Merge tag 'perf-core-for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / tools / perf / util / session.c
1 #define _FILE_OFFSET_BITS 64
2
3 #include <linux/kernel.h>
4
5 #include <byteswap.h>
6 #include <unistd.h>
7 #include <sys/types.h>
8 #include <sys/mman.h>
9
10 #include "evlist.h"
11 #include "evsel.h"
12 #include "session.h"
13 #include "tool.h"
14 #include "sort.h"
15 #include "util.h"
16 #include "cpumap.h"
17
18 static int perf_session__open(struct perf_session *self, bool force)
19 {
20 struct stat input_stat;
21
22 if (!strcmp(self->filename, "-")) {
23 self->fd_pipe = true;
24 self->fd = STDIN_FILENO;
25
26 if (perf_session__read_header(self, self->fd) < 0)
27 pr_err("incompatible file format (rerun with -v to learn more)");
28
29 return 0;
30 }
31
32 self->fd = open(self->filename, O_RDONLY);
33 if (self->fd < 0) {
34 int err = errno;
35
36 pr_err("failed to open %s: %s", self->filename, strerror(err));
37 if (err == ENOENT && !strcmp(self->filename, "perf.data"))
38 pr_err(" (try 'perf record' first)");
39 pr_err("\n");
40 return -errno;
41 }
42
43 if (fstat(self->fd, &input_stat) < 0)
44 goto out_close;
45
46 if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
47 pr_err("file %s not owned by current user or root\n",
48 self->filename);
49 goto out_close;
50 }
51
52 if (!input_stat.st_size) {
53 pr_info("zero-sized file (%s), nothing to do!\n",
54 self->filename);
55 goto out_close;
56 }
57
58 if (perf_session__read_header(self, self->fd) < 0) {
59 pr_err("incompatible file format (rerun with -v to learn more)");
60 goto out_close;
61 }
62
63 if (!perf_evlist__valid_sample_type(self->evlist)) {
64 pr_err("non matching sample_type");
65 goto out_close;
66 }
67
68 if (!perf_evlist__valid_sample_id_all(self->evlist)) {
69 pr_err("non matching sample_id_all");
70 goto out_close;
71 }
72
73 self->size = input_stat.st_size;
74 return 0;
75
76 out_close:
77 close(self->fd);
78 self->fd = -1;
79 return -1;
80 }
81
82 void perf_session__update_sample_type(struct perf_session *self)
83 {
84 self->sample_type = perf_evlist__sample_type(self->evlist);
85 self->sample_size = __perf_evsel__sample_size(self->sample_type);
86 self->sample_id_all = perf_evlist__sample_id_all(self->evlist);
87 self->id_hdr_size = perf_evlist__id_hdr_size(self->evlist);
88 self->host_machine.id_hdr_size = self->id_hdr_size;
89 }
90
91 int perf_session__create_kernel_maps(struct perf_session *self)
92 {
93 int ret = machine__create_kernel_maps(&self->host_machine);
94
95 if (ret >= 0)
96 ret = machines__create_guest_kernel_maps(&self->machines);
97 return ret;
98 }
99
100 static void perf_session__destroy_kernel_maps(struct perf_session *self)
101 {
102 machine__destroy_kernel_maps(&self->host_machine);
103 machines__destroy_guest_kernel_maps(&self->machines);
104 }
105
106 struct perf_session *perf_session__new(const char *filename, int mode,
107 bool force, bool repipe,
108 struct perf_tool *tool)
109 {
110 struct perf_session *self;
111 struct stat st;
112 size_t len;
113
114 if (!filename || !strlen(filename)) {
115 if (!fstat(STDIN_FILENO, &st) && S_ISFIFO(st.st_mode))
116 filename = "-";
117 else
118 filename = "perf.data";
119 }
120
121 len = strlen(filename);
122 self = zalloc(sizeof(*self) + len);
123
124 if (self == NULL)
125 goto out;
126
127 memcpy(self->filename, filename, len);
128 /*
129 * On 64bit we can mmap the data file in one go. No need for tiny mmap
130 * slices. On 32bit we use 32MB.
131 */
132 #if BITS_PER_LONG == 64
133 self->mmap_window = ULLONG_MAX;
134 #else
135 self->mmap_window = 32 * 1024 * 1024ULL;
136 #endif
137 self->machines = RB_ROOT;
138 self->repipe = repipe;
139 INIT_LIST_HEAD(&self->ordered_samples.samples);
140 INIT_LIST_HEAD(&self->ordered_samples.sample_cache);
141 INIT_LIST_HEAD(&self->ordered_samples.to_free);
142 machine__init(&self->host_machine, "", HOST_KERNEL_ID);
143 hists__init(&self->hists);
144
145 if (mode == O_RDONLY) {
146 if (perf_session__open(self, force) < 0)
147 goto out_delete;
148 perf_session__update_sample_type(self);
149 } else if (mode == O_WRONLY) {
150 /*
151 * In O_RDONLY mode this will be performed when reading the
152 * kernel MMAP event, in perf_event__process_mmap().
153 */
154 if (perf_session__create_kernel_maps(self) < 0)
155 goto out_delete;
156 }
157
158 if (tool && tool->ordering_requires_timestamps &&
159 tool->ordered_samples && !self->sample_id_all) {
160 dump_printf("WARNING: No sample_id_all support, falling back to unordered processing\n");
161 tool->ordered_samples = false;
162 }
163
164 out:
165 return self;
166 out_delete:
167 perf_session__delete(self);
168 return NULL;
169 }
170
171 static void machine__delete_dead_threads(struct machine *machine)
172 {
173 struct thread *n, *t;
174
175 list_for_each_entry_safe(t, n, &machine->dead_threads, node) {
176 list_del(&t->node);
177 thread__delete(t);
178 }
179 }
180
181 static void perf_session__delete_dead_threads(struct perf_session *session)
182 {
183 machine__delete_dead_threads(&session->host_machine);
184 }
185
186 static void machine__delete_threads(struct machine *self)
187 {
188 struct rb_node *nd = rb_first(&self->threads);
189
190 while (nd) {
191 struct thread *t = rb_entry(nd, struct thread, rb_node);
192
193 rb_erase(&t->rb_node, &self->threads);
194 nd = rb_next(nd);
195 thread__delete(t);
196 }
197 }
198
199 static void perf_session__delete_threads(struct perf_session *session)
200 {
201 machine__delete_threads(&session->host_machine);
202 }
203
204 void perf_session__delete(struct perf_session *self)
205 {
206 perf_session__destroy_kernel_maps(self);
207 perf_session__delete_dead_threads(self);
208 perf_session__delete_threads(self);
209 machine__exit(&self->host_machine);
210 close(self->fd);
211 free(self);
212 }
213
214 void machine__remove_thread(struct machine *self, struct thread *th)
215 {
216 self->last_match = NULL;
217 rb_erase(&th->rb_node, &self->threads);
218 /*
219 * We may have references to this thread, for instance in some hist_entry
220 * instances, so just move them to a separate list.
221 */
222 list_add_tail(&th->node, &self->dead_threads);
223 }
224
225 static bool symbol__match_parent_regex(struct symbol *sym)
226 {
227 if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
228 return 1;
229
230 return 0;
231 }
232
233 static const u8 cpumodes[] = {
234 PERF_RECORD_MISC_USER,
235 PERF_RECORD_MISC_KERNEL,
236 PERF_RECORD_MISC_GUEST_USER,
237 PERF_RECORD_MISC_GUEST_KERNEL
238 };
239 #define NCPUMODES (sizeof(cpumodes)/sizeof(u8))
240
241 static void ip__resolve_ams(struct machine *self, struct thread *thread,
242 struct addr_map_symbol *ams,
243 u64 ip)
244 {
245 struct addr_location al;
246 size_t i;
247 u8 m;
248
249 memset(&al, 0, sizeof(al));
250
251 for (i = 0; i < NCPUMODES; i++) {
252 m = cpumodes[i];
253 /*
254 * We cannot use the header.misc hint to determine whether a
255 * branch stack address is user, kernel, guest, hypervisor.
256 * Branches may straddle the kernel/user/hypervisor boundaries.
257 * Thus, we have to try consecutively until we find a match
258 * or else, the symbol is unknown
259 */
260 thread__find_addr_location(thread, self, m, MAP__FUNCTION,
261 ip, &al, NULL);
262 if (al.sym)
263 goto found;
264 }
265 found:
266 ams->addr = ip;
267 ams->al_addr = al.addr;
268 ams->sym = al.sym;
269 ams->map = al.map;
270 }
271
272 struct branch_info *machine__resolve_bstack(struct machine *self,
273 struct thread *thr,
274 struct branch_stack *bs)
275 {
276 struct branch_info *bi;
277 unsigned int i;
278
279 bi = calloc(bs->nr, sizeof(struct branch_info));
280 if (!bi)
281 return NULL;
282
283 for (i = 0; i < bs->nr; i++) {
284 ip__resolve_ams(self, thr, &bi[i].to, bs->entries[i].to);
285 ip__resolve_ams(self, thr, &bi[i].from, bs->entries[i].from);
286 bi[i].flags = bs->entries[i].flags;
287 }
288 return bi;
289 }
290
291 int machine__resolve_callchain(struct machine *self,
292 struct thread *thread,
293 struct ip_callchain *chain,
294 struct symbol **parent)
295 {
296 u8 cpumode = PERF_RECORD_MISC_USER;
297 unsigned int i;
298 int err;
299
300 callchain_cursor_reset(&callchain_cursor);
301
302 if (chain->nr > PERF_MAX_STACK_DEPTH) {
303 pr_warning("corrupted callchain. skipping...\n");
304 return 0;
305 }
306
307 for (i = 0; i < chain->nr; i++) {
308 u64 ip;
309 struct addr_location al;
310
311 if (callchain_param.order == ORDER_CALLEE)
312 ip = chain->ips[i];
313 else
314 ip = chain->ips[chain->nr - i - 1];
315
316 if (ip >= PERF_CONTEXT_MAX) {
317 switch (ip) {
318 case PERF_CONTEXT_HV:
319 cpumode = PERF_RECORD_MISC_HYPERVISOR; break;
320 case PERF_CONTEXT_KERNEL:
321 cpumode = PERF_RECORD_MISC_KERNEL; break;
322 case PERF_CONTEXT_USER:
323 cpumode = PERF_RECORD_MISC_USER; break;
324 default:
325 pr_debug("invalid callchain context: "
326 "%"PRId64"\n", (s64) ip);
327 /*
328 * It seems the callchain is corrupted.
329 * Discard all.
330 */
331 callchain_cursor_reset(&callchain_cursor);
332 return 0;
333 }
334 continue;
335 }
336
337 al.filtered = false;
338 thread__find_addr_location(thread, self, cpumode,
339 MAP__FUNCTION, ip, &al, NULL);
340 if (al.sym != NULL) {
341 if (sort__has_parent && !*parent &&
342 symbol__match_parent_regex(al.sym))
343 *parent = al.sym;
344 if (!symbol_conf.use_callchain)
345 break;
346 }
347
348 err = callchain_cursor_append(&callchain_cursor,
349 ip, al.map, al.sym);
350 if (err)
351 return err;
352 }
353
354 return 0;
355 }
356
357 static int process_event_synth_tracing_data_stub(union perf_event *event __used,
358 struct perf_session *session __used)
359 {
360 dump_printf(": unhandled!\n");
361 return 0;
362 }
363
364 static int process_event_synth_attr_stub(union perf_event *event __used,
365 struct perf_evlist **pevlist __used)
366 {
367 dump_printf(": unhandled!\n");
368 return 0;
369 }
370
371 static int process_event_sample_stub(struct perf_tool *tool __used,
372 union perf_event *event __used,
373 struct perf_sample *sample __used,
374 struct perf_evsel *evsel __used,
375 struct machine *machine __used)
376 {
377 dump_printf(": unhandled!\n");
378 return 0;
379 }
380
381 static int process_event_stub(struct perf_tool *tool __used,
382 union perf_event *event __used,
383 struct perf_sample *sample __used,
384 struct machine *machine __used)
385 {
386 dump_printf(": unhandled!\n");
387 return 0;
388 }
389
390 static int process_finished_round_stub(struct perf_tool *tool __used,
391 union perf_event *event __used,
392 struct perf_session *perf_session __used)
393 {
394 dump_printf(": unhandled!\n");
395 return 0;
396 }
397
398 static int process_event_type_stub(struct perf_tool *tool __used,
399 union perf_event *event __used)
400 {
401 dump_printf(": unhandled!\n");
402 return 0;
403 }
404
405 static int process_finished_round(struct perf_tool *tool,
406 union perf_event *event,
407 struct perf_session *session);
408
409 static void perf_tool__fill_defaults(struct perf_tool *tool)
410 {
411 if (tool->sample == NULL)
412 tool->sample = process_event_sample_stub;
413 if (tool->mmap == NULL)
414 tool->mmap = process_event_stub;
415 if (tool->comm == NULL)
416 tool->comm = process_event_stub;
417 if (tool->fork == NULL)
418 tool->fork = process_event_stub;
419 if (tool->exit == NULL)
420 tool->exit = process_event_stub;
421 if (tool->lost == NULL)
422 tool->lost = perf_event__process_lost;
423 if (tool->read == NULL)
424 tool->read = process_event_sample_stub;
425 if (tool->throttle == NULL)
426 tool->throttle = process_event_stub;
427 if (tool->unthrottle == NULL)
428 tool->unthrottle = process_event_stub;
429 if (tool->attr == NULL)
430 tool->attr = process_event_synth_attr_stub;
431 if (tool->event_type == NULL)
432 tool->event_type = process_event_type_stub;
433 if (tool->tracing_data == NULL)
434 tool->tracing_data = process_event_synth_tracing_data_stub;
435 if (tool->build_id == NULL)
436 tool->build_id = process_finished_round_stub;
437 if (tool->finished_round == NULL) {
438 if (tool->ordered_samples)
439 tool->finished_round = process_finished_round;
440 else
441 tool->finished_round = process_finished_round_stub;
442 }
443 }
444
445 void mem_bswap_32(void *src, int byte_size)
446 {
447 u32 *m = src;
448 while (byte_size > 0) {
449 *m = bswap_32(*m);
450 byte_size -= sizeof(u32);
451 ++m;
452 }
453 }
454
455 void mem_bswap_64(void *src, int byte_size)
456 {
457 u64 *m = src;
458
459 while (byte_size > 0) {
460 *m = bswap_64(*m);
461 byte_size -= sizeof(u64);
462 ++m;
463 }
464 }
465
466 static void swap_sample_id_all(union perf_event *event, void *data)
467 {
468 void *end = (void *) event + event->header.size;
469 int size = end - data;
470
471 BUG_ON(size % sizeof(u64));
472 mem_bswap_64(data, size);
473 }
474
475 static void perf_event__all64_swap(union perf_event *event,
476 bool sample_id_all __used)
477 {
478 struct perf_event_header *hdr = &event->header;
479 mem_bswap_64(hdr + 1, event->header.size - sizeof(*hdr));
480 }
481
482 static void perf_event__comm_swap(union perf_event *event, bool sample_id_all)
483 {
484 event->comm.pid = bswap_32(event->comm.pid);
485 event->comm.tid = bswap_32(event->comm.tid);
486
487 if (sample_id_all) {
488 void *data = &event->comm.comm;
489
490 data += ALIGN(strlen(data) + 1, sizeof(u64));
491 swap_sample_id_all(event, data);
492 }
493 }
494
495 static void perf_event__mmap_swap(union perf_event *event,
496 bool sample_id_all)
497 {
498 event->mmap.pid = bswap_32(event->mmap.pid);
499 event->mmap.tid = bswap_32(event->mmap.tid);
500 event->mmap.start = bswap_64(event->mmap.start);
501 event->mmap.len = bswap_64(event->mmap.len);
502 event->mmap.pgoff = bswap_64(event->mmap.pgoff);
503
504 if (sample_id_all) {
505 void *data = &event->mmap.filename;
506
507 data += ALIGN(strlen(data) + 1, sizeof(u64));
508 swap_sample_id_all(event, data);
509 }
510 }
511
512 static void perf_event__task_swap(union perf_event *event, bool sample_id_all)
513 {
514 event->fork.pid = bswap_32(event->fork.pid);
515 event->fork.tid = bswap_32(event->fork.tid);
516 event->fork.ppid = bswap_32(event->fork.ppid);
517 event->fork.ptid = bswap_32(event->fork.ptid);
518 event->fork.time = bswap_64(event->fork.time);
519
520 if (sample_id_all)
521 swap_sample_id_all(event, &event->fork + 1);
522 }
523
524 static void perf_event__read_swap(union perf_event *event, bool sample_id_all)
525 {
526 event->read.pid = bswap_32(event->read.pid);
527 event->read.tid = bswap_32(event->read.tid);
528 event->read.value = bswap_64(event->read.value);
529 event->read.time_enabled = bswap_64(event->read.time_enabled);
530 event->read.time_running = bswap_64(event->read.time_running);
531 event->read.id = bswap_64(event->read.id);
532
533 if (sample_id_all)
534 swap_sample_id_all(event, &event->read + 1);
535 }
536
537 static u8 revbyte(u8 b)
538 {
539 int rev = (b >> 4) | ((b & 0xf) << 4);
540 rev = ((rev & 0xcc) >> 2) | ((rev & 0x33) << 2);
541 rev = ((rev & 0xaa) >> 1) | ((rev & 0x55) << 1);
542 return (u8) rev;
543 }
544
545 /*
546 * XXX this is hack in attempt to carry flags bitfield
547 * throught endian village. ABI says:
548 *
549 * Bit-fields are allocated from right to left (least to most significant)
550 * on little-endian implementations and from left to right (most to least
551 * significant) on big-endian implementations.
552 *
553 * The above seems to be byte specific, so we need to reverse each
554 * byte of the bitfield. 'Internet' also says this might be implementation
555 * specific and we probably need proper fix and carry perf_event_attr
556 * bitfield flags in separate data file FEAT_ section. Thought this seems
557 * to work for now.
558 */
559 static void swap_bitfield(u8 *p, unsigned len)
560 {
561 unsigned i;
562
563 for (i = 0; i < len; i++) {
564 *p = revbyte(*p);
565 p++;
566 }
567 }
568
569 /* exported for swapping attributes in file header */
570 void perf_event__attr_swap(struct perf_event_attr *attr)
571 {
572 attr->type = bswap_32(attr->type);
573 attr->size = bswap_32(attr->size);
574 attr->config = bswap_64(attr->config);
575 attr->sample_period = bswap_64(attr->sample_period);
576 attr->sample_type = bswap_64(attr->sample_type);
577 attr->read_format = bswap_64(attr->read_format);
578 attr->wakeup_events = bswap_32(attr->wakeup_events);
579 attr->bp_type = bswap_32(attr->bp_type);
580 attr->bp_addr = bswap_64(attr->bp_addr);
581 attr->bp_len = bswap_64(attr->bp_len);
582
583 swap_bitfield((u8 *) (&attr->read_format + 1), sizeof(u64));
584 }
585
586 static void perf_event__hdr_attr_swap(union perf_event *event,
587 bool sample_id_all __used)
588 {
589 size_t size;
590
591 perf_event__attr_swap(&event->attr.attr);
592
593 size = event->header.size;
594 size -= (void *)&event->attr.id - (void *)event;
595 mem_bswap_64(event->attr.id, size);
596 }
597
598 static void perf_event__event_type_swap(union perf_event *event,
599 bool sample_id_all __used)
600 {
601 event->event_type.event_type.event_id =
602 bswap_64(event->event_type.event_type.event_id);
603 }
604
605 static void perf_event__tracing_data_swap(union perf_event *event,
606 bool sample_id_all __used)
607 {
608 event->tracing_data.size = bswap_32(event->tracing_data.size);
609 }
610
611 typedef void (*perf_event__swap_op)(union perf_event *event,
612 bool sample_id_all);
613
614 static perf_event__swap_op perf_event__swap_ops[] = {
615 [PERF_RECORD_MMAP] = perf_event__mmap_swap,
616 [PERF_RECORD_COMM] = perf_event__comm_swap,
617 [PERF_RECORD_FORK] = perf_event__task_swap,
618 [PERF_RECORD_EXIT] = perf_event__task_swap,
619 [PERF_RECORD_LOST] = perf_event__all64_swap,
620 [PERF_RECORD_READ] = perf_event__read_swap,
621 [PERF_RECORD_SAMPLE] = perf_event__all64_swap,
622 [PERF_RECORD_HEADER_ATTR] = perf_event__hdr_attr_swap,
623 [PERF_RECORD_HEADER_EVENT_TYPE] = perf_event__event_type_swap,
624 [PERF_RECORD_HEADER_TRACING_DATA] = perf_event__tracing_data_swap,
625 [PERF_RECORD_HEADER_BUILD_ID] = NULL,
626 [PERF_RECORD_HEADER_MAX] = NULL,
627 };
628
629 struct sample_queue {
630 u64 timestamp;
631 u64 file_offset;
632 union perf_event *event;
633 struct list_head list;
634 };
635
636 static void perf_session_free_sample_buffers(struct perf_session *session)
637 {
638 struct ordered_samples *os = &session->ordered_samples;
639
640 while (!list_empty(&os->to_free)) {
641 struct sample_queue *sq;
642
643 sq = list_entry(os->to_free.next, struct sample_queue, list);
644 list_del(&sq->list);
645 free(sq);
646 }
647 }
648
649 static int perf_session_deliver_event(struct perf_session *session,
650 union perf_event *event,
651 struct perf_sample *sample,
652 struct perf_tool *tool,
653 u64 file_offset);
654
655 static void flush_sample_queue(struct perf_session *s,
656 struct perf_tool *tool)
657 {
658 struct ordered_samples *os = &s->ordered_samples;
659 struct list_head *head = &os->samples;
660 struct sample_queue *tmp, *iter;
661 struct perf_sample sample;
662 u64 limit = os->next_flush;
663 u64 last_ts = os->last_sample ? os->last_sample->timestamp : 0ULL;
664 unsigned idx = 0, progress_next = os->nr_samples / 16;
665 int ret;
666
667 if (!tool->ordered_samples || !limit)
668 return;
669
670 list_for_each_entry_safe(iter, tmp, head, list) {
671 if (iter->timestamp > limit)
672 break;
673
674 ret = perf_session__parse_sample(s, iter->event, &sample);
675 if (ret)
676 pr_err("Can't parse sample, err = %d\n", ret);
677 else
678 perf_session_deliver_event(s, iter->event, &sample, tool,
679 iter->file_offset);
680
681 os->last_flush = iter->timestamp;
682 list_del(&iter->list);
683 list_add(&iter->list, &os->sample_cache);
684 if (++idx >= progress_next) {
685 progress_next += os->nr_samples / 16;
686 ui_progress__update(idx, os->nr_samples,
687 "Processing time ordered events...");
688 }
689 }
690
691 if (list_empty(head)) {
692 os->last_sample = NULL;
693 } else if (last_ts <= limit) {
694 os->last_sample =
695 list_entry(head->prev, struct sample_queue, list);
696 }
697
698 os->nr_samples = 0;
699 }
700
701 /*
702 * When perf record finishes a pass on every buffers, it records this pseudo
703 * event.
704 * We record the max timestamp t found in the pass n.
705 * Assuming these timestamps are monotonic across cpus, we know that if
706 * a buffer still has events with timestamps below t, they will be all
707 * available and then read in the pass n + 1.
708 * Hence when we start to read the pass n + 2, we can safely flush every
709 * events with timestamps below t.
710 *
711 * ============ PASS n =================
712 * CPU 0 | CPU 1
713 * |
714 * cnt1 timestamps | cnt2 timestamps
715 * 1 | 2
716 * 2 | 3
717 * - | 4 <--- max recorded
718 *
719 * ============ PASS n + 1 ==============
720 * CPU 0 | CPU 1
721 * |
722 * cnt1 timestamps | cnt2 timestamps
723 * 3 | 5
724 * 4 | 6
725 * 5 | 7 <---- max recorded
726 *
727 * Flush every events below timestamp 4
728 *
729 * ============ PASS n + 2 ==============
730 * CPU 0 | CPU 1
731 * |
732 * cnt1 timestamps | cnt2 timestamps
733 * 6 | 8
734 * 7 | 9
735 * - | 10
736 *
737 * Flush every events below timestamp 7
738 * etc...
739 */
740 static int process_finished_round(struct perf_tool *tool,
741 union perf_event *event __used,
742 struct perf_session *session)
743 {
744 flush_sample_queue(session, tool);
745 session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
746
747 return 0;
748 }
749
750 /* The queue is ordered by time */
751 static void __queue_event(struct sample_queue *new, struct perf_session *s)
752 {
753 struct ordered_samples *os = &s->ordered_samples;
754 struct sample_queue *sample = os->last_sample;
755 u64 timestamp = new->timestamp;
756 struct list_head *p;
757
758 ++os->nr_samples;
759 os->last_sample = new;
760
761 if (!sample) {
762 list_add(&new->list, &os->samples);
763 os->max_timestamp = timestamp;
764 return;
765 }
766
767 /*
768 * last_sample might point to some random place in the list as it's
769 * the last queued event. We expect that the new event is close to
770 * this.
771 */
772 if (sample->timestamp <= timestamp) {
773 while (sample->timestamp <= timestamp) {
774 p = sample->list.next;
775 if (p == &os->samples) {
776 list_add_tail(&new->list, &os->samples);
777 os->max_timestamp = timestamp;
778 return;
779 }
780 sample = list_entry(p, struct sample_queue, list);
781 }
782 list_add_tail(&new->list, &sample->list);
783 } else {
784 while (sample->timestamp > timestamp) {
785 p = sample->list.prev;
786 if (p == &os->samples) {
787 list_add(&new->list, &os->samples);
788 return;
789 }
790 sample = list_entry(p, struct sample_queue, list);
791 }
792 list_add(&new->list, &sample->list);
793 }
794 }
795
796 #define MAX_SAMPLE_BUFFER (64 * 1024 / sizeof(struct sample_queue))
797
798 static int perf_session_queue_event(struct perf_session *s, union perf_event *event,
799 struct perf_sample *sample, u64 file_offset)
800 {
801 struct ordered_samples *os = &s->ordered_samples;
802 struct list_head *sc = &os->sample_cache;
803 u64 timestamp = sample->time;
804 struct sample_queue *new;
805
806 if (!timestamp || timestamp == ~0ULL)
807 return -ETIME;
808
809 if (timestamp < s->ordered_samples.last_flush) {
810 printf("Warning: Timestamp below last timeslice flush\n");
811 return -EINVAL;
812 }
813
814 if (!list_empty(sc)) {
815 new = list_entry(sc->next, struct sample_queue, list);
816 list_del(&new->list);
817 } else if (os->sample_buffer) {
818 new = os->sample_buffer + os->sample_buffer_idx;
819 if (++os->sample_buffer_idx == MAX_SAMPLE_BUFFER)
820 os->sample_buffer = NULL;
821 } else {
822 os->sample_buffer = malloc(MAX_SAMPLE_BUFFER * sizeof(*new));
823 if (!os->sample_buffer)
824 return -ENOMEM;
825 list_add(&os->sample_buffer->list, &os->to_free);
826 os->sample_buffer_idx = 2;
827 new = os->sample_buffer + 1;
828 }
829
830 new->timestamp = timestamp;
831 new->file_offset = file_offset;
832 new->event = event;
833
834 __queue_event(new, s);
835
836 return 0;
837 }
838
839 static void callchain__printf(struct perf_sample *sample)
840 {
841 unsigned int i;
842
843 printf("... chain: nr:%" PRIu64 "\n", sample->callchain->nr);
844
845 for (i = 0; i < sample->callchain->nr; i++)
846 printf("..... %2d: %016" PRIx64 "\n",
847 i, sample->callchain->ips[i]);
848 }
849
850 static void branch_stack__printf(struct perf_sample *sample)
851 {
852 uint64_t i;
853
854 printf("... branch stack: nr:%" PRIu64 "\n", sample->branch_stack->nr);
855
856 for (i = 0; i < sample->branch_stack->nr; i++)
857 printf("..... %2"PRIu64": %016" PRIx64 " -> %016" PRIx64 "\n",
858 i, sample->branch_stack->entries[i].from,
859 sample->branch_stack->entries[i].to);
860 }
861
862 static void perf_session__print_tstamp(struct perf_session *session,
863 union perf_event *event,
864 struct perf_sample *sample)
865 {
866 if (event->header.type != PERF_RECORD_SAMPLE &&
867 !session->sample_id_all) {
868 fputs("-1 -1 ", stdout);
869 return;
870 }
871
872 if ((session->sample_type & PERF_SAMPLE_CPU))
873 printf("%u ", sample->cpu);
874
875 if (session->sample_type & PERF_SAMPLE_TIME)
876 printf("%" PRIu64 " ", sample->time);
877 }
878
879 static void dump_event(struct perf_session *session, union perf_event *event,
880 u64 file_offset, struct perf_sample *sample)
881 {
882 if (!dump_trace)
883 return;
884
885 printf("\n%#" PRIx64 " [%#x]: event: %d\n",
886 file_offset, event->header.size, event->header.type);
887
888 trace_event(event);
889
890 if (sample)
891 perf_session__print_tstamp(session, event, sample);
892
893 printf("%#" PRIx64 " [%#x]: PERF_RECORD_%s", file_offset,
894 event->header.size, perf_event__name(event->header.type));
895 }
896
897 static void dump_sample(struct perf_session *session, union perf_event *event,
898 struct perf_sample *sample)
899 {
900 if (!dump_trace)
901 return;
902
903 printf("(IP, %d): %d/%d: %#" PRIx64 " period: %" PRIu64 " addr: %#" PRIx64 "\n",
904 event->header.misc, sample->pid, sample->tid, sample->ip,
905 sample->period, sample->addr);
906
907 if (session->sample_type & PERF_SAMPLE_CALLCHAIN)
908 callchain__printf(sample);
909
910 if (session->sample_type & PERF_SAMPLE_BRANCH_STACK)
911 branch_stack__printf(sample);
912 }
913
914 static struct machine *
915 perf_session__find_machine_for_cpumode(struct perf_session *session,
916 union perf_event *event)
917 {
918 const u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
919
920 if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL && perf_guest) {
921 u32 pid;
922
923 if (event->header.type == PERF_RECORD_MMAP)
924 pid = event->mmap.pid;
925 else
926 pid = event->ip.pid;
927
928 return perf_session__find_machine(session, pid);
929 }
930
931 return perf_session__find_host_machine(session);
932 }
933
934 static int perf_session_deliver_event(struct perf_session *session,
935 union perf_event *event,
936 struct perf_sample *sample,
937 struct perf_tool *tool,
938 u64 file_offset)
939 {
940 struct perf_evsel *evsel;
941 struct machine *machine;
942
943 dump_event(session, event, file_offset, sample);
944
945 evsel = perf_evlist__id2evsel(session->evlist, sample->id);
946 if (evsel != NULL && event->header.type != PERF_RECORD_SAMPLE) {
947 /*
948 * XXX We're leaving PERF_RECORD_SAMPLE unnacounted here
949 * because the tools right now may apply filters, discarding
950 * some of the samples. For consistency, in the future we
951 * should have something like nr_filtered_samples and remove
952 * the sample->period from total_sample_period, etc, KISS for
953 * now tho.
954 *
955 * Also testing against NULL allows us to handle files without
956 * attr.sample_id_all and/or without PERF_SAMPLE_ID. In the
957 * future probably it'll be a good idea to restrict event
958 * processing via perf_session to files with both set.
959 */
960 hists__inc_nr_events(&evsel->hists, event->header.type);
961 }
962
963 machine = perf_session__find_machine_for_cpumode(session, event);
964
965 switch (event->header.type) {
966 case PERF_RECORD_SAMPLE:
967 dump_sample(session, event, sample);
968 if (evsel == NULL) {
969 ++session->hists.stats.nr_unknown_id;
970 return 0;
971 }
972 if (machine == NULL) {
973 ++session->hists.stats.nr_unprocessable_samples;
974 return 0;
975 }
976 return tool->sample(tool, event, sample, evsel, machine);
977 case PERF_RECORD_MMAP:
978 return tool->mmap(tool, event, sample, machine);
979 case PERF_RECORD_COMM:
980 return tool->comm(tool, event, sample, machine);
981 case PERF_RECORD_FORK:
982 return tool->fork(tool, event, sample, machine);
983 case PERF_RECORD_EXIT:
984 return tool->exit(tool, event, sample, machine);
985 case PERF_RECORD_LOST:
986 if (tool->lost == perf_event__process_lost)
987 session->hists.stats.total_lost += event->lost.lost;
988 return tool->lost(tool, event, sample, machine);
989 case PERF_RECORD_READ:
990 return tool->read(tool, event, sample, evsel, machine);
991 case PERF_RECORD_THROTTLE:
992 return tool->throttle(tool, event, sample, machine);
993 case PERF_RECORD_UNTHROTTLE:
994 return tool->unthrottle(tool, event, sample, machine);
995 default:
996 ++session->hists.stats.nr_unknown_events;
997 return -1;
998 }
999 }
1000
1001 static int perf_session__preprocess_sample(struct perf_session *session,
1002 union perf_event *event, struct perf_sample *sample)
1003 {
1004 if (event->header.type != PERF_RECORD_SAMPLE ||
1005 !(session->sample_type & PERF_SAMPLE_CALLCHAIN))
1006 return 0;
1007
1008 if (!ip_callchain__valid(sample->callchain, event)) {
1009 pr_debug("call-chain problem with event, skipping it.\n");
1010 ++session->hists.stats.nr_invalid_chains;
1011 session->hists.stats.total_invalid_chains += sample->period;
1012 return -EINVAL;
1013 }
1014 return 0;
1015 }
1016
1017 static int perf_session__process_user_event(struct perf_session *session, union perf_event *event,
1018 struct perf_tool *tool, u64 file_offset)
1019 {
1020 int err;
1021
1022 dump_event(session, event, file_offset, NULL);
1023
1024 /* These events are processed right away */
1025 switch (event->header.type) {
1026 case PERF_RECORD_HEADER_ATTR:
1027 err = tool->attr(event, &session->evlist);
1028 if (err == 0)
1029 perf_session__update_sample_type(session);
1030 return err;
1031 case PERF_RECORD_HEADER_EVENT_TYPE:
1032 return tool->event_type(tool, event);
1033 case PERF_RECORD_HEADER_TRACING_DATA:
1034 /* setup for reading amidst mmap */
1035 lseek(session->fd, file_offset, SEEK_SET);
1036 return tool->tracing_data(event, session);
1037 case PERF_RECORD_HEADER_BUILD_ID:
1038 return tool->build_id(tool, event, session);
1039 case PERF_RECORD_FINISHED_ROUND:
1040 return tool->finished_round(tool, event, session);
1041 default:
1042 return -EINVAL;
1043 }
1044 }
1045
1046 static void event_swap(union perf_event *event, bool sample_id_all)
1047 {
1048 perf_event__swap_op swap;
1049
1050 swap = perf_event__swap_ops[event->header.type];
1051 if (swap)
1052 swap(event, sample_id_all);
1053 }
1054
1055 static int perf_session__process_event(struct perf_session *session,
1056 union perf_event *event,
1057 struct perf_tool *tool,
1058 u64 file_offset)
1059 {
1060 struct perf_sample sample;
1061 int ret;
1062
1063 if (session->header.needs_swap)
1064 event_swap(event, session->sample_id_all);
1065
1066 if (event->header.type >= PERF_RECORD_HEADER_MAX)
1067 return -EINVAL;
1068
1069 hists__inc_nr_events(&session->hists, event->header.type);
1070
1071 if (event->header.type >= PERF_RECORD_USER_TYPE_START)
1072 return perf_session__process_user_event(session, event, tool, file_offset);
1073
1074 /*
1075 * For all kernel events we get the sample data
1076 */
1077 ret = perf_session__parse_sample(session, event, &sample);
1078 if (ret)
1079 return ret;
1080
1081 /* Preprocess sample records - precheck callchains */
1082 if (perf_session__preprocess_sample(session, event, &sample))
1083 return 0;
1084
1085 if (tool->ordered_samples) {
1086 ret = perf_session_queue_event(session, event, &sample,
1087 file_offset);
1088 if (ret != -ETIME)
1089 return ret;
1090 }
1091
1092 return perf_session_deliver_event(session, event, &sample, tool,
1093 file_offset);
1094 }
1095
1096 void perf_event_header__bswap(struct perf_event_header *self)
1097 {
1098 self->type = bswap_32(self->type);
1099 self->misc = bswap_16(self->misc);
1100 self->size = bswap_16(self->size);
1101 }
1102
1103 struct thread *perf_session__findnew(struct perf_session *session, pid_t pid)
1104 {
1105 return machine__findnew_thread(&session->host_machine, pid);
1106 }
1107
1108 static struct thread *perf_session__register_idle_thread(struct perf_session *self)
1109 {
1110 struct thread *thread = perf_session__findnew(self, 0);
1111
1112 if (thread == NULL || thread__set_comm(thread, "swapper")) {
1113 pr_err("problem inserting idle task.\n");
1114 thread = NULL;
1115 }
1116
1117 return thread;
1118 }
1119
1120 static void perf_session__warn_about_errors(const struct perf_session *session,
1121 const struct perf_tool *tool)
1122 {
1123 if (tool->lost == perf_event__process_lost &&
1124 session->hists.stats.nr_events[PERF_RECORD_LOST] != 0) {
1125 ui__warning("Processed %d events and lost %d chunks!\n\n"
1126 "Check IO/CPU overload!\n\n",
1127 session->hists.stats.nr_events[0],
1128 session->hists.stats.nr_events[PERF_RECORD_LOST]);
1129 }
1130
1131 if (session->hists.stats.nr_unknown_events != 0) {
1132 ui__warning("Found %u unknown events!\n\n"
1133 "Is this an older tool processing a perf.data "
1134 "file generated by a more recent tool?\n\n"
1135 "If that is not the case, consider "
1136 "reporting to linux-kernel@vger.kernel.org.\n\n",
1137 session->hists.stats.nr_unknown_events);
1138 }
1139
1140 if (session->hists.stats.nr_unknown_id != 0) {
1141 ui__warning("%u samples with id not present in the header\n",
1142 session->hists.stats.nr_unknown_id);
1143 }
1144
1145 if (session->hists.stats.nr_invalid_chains != 0) {
1146 ui__warning("Found invalid callchains!\n\n"
1147 "%u out of %u events were discarded for this reason.\n\n"
1148 "Consider reporting to linux-kernel@vger.kernel.org.\n\n",
1149 session->hists.stats.nr_invalid_chains,
1150 session->hists.stats.nr_events[PERF_RECORD_SAMPLE]);
1151 }
1152
1153 if (session->hists.stats.nr_unprocessable_samples != 0) {
1154 ui__warning("%u unprocessable samples recorded.\n"
1155 "Do you have a KVM guest running and not using 'perf kvm'?\n",
1156 session->hists.stats.nr_unprocessable_samples);
1157 }
1158 }
1159
1160 #define session_done() (*(volatile int *)(&session_done))
1161 volatile int session_done;
1162
1163 static int __perf_session__process_pipe_events(struct perf_session *self,
1164 struct perf_tool *tool)
1165 {
1166 union perf_event *event;
1167 uint32_t size, cur_size = 0;
1168 void *buf = NULL;
1169 int skip = 0;
1170 u64 head;
1171 int err;
1172 void *p;
1173
1174 perf_tool__fill_defaults(tool);
1175
1176 head = 0;
1177 cur_size = sizeof(union perf_event);
1178
1179 buf = malloc(cur_size);
1180 if (!buf)
1181 return -errno;
1182 more:
1183 event = buf;
1184 err = readn(self->fd, event, sizeof(struct perf_event_header));
1185 if (err <= 0) {
1186 if (err == 0)
1187 goto done;
1188
1189 pr_err("failed to read event header\n");
1190 goto out_err;
1191 }
1192
1193 if (self->header.needs_swap)
1194 perf_event_header__bswap(&event->header);
1195
1196 size = event->header.size;
1197 if (size == 0)
1198 size = 8;
1199
1200 if (size > cur_size) {
1201 void *new = realloc(buf, size);
1202 if (!new) {
1203 pr_err("failed to allocate memory to read event\n");
1204 goto out_err;
1205 }
1206 buf = new;
1207 cur_size = size;
1208 event = buf;
1209 }
1210 p = event;
1211 p += sizeof(struct perf_event_header);
1212
1213 if (size - sizeof(struct perf_event_header)) {
1214 err = readn(self->fd, p, size - sizeof(struct perf_event_header));
1215 if (err <= 0) {
1216 if (err == 0) {
1217 pr_err("unexpected end of event stream\n");
1218 goto done;
1219 }
1220
1221 pr_err("failed to read event data\n");
1222 goto out_err;
1223 }
1224 }
1225
1226 if ((skip = perf_session__process_event(self, event, tool, head)) < 0) {
1227 pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
1228 head, event->header.size, event->header.type);
1229 err = -EINVAL;
1230 goto out_err;
1231 }
1232
1233 head += size;
1234
1235 if (skip > 0)
1236 head += skip;
1237
1238 if (!session_done())
1239 goto more;
1240 done:
1241 err = 0;
1242 out_err:
1243 free(buf);
1244 perf_session__warn_about_errors(self, tool);
1245 perf_session_free_sample_buffers(self);
1246 return err;
1247 }
1248
1249 static union perf_event *
1250 fetch_mmaped_event(struct perf_session *session,
1251 u64 head, size_t mmap_size, char *buf)
1252 {
1253 union perf_event *event;
1254
1255 /*
1256 * Ensure we have enough space remaining to read
1257 * the size of the event in the headers.
1258 */
1259 if (head + sizeof(event->header) > mmap_size)
1260 return NULL;
1261
1262 event = (union perf_event *)(buf + head);
1263
1264 if (session->header.needs_swap)
1265 perf_event_header__bswap(&event->header);
1266
1267 if (head + event->header.size > mmap_size)
1268 return NULL;
1269
1270 return event;
1271 }
1272
1273 int __perf_session__process_events(struct perf_session *session,
1274 u64 data_offset, u64 data_size,
1275 u64 file_size, struct perf_tool *tool)
1276 {
1277 u64 head, page_offset, file_offset, file_pos, progress_next;
1278 int err, mmap_prot, mmap_flags, map_idx = 0;
1279 size_t page_size, mmap_size;
1280 char *buf, *mmaps[8];
1281 union perf_event *event;
1282 uint32_t size;
1283
1284 perf_tool__fill_defaults(tool);
1285
1286 page_size = sysconf(_SC_PAGESIZE);
1287
1288 page_offset = page_size * (data_offset / page_size);
1289 file_offset = page_offset;
1290 head = data_offset - page_offset;
1291
1292 if (data_offset + data_size < file_size)
1293 file_size = data_offset + data_size;
1294
1295 progress_next = file_size / 16;
1296
1297 mmap_size = session->mmap_window;
1298 if (mmap_size > file_size)
1299 mmap_size = file_size;
1300
1301 memset(mmaps, 0, sizeof(mmaps));
1302
1303 mmap_prot = PROT_READ;
1304 mmap_flags = MAP_SHARED;
1305
1306 if (session->header.needs_swap) {
1307 mmap_prot |= PROT_WRITE;
1308 mmap_flags = MAP_PRIVATE;
1309 }
1310 remap:
1311 buf = mmap(NULL, mmap_size, mmap_prot, mmap_flags, session->fd,
1312 file_offset);
1313 if (buf == MAP_FAILED) {
1314 pr_err("failed to mmap file\n");
1315 err = -errno;
1316 goto out_err;
1317 }
1318 mmaps[map_idx] = buf;
1319 map_idx = (map_idx + 1) & (ARRAY_SIZE(mmaps) - 1);
1320 file_pos = file_offset + head;
1321
1322 more:
1323 event = fetch_mmaped_event(session, head, mmap_size, buf);
1324 if (!event) {
1325 if (mmaps[map_idx]) {
1326 munmap(mmaps[map_idx], mmap_size);
1327 mmaps[map_idx] = NULL;
1328 }
1329
1330 page_offset = page_size * (head / page_size);
1331 file_offset += page_offset;
1332 head -= page_offset;
1333 goto remap;
1334 }
1335
1336 size = event->header.size;
1337
1338 if (size == 0 ||
1339 perf_session__process_event(session, event, tool, file_pos) < 0) {
1340 pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
1341 file_offset + head, event->header.size,
1342 event->header.type);
1343 err = -EINVAL;
1344 goto out_err;
1345 }
1346
1347 head += size;
1348 file_pos += size;
1349
1350 if (file_pos >= progress_next) {
1351 progress_next += file_size / 16;
1352 ui_progress__update(file_pos, file_size,
1353 "Processing events...");
1354 }
1355
1356 if (file_pos < file_size)
1357 goto more;
1358
1359 err = 0;
1360 /* do the final flush for ordered samples */
1361 session->ordered_samples.next_flush = ULLONG_MAX;
1362 flush_sample_queue(session, tool);
1363 out_err:
1364 perf_session__warn_about_errors(session, tool);
1365 perf_session_free_sample_buffers(session);
1366 return err;
1367 }
1368
1369 int perf_session__process_events(struct perf_session *self,
1370 struct perf_tool *tool)
1371 {
1372 int err;
1373
1374 if (perf_session__register_idle_thread(self) == NULL)
1375 return -ENOMEM;
1376
1377 if (!self->fd_pipe)
1378 err = __perf_session__process_events(self,
1379 self->header.data_offset,
1380 self->header.data_size,
1381 self->size, tool);
1382 else
1383 err = __perf_session__process_pipe_events(self, tool);
1384
1385 return err;
1386 }
1387
1388 bool perf_session__has_traces(struct perf_session *self, const char *msg)
1389 {
1390 if (!(self->sample_type & PERF_SAMPLE_RAW)) {
1391 pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
1392 return false;
1393 }
1394
1395 return true;
1396 }
1397
1398 int maps__set_kallsyms_ref_reloc_sym(struct map **maps,
1399 const char *symbol_name, u64 addr)
1400 {
1401 char *bracket;
1402 enum map_type i;
1403 struct ref_reloc_sym *ref;
1404
1405 ref = zalloc(sizeof(struct ref_reloc_sym));
1406 if (ref == NULL)
1407 return -ENOMEM;
1408
1409 ref->name = strdup(symbol_name);
1410 if (ref->name == NULL) {
1411 free(ref);
1412 return -ENOMEM;
1413 }
1414
1415 bracket = strchr(ref->name, ']');
1416 if (bracket)
1417 *bracket = '\0';
1418
1419 ref->addr = addr;
1420
1421 for (i = 0; i < MAP__NR_TYPES; ++i) {
1422 struct kmap *kmap = map__kmap(maps[i]);
1423 kmap->ref_reloc_sym = ref;
1424 }
1425
1426 return 0;
1427 }
1428
1429 size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
1430 {
1431 return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
1432 __dsos__fprintf(&self->host_machine.user_dsos, fp) +
1433 machines__fprintf_dsos(&self->machines, fp);
1434 }
1435
1436 size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp,
1437 bool with_hits)
1438 {
1439 size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits);
1440 return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits);
1441 }
1442
1443 size_t perf_session__fprintf_nr_events(struct perf_session *session, FILE *fp)
1444 {
1445 struct perf_evsel *pos;
1446 size_t ret = fprintf(fp, "Aggregated stats:\n");
1447
1448 ret += hists__fprintf_nr_events(&session->hists, fp);
1449
1450 list_for_each_entry(pos, &session->evlist->entries, node) {
1451 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
1452 ret += hists__fprintf_nr_events(&pos->hists, fp);
1453 }
1454
1455 return ret;
1456 }
1457
1458 size_t perf_session__fprintf(struct perf_session *session, FILE *fp)
1459 {
1460 /*
1461 * FIXME: Here we have to actually print all the machines in this
1462 * session, not just the host...
1463 */
1464 return machine__fprintf(&session->host_machine, fp);
1465 }
1466
1467 void perf_session__remove_thread(struct perf_session *session,
1468 struct thread *th)
1469 {
1470 /*
1471 * FIXME: This one makes no sense, we need to remove the thread from
1472 * the machine it belongs to, perf_session can have many machines, so
1473 * doing it always on ->host_machine is wrong. Fix when auditing all
1474 * the 'perf kvm' code.
1475 */
1476 machine__remove_thread(&session->host_machine, th);
1477 }
1478
1479 struct perf_evsel *perf_session__find_first_evtype(struct perf_session *session,
1480 unsigned int type)
1481 {
1482 struct perf_evsel *pos;
1483
1484 list_for_each_entry(pos, &session->evlist->entries, node) {
1485 if (pos->attr.type == type)
1486 return pos;
1487 }
1488 return NULL;
1489 }
1490
1491 void perf_event__print_ip(union perf_event *event, struct perf_sample *sample,
1492 struct machine *machine, int print_sym,
1493 int print_dso, int print_symoffset)
1494 {
1495 struct addr_location al;
1496 struct callchain_cursor_node *node;
1497
1498 if (perf_event__preprocess_sample(event, machine, &al, sample,
1499 NULL) < 0) {
1500 error("problem processing %d event, skipping it.\n",
1501 event->header.type);
1502 return;
1503 }
1504
1505 if (symbol_conf.use_callchain && sample->callchain) {
1506
1507 if (machine__resolve_callchain(machine, al.thread,
1508 sample->callchain, NULL) != 0) {
1509 if (verbose)
1510 error("Failed to resolve callchain. Skipping\n");
1511 return;
1512 }
1513 callchain_cursor_commit(&callchain_cursor);
1514
1515 while (1) {
1516 node = callchain_cursor_current(&callchain_cursor);
1517 if (!node)
1518 break;
1519
1520 printf("\t%16" PRIx64, node->ip);
1521 if (print_sym) {
1522 printf(" ");
1523 symbol__fprintf_symname(node->sym, stdout);
1524 }
1525 if (print_dso) {
1526 printf(" (");
1527 map__fprintf_dsoname(node->map, stdout);
1528 printf(")");
1529 }
1530 printf("\n");
1531
1532 callchain_cursor_advance(&callchain_cursor);
1533 }
1534
1535 } else {
1536 printf("%16" PRIx64, sample->ip);
1537 if (print_sym) {
1538 printf(" ");
1539 if (print_symoffset)
1540 symbol__fprintf_symname_offs(al.sym, &al,
1541 stdout);
1542 else
1543 symbol__fprintf_symname(al.sym, stdout);
1544 }
1545
1546 if (print_dso) {
1547 printf(" (");
1548 map__fprintf_dsoname(al.map, stdout);
1549 printf(")");
1550 }
1551 }
1552 }
1553
1554 int perf_session__cpu_bitmap(struct perf_session *session,
1555 const char *cpu_list, unsigned long *cpu_bitmap)
1556 {
1557 int i;
1558 struct cpu_map *map;
1559
1560 for (i = 0; i < PERF_TYPE_MAX; ++i) {
1561 struct perf_evsel *evsel;
1562
1563 evsel = perf_session__find_first_evtype(session, i);
1564 if (!evsel)
1565 continue;
1566
1567 if (!(evsel->attr.sample_type & PERF_SAMPLE_CPU)) {
1568 pr_err("File does not contain CPU events. "
1569 "Remove -c option to proceed.\n");
1570 return -1;
1571 }
1572 }
1573
1574 map = cpu_map__new(cpu_list);
1575 if (map == NULL) {
1576 pr_err("Invalid cpu_list\n");
1577 return -1;
1578 }
1579
1580 for (i = 0; i < map->nr; i++) {
1581 int cpu = map->map[i];
1582
1583 if (cpu >= MAX_NR_CPUS) {
1584 pr_err("Requested CPU %d too large. "
1585 "Consider raising MAX_NR_CPUS\n", cpu);
1586 return -1;
1587 }
1588
1589 set_bit(cpu, cpu_bitmap);
1590 }
1591
1592 return 0;
1593 }
1594
1595 void perf_session__fprintf_info(struct perf_session *session, FILE *fp,
1596 bool full)
1597 {
1598 struct stat st;
1599 int ret;
1600
1601 if (session == NULL || fp == NULL)
1602 return;
1603
1604 ret = fstat(session->fd, &st);
1605 if (ret == -1)
1606 return;
1607
1608 fprintf(fp, "# ========\n");
1609 fprintf(fp, "# captured on: %s", ctime(&st.st_ctime));
1610 perf_header__fprintf_info(session, fp, full);
1611 fprintf(fp, "# ========\n#\n");
1612 }
This page took 0.065598 seconds and 5 git commands to generate.