59d145f209188db45f62b5177f702cfbf16a9bd2
[deliverable/linux.git] / tools / testing / selftests / vm / userfaultfd.c
1 /*
2 * Stress userfaultfd syscall.
3 *
4 * Copyright (C) 2015 Red Hat, Inc.
5 *
6 * This work is licensed under the terms of the GNU GPL, version 2. See
7 * the COPYING file in the top-level directory.
8 *
9 * This test allocates two virtual areas and bounces the physical
10 * memory across the two virtual areas (from area_src to area_dst)
11 * using userfaultfd.
12 *
13 * There are three threads running per CPU:
14 *
15 * 1) one per-CPU thread takes a per-page pthread_mutex in a random
16 * page of the area_dst (while the physical page may still be in
17 * area_src), and increments a per-page counter in the same page,
18 * and checks its value against a verification region.
19 *
20 * 2) another per-CPU thread handles the userfaults generated by
21 * thread 1 above. userfaultfd blocking reads or poll() modes are
22 * exercised interleaved.
23 *
24 * 3) one last per-CPU thread transfers the memory in the background
25 * at maximum bandwidth (if not already transferred by thread
26 * 2). Each cpu thread takes cares of transferring a portion of the
27 * area.
28 *
29 * When all threads of type 3 completed the transfer, one bounce is
30 * complete. area_src and area_dst are then swapped. All threads are
31 * respawned and so the bounce is immediately restarted in the
32 * opposite direction.
33 *
34 * per-CPU threads 1 by triggering userfaults inside
35 * pthread_mutex_lock will also verify the atomicity of the memory
36 * transfer (UFFDIO_COPY).
37 *
38 * The program takes two parameters: the amounts of physical memory in
39 * megabytes (MiB) of the area and the number of bounces to execute.
40 *
41 * # 100MiB 99999 bounces
42 * ./userfaultfd 100 99999
43 *
44 * # 1GiB 99 bounces
45 * ./userfaultfd 1000 99
46 *
47 * # 10MiB-~6GiB 999 bounces, continue forever unless an error triggers
48 * while ./userfaultfd $[RANDOM % 6000 + 10] 999; do true; done
49 */
50
51 #define _GNU_SOURCE
52 #include <stdio.h>
53 #include <errno.h>
54 #include <unistd.h>
55 #include <stdlib.h>
56 #include <sys/types.h>
57 #include <sys/stat.h>
58 #include <fcntl.h>
59 #include <time.h>
60 #include <signal.h>
61 #include <poll.h>
62 #include <string.h>
63 #include <sys/mman.h>
64 #include <sys/syscall.h>
65 #include <sys/ioctl.h>
66 #include <pthread.h>
67 #include <linux/userfaultfd.h>
68
69 #ifndef __NR_userfaultfd
70 #ifdef __x86_64__
71 #define __NR_userfaultfd 323
72 #elif defined(__i386__)
73 #define __NR_userfaultfd 374
74 #elif defined(__powewrpc__)
75 #define __NR_userfaultfd 364
76 #elif defined(__s390__)
77 #define __NR_userfaultfd 355
78 #else
79 #error "missing __NR_userfaultfd definition"
80 #endif
81 #endif
82
83 static unsigned long nr_cpus, nr_pages, nr_pages_per_cpu, page_size;
84
85 #define BOUNCE_RANDOM (1<<0)
86 #define BOUNCE_RACINGFAULTS (1<<1)
87 #define BOUNCE_VERIFY (1<<2)
88 #define BOUNCE_POLL (1<<3)
89 static int bounces;
90
91 static unsigned long long *count_verify;
92 static int uffd, finished, *pipefd;
93 static char *area_src, *area_dst;
94 static char *zeropage;
95 pthread_attr_t attr;
96
97 /* pthread_mutex_t starts at page offset 0 */
98 #define area_mutex(___area, ___nr) \
99 ((pthread_mutex_t *) ((___area) + (___nr)*page_size))
100 /*
101 * count is placed in the page after pthread_mutex_t naturally aligned
102 * to avoid non alignment faults on non-x86 archs.
103 */
104 #define area_count(___area, ___nr) \
105 ((volatile unsigned long long *) ((unsigned long) \
106 ((___area) + (___nr)*page_size + \
107 sizeof(pthread_mutex_t) + \
108 sizeof(unsigned long long) - 1) & \
109 ~(unsigned long)(sizeof(unsigned long long) \
110 - 1)))
111
112 static int my_bcmp(char *str1, char *str2, size_t n)
113 {
114 unsigned long i;
115 for (i = 0; i < n; i++)
116 if (str1[i] != str2[i])
117 return 1;
118 return 0;
119 }
120
121 static void *locking_thread(void *arg)
122 {
123 unsigned long cpu = (unsigned long) arg;
124 struct random_data rand;
125 unsigned long page_nr = *(&(page_nr)); /* uninitialized warning */
126 int32_t rand_nr;
127 unsigned long long count;
128 char randstate[64];
129 unsigned int seed;
130 time_t start;
131
132 if (bounces & BOUNCE_RANDOM) {
133 seed = (unsigned int) time(NULL) - bounces;
134 if (!(bounces & BOUNCE_RACINGFAULTS))
135 seed += cpu;
136 bzero(&rand, sizeof(rand));
137 bzero(&randstate, sizeof(randstate));
138 if (initstate_r(seed, randstate, sizeof(randstate), &rand))
139 fprintf(stderr, "srandom_r error\n"), exit(1);
140 } else {
141 page_nr = -bounces;
142 if (!(bounces & BOUNCE_RACINGFAULTS))
143 page_nr += cpu * nr_pages_per_cpu;
144 }
145
146 while (!finished) {
147 if (bounces & BOUNCE_RANDOM) {
148 if (random_r(&rand, &rand_nr))
149 fprintf(stderr, "random_r 1 error\n"), exit(1);
150 page_nr = rand_nr;
151 if (sizeof(page_nr) > sizeof(rand_nr)) {
152 if (random_r(&rand, &rand_nr))
153 fprintf(stderr, "random_r 2 error\n"), exit(1);
154 page_nr |= (((unsigned long) rand_nr) << 16) <<
155 16;
156 }
157 } else
158 page_nr += 1;
159 page_nr %= nr_pages;
160
161 start = time(NULL);
162 if (bounces & BOUNCE_VERIFY) {
163 count = *area_count(area_dst, page_nr);
164 if (!count)
165 fprintf(stderr,
166 "page_nr %lu wrong count %Lu %Lu\n",
167 page_nr, count,
168 count_verify[page_nr]), exit(1);
169
170
171 /*
172 * We can't use bcmp (or memcmp) because that
173 * returns 0 erroneously if the memory is
174 * changing under it (even if the end of the
175 * page is never changing and always
176 * different).
177 */
178 #if 1
179 if (!my_bcmp(area_dst + page_nr * page_size, zeropage,
180 page_size))
181 fprintf(stderr,
182 "my_bcmp page_nr %lu wrong count %Lu %Lu\n",
183 page_nr, count,
184 count_verify[page_nr]), exit(1);
185 #else
186 unsigned long loops;
187
188 loops = 0;
189 /* uncomment the below line to test with mutex */
190 /* pthread_mutex_lock(area_mutex(area_dst, page_nr)); */
191 while (!bcmp(area_dst + page_nr * page_size, zeropage,
192 page_size)) {
193 loops += 1;
194 if (loops > 10)
195 break;
196 }
197 /* uncomment below line to test with mutex */
198 /* pthread_mutex_unlock(area_mutex(area_dst, page_nr)); */
199 if (loops) {
200 fprintf(stderr,
201 "page_nr %lu all zero thread %lu %p %lu\n",
202 page_nr, cpu, area_dst + page_nr * page_size,
203 loops);
204 if (loops > 10)
205 exit(1);
206 }
207 #endif
208 }
209
210 pthread_mutex_lock(area_mutex(area_dst, page_nr));
211 count = *area_count(area_dst, page_nr);
212 if (count != count_verify[page_nr]) {
213 fprintf(stderr,
214 "page_nr %lu memory corruption %Lu %Lu\n",
215 page_nr, count,
216 count_verify[page_nr]), exit(1);
217 }
218 count++;
219 *area_count(area_dst, page_nr) = count_verify[page_nr] = count;
220 pthread_mutex_unlock(area_mutex(area_dst, page_nr));
221
222 if (time(NULL) - start > 1)
223 fprintf(stderr,
224 "userfault too slow %ld "
225 "possible false positive with overcommit\n",
226 time(NULL) - start);
227 }
228
229 return NULL;
230 }
231
232 static int copy_page(unsigned long offset)
233 {
234 struct uffdio_copy uffdio_copy;
235
236 if (offset >= nr_pages * page_size)
237 fprintf(stderr, "unexpected offset %lu\n",
238 offset), exit(1);
239 uffdio_copy.dst = (unsigned long) area_dst + offset;
240 uffdio_copy.src = (unsigned long) area_src + offset;
241 uffdio_copy.len = page_size;
242 uffdio_copy.mode = 0;
243 uffdio_copy.copy = 0;
244 if (ioctl(uffd, UFFDIO_COPY, &uffdio_copy)) {
245 /* real retval in ufdio_copy.copy */
246 if (uffdio_copy.copy != -EEXIST)
247 fprintf(stderr, "UFFDIO_COPY error %Ld\n",
248 uffdio_copy.copy), exit(1);
249 } else if (uffdio_copy.copy != page_size) {
250 fprintf(stderr, "UFFDIO_COPY unexpected copy %Ld\n",
251 uffdio_copy.copy), exit(1);
252 } else
253 return 1;
254 return 0;
255 }
256
257 static void *uffd_poll_thread(void *arg)
258 {
259 unsigned long cpu = (unsigned long) arg;
260 struct pollfd pollfd[2];
261 struct uffd_msg msg;
262 int ret;
263 unsigned long offset;
264 char tmp_chr;
265 unsigned long userfaults = 0;
266
267 pollfd[0].fd = uffd;
268 pollfd[0].events = POLLIN;
269 pollfd[1].fd = pipefd[cpu*2];
270 pollfd[1].events = POLLIN;
271
272 for (;;) {
273 ret = poll(pollfd, 2, -1);
274 if (!ret)
275 fprintf(stderr, "poll error %d\n", ret), exit(1);
276 if (ret < 0)
277 perror("poll"), exit(1);
278 if (pollfd[1].revents & POLLIN) {
279 if (read(pollfd[1].fd, &tmp_chr, 1) != 1)
280 fprintf(stderr, "read pipefd error\n"),
281 exit(1);
282 break;
283 }
284 if (!(pollfd[0].revents & POLLIN))
285 fprintf(stderr, "pollfd[0].revents %d\n",
286 pollfd[0].revents), exit(1);
287 ret = read(uffd, &msg, sizeof(msg));
288 if (ret < 0) {
289 if (errno == EAGAIN)
290 continue;
291 perror("nonblocking read error"), exit(1);
292 }
293 if (msg.event != UFFD_EVENT_PAGEFAULT)
294 fprintf(stderr, "unexpected msg event %u\n",
295 msg.event), exit(1);
296 if (msg.arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_WRITE)
297 fprintf(stderr, "unexpected write fault\n"), exit(1);
298 offset = (char *)(unsigned long)msg.arg.pagefault.address -
299 area_dst;
300 offset &= ~(page_size-1);
301 if (copy_page(offset))
302 userfaults++;
303 }
304 return (void *)userfaults;
305 }
306
307 pthread_mutex_t uffd_read_mutex = PTHREAD_MUTEX_INITIALIZER;
308
309 static void *uffd_read_thread(void *arg)
310 {
311 unsigned long *this_cpu_userfaults;
312 struct uffd_msg msg;
313 unsigned long offset;
314 int ret;
315
316 this_cpu_userfaults = (unsigned long *) arg;
317 *this_cpu_userfaults = 0;
318
319 pthread_mutex_unlock(&uffd_read_mutex);
320 /* from here cancellation is ok */
321
322 for (;;) {
323 ret = read(uffd, &msg, sizeof(msg));
324 if (ret != sizeof(msg)) {
325 if (ret < 0)
326 perror("blocking read error"), exit(1);
327 else
328 fprintf(stderr, "short read\n"), exit(1);
329 }
330 if (msg.event != UFFD_EVENT_PAGEFAULT)
331 fprintf(stderr, "unexpected msg event %u\n",
332 msg.event), exit(1);
333 if (bounces & BOUNCE_VERIFY &&
334 msg.arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_WRITE)
335 fprintf(stderr, "unexpected write fault\n"), exit(1);
336 offset = (char *)(unsigned long)msg.arg.pagefault.address -
337 area_dst;
338 offset &= ~(page_size-1);
339 if (copy_page(offset))
340 (*this_cpu_userfaults)++;
341 }
342 return (void *)NULL;
343 }
344
345 static void *background_thread(void *arg)
346 {
347 unsigned long cpu = (unsigned long) arg;
348 unsigned long page_nr;
349
350 for (page_nr = cpu * nr_pages_per_cpu;
351 page_nr < (cpu+1) * nr_pages_per_cpu;
352 page_nr++)
353 copy_page(page_nr * page_size);
354
355 return NULL;
356 }
357
358 static int stress(unsigned long *userfaults)
359 {
360 unsigned long cpu;
361 pthread_t locking_threads[nr_cpus];
362 pthread_t uffd_threads[nr_cpus];
363 pthread_t background_threads[nr_cpus];
364 void **_userfaults = (void **) userfaults;
365
366 finished = 0;
367 for (cpu = 0; cpu < nr_cpus; cpu++) {
368 if (pthread_create(&locking_threads[cpu], &attr,
369 locking_thread, (void *)cpu))
370 return 1;
371 if (bounces & BOUNCE_POLL) {
372 if (pthread_create(&uffd_threads[cpu], &attr,
373 uffd_poll_thread, (void *)cpu))
374 return 1;
375 } else {
376 if (pthread_create(&uffd_threads[cpu], &attr,
377 uffd_read_thread,
378 &_userfaults[cpu]))
379 return 1;
380 pthread_mutex_lock(&uffd_read_mutex);
381 }
382 if (pthread_create(&background_threads[cpu], &attr,
383 background_thread, (void *)cpu))
384 return 1;
385 }
386 for (cpu = 0; cpu < nr_cpus; cpu++)
387 if (pthread_join(background_threads[cpu], NULL))
388 return 1;
389
390 /*
391 * Be strict and immediately zap area_src, the whole area has
392 * been transferred already by the background treads. The
393 * area_src could then be faulted in in a racy way by still
394 * running uffdio_threads reading zeropages after we zapped
395 * area_src (but they're guaranteed to get -EEXIST from
396 * UFFDIO_COPY without writing zero pages into area_dst
397 * because the background threads already completed).
398 */
399 if (madvise(area_src, nr_pages * page_size, MADV_DONTNEED)) {
400 perror("madvise");
401 return 1;
402 }
403
404 for (cpu = 0; cpu < nr_cpus; cpu++) {
405 char c;
406 if (bounces & BOUNCE_POLL) {
407 if (write(pipefd[cpu*2+1], &c, 1) != 1) {
408 fprintf(stderr, "pipefd write error\n");
409 return 1;
410 }
411 if (pthread_join(uffd_threads[cpu], &_userfaults[cpu]))
412 return 1;
413 } else {
414 if (pthread_cancel(uffd_threads[cpu]))
415 return 1;
416 if (pthread_join(uffd_threads[cpu], NULL))
417 return 1;
418 }
419 }
420
421 finished = 1;
422 for (cpu = 0; cpu < nr_cpus; cpu++)
423 if (pthread_join(locking_threads[cpu], NULL))
424 return 1;
425
426 return 0;
427 }
428
429 static int userfaultfd_stress(void)
430 {
431 void *area;
432 char *tmp_area;
433 unsigned long nr;
434 struct uffdio_register uffdio_register;
435 struct uffdio_api uffdio_api;
436 unsigned long cpu;
437 int uffd_flags;
438 unsigned long userfaults[nr_cpus];
439
440 if (posix_memalign(&area, page_size, nr_pages * page_size)) {
441 fprintf(stderr, "out of memory\n");
442 return 1;
443 }
444 area_src = area;
445 if (posix_memalign(&area, page_size, nr_pages * page_size)) {
446 fprintf(stderr, "out of memory\n");
447 return 1;
448 }
449 area_dst = area;
450
451 uffd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
452 if (uffd < 0) {
453 fprintf(stderr,
454 "userfaultfd syscall not available in this kernel\n");
455 return 1;
456 }
457 uffd_flags = fcntl(uffd, F_GETFD, NULL);
458
459 uffdio_api.api = UFFD_API;
460 uffdio_api.features = 0;
461 if (ioctl(uffd, UFFDIO_API, &uffdio_api)) {
462 fprintf(stderr, "UFFDIO_API\n");
463 return 1;
464 }
465 if (uffdio_api.api != UFFD_API) {
466 fprintf(stderr, "UFFDIO_API error %Lu\n", uffdio_api.api);
467 return 1;
468 }
469
470 count_verify = malloc(nr_pages * sizeof(unsigned long long));
471 if (!count_verify) {
472 perror("count_verify");
473 return 1;
474 }
475
476 for (nr = 0; nr < nr_pages; nr++) {
477 *area_mutex(area_src, nr) = (pthread_mutex_t)
478 PTHREAD_MUTEX_INITIALIZER;
479 count_verify[nr] = *area_count(area_src, nr) = 1;
480 }
481
482 pipefd = malloc(sizeof(int) * nr_cpus * 2);
483 if (!pipefd) {
484 perror("pipefd");
485 return 1;
486 }
487 for (cpu = 0; cpu < nr_cpus; cpu++) {
488 if (pipe2(&pipefd[cpu*2], O_CLOEXEC | O_NONBLOCK)) {
489 perror("pipe");
490 return 1;
491 }
492 }
493
494 if (posix_memalign(&area, page_size, page_size)) {
495 fprintf(stderr, "out of memory\n");
496 return 1;
497 }
498 zeropage = area;
499 bzero(zeropage, page_size);
500
501 pthread_mutex_lock(&uffd_read_mutex);
502
503 pthread_attr_init(&attr);
504 pthread_attr_setstacksize(&attr, 16*1024*1024);
505
506 while (bounces--) {
507 unsigned long expected_ioctls;
508
509 printf("bounces: %d, mode:", bounces);
510 if (bounces & BOUNCE_RANDOM)
511 printf(" rnd");
512 if (bounces & BOUNCE_RACINGFAULTS)
513 printf(" racing");
514 if (bounces & BOUNCE_VERIFY)
515 printf(" ver");
516 if (bounces & BOUNCE_POLL)
517 printf(" poll");
518 printf(", ");
519 fflush(stdout);
520
521 if (bounces & BOUNCE_POLL)
522 fcntl(uffd, F_SETFL, uffd_flags | O_NONBLOCK);
523 else
524 fcntl(uffd, F_SETFL, uffd_flags & ~O_NONBLOCK);
525
526 /* register */
527 uffdio_register.range.start = (unsigned long) area_dst;
528 uffdio_register.range.len = nr_pages * page_size;
529 uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING;
530 if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register)) {
531 fprintf(stderr, "register failure\n");
532 return 1;
533 }
534 expected_ioctls = (1 << _UFFDIO_WAKE) |
535 (1 << _UFFDIO_COPY) |
536 (1 << _UFFDIO_ZEROPAGE);
537 if ((uffdio_register.ioctls & expected_ioctls) !=
538 expected_ioctls) {
539 fprintf(stderr,
540 "unexpected missing ioctl for anon memory\n");
541 return 1;
542 }
543
544 /*
545 * The madvise done previously isn't enough: some
546 * uffd_thread could have read userfaults (one of
547 * those already resolved by the background thread)
548 * and it may be in the process of calling
549 * UFFDIO_COPY. UFFDIO_COPY will read the zapped
550 * area_src and it would map a zero page in it (of
551 * course such a UFFDIO_COPY is perfectly safe as it'd
552 * return -EEXIST). The problem comes at the next
553 * bounce though: that racing UFFDIO_COPY would
554 * generate zeropages in the area_src, so invalidating
555 * the previous MADV_DONTNEED. Without this additional
556 * MADV_DONTNEED those zeropages leftovers in the
557 * area_src would lead to -EEXIST failure during the
558 * next bounce, effectively leaving a zeropage in the
559 * area_dst.
560 *
561 * Try to comment this out madvise to see the memory
562 * corruption being caught pretty quick.
563 *
564 * khugepaged is also inhibited to collapse THP after
565 * MADV_DONTNEED only after the UFFDIO_REGISTER, so it's
566 * required to MADV_DONTNEED here.
567 */
568 if (madvise(area_dst, nr_pages * page_size, MADV_DONTNEED)) {
569 perror("madvise 2");
570 return 1;
571 }
572
573 /* bounce pass */
574 if (stress(userfaults))
575 return 1;
576
577 /* unregister */
578 if (ioctl(uffd, UFFDIO_UNREGISTER, &uffdio_register.range)) {
579 fprintf(stderr, "register failure\n");
580 return 1;
581 }
582
583 /* verification */
584 if (bounces & BOUNCE_VERIFY) {
585 for (nr = 0; nr < nr_pages; nr++) {
586 if (my_bcmp(area_dst,
587 area_dst + nr * page_size,
588 sizeof(pthread_mutex_t))) {
589 fprintf(stderr,
590 "error mutex 2 %lu\n",
591 nr);
592 bounces = 0;
593 }
594 if (*area_count(area_dst, nr) != count_verify[nr]) {
595 fprintf(stderr,
596 "error area_count %Lu %Lu %lu\n",
597 *area_count(area_src, nr),
598 count_verify[nr],
599 nr);
600 bounces = 0;
601 }
602 }
603 }
604
605 /* prepare next bounce */
606 tmp_area = area_src;
607 area_src = area_dst;
608 area_dst = tmp_area;
609
610 printf("userfaults:");
611 for (cpu = 0; cpu < nr_cpus; cpu++)
612 printf(" %lu", userfaults[cpu]);
613 printf("\n");
614 }
615
616 return 0;
617 }
618
619 int main(int argc, char **argv)
620 {
621 if (argc < 3)
622 fprintf(stderr, "Usage: <MiB> <bounces>\n"), exit(1);
623 nr_cpus = sysconf(_SC_NPROCESSORS_ONLN);
624 page_size = sysconf(_SC_PAGE_SIZE);
625 if ((unsigned long) area_count(NULL, 0) + sizeof(unsigned long long) >
626 page_size)
627 fprintf(stderr, "Impossible to run this test\n"), exit(2);
628 nr_pages_per_cpu = atol(argv[1]) * 1024*1024 / page_size /
629 nr_cpus;
630 if (!nr_pages_per_cpu) {
631 fprintf(stderr, "invalid MiB\n");
632 fprintf(stderr, "Usage: <MiB> <bounces>\n"), exit(1);
633 }
634 bounces = atoi(argv[2]);
635 if (bounces <= 0) {
636 fprintf(stderr, "invalid bounces\n");
637 fprintf(stderr, "Usage: <MiB> <bounces>\n"), exit(1);
638 }
639 nr_pages = nr_pages_per_cpu * nr_cpus;
640 printf("nr_pages: %lu, nr_pages_per_cpu: %lu\n",
641 nr_pages, nr_pages_per_cpu);
642 return userfaultfd_stress();
643 }
This page took 0.053538 seconds and 4 git commands to generate.