KVM: arm64: vgic-its: Implement MSI injection in ITS emulation
[deliverable/linux.git] / virt / kvm / arm / vgic / vgic-its.c
1 /*
2 * GICv3 ITS emulation
3 *
4 * Copyright (C) 2015,2016 ARM Ltd.
5 * Author: Andre Przywara <andre.przywara@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/cpu.h>
21 #include <linux/kvm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/interrupt.h>
24 #include <linux/list.h>
25 #include <linux/uaccess.h>
26
27 #include <linux/irqchip/arm-gic-v3.h>
28
29 #include <asm/kvm_emulate.h>
30 #include <asm/kvm_arm.h>
31 #include <asm/kvm_mmu.h>
32
33 #include "vgic.h"
34 #include "vgic-mmio.h"
35
36 /*
37 * Creates a new (reference to a) struct vgic_irq for a given LPI.
38 * If this LPI is already mapped on another ITS, we increase its refcount
39 * and return a pointer to the existing structure.
40 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
41 * This function returns a pointer to the _unlocked_ structure.
42 */
43 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid)
44 {
45 struct vgic_dist *dist = &kvm->arch.vgic;
46 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
47
48 /* In this case there is no put, since we keep the reference. */
49 if (irq)
50 return irq;
51
52 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
53 if (!irq)
54 return NULL;
55
56 INIT_LIST_HEAD(&irq->lpi_list);
57 INIT_LIST_HEAD(&irq->ap_list);
58 spin_lock_init(&irq->irq_lock);
59
60 irq->config = VGIC_CONFIG_EDGE;
61 kref_init(&irq->refcount);
62 irq->intid = intid;
63
64 spin_lock(&dist->lpi_list_lock);
65
66 /*
67 * There could be a race with another vgic_add_lpi(), so we need to
68 * check that we don't add a second list entry with the same LPI.
69 */
70 list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
71 if (oldirq->intid != intid)
72 continue;
73
74 /* Someone was faster with adding this LPI, lets use that. */
75 kfree(irq);
76 irq = oldirq;
77
78 /*
79 * This increases the refcount, the caller is expected to
80 * call vgic_put_irq() on the returned pointer once it's
81 * finished with the IRQ.
82 */
83 kref_get(&irq->refcount);
84
85 goto out_unlock;
86 }
87
88 list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
89 dist->lpi_list_count++;
90
91 out_unlock:
92 spin_unlock(&dist->lpi_list_lock);
93
94 return irq;
95 }
96
97 struct its_device {
98 struct list_head dev_list;
99
100 /* the head for the list of ITTEs */
101 struct list_head itt_head;
102 u32 device_id;
103 };
104
105 #define COLLECTION_NOT_MAPPED ((u32)~0)
106
107 struct its_collection {
108 struct list_head coll_list;
109
110 u32 collection_id;
111 u32 target_addr;
112 };
113
114 #define its_is_collection_mapped(coll) ((coll) && \
115 ((coll)->target_addr != COLLECTION_NOT_MAPPED))
116
117 struct its_itte {
118 struct list_head itte_list;
119
120 struct vgic_irq *irq;
121 struct its_collection *collection;
122 u32 lpi;
123 u32 event_id;
124 };
125
126 /*
127 * Find and returns a device in the device table for an ITS.
128 * Must be called with the its_lock mutex held.
129 */
130 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
131 {
132 struct its_device *device;
133
134 list_for_each_entry(device, &its->device_list, dev_list)
135 if (device_id == device->device_id)
136 return device;
137
138 return NULL;
139 }
140
141 /*
142 * Find and returns an interrupt translation table entry (ITTE) for a given
143 * Device ID/Event ID pair on an ITS.
144 * Must be called with the its_lock mutex held.
145 */
146 static struct its_itte *find_itte(struct vgic_its *its, u32 device_id,
147 u32 event_id)
148 {
149 struct its_device *device;
150 struct its_itte *itte;
151
152 device = find_its_device(its, device_id);
153 if (device == NULL)
154 return NULL;
155
156 list_for_each_entry(itte, &device->itt_head, itte_list)
157 if (itte->event_id == event_id)
158 return itte;
159
160 return NULL;
161 }
162
163 /* To be used as an iterator this macro misses the enclosing parentheses */
164 #define for_each_lpi_its(dev, itte, its) \
165 list_for_each_entry(dev, &(its)->device_list, dev_list) \
166 list_for_each_entry(itte, &(dev)->itt_head, itte_list)
167
168 /*
169 * We only implement 48 bits of PA at the moment, although the ITS
170 * supports more. Let's be restrictive here.
171 */
172 #define BASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 16))
173 #define CBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 12))
174 #define PENDBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 16))
175 #define PROPBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 12))
176
177 #define GIC_LPI_OFFSET 8192
178
179 /*
180 * Finds and returns a collection in the ITS collection table.
181 * Must be called with the its_lock mutex held.
182 */
183 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
184 {
185 struct its_collection *collection;
186
187 list_for_each_entry(collection, &its->collection_list, coll_list) {
188 if (coll_id == collection->collection_id)
189 return collection;
190 }
191
192 return NULL;
193 }
194
195 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED)
196 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc)
197
198 /*
199 * Reads the configuration data for a given LPI from guest memory and
200 * updates the fields in struct vgic_irq.
201 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
202 * VCPU. Unconditionally applies if filter_vcpu is NULL.
203 */
204 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
205 struct kvm_vcpu *filter_vcpu)
206 {
207 u64 propbase = PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
208 u8 prop;
209 int ret;
210
211 ret = kvm_read_guest(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
212 &prop, 1);
213
214 if (ret)
215 return ret;
216
217 spin_lock(&irq->irq_lock);
218
219 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
220 irq->priority = LPI_PROP_PRIORITY(prop);
221 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
222
223 vgic_queue_irq_unlock(kvm, irq);
224 } else {
225 spin_unlock(&irq->irq_lock);
226 }
227
228 return 0;
229 }
230
231 /*
232 * Create a snapshot of the current LPI list, so that we can enumerate all
233 * LPIs without holding any lock.
234 * Returns the array length and puts the kmalloc'ed array into intid_ptr.
235 */
236 static int vgic_copy_lpi_list(struct kvm *kvm, u32 **intid_ptr)
237 {
238 struct vgic_dist *dist = &kvm->arch.vgic;
239 struct vgic_irq *irq;
240 u32 *intids;
241 int irq_count = dist->lpi_list_count, i = 0;
242
243 /*
244 * We use the current value of the list length, which may change
245 * after the kmalloc. We don't care, because the guest shouldn't
246 * change anything while the command handling is still running,
247 * and in the worst case we would miss a new IRQ, which one wouldn't
248 * expect to be covered by this command anyway.
249 */
250 intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
251 if (!intids)
252 return -ENOMEM;
253
254 spin_lock(&dist->lpi_list_lock);
255 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
256 /* We don't need to "get" the IRQ, as we hold the list lock. */
257 intids[i] = irq->intid;
258 if (++i == irq_count)
259 break;
260 }
261 spin_unlock(&dist->lpi_list_lock);
262
263 *intid_ptr = intids;
264 return irq_count;
265 }
266
267 /*
268 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
269 * is targeting) to the VGIC's view, which deals with target VCPUs.
270 * Needs to be called whenever either the collection for a LPIs has
271 * changed or the collection itself got retargeted.
272 */
273 static void update_affinity_itte(struct kvm *kvm, struct its_itte *itte)
274 {
275 struct kvm_vcpu *vcpu;
276
277 if (!its_is_collection_mapped(itte->collection))
278 return;
279
280 vcpu = kvm_get_vcpu(kvm, itte->collection->target_addr);
281
282 spin_lock(&itte->irq->irq_lock);
283 itte->irq->target_vcpu = vcpu;
284 spin_unlock(&itte->irq->irq_lock);
285 }
286
287 /*
288 * Updates the target VCPU for every LPI targeting this collection.
289 * Must be called with the its_lock mutex held.
290 */
291 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
292 struct its_collection *coll)
293 {
294 struct its_device *device;
295 struct its_itte *itte;
296
297 for_each_lpi_its(device, itte, its) {
298 if (!itte->collection || coll != itte->collection)
299 continue;
300
301 update_affinity_itte(kvm, itte);
302 }
303 }
304
305 static u32 max_lpis_propbaser(u64 propbaser)
306 {
307 int nr_idbits = (propbaser & 0x1f) + 1;
308
309 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
310 }
311
312 /*
313 * Scan the whole LPI pending table and sync the pending bit in there
314 * with our own data structures. This relies on the LPI being
315 * mapped before.
316 */
317 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
318 {
319 gpa_t pendbase = PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
320 struct vgic_irq *irq;
321 int last_byte_offset = -1;
322 int ret = 0;
323 u32 *intids;
324 int nr_irqs, i;
325
326 nr_irqs = vgic_copy_lpi_list(vcpu->kvm, &intids);
327 if (nr_irqs < 0)
328 return nr_irqs;
329
330 for (i = 0; i < nr_irqs; i++) {
331 int byte_offset, bit_nr;
332 u8 pendmask;
333
334 byte_offset = intids[i] / BITS_PER_BYTE;
335 bit_nr = intids[i] % BITS_PER_BYTE;
336
337 /*
338 * For contiguously allocated LPIs chances are we just read
339 * this very same byte in the last iteration. Reuse that.
340 */
341 if (byte_offset != last_byte_offset) {
342 ret = kvm_read_guest(vcpu->kvm, pendbase + byte_offset,
343 &pendmask, 1);
344 if (ret) {
345 kfree(intids);
346 return ret;
347 }
348 last_byte_offset = byte_offset;
349 }
350
351 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
352 spin_lock(&irq->irq_lock);
353 irq->pending = pendmask & (1U << bit_nr);
354 vgic_queue_irq_unlock(vcpu->kvm, irq);
355 vgic_put_irq(vcpu->kvm, irq);
356 }
357
358 kfree(intids);
359
360 return ret;
361 }
362
363 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
364 struct vgic_its *its,
365 gpa_t addr, unsigned int len)
366 {
367 u32 reg = 0;
368
369 mutex_lock(&its->cmd_lock);
370 if (its->creadr == its->cwriter)
371 reg |= GITS_CTLR_QUIESCENT;
372 if (its->enabled)
373 reg |= GITS_CTLR_ENABLE;
374 mutex_unlock(&its->cmd_lock);
375
376 return reg;
377 }
378
379 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
380 gpa_t addr, unsigned int len,
381 unsigned long val)
382 {
383 its->enabled = !!(val & GITS_CTLR_ENABLE);
384 }
385
386 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
387 struct vgic_its *its,
388 gpa_t addr, unsigned int len)
389 {
390 u64 reg = GITS_TYPER_PLPIS;
391
392 /*
393 * We use linear CPU numbers for redistributor addressing,
394 * so GITS_TYPER.PTA is 0.
395 * Also we force all PROPBASER registers to be the same, so
396 * CommonLPIAff is 0 as well.
397 * To avoid memory waste in the guest, we keep the number of IDBits and
398 * DevBits low - as least for the time being.
399 */
400 reg |= 0x0f << GITS_TYPER_DEVBITS_SHIFT;
401 reg |= 0x0f << GITS_TYPER_IDBITS_SHIFT;
402
403 return extract_bytes(reg, addr & 7, len);
404 }
405
406 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
407 struct vgic_its *its,
408 gpa_t addr, unsigned int len)
409 {
410 return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
411 }
412
413 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
414 struct vgic_its *its,
415 gpa_t addr, unsigned int len)
416 {
417 switch (addr & 0xffff) {
418 case GITS_PIDR0:
419 return 0x92; /* part number, bits[7:0] */
420 case GITS_PIDR1:
421 return 0xb4; /* part number, bits[11:8] */
422 case GITS_PIDR2:
423 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
424 case GITS_PIDR4:
425 return 0x40; /* This is a 64K software visible page */
426 /* The following are the ID registers for (any) GIC. */
427 case GITS_CIDR0:
428 return 0x0d;
429 case GITS_CIDR1:
430 return 0xf0;
431 case GITS_CIDR2:
432 return 0x05;
433 case GITS_CIDR3:
434 return 0xb1;
435 }
436
437 return 0;
438 }
439
440 /*
441 * Find the target VCPU and the LPI number for a given devid/eventid pair
442 * and make this IRQ pending, possibly injecting it.
443 * Must be called with the its_lock mutex held.
444 */
445 static void vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
446 u32 devid, u32 eventid)
447 {
448 struct its_itte *itte;
449
450 if (!its->enabled)
451 return;
452
453 itte = find_itte(its, devid, eventid);
454 /* Triggering an unmapped IRQ gets silently dropped. */
455 if (itte && its_is_collection_mapped(itte->collection)) {
456 struct kvm_vcpu *vcpu;
457
458 vcpu = kvm_get_vcpu(kvm, itte->collection->target_addr);
459 if (vcpu && vcpu->arch.vgic_cpu.lpis_enabled) {
460 spin_lock(&itte->irq->irq_lock);
461 itte->irq->pending = true;
462 vgic_queue_irq_unlock(kvm, itte->irq);
463 }
464 }
465 }
466
467 /*
468 * Queries the KVM IO bus framework to get the ITS pointer from the given
469 * doorbell address.
470 * We then call vgic_its_trigger_msi() with the decoded data.
471 */
472 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
473 {
474 u64 address;
475 struct kvm_io_device *kvm_io_dev;
476 struct vgic_io_device *iodev;
477
478 if (!vgic_has_its(kvm))
479 return -ENODEV;
480
481 if (!(msi->flags & KVM_MSI_VALID_DEVID))
482 return -EINVAL;
483
484 address = (u64)msi->address_hi << 32 | msi->address_lo;
485
486 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
487 if (!kvm_io_dev)
488 return -ENODEV;
489
490 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
491
492 mutex_lock(&iodev->its->its_lock);
493 vgic_its_trigger_msi(kvm, iodev->its, msi->devid, msi->data);
494 mutex_unlock(&iodev->its->its_lock);
495
496 return 0;
497 }
498
499 /* Requires the its_lock to be held. */
500 static void its_free_itte(struct kvm *kvm, struct its_itte *itte)
501 {
502 list_del(&itte->itte_list);
503
504 /* This put matches the get in vgic_add_lpi. */
505 vgic_put_irq(kvm, itte->irq);
506
507 kfree(itte);
508 }
509
510 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
511 {
512 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
513 }
514
515 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
516 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
517 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
518 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
519 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
520 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
521 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
522
523 /*
524 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
525 * Must be called with the its_lock mutex held.
526 */
527 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
528 u64 *its_cmd)
529 {
530 u32 device_id = its_cmd_get_deviceid(its_cmd);
531 u32 event_id = its_cmd_get_id(its_cmd);
532 struct its_itte *itte;
533
534
535 itte = find_itte(its, device_id, event_id);
536 if (itte && itte->collection) {
537 /*
538 * Though the spec talks about removing the pending state, we
539 * don't bother here since we clear the ITTE anyway and the
540 * pending state is a property of the ITTE struct.
541 */
542 its_free_itte(kvm, itte);
543 return 0;
544 }
545
546 return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
547 }
548
549 /*
550 * The MOVI command moves an ITTE to a different collection.
551 * Must be called with the its_lock mutex held.
552 */
553 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
554 u64 *its_cmd)
555 {
556 u32 device_id = its_cmd_get_deviceid(its_cmd);
557 u32 event_id = its_cmd_get_id(its_cmd);
558 u32 coll_id = its_cmd_get_collection(its_cmd);
559 struct kvm_vcpu *vcpu;
560 struct its_itte *itte;
561 struct its_collection *collection;
562
563 itte = find_itte(its, device_id, event_id);
564 if (!itte)
565 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
566
567 if (!its_is_collection_mapped(itte->collection))
568 return E_ITS_MOVI_UNMAPPED_COLLECTION;
569
570 collection = find_collection(its, coll_id);
571 if (!its_is_collection_mapped(collection))
572 return E_ITS_MOVI_UNMAPPED_COLLECTION;
573
574 itte->collection = collection;
575 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
576
577 spin_lock(&itte->irq->irq_lock);
578 itte->irq->target_vcpu = vcpu;
579 spin_unlock(&itte->irq->irq_lock);
580
581 return 0;
582 }
583
584 static void vgic_its_init_collection(struct vgic_its *its,
585 struct its_collection *collection,
586 u32 coll_id)
587 {
588 collection->collection_id = coll_id;
589 collection->target_addr = COLLECTION_NOT_MAPPED;
590
591 list_add_tail(&collection->coll_list, &its->collection_list);
592 }
593
594 /*
595 * The MAPTI and MAPI commands map LPIs to ITTEs.
596 * Must be called with its_lock mutex held.
597 */
598 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
599 u64 *its_cmd, u8 subcmd)
600 {
601 u32 device_id = its_cmd_get_deviceid(its_cmd);
602 u32 event_id = its_cmd_get_id(its_cmd);
603 u32 coll_id = its_cmd_get_collection(its_cmd);
604 struct its_itte *itte;
605 struct its_device *device;
606 struct its_collection *collection, *new_coll = NULL;
607 int lpi_nr;
608
609 device = find_its_device(its, device_id);
610 if (!device)
611 return E_ITS_MAPTI_UNMAPPED_DEVICE;
612
613 collection = find_collection(its, coll_id);
614 if (!collection) {
615 new_coll = kzalloc(sizeof(struct its_collection), GFP_KERNEL);
616 if (!new_coll)
617 return -ENOMEM;
618 }
619
620 if (subcmd == GITS_CMD_MAPTI)
621 lpi_nr = its_cmd_get_physical_id(its_cmd);
622 else
623 lpi_nr = event_id;
624 if (lpi_nr < GIC_LPI_OFFSET ||
625 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser)) {
626 kfree(new_coll);
627 return E_ITS_MAPTI_PHYSICALID_OOR;
628 }
629
630 itte = find_itte(its, device_id, event_id);
631 if (!itte) {
632 itte = kzalloc(sizeof(struct its_itte), GFP_KERNEL);
633 if (!itte) {
634 kfree(new_coll);
635 return -ENOMEM;
636 }
637
638 itte->event_id = event_id;
639 list_add_tail(&itte->itte_list, &device->itt_head);
640 }
641
642 if (!collection) {
643 collection = new_coll;
644 vgic_its_init_collection(its, collection, coll_id);
645 }
646
647 itte->collection = collection;
648 itte->lpi = lpi_nr;
649 itte->irq = vgic_add_lpi(kvm, lpi_nr);
650 update_affinity_itte(kvm, itte);
651
652 /*
653 * We "cache" the configuration table entries in out struct vgic_irq's.
654 * However we only have those structs for mapped IRQs, so we read in
655 * the respective config data from memory here upon mapping the LPI.
656 */
657 update_lpi_config(kvm, itte->irq, NULL);
658
659 return 0;
660 }
661
662 /* Requires the its_lock to be held. */
663 static void vgic_its_unmap_device(struct kvm *kvm, struct its_device *device)
664 {
665 struct its_itte *itte, *temp;
666
667 /*
668 * The spec says that unmapping a device with still valid
669 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
670 * since we cannot leave the memory unreferenced.
671 */
672 list_for_each_entry_safe(itte, temp, &device->itt_head, itte_list)
673 its_free_itte(kvm, itte);
674
675 list_del(&device->dev_list);
676 kfree(device);
677 }
678
679 /*
680 * Check whether a device ID can be stored into the guest device tables.
681 * For a direct table this is pretty easy, but gets a bit nasty for
682 * indirect tables. We check whether the resulting guest physical address
683 * is actually valid (covered by a memslot and guest accessbible).
684 * For this we have to read the respective first level entry.
685 */
686 static bool vgic_its_check_device_id(struct kvm *kvm, struct vgic_its *its,
687 int device_id)
688 {
689 u64 r = its->baser_device_table;
690 int nr_entries = GITS_BASER_NR_PAGES(r) * SZ_64K;
691 int index;
692 u64 indirect_ptr;
693 gfn_t gfn;
694
695
696 if (!(r & GITS_BASER_INDIRECT))
697 return device_id < (nr_entries / GITS_BASER_ENTRY_SIZE(r));
698
699 /* calculate and check the index into the 1st level */
700 index = device_id / (SZ_64K / GITS_BASER_ENTRY_SIZE(r));
701 if (index >= (nr_entries / sizeof(u64)))
702 return false;
703
704 /* Each 1st level entry is represented by a 64-bit value. */
705 if (!kvm_read_guest(kvm,
706 BASER_ADDRESS(r) + index * sizeof(indirect_ptr),
707 &indirect_ptr, sizeof(indirect_ptr)))
708 return false;
709
710 /* check the valid bit of the first level entry */
711 if (!(indirect_ptr & BIT_ULL(63)))
712 return false;
713
714 /*
715 * Mask the guest physical address and calculate the frame number.
716 * Any address beyond our supported 48 bits of PA will be caught
717 * by the actual check in the final step.
718 */
719 gfn = (indirect_ptr & GENMASK_ULL(51, 16)) >> PAGE_SHIFT;
720
721 return kvm_is_visible_gfn(kvm, gfn);
722 }
723
724 /*
725 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
726 * Must be called with the its_lock mutex held.
727 */
728 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
729 u64 *its_cmd)
730 {
731 u32 device_id = its_cmd_get_deviceid(its_cmd);
732 bool valid = its_cmd_get_validbit(its_cmd);
733 struct its_device *device;
734
735 if (!vgic_its_check_device_id(kvm, its, device_id))
736 return E_ITS_MAPD_DEVICE_OOR;
737
738 device = find_its_device(its, device_id);
739
740 /*
741 * The spec says that calling MAPD on an already mapped device
742 * invalidates all cached data for this device. We implement this
743 * by removing the mapping and re-establishing it.
744 */
745 if (device)
746 vgic_its_unmap_device(kvm, device);
747
748 /*
749 * The spec does not say whether unmapping a not-mapped device
750 * is an error, so we are done in any case.
751 */
752 if (!valid)
753 return 0;
754
755 device = kzalloc(sizeof(struct its_device), GFP_KERNEL);
756 if (!device)
757 return -ENOMEM;
758
759 device->device_id = device_id;
760 INIT_LIST_HEAD(&device->itt_head);
761
762 list_add_tail(&device->dev_list, &its->device_list);
763
764 return 0;
765 }
766
767 static int vgic_its_nr_collection_ids(struct vgic_its *its)
768 {
769 u64 r = its->baser_coll_table;
770
771 return (GITS_BASER_NR_PAGES(r) * SZ_64K) / GITS_BASER_ENTRY_SIZE(r);
772 }
773
774 /*
775 * The MAPC command maps collection IDs to redistributors.
776 * Must be called with the its_lock mutex held.
777 */
778 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
779 u64 *its_cmd)
780 {
781 u16 coll_id;
782 u32 target_addr;
783 struct its_collection *collection;
784 bool valid;
785
786 valid = its_cmd_get_validbit(its_cmd);
787 coll_id = its_cmd_get_collection(its_cmd);
788 target_addr = its_cmd_get_target_addr(its_cmd);
789
790 if (target_addr >= atomic_read(&kvm->online_vcpus))
791 return E_ITS_MAPC_PROCNUM_OOR;
792
793 if (coll_id >= vgic_its_nr_collection_ids(its))
794 return E_ITS_MAPC_COLLECTION_OOR;
795
796 collection = find_collection(its, coll_id);
797
798 if (!valid) {
799 struct its_device *device;
800 struct its_itte *itte;
801 /*
802 * Clearing the mapping for that collection ID removes the
803 * entry from the list. If there wasn't any before, we can
804 * go home early.
805 */
806 if (!collection)
807 return 0;
808
809 for_each_lpi_its(device, itte, its)
810 if (itte->collection &&
811 itte->collection->collection_id == coll_id)
812 itte->collection = NULL;
813
814 list_del(&collection->coll_list);
815 kfree(collection);
816 } else {
817 if (!collection) {
818 collection = kzalloc(sizeof(struct its_collection),
819 GFP_KERNEL);
820 if (!collection)
821 return -ENOMEM;
822
823 vgic_its_init_collection(its, collection, coll_id);
824 collection->target_addr = target_addr;
825 } else {
826 collection->target_addr = target_addr;
827 update_affinity_collection(kvm, its, collection);
828 }
829 }
830
831 return 0;
832 }
833
834 /*
835 * The CLEAR command removes the pending state for a particular LPI.
836 * Must be called with the its_lock mutex held.
837 */
838 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
839 u64 *its_cmd)
840 {
841 u32 device_id = its_cmd_get_deviceid(its_cmd);
842 u32 event_id = its_cmd_get_id(its_cmd);
843 struct its_itte *itte;
844
845
846 itte = find_itte(its, device_id, event_id);
847 if (!itte)
848 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
849
850 itte->irq->pending = false;
851
852 return 0;
853 }
854
855 /*
856 * The INV command syncs the configuration bits from the memory table.
857 * Must be called with the its_lock mutex held.
858 */
859 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
860 u64 *its_cmd)
861 {
862 u32 device_id = its_cmd_get_deviceid(its_cmd);
863 u32 event_id = its_cmd_get_id(its_cmd);
864 struct its_itte *itte;
865
866
867 itte = find_itte(its, device_id, event_id);
868 if (!itte)
869 return E_ITS_INV_UNMAPPED_INTERRUPT;
870
871 return update_lpi_config(kvm, itte->irq, NULL);
872 }
873
874 /*
875 * The INVALL command requests flushing of all IRQ data in this collection.
876 * Find the VCPU mapped to that collection, then iterate over the VM's list
877 * of mapped LPIs and update the configuration for each IRQ which targets
878 * the specified vcpu. The configuration will be read from the in-memory
879 * configuration table.
880 * Must be called with the its_lock mutex held.
881 */
882 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
883 u64 *its_cmd)
884 {
885 u32 coll_id = its_cmd_get_collection(its_cmd);
886 struct its_collection *collection;
887 struct kvm_vcpu *vcpu;
888 struct vgic_irq *irq;
889 u32 *intids;
890 int irq_count, i;
891
892 collection = find_collection(its, coll_id);
893 if (!its_is_collection_mapped(collection))
894 return E_ITS_INVALL_UNMAPPED_COLLECTION;
895
896 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
897
898 irq_count = vgic_copy_lpi_list(kvm, &intids);
899 if (irq_count < 0)
900 return irq_count;
901
902 for (i = 0; i < irq_count; i++) {
903 irq = vgic_get_irq(kvm, NULL, intids[i]);
904 if (!irq)
905 continue;
906 update_lpi_config(kvm, irq, vcpu);
907 vgic_put_irq(kvm, irq);
908 }
909
910 kfree(intids);
911
912 return 0;
913 }
914
915 /*
916 * The MOVALL command moves the pending state of all IRQs targeting one
917 * redistributor to another. We don't hold the pending state in the VCPUs,
918 * but in the IRQs instead, so there is really not much to do for us here.
919 * However the spec says that no IRQ must target the old redistributor
920 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
921 * This command affects all LPIs in the system that target that redistributor.
922 */
923 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
924 u64 *its_cmd)
925 {
926 struct vgic_dist *dist = &kvm->arch.vgic;
927 u32 target1_addr = its_cmd_get_target_addr(its_cmd);
928 u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
929 struct kvm_vcpu *vcpu1, *vcpu2;
930 struct vgic_irq *irq;
931
932 if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
933 target2_addr >= atomic_read(&kvm->online_vcpus))
934 return E_ITS_MOVALL_PROCNUM_OOR;
935
936 if (target1_addr == target2_addr)
937 return 0;
938
939 vcpu1 = kvm_get_vcpu(kvm, target1_addr);
940 vcpu2 = kvm_get_vcpu(kvm, target2_addr);
941
942 spin_lock(&dist->lpi_list_lock);
943
944 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
945 spin_lock(&irq->irq_lock);
946
947 if (irq->target_vcpu == vcpu1)
948 irq->target_vcpu = vcpu2;
949
950 spin_unlock(&irq->irq_lock);
951 }
952
953 spin_unlock(&dist->lpi_list_lock);
954
955 return 0;
956 }
957
958 /*
959 * The INT command injects the LPI associated with that DevID/EvID pair.
960 * Must be called with the its_lock mutex held.
961 */
962 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
963 u64 *its_cmd)
964 {
965 u32 msi_data = its_cmd_get_id(its_cmd);
966 u64 msi_devid = its_cmd_get_deviceid(its_cmd);
967
968 vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
969
970 return 0;
971 }
972
973 /*
974 * This function is called with the its_cmd lock held, but the ITS data
975 * structure lock dropped.
976 */
977 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
978 u64 *its_cmd)
979 {
980 u8 cmd = its_cmd_get_command(its_cmd);
981 int ret = -ENODEV;
982
983 mutex_lock(&its->its_lock);
984 switch (cmd) {
985 case GITS_CMD_MAPD:
986 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
987 break;
988 case GITS_CMD_MAPC:
989 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
990 break;
991 case GITS_CMD_MAPI:
992 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd, cmd);
993 break;
994 case GITS_CMD_MAPTI:
995 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd, cmd);
996 break;
997 case GITS_CMD_MOVI:
998 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
999 break;
1000 case GITS_CMD_DISCARD:
1001 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1002 break;
1003 case GITS_CMD_CLEAR:
1004 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1005 break;
1006 case GITS_CMD_MOVALL:
1007 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1008 break;
1009 case GITS_CMD_INT:
1010 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1011 break;
1012 case GITS_CMD_INV:
1013 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1014 break;
1015 case GITS_CMD_INVALL:
1016 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1017 break;
1018 case GITS_CMD_SYNC:
1019 /* we ignore this command: we are in sync all of the time */
1020 ret = 0;
1021 break;
1022 }
1023 mutex_unlock(&its->its_lock);
1024
1025 return ret;
1026 }
1027
1028 static u64 vgic_sanitise_its_baser(u64 reg)
1029 {
1030 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1031 GITS_BASER_SHAREABILITY_SHIFT,
1032 vgic_sanitise_shareability);
1033 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1034 GITS_BASER_INNER_CACHEABILITY_SHIFT,
1035 vgic_sanitise_inner_cacheability);
1036 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1037 GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1038 vgic_sanitise_outer_cacheability);
1039
1040 /* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */
1041 reg &= ~GENMASK_ULL(15, 12);
1042
1043 /* We support only one (ITS) page size: 64K */
1044 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1045
1046 return reg;
1047 }
1048
1049 static u64 vgic_sanitise_its_cbaser(u64 reg)
1050 {
1051 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1052 GITS_CBASER_SHAREABILITY_SHIFT,
1053 vgic_sanitise_shareability);
1054 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1055 GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1056 vgic_sanitise_inner_cacheability);
1057 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1058 GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1059 vgic_sanitise_outer_cacheability);
1060
1061 /*
1062 * Sanitise the physical address to be 64k aligned.
1063 * Also limit the physical addresses to 48 bits.
1064 */
1065 reg &= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12));
1066
1067 return reg;
1068 }
1069
1070 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1071 struct vgic_its *its,
1072 gpa_t addr, unsigned int len)
1073 {
1074 return extract_bytes(its->cbaser, addr & 7, len);
1075 }
1076
1077 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1078 gpa_t addr, unsigned int len,
1079 unsigned long val)
1080 {
1081 /* When GITS_CTLR.Enable is 1, this register is RO. */
1082 if (its->enabled)
1083 return;
1084
1085 mutex_lock(&its->cmd_lock);
1086 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1087 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1088 its->creadr = 0;
1089 /*
1090 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1091 * it to CREADR to make sure we start with an empty command buffer.
1092 */
1093 its->cwriter = its->creadr;
1094 mutex_unlock(&its->cmd_lock);
1095 }
1096
1097 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12)
1098 #define ITS_CMD_SIZE 32
1099 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5))
1100
1101 /*
1102 * By writing to CWRITER the guest announces new commands to be processed.
1103 * To avoid any races in the first place, we take the its_cmd lock, which
1104 * protects our ring buffer variables, so that there is only one user
1105 * per ITS handling commands at a given time.
1106 */
1107 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1108 gpa_t addr, unsigned int len,
1109 unsigned long val)
1110 {
1111 gpa_t cbaser;
1112 u64 cmd_buf[4];
1113 u32 reg;
1114
1115 if (!its)
1116 return;
1117
1118 mutex_lock(&its->cmd_lock);
1119
1120 reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1121 reg = ITS_CMD_OFFSET(reg);
1122 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1123 mutex_unlock(&its->cmd_lock);
1124 return;
1125 }
1126
1127 its->cwriter = reg;
1128 cbaser = CBASER_ADDRESS(its->cbaser);
1129
1130 while (its->cwriter != its->creadr) {
1131 int ret = kvm_read_guest(kvm, cbaser + its->creadr,
1132 cmd_buf, ITS_CMD_SIZE);
1133 /*
1134 * If kvm_read_guest() fails, this could be due to the guest
1135 * programming a bogus value in CBASER or something else going
1136 * wrong from which we cannot easily recover.
1137 * According to section 6.3.2 in the GICv3 spec we can just
1138 * ignore that command then.
1139 */
1140 if (!ret)
1141 vgic_its_handle_command(kvm, its, cmd_buf);
1142
1143 its->creadr += ITS_CMD_SIZE;
1144 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1145 its->creadr = 0;
1146 }
1147
1148 mutex_unlock(&its->cmd_lock);
1149 }
1150
1151 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1152 struct vgic_its *its,
1153 gpa_t addr, unsigned int len)
1154 {
1155 return extract_bytes(its->cwriter, addr & 0x7, len);
1156 }
1157
1158 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1159 struct vgic_its *its,
1160 gpa_t addr, unsigned int len)
1161 {
1162 return extract_bytes(its->creadr, addr & 0x7, len);
1163 }
1164
1165 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1166 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1167 struct vgic_its *its,
1168 gpa_t addr, unsigned int len)
1169 {
1170 u64 reg;
1171
1172 switch (BASER_INDEX(addr)) {
1173 case 0:
1174 reg = its->baser_device_table;
1175 break;
1176 case 1:
1177 reg = its->baser_coll_table;
1178 break;
1179 default:
1180 reg = 0;
1181 break;
1182 }
1183
1184 return extract_bytes(reg, addr & 7, len);
1185 }
1186
1187 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1188 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1189 struct vgic_its *its,
1190 gpa_t addr, unsigned int len,
1191 unsigned long val)
1192 {
1193 u64 entry_size, device_type;
1194 u64 reg, *regptr, clearbits = 0;
1195
1196 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1197 if (its->enabled)
1198 return;
1199
1200 switch (BASER_INDEX(addr)) {
1201 case 0:
1202 regptr = &its->baser_device_table;
1203 entry_size = 8;
1204 device_type = GITS_BASER_TYPE_DEVICE;
1205 break;
1206 case 1:
1207 regptr = &its->baser_coll_table;
1208 entry_size = 8;
1209 device_type = GITS_BASER_TYPE_COLLECTION;
1210 clearbits = GITS_BASER_INDIRECT;
1211 break;
1212 default:
1213 return;
1214 }
1215
1216 reg = update_64bit_reg(*regptr, addr & 7, len, val);
1217 reg &= ~GITS_BASER_RO_MASK;
1218 reg &= ~clearbits;
1219
1220 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1221 reg |= device_type << GITS_BASER_TYPE_SHIFT;
1222 reg = vgic_sanitise_its_baser(reg);
1223
1224 *regptr = reg;
1225 }
1226
1227 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \
1228 { \
1229 .reg_offset = off, \
1230 .len = length, \
1231 .access_flags = acc, \
1232 .its_read = rd, \
1233 .its_write = wr, \
1234 }
1235
1236 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1237 gpa_t addr, unsigned int len, unsigned long val)
1238 {
1239 /* Ignore */
1240 }
1241
1242 static struct vgic_register_region its_registers[] = {
1243 REGISTER_ITS_DESC(GITS_CTLR,
1244 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1245 VGIC_ACCESS_32bit),
1246 REGISTER_ITS_DESC(GITS_IIDR,
1247 vgic_mmio_read_its_iidr, its_mmio_write_wi, 4,
1248 VGIC_ACCESS_32bit),
1249 REGISTER_ITS_DESC(GITS_TYPER,
1250 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1251 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1252 REGISTER_ITS_DESC(GITS_CBASER,
1253 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1254 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1255 REGISTER_ITS_DESC(GITS_CWRITER,
1256 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1257 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1258 REGISTER_ITS_DESC(GITS_CREADR,
1259 vgic_mmio_read_its_creadr, its_mmio_write_wi, 8,
1260 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1261 REGISTER_ITS_DESC(GITS_BASER,
1262 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1263 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1264 REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1265 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1266 VGIC_ACCESS_32bit),
1267 };
1268
1269 /* This is called on setting the LPI enable bit in the redistributor. */
1270 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1271 {
1272 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1273 its_sync_lpi_pending_table(vcpu);
1274 }
1275
1276 static int vgic_its_init_its(struct kvm *kvm, struct vgic_its *its)
1277 {
1278 struct vgic_io_device *iodev = &its->iodev;
1279 int ret;
1280
1281 if (its->initialized)
1282 return 0;
1283
1284 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base))
1285 return -ENXIO;
1286
1287 iodev->regions = its_registers;
1288 iodev->nr_regions = ARRAY_SIZE(its_registers);
1289 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1290
1291 iodev->base_addr = its->vgic_its_base;
1292 iodev->iodev_type = IODEV_ITS;
1293 iodev->its = its;
1294 mutex_lock(&kvm->slots_lock);
1295 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1296 KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1297 mutex_unlock(&kvm->slots_lock);
1298
1299 if (!ret)
1300 its->initialized = true;
1301
1302 return ret;
1303 }
1304
1305 #define INITIAL_BASER_VALUE \
1306 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
1307 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
1308 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
1309 ((8ULL - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | \
1310 GITS_BASER_PAGE_SIZE_64K)
1311
1312 #define INITIAL_PROPBASER_VALUE \
1313 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \
1314 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \
1315 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1316
1317 static int vgic_its_create(struct kvm_device *dev, u32 type)
1318 {
1319 struct vgic_its *its;
1320
1321 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1322 return -ENODEV;
1323
1324 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1325 if (!its)
1326 return -ENOMEM;
1327
1328 mutex_init(&its->its_lock);
1329 mutex_init(&its->cmd_lock);
1330
1331 its->vgic_its_base = VGIC_ADDR_UNDEF;
1332
1333 INIT_LIST_HEAD(&its->device_list);
1334 INIT_LIST_HEAD(&its->collection_list);
1335
1336 dev->kvm->arch.vgic.has_its = true;
1337 its->initialized = false;
1338 its->enabled = false;
1339
1340 its->baser_device_table = INITIAL_BASER_VALUE |
1341 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1342 its->baser_coll_table = INITIAL_BASER_VALUE |
1343 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1344 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1345
1346 dev->private = its;
1347
1348 return 0;
1349 }
1350
1351 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1352 {
1353 struct kvm *kvm = kvm_dev->kvm;
1354 struct vgic_its *its = kvm_dev->private;
1355 struct its_device *dev;
1356 struct its_itte *itte;
1357 struct list_head *dev_cur, *dev_temp;
1358 struct list_head *cur, *temp;
1359
1360 /*
1361 * We may end up here without the lists ever having been initialized.
1362 * Check this and bail out early to avoid dereferencing a NULL pointer.
1363 */
1364 if (!its->device_list.next)
1365 return;
1366
1367 mutex_lock(&its->its_lock);
1368 list_for_each_safe(dev_cur, dev_temp, &its->device_list) {
1369 dev = container_of(dev_cur, struct its_device, dev_list);
1370 list_for_each_safe(cur, temp, &dev->itt_head) {
1371 itte = (container_of(cur, struct its_itte, itte_list));
1372 its_free_itte(kvm, itte);
1373 }
1374 list_del(dev_cur);
1375 kfree(dev);
1376 }
1377
1378 list_for_each_safe(cur, temp, &its->collection_list) {
1379 list_del(cur);
1380 kfree(container_of(cur, struct its_collection, coll_list));
1381 }
1382 mutex_unlock(&its->its_lock);
1383
1384 kfree(its);
1385 }
1386
1387 static int vgic_its_has_attr(struct kvm_device *dev,
1388 struct kvm_device_attr *attr)
1389 {
1390 switch (attr->group) {
1391 case KVM_DEV_ARM_VGIC_GRP_ADDR:
1392 switch (attr->attr) {
1393 case KVM_VGIC_ITS_ADDR_TYPE:
1394 return 0;
1395 }
1396 break;
1397 case KVM_DEV_ARM_VGIC_GRP_CTRL:
1398 switch (attr->attr) {
1399 case KVM_DEV_ARM_VGIC_CTRL_INIT:
1400 return 0;
1401 }
1402 break;
1403 }
1404 return -ENXIO;
1405 }
1406
1407 static int vgic_its_set_attr(struct kvm_device *dev,
1408 struct kvm_device_attr *attr)
1409 {
1410 struct vgic_its *its = dev->private;
1411 int ret;
1412
1413 switch (attr->group) {
1414 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1415 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1416 unsigned long type = (unsigned long)attr->attr;
1417 u64 addr;
1418
1419 if (type != KVM_VGIC_ITS_ADDR_TYPE)
1420 return -ENODEV;
1421
1422 if (its->initialized)
1423 return -EBUSY;
1424
1425 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1426 return -EFAULT;
1427
1428 ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
1429 addr, SZ_64K);
1430 if (ret)
1431 return ret;
1432
1433 its->vgic_its_base = addr;
1434
1435 return 0;
1436 }
1437 case KVM_DEV_ARM_VGIC_GRP_CTRL:
1438 switch (attr->attr) {
1439 case KVM_DEV_ARM_VGIC_CTRL_INIT:
1440 return vgic_its_init_its(dev->kvm, its);
1441 }
1442 break;
1443 }
1444 return -ENXIO;
1445 }
1446
1447 static int vgic_its_get_attr(struct kvm_device *dev,
1448 struct kvm_device_attr *attr)
1449 {
1450 switch (attr->group) {
1451 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1452 struct vgic_its *its = dev->private;
1453 u64 addr = its->vgic_its_base;
1454 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1455 unsigned long type = (unsigned long)attr->attr;
1456
1457 if (type != KVM_VGIC_ITS_ADDR_TYPE)
1458 return -ENODEV;
1459
1460 if (copy_to_user(uaddr, &addr, sizeof(addr)))
1461 return -EFAULT;
1462 break;
1463 default:
1464 return -ENXIO;
1465 }
1466 }
1467
1468 return 0;
1469 }
1470
1471 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
1472 .name = "kvm-arm-vgic-its",
1473 .create = vgic_its_create,
1474 .destroy = vgic_its_destroy,
1475 .set_attr = vgic_its_set_attr,
1476 .get_attr = vgic_its_get_attr,
1477 .has_attr = vgic_its_has_attr,
1478 };
1479
1480 int kvm_vgic_register_its_device(void)
1481 {
1482 return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
1483 KVM_DEV_TYPE_ARM_VGIC_ITS);
1484 }
This page took 0.110014 seconds and 6 git commands to generate.