s390: wire up userfaultfd system call
[deliverable/linux.git] / tools / testing / selftests / vm / userfaultfd.c
1 /*
2 * Stress userfaultfd syscall.
3 *
4 * Copyright (C) 2015 Red Hat, Inc.
5 *
6 * This work is licensed under the terms of the GNU GPL, version 2. See
7 * the COPYING file in the top-level directory.
8 *
9 * This test allocates two virtual areas and bounces the physical
10 * memory across the two virtual areas (from area_src to area_dst)
11 * using userfaultfd.
12 *
13 * There are three threads running per CPU:
14 *
15 * 1) one per-CPU thread takes a per-page pthread_mutex in a random
16 * page of the area_dst (while the physical page may still be in
17 * area_src), and increments a per-page counter in the same page,
18 * and checks its value against a verification region.
19 *
20 * 2) another per-CPU thread handles the userfaults generated by
21 * thread 1 above. userfaultfd blocking reads or poll() modes are
22 * exercised interleaved.
23 *
24 * 3) one last per-CPU thread transfers the memory in the background
25 * at maximum bandwidth (if not already transferred by thread
26 * 2). Each cpu thread takes cares of transferring a portion of the
27 * area.
28 *
29 * When all threads of type 3 completed the transfer, one bounce is
30 * complete. area_src and area_dst are then swapped. All threads are
31 * respawned and so the bounce is immediately restarted in the
32 * opposite direction.
33 *
34 * per-CPU threads 1 by triggering userfaults inside
35 * pthread_mutex_lock will also verify the atomicity of the memory
36 * transfer (UFFDIO_COPY).
37 *
38 * The program takes two parameters: the amounts of physical memory in
39 * megabytes (MiB) of the area and the number of bounces to execute.
40 *
41 * # 100MiB 99999 bounces
42 * ./userfaultfd 100 99999
43 *
44 * # 1GiB 99 bounces
45 * ./userfaultfd 1000 99
46 *
47 * # 10MiB-~6GiB 999 bounces, continue forever unless an error triggers
48 * while ./userfaultfd $[RANDOM % 6000 + 10] 999; do true; done
49 */
50
51 #define _GNU_SOURCE
52 #include <stdio.h>
53 #include <errno.h>
54 #include <unistd.h>
55 #include <stdlib.h>
56 #include <sys/types.h>
57 #include <sys/stat.h>
58 #include <fcntl.h>
59 #include <time.h>
60 #include <signal.h>
61 #include <poll.h>
62 #include <string.h>
63 #include <sys/mman.h>
64 #include <sys/syscall.h>
65 #include <sys/ioctl.h>
66 #include <pthread.h>
67 #include "../../../../include/uapi/linux/userfaultfd.h"
68
69 #ifdef __x86_64__
70 #define __NR_userfaultfd 323
71 #elif defined(__i386__)
72 #define __NR_userfaultfd 374
73 #elif defined(__powewrpc__)
74 #define __NR_userfaultfd 364
75 #elif defined(__s390__)
76 #define __NR_userfaultfd 355
77 #else
78 #error "missing __NR_userfaultfd definition"
79 #endif
80
81 static unsigned long nr_cpus, nr_pages, nr_pages_per_cpu, page_size;
82
83 #define BOUNCE_RANDOM (1<<0)
84 #define BOUNCE_RACINGFAULTS (1<<1)
85 #define BOUNCE_VERIFY (1<<2)
86 #define BOUNCE_POLL (1<<3)
87 static int bounces;
88
89 static unsigned long long *count_verify;
90 static int uffd, finished, *pipefd;
91 static char *area_src, *area_dst;
92 static char *zeropage;
93 pthread_attr_t attr;
94
95 /* pthread_mutex_t starts at page offset 0 */
96 #define area_mutex(___area, ___nr) \
97 ((pthread_mutex_t *) ((___area) + (___nr)*page_size))
98 /*
99 * count is placed in the page after pthread_mutex_t naturally aligned
100 * to avoid non alignment faults on non-x86 archs.
101 */
102 #define area_count(___area, ___nr) \
103 ((volatile unsigned long long *) ((unsigned long) \
104 ((___area) + (___nr)*page_size + \
105 sizeof(pthread_mutex_t) + \
106 sizeof(unsigned long long) - 1) & \
107 ~(unsigned long)(sizeof(unsigned long long) \
108 - 1)))
109
110 static int my_bcmp(char *str1, char *str2, size_t n)
111 {
112 unsigned long i;
113 for (i = 0; i < n; i++)
114 if (str1[i] != str2[i])
115 return 1;
116 return 0;
117 }
118
119 static void *locking_thread(void *arg)
120 {
121 unsigned long cpu = (unsigned long) arg;
122 struct random_data rand;
123 unsigned long page_nr = *(&(page_nr)); /* uninitialized warning */
124 int32_t rand_nr;
125 unsigned long long count;
126 char randstate[64];
127 unsigned int seed;
128 time_t start;
129
130 if (bounces & BOUNCE_RANDOM) {
131 seed = (unsigned int) time(NULL) - bounces;
132 if (!(bounces & BOUNCE_RACINGFAULTS))
133 seed += cpu;
134 bzero(&rand, sizeof(rand));
135 bzero(&randstate, sizeof(randstate));
136 if (initstate_r(seed, randstate, sizeof(randstate), &rand))
137 fprintf(stderr, "srandom_r error\n"), exit(1);
138 } else {
139 page_nr = -bounces;
140 if (!(bounces & BOUNCE_RACINGFAULTS))
141 page_nr += cpu * nr_pages_per_cpu;
142 }
143
144 while (!finished) {
145 if (bounces & BOUNCE_RANDOM) {
146 if (random_r(&rand, &rand_nr))
147 fprintf(stderr, "random_r 1 error\n"), exit(1);
148 page_nr = rand_nr;
149 if (sizeof(page_nr) > sizeof(rand_nr)) {
150 if (random_r(&rand, &rand_nr))
151 fprintf(stderr, "random_r 2 error\n"), exit(1);
152 page_nr |= (((unsigned long) rand_nr) << 16) <<
153 16;
154 }
155 } else
156 page_nr += 1;
157 page_nr %= nr_pages;
158
159 start = time(NULL);
160 if (bounces & BOUNCE_VERIFY) {
161 count = *area_count(area_dst, page_nr);
162 if (!count)
163 fprintf(stderr,
164 "page_nr %lu wrong count %Lu %Lu\n",
165 page_nr, count,
166 count_verify[page_nr]), exit(1);
167
168
169 /*
170 * We can't use bcmp (or memcmp) because that
171 * returns 0 erroneously if the memory is
172 * changing under it (even if the end of the
173 * page is never changing and always
174 * different).
175 */
176 #if 1
177 if (!my_bcmp(area_dst + page_nr * page_size, zeropage,
178 page_size))
179 fprintf(stderr,
180 "my_bcmp page_nr %lu wrong count %Lu %Lu\n",
181 page_nr, count,
182 count_verify[page_nr]), exit(1);
183 #else
184 unsigned long loops;
185
186 loops = 0;
187 /* uncomment the below line to test with mutex */
188 /* pthread_mutex_lock(area_mutex(area_dst, page_nr)); */
189 while (!bcmp(area_dst + page_nr * page_size, zeropage,
190 page_size)) {
191 loops += 1;
192 if (loops > 10)
193 break;
194 }
195 /* uncomment below line to test with mutex */
196 /* pthread_mutex_unlock(area_mutex(area_dst, page_nr)); */
197 if (loops) {
198 fprintf(stderr,
199 "page_nr %lu all zero thread %lu %p %lu\n",
200 page_nr, cpu, area_dst + page_nr * page_size,
201 loops);
202 if (loops > 10)
203 exit(1);
204 }
205 #endif
206 }
207
208 pthread_mutex_lock(area_mutex(area_dst, page_nr));
209 count = *area_count(area_dst, page_nr);
210 if (count != count_verify[page_nr]) {
211 fprintf(stderr,
212 "page_nr %lu memory corruption %Lu %Lu\n",
213 page_nr, count,
214 count_verify[page_nr]), exit(1);
215 }
216 count++;
217 *area_count(area_dst, page_nr) = count_verify[page_nr] = count;
218 pthread_mutex_unlock(area_mutex(area_dst, page_nr));
219
220 if (time(NULL) - start > 1)
221 fprintf(stderr,
222 "userfault too slow %ld "
223 "possible false positive with overcommit\n",
224 time(NULL) - start);
225 }
226
227 return NULL;
228 }
229
230 static int copy_page(unsigned long offset)
231 {
232 struct uffdio_copy uffdio_copy;
233
234 if (offset >= nr_pages * page_size)
235 fprintf(stderr, "unexpected offset %lu\n",
236 offset), exit(1);
237 uffdio_copy.dst = (unsigned long) area_dst + offset;
238 uffdio_copy.src = (unsigned long) area_src + offset;
239 uffdio_copy.len = page_size;
240 uffdio_copy.mode = 0;
241 uffdio_copy.copy = 0;
242 if (ioctl(uffd, UFFDIO_COPY, &uffdio_copy)) {
243 /* real retval in ufdio_copy.copy */
244 if (uffdio_copy.copy != -EEXIST)
245 fprintf(stderr, "UFFDIO_COPY error %Ld\n",
246 uffdio_copy.copy), exit(1);
247 } else if (uffdio_copy.copy != page_size) {
248 fprintf(stderr, "UFFDIO_COPY unexpected copy %Ld\n",
249 uffdio_copy.copy), exit(1);
250 } else
251 return 1;
252 return 0;
253 }
254
255 static void *uffd_poll_thread(void *arg)
256 {
257 unsigned long cpu = (unsigned long) arg;
258 struct pollfd pollfd[2];
259 struct uffd_msg msg;
260 int ret;
261 unsigned long offset;
262 char tmp_chr;
263 unsigned long userfaults = 0;
264
265 pollfd[0].fd = uffd;
266 pollfd[0].events = POLLIN;
267 pollfd[1].fd = pipefd[cpu*2];
268 pollfd[1].events = POLLIN;
269
270 for (;;) {
271 ret = poll(pollfd, 2, -1);
272 if (!ret)
273 fprintf(stderr, "poll error %d\n", ret), exit(1);
274 if (ret < 0)
275 perror("poll"), exit(1);
276 if (pollfd[1].revents & POLLIN) {
277 if (read(pollfd[1].fd, &tmp_chr, 1) != 1)
278 fprintf(stderr, "read pipefd error\n"),
279 exit(1);
280 break;
281 }
282 if (!(pollfd[0].revents & POLLIN))
283 fprintf(stderr, "pollfd[0].revents %d\n",
284 pollfd[0].revents), exit(1);
285 ret = read(uffd, &msg, sizeof(msg));
286 if (ret < 0) {
287 if (errno == EAGAIN)
288 continue;
289 perror("nonblocking read error"), exit(1);
290 }
291 if (msg.event != UFFD_EVENT_PAGEFAULT)
292 fprintf(stderr, "unexpected msg event %u\n",
293 msg.event), exit(1);
294 if (msg.arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_WRITE)
295 fprintf(stderr, "unexpected write fault\n"), exit(1);
296 offset = (char *)(unsigned long)msg.arg.pagefault.address -
297 area_dst;
298 offset &= ~(page_size-1);
299 if (copy_page(offset))
300 userfaults++;
301 }
302 return (void *)userfaults;
303 }
304
305 pthread_mutex_t uffd_read_mutex = PTHREAD_MUTEX_INITIALIZER;
306
307 static void *uffd_read_thread(void *arg)
308 {
309 unsigned long *this_cpu_userfaults;
310 struct uffd_msg msg;
311 unsigned long offset;
312 int ret;
313
314 this_cpu_userfaults = (unsigned long *) arg;
315 *this_cpu_userfaults = 0;
316
317 pthread_mutex_unlock(&uffd_read_mutex);
318 /* from here cancellation is ok */
319
320 for (;;) {
321 ret = read(uffd, &msg, sizeof(msg));
322 if (ret != sizeof(msg)) {
323 if (ret < 0)
324 perror("blocking read error"), exit(1);
325 else
326 fprintf(stderr, "short read\n"), exit(1);
327 }
328 if (msg.event != UFFD_EVENT_PAGEFAULT)
329 fprintf(stderr, "unexpected msg event %u\n",
330 msg.event), exit(1);
331 if (bounces & BOUNCE_VERIFY &&
332 msg.arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_WRITE)
333 fprintf(stderr, "unexpected write fault\n"), exit(1);
334 offset = (char *)(unsigned long)msg.arg.pagefault.address -
335 area_dst;
336 offset &= ~(page_size-1);
337 if (copy_page(offset))
338 (*this_cpu_userfaults)++;
339 }
340 return (void *)NULL;
341 }
342
343 static void *background_thread(void *arg)
344 {
345 unsigned long cpu = (unsigned long) arg;
346 unsigned long page_nr;
347
348 for (page_nr = cpu * nr_pages_per_cpu;
349 page_nr < (cpu+1) * nr_pages_per_cpu;
350 page_nr++)
351 copy_page(page_nr * page_size);
352
353 return NULL;
354 }
355
356 static int stress(unsigned long *userfaults)
357 {
358 unsigned long cpu;
359 pthread_t locking_threads[nr_cpus];
360 pthread_t uffd_threads[nr_cpus];
361 pthread_t background_threads[nr_cpus];
362 void **_userfaults = (void **) userfaults;
363
364 finished = 0;
365 for (cpu = 0; cpu < nr_cpus; cpu++) {
366 if (pthread_create(&locking_threads[cpu], &attr,
367 locking_thread, (void *)cpu))
368 return 1;
369 if (bounces & BOUNCE_POLL) {
370 if (pthread_create(&uffd_threads[cpu], &attr,
371 uffd_poll_thread, (void *)cpu))
372 return 1;
373 } else {
374 if (pthread_create(&uffd_threads[cpu], &attr,
375 uffd_read_thread,
376 &_userfaults[cpu]))
377 return 1;
378 pthread_mutex_lock(&uffd_read_mutex);
379 }
380 if (pthread_create(&background_threads[cpu], &attr,
381 background_thread, (void *)cpu))
382 return 1;
383 }
384 for (cpu = 0; cpu < nr_cpus; cpu++)
385 if (pthread_join(background_threads[cpu], NULL))
386 return 1;
387
388 /*
389 * Be strict and immediately zap area_src, the whole area has
390 * been transferred already by the background treads. The
391 * area_src could then be faulted in in a racy way by still
392 * running uffdio_threads reading zeropages after we zapped
393 * area_src (but they're guaranteed to get -EEXIST from
394 * UFFDIO_COPY without writing zero pages into area_dst
395 * because the background threads already completed).
396 */
397 if (madvise(area_src, nr_pages * page_size, MADV_DONTNEED)) {
398 perror("madvise");
399 return 1;
400 }
401
402 for (cpu = 0; cpu < nr_cpus; cpu++) {
403 char c;
404 if (bounces & BOUNCE_POLL) {
405 if (write(pipefd[cpu*2+1], &c, 1) != 1) {
406 fprintf(stderr, "pipefd write error\n");
407 return 1;
408 }
409 if (pthread_join(uffd_threads[cpu], &_userfaults[cpu]))
410 return 1;
411 } else {
412 if (pthread_cancel(uffd_threads[cpu]))
413 return 1;
414 if (pthread_join(uffd_threads[cpu], NULL))
415 return 1;
416 }
417 }
418
419 finished = 1;
420 for (cpu = 0; cpu < nr_cpus; cpu++)
421 if (pthread_join(locking_threads[cpu], NULL))
422 return 1;
423
424 return 0;
425 }
426
427 static int userfaultfd_stress(void)
428 {
429 void *area;
430 char *tmp_area;
431 unsigned long nr;
432 struct uffdio_register uffdio_register;
433 struct uffdio_api uffdio_api;
434 unsigned long cpu;
435 int uffd_flags;
436 unsigned long userfaults[nr_cpus];
437
438 if (posix_memalign(&area, page_size, nr_pages * page_size)) {
439 fprintf(stderr, "out of memory\n");
440 return 1;
441 }
442 area_src = area;
443 if (posix_memalign(&area, page_size, nr_pages * page_size)) {
444 fprintf(stderr, "out of memory\n");
445 return 1;
446 }
447 area_dst = area;
448
449 uffd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
450 if (uffd < 0) {
451 fprintf(stderr,
452 "userfaultfd syscall not available in this kernel\n");
453 return 1;
454 }
455 uffd_flags = fcntl(uffd, F_GETFD, NULL);
456
457 uffdio_api.api = UFFD_API;
458 uffdio_api.features = 0;
459 if (ioctl(uffd, UFFDIO_API, &uffdio_api)) {
460 fprintf(stderr, "UFFDIO_API\n");
461 return 1;
462 }
463 if (uffdio_api.api != UFFD_API) {
464 fprintf(stderr, "UFFDIO_API error %Lu\n", uffdio_api.api);
465 return 1;
466 }
467
468 count_verify = malloc(nr_pages * sizeof(unsigned long long));
469 if (!count_verify) {
470 perror("count_verify");
471 return 1;
472 }
473
474 for (nr = 0; nr < nr_pages; nr++) {
475 *area_mutex(area_src, nr) = (pthread_mutex_t)
476 PTHREAD_MUTEX_INITIALIZER;
477 count_verify[nr] = *area_count(area_src, nr) = 1;
478 }
479
480 pipefd = malloc(sizeof(int) * nr_cpus * 2);
481 if (!pipefd) {
482 perror("pipefd");
483 return 1;
484 }
485 for (cpu = 0; cpu < nr_cpus; cpu++) {
486 if (pipe2(&pipefd[cpu*2], O_CLOEXEC | O_NONBLOCK)) {
487 perror("pipe");
488 return 1;
489 }
490 }
491
492 if (posix_memalign(&area, page_size, page_size)) {
493 fprintf(stderr, "out of memory\n");
494 return 1;
495 }
496 zeropage = area;
497 bzero(zeropage, page_size);
498
499 pthread_mutex_lock(&uffd_read_mutex);
500
501 pthread_attr_init(&attr);
502 pthread_attr_setstacksize(&attr, 16*1024*1024);
503
504 while (bounces--) {
505 unsigned long expected_ioctls;
506
507 printf("bounces: %d, mode:", bounces);
508 if (bounces & BOUNCE_RANDOM)
509 printf(" rnd");
510 if (bounces & BOUNCE_RACINGFAULTS)
511 printf(" racing");
512 if (bounces & BOUNCE_VERIFY)
513 printf(" ver");
514 if (bounces & BOUNCE_POLL)
515 printf(" poll");
516 printf(", ");
517 fflush(stdout);
518
519 if (bounces & BOUNCE_POLL)
520 fcntl(uffd, F_SETFL, uffd_flags | O_NONBLOCK);
521 else
522 fcntl(uffd, F_SETFL, uffd_flags & ~O_NONBLOCK);
523
524 /* register */
525 uffdio_register.range.start = (unsigned long) area_dst;
526 uffdio_register.range.len = nr_pages * page_size;
527 uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING;
528 if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register)) {
529 fprintf(stderr, "register failure\n");
530 return 1;
531 }
532 expected_ioctls = (1 << _UFFDIO_WAKE) |
533 (1 << _UFFDIO_COPY) |
534 (1 << _UFFDIO_ZEROPAGE);
535 if ((uffdio_register.ioctls & expected_ioctls) !=
536 expected_ioctls) {
537 fprintf(stderr,
538 "unexpected missing ioctl for anon memory\n");
539 return 1;
540 }
541
542 /*
543 * The madvise done previously isn't enough: some
544 * uffd_thread could have read userfaults (one of
545 * those already resolved by the background thread)
546 * and it may be in the process of calling
547 * UFFDIO_COPY. UFFDIO_COPY will read the zapped
548 * area_src and it would map a zero page in it (of
549 * course such a UFFDIO_COPY is perfectly safe as it'd
550 * return -EEXIST). The problem comes at the next
551 * bounce though: that racing UFFDIO_COPY would
552 * generate zeropages in the area_src, so invalidating
553 * the previous MADV_DONTNEED. Without this additional
554 * MADV_DONTNEED those zeropages leftovers in the
555 * area_src would lead to -EEXIST failure during the
556 * next bounce, effectively leaving a zeropage in the
557 * area_dst.
558 *
559 * Try to comment this out madvise to see the memory
560 * corruption being caught pretty quick.
561 *
562 * khugepaged is also inhibited to collapse THP after
563 * MADV_DONTNEED only after the UFFDIO_REGISTER, so it's
564 * required to MADV_DONTNEED here.
565 */
566 if (madvise(area_dst, nr_pages * page_size, MADV_DONTNEED)) {
567 perror("madvise 2");
568 return 1;
569 }
570
571 /* bounce pass */
572 if (stress(userfaults))
573 return 1;
574
575 /* unregister */
576 if (ioctl(uffd, UFFDIO_UNREGISTER, &uffdio_register.range)) {
577 fprintf(stderr, "register failure\n");
578 return 1;
579 }
580
581 /* verification */
582 if (bounces & BOUNCE_VERIFY) {
583 for (nr = 0; nr < nr_pages; nr++) {
584 if (my_bcmp(area_dst,
585 area_dst + nr * page_size,
586 sizeof(pthread_mutex_t))) {
587 fprintf(stderr,
588 "error mutex 2 %lu\n",
589 nr);
590 bounces = 0;
591 }
592 if (*area_count(area_dst, nr) != count_verify[nr]) {
593 fprintf(stderr,
594 "error area_count %Lu %Lu %lu\n",
595 *area_count(area_src, nr),
596 count_verify[nr],
597 nr);
598 bounces = 0;
599 }
600 }
601 }
602
603 /* prepare next bounce */
604 tmp_area = area_src;
605 area_src = area_dst;
606 area_dst = tmp_area;
607
608 printf("userfaults:");
609 for (cpu = 0; cpu < nr_cpus; cpu++)
610 printf(" %lu", userfaults[cpu]);
611 printf("\n");
612 }
613
614 return 0;
615 }
616
617 int main(int argc, char **argv)
618 {
619 if (argc < 3)
620 fprintf(stderr, "Usage: <MiB> <bounces>\n"), exit(1);
621 nr_cpus = sysconf(_SC_NPROCESSORS_ONLN);
622 page_size = sysconf(_SC_PAGE_SIZE);
623 if ((unsigned long) area_count(NULL, 0) + sizeof(unsigned long long) >
624 page_size)
625 fprintf(stderr, "Impossible to run this test\n"), exit(2);
626 nr_pages_per_cpu = atol(argv[1]) * 1024*1024 / page_size /
627 nr_cpus;
628 if (!nr_pages_per_cpu) {
629 fprintf(stderr, "invalid MiB\n");
630 fprintf(stderr, "Usage: <MiB> <bounces>\n"), exit(1);
631 }
632 bounces = atoi(argv[2]);
633 if (bounces <= 0) {
634 fprintf(stderr, "invalid bounces\n");
635 fprintf(stderr, "Usage: <MiB> <bounces>\n"), exit(1);
636 }
637 nr_pages = nr_pages_per_cpu * nr_cpus;
638 printf("nr_pages: %lu, nr_pages_per_cpu: %lu\n",
639 nr_pages, nr_pages_per_cpu);
640 return userfaultfd_stress();
641 }
This page took 0.044199 seconds and 5 git commands to generate.