
1261 return event;
1262 }
1263
1264 int __perf_session__process_events(struct perf_session *session,
1265 u64 data_offset, u64 data_size,
1266 u64 file_size, struct perf_tool *tool)
1267 {
1268 u64 head, page_offset, file_offset, file_pos, progress_next;
1269 int err, mmap_prot, mmap_flags, map_idx = 0;
1270 size_t page_size, mmap_size;
1271 char *buf, *mmaps[8];
1272 union perf_event *event;
1273 uint32_t size;
1274
1275 perf_tool__fill_defaults(tool);
1276
1277 page_size = sysconf(_SC_PAGESIZE);
1278
1279 page_offset = page_size * (data_offset / page_size);
1280 file_offset = page_offset;
1281 head = data_offset - page_offset;
1282
1283 if (data_offset + data_size < file_size)
1284 file_size = data_offset + data_size;
1285
1286 progress_next = file_size / 16;
1287
1288 mmap_size = session->mmap_window;
1289 if (mmap_size > file_size)
1290 mmap_size = file_size;
1291
1292 memset(mmaps, 0, sizeof(mmaps));
1293
1294 mmap_prot = PROT_READ;
1295 mmap_flags = MAP_SHARED;
1296
1297 if (session->header.needs_swap) {
1298 mmap_prot |= PROT_WRITE;
1299 mmap_flags = MAP_PRIVATE;
1300 }
1301 remap:
1302 buf = mmap(NULL, mmap_size, mmap_prot, mmap_flags, session->fd,
1303 file_offset);
1304 if (buf == MAP_FAILED) {
1305 pr_err("failed to mmap file\n");
1306 err = -errno;
1307 goto out_err;
1308 }
1309 mmaps[map_idx] = buf;
1310 map_idx = (map_idx + 1) & (ARRAY_SIZE(mmaps) - 1);
1311 file_pos = file_offset + head;
1312
1313 more:
1314 event = fetch_mmaped_event(session, head, mmap_size, buf);
1315 if (!event) {
1316 if (mmaps[map_idx]) {
1317 munmap(mmaps[map_idx], mmap_size);
1318 mmaps[map_idx] = NULL;
1319 }
1320
1321 page_offset = page_size * (head / page_size);
1322 file_offset += page_offset;
1323 head -= page_offset;
1324 goto remap;
1325 }
1326
1327 size = event->header.size;
1328
1329 if (size == 0 ||
1330 perf_session__process_event(session, event, tool, file_pos) < 0) {
1331 pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
1332 file_offset + head, event->header.size,
1333 event->header.type);
1334 err = -EINVAL;
1335 goto out_err;
1336 }
1337
1338 head += size;
1339 file_pos += size;
1340
1341 if (file_pos >= progress_next) {
1342 progress_next += file_size / 16;
1343 ui_progress__update(file_pos, file_size,
1344 "Processing events...");
1345 }
1346
1347 if (file_pos < file_size)
1348 goto more;
1349
1350 err = 0;
1351 /* do the final flush for ordered samples */
1352 session->ordered_samples.next_flush = ULLONG_MAX;
1353 flush_sample_queue(session, tool);
1354 out_err:
1355 perf_session__warn_about_errors(session, tool);
1356 perf_session_free_sample_buffers(session);
1357 return err;
1358 }
1359
1360 int perf_session__process_events(struct perf_session *self,
1361 struct perf_tool *tool)
1362 {
1363 int err;
1364
1365 if (perf_session__register_idle_thread(self) == NULL)
1366 return -ENOMEM;
1367
1368 if (!self->fd_pipe)
1369 err = __perf_session__process_events(self,
1370 self->header.data_offset,
1371 self->header.data_size,
1372 self->size, tool);
1373 else
1374 err = __perf_session__process_pipe_events(self, tool);
1375
1376 return err;
1377 }
1378
1379 bool perf_session__has_traces(struct perf_session *self, const char *msg)
1380 {
1381 if (!(self->sample_type & PERF_SAMPLE_RAW)) {
1382 pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
1383 return false;
1384 }
1385
1386 return true;
1387 }
1388
1389 int maps__set_kallsyms_ref_reloc_sym(struct map **maps,
1390 const char *symbol_name, u64 addr)
1391 {
1392 char *bracket;
1393 enum map_type i;
1394 struct ref_reloc_sym *ref;
1395
1396 ref = zalloc(sizeof(struct ref_reloc_sym));
1397 if (ref == NULL)
1398 return -ENOMEM;
1399
1400 ref->name = strdup(symbol_name);
1401 if (ref->name == NULL) {
1402 free(ref);
1403 return -ENOMEM;
1404 }
1405
1406 bracket = strchr(ref->name, ']');
1407 if (bracket)
1408 *bracket = '\0';
1409
1410 ref->addr = addr;
1411
1412 for (i = 0; i < MAP__NR_TYPES; ++i) {
1413 struct kmap *kmap = map__kmap(maps[i]);
1414 kmap->ref_reloc_sym = ref;
1415 }
1416
1417 return 0;
1418 }
1419
1420 size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
1421 {
1422 return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
1423 __dsos__fprintf(&self->host_machine.user_dsos, fp) +
1424 machines__fprintf_dsos(&self->machines, fp);
1425 }
1426
1427 size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp,
1428 bool with_hits)
1429 {
1430 size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits);
1431 return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits);
1432 }
1433
1434 size_t perf_session__fprintf_nr_events(struct perf_session *session, FILE *fp)
1435 {
1436 struct perf_evsel *pos;
1437 size_t ret = fprintf(fp, "Aggregated stats:\n");
1438
1439 ret += hists__fprintf_nr_events(&session->hists, fp);
1440
1441 list_for_each_entry(pos, &session->evlist->entries, node) {
1442 ret += fprintf(fp, "%s stats:\n", event_name(pos));
1443 ret += hists__fprintf_nr_events(&pos->hists, fp);
1444 }
1445
1446 return ret;
1447 }
1448
1449 size_t perf_session__fprintf(struct perf_session *session, FILE *fp)
1450 {
1451 /*
1452 * FIXME: Here we have to actually print all the machines in this
1453 * session, not just the host...
1454 */
1455 return machine__fprintf(&session->host_machine, fp);
1456 }
1457
1458 void perf_session__remove_thread(struct perf_session *session,
1459 struct thread *th)
1460 {
1461 /*
1462 * FIXME: This one makes no sense, we need to remove the thread from
1463 * the machine it belongs to, perf_session can have many machines, so
1464 * doing it always on ->host_machine is wrong. Fix when auditing all
1465 * the 'perf kvm' code.
1466 */
1467 machine__remove_thread(&session->host_machine, th);
1468 }
1469
1470 struct perf_evsel *perf_session__find_first_evtype(struct perf_session *session,
1471 unsigned int type)
1472 {
1473 struct perf_evsel *pos;
1474
1475 list_for_each_entry(pos, &session->evlist->entries, node) {
1476 if (pos->attr.type == type)
1477 return pos;
1478 }
1479 return NULL;
1480 }
1481
1482 void perf_event__print_ip(union perf_event *event, struct perf_sample *sample,
1483 struct machine *machine, struct perf_evsel *evsel,
1484 int print_sym, int print_dso, int print_symoffset)
1485 {
1486 struct addr_location al;
1487 struct callchain_cursor_node *node;
1488
1489 if (perf_event__preprocess_sample(event, machine, &al, sample,
1490 NULL) < 0) {
1491 error("problem processing %d event, skipping it.\n",
1492 event->header.type);
1493 return;
1494 }
1495
1496 if (symbol_conf.use_callchain && sample->callchain) {
1497
1498 if (machine__resolve_callchain(machine, evsel, al.thread,
1499 sample->callchain, NULL) != 0) {
1500 if (verbose)
1501 error("Failed to resolve callchain. Skipping\n");
1502 return;
1503 }
1504 callchain_cursor_commit(&callchain_cursor);
1505
1506 while (1) {
1507 node = callchain_cursor_current(&callchain_cursor);
1508 if (!node)
1509 break;
1510
1511 printf("\t%16" PRIx64, node->ip);
1512 if (print_sym) {
1513 printf(" ");
1514 symbol__fprintf_symname(node->sym, stdout);
1515 }
1516 if (print_dso) {
1517 printf(" (");
1518 map__fprintf_dsoname(node->map, stdout);
1519 printf(")");
1520 }
1521 printf("\n");
1522
1523 callchain_cursor_advance(&callchain_cursor);
1524 }
1525
1526 } else {
1527 printf("%16" PRIx64, sample->ip);
1528 if (print_sym) {
1529 printf(" ");
1530 if (print_symoffset)
1531 symbol__fprintf_symname_offs(al.sym, &al,
1532 stdout);
1533 else
1534 symbol__fprintf_symname(al.sym, stdout);
1535 }
1536
1537 if (print_dso) {
1538 printf(" (");
1539 map__fprintf_dsoname(al.map, stdout);
1540 printf(")");
1541 }
1542 }
1543 }
1544
1545 int perf_session__cpu_bitmap(struct perf_session *session,
1546 const char *cpu_list, unsigned long *cpu_bitmap)
1547 {
1548 int i;
1549 struct cpu_map *map;
1550
1551 for (i = 0; i < PERF_TYPE_MAX; ++i) {
1552 struct perf_evsel *evsel;
1553
1554 evsel = perf_session__find_first_evtype(session, i);
1555 if (!evsel)
1556 continue;
1557
1558 if (!(evsel->attr.sample_type & PERF_SAMPLE_CPU)) {
1559 pr_err("File does not contain CPU events. "
1560 "Remove -c option to proceed.\n");
1561 return -1;
1562 }
1563 }
1564
1565 map = cpu_map__new(cpu_list);
1566 if (map == NULL) {
1567 pr_err("Invalid cpu_list\n");
1568 return -1;
1569 }
1570
1571 for (i = 0; i < map->nr; i++) {
1572 int cpu = map->map[i];
1573
1574 if (cpu >= MAX_NR_CPUS) {
1575 pr_err("Requested CPU %d too large. "
1576 "Consider raising MAX_NR_CPUS\n", cpu);
1577 return -1;
1578 }
1579
1580 set_bit(cpu, cpu_bitmap);
1581 }
1582
1583 return 0;
1584 }
1585
1586 void perf_session__fprintf_info(struct perf_session *session, FILE *fp,
1587 bool full)
1588 {
1589 struct stat st;
1590 int ret;
1591
1592 if (session == NULL || fp == NULL)
1593 return;
1594
1595 ret = fstat(session->fd, &st);
1596 if (ret == -1)
1597 return;
1598
1599 fprintf(fp, "# ========\n");
1600 fprintf(fp, "# captured on: %s", ctime(&st.st_ctime));
1601 perf_header__fprintf_info(session, fp, full);
1602 fprintf(fp, "# ========\n#\n");
1603 }
This page took 0.066412 seconds and 5 git commands to generate.