KVM: arm64: vgic-its: Fix misleading nr_entries in vgic_its_check_device_id
[deliverable/linux.git] / virt / kvm / arm / vgic / vgic-its.c
1 /*
2 * GICv3 ITS emulation
3 *
4 * Copyright (C) 2015,2016 ARM Ltd.
5 * Author: Andre Przywara <andre.przywara@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/cpu.h>
21 #include <linux/kvm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/interrupt.h>
24 #include <linux/list.h>
25 #include <linux/uaccess.h>
26
27 #include <linux/irqchip/arm-gic-v3.h>
28
29 #include <asm/kvm_emulate.h>
30 #include <asm/kvm_arm.h>
31 #include <asm/kvm_mmu.h>
32
33 #include "vgic.h"
34 #include "vgic-mmio.h"
35
36 /*
37 * Creates a new (reference to a) struct vgic_irq for a given LPI.
38 * If this LPI is already mapped on another ITS, we increase its refcount
39 * and return a pointer to the existing structure.
40 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
41 * This function returns a pointer to the _unlocked_ structure.
42 */
43 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid)
44 {
45 struct vgic_dist *dist = &kvm->arch.vgic;
46 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
47
48 /* In this case there is no put, since we keep the reference. */
49 if (irq)
50 return irq;
51
52 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
53 if (!irq)
54 return NULL;
55
56 INIT_LIST_HEAD(&irq->lpi_list);
57 INIT_LIST_HEAD(&irq->ap_list);
58 spin_lock_init(&irq->irq_lock);
59
60 irq->config = VGIC_CONFIG_EDGE;
61 kref_init(&irq->refcount);
62 irq->intid = intid;
63
64 spin_lock(&dist->lpi_list_lock);
65
66 /*
67 * There could be a race with another vgic_add_lpi(), so we need to
68 * check that we don't add a second list entry with the same LPI.
69 */
70 list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
71 if (oldirq->intid != intid)
72 continue;
73
74 /* Someone was faster with adding this LPI, lets use that. */
75 kfree(irq);
76 irq = oldirq;
77
78 /*
79 * This increases the refcount, the caller is expected to
80 * call vgic_put_irq() on the returned pointer once it's
81 * finished with the IRQ.
82 */
83 vgic_get_irq_kref(irq);
84
85 goto out_unlock;
86 }
87
88 list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
89 dist->lpi_list_count++;
90
91 out_unlock:
92 spin_unlock(&dist->lpi_list_lock);
93
94 return irq;
95 }
96
97 struct its_device {
98 struct list_head dev_list;
99
100 /* the head for the list of ITTEs */
101 struct list_head itt_head;
102 u32 device_id;
103 };
104
105 #define COLLECTION_NOT_MAPPED ((u32)~0)
106
107 struct its_collection {
108 struct list_head coll_list;
109
110 u32 collection_id;
111 u32 target_addr;
112 };
113
114 #define its_is_collection_mapped(coll) ((coll) && \
115 ((coll)->target_addr != COLLECTION_NOT_MAPPED))
116
117 struct its_itte {
118 struct list_head itte_list;
119
120 struct vgic_irq *irq;
121 struct its_collection *collection;
122 u32 lpi;
123 u32 event_id;
124 };
125
126 /*
127 * Find and returns a device in the device table for an ITS.
128 * Must be called with the its_lock mutex held.
129 */
130 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
131 {
132 struct its_device *device;
133
134 list_for_each_entry(device, &its->device_list, dev_list)
135 if (device_id == device->device_id)
136 return device;
137
138 return NULL;
139 }
140
141 /*
142 * Find and returns an interrupt translation table entry (ITTE) for a given
143 * Device ID/Event ID pair on an ITS.
144 * Must be called with the its_lock mutex held.
145 */
146 static struct its_itte *find_itte(struct vgic_its *its, u32 device_id,
147 u32 event_id)
148 {
149 struct its_device *device;
150 struct its_itte *itte;
151
152 device = find_its_device(its, device_id);
153 if (device == NULL)
154 return NULL;
155
156 list_for_each_entry(itte, &device->itt_head, itte_list)
157 if (itte->event_id == event_id)
158 return itte;
159
160 return NULL;
161 }
162
163 /* To be used as an iterator this macro misses the enclosing parentheses */
164 #define for_each_lpi_its(dev, itte, its) \
165 list_for_each_entry(dev, &(its)->device_list, dev_list) \
166 list_for_each_entry(itte, &(dev)->itt_head, itte_list)
167
168 /*
169 * We only implement 48 bits of PA at the moment, although the ITS
170 * supports more. Let's be restrictive here.
171 */
172 #define BASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 16))
173 #define CBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 12))
174 #define PENDBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 16))
175 #define PROPBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 12))
176
177 #define GIC_LPI_OFFSET 8192
178
179 /*
180 * Finds and returns a collection in the ITS collection table.
181 * Must be called with the its_lock mutex held.
182 */
183 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
184 {
185 struct its_collection *collection;
186
187 list_for_each_entry(collection, &its->collection_list, coll_list) {
188 if (coll_id == collection->collection_id)
189 return collection;
190 }
191
192 return NULL;
193 }
194
195 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED)
196 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc)
197
198 /*
199 * Reads the configuration data for a given LPI from guest memory and
200 * updates the fields in struct vgic_irq.
201 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
202 * VCPU. Unconditionally applies if filter_vcpu is NULL.
203 */
204 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
205 struct kvm_vcpu *filter_vcpu)
206 {
207 u64 propbase = PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
208 u8 prop;
209 int ret;
210
211 ret = kvm_read_guest(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
212 &prop, 1);
213
214 if (ret)
215 return ret;
216
217 spin_lock(&irq->irq_lock);
218
219 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
220 irq->priority = LPI_PROP_PRIORITY(prop);
221 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
222
223 vgic_queue_irq_unlock(kvm, irq);
224 } else {
225 spin_unlock(&irq->irq_lock);
226 }
227
228 return 0;
229 }
230
231 /*
232 * Create a snapshot of the current LPI list, so that we can enumerate all
233 * LPIs without holding any lock.
234 * Returns the array length and puts the kmalloc'ed array into intid_ptr.
235 */
236 static int vgic_copy_lpi_list(struct kvm *kvm, u32 **intid_ptr)
237 {
238 struct vgic_dist *dist = &kvm->arch.vgic;
239 struct vgic_irq *irq;
240 u32 *intids;
241 int irq_count = dist->lpi_list_count, i = 0;
242
243 /*
244 * We use the current value of the list length, which may change
245 * after the kmalloc. We don't care, because the guest shouldn't
246 * change anything while the command handling is still running,
247 * and in the worst case we would miss a new IRQ, which one wouldn't
248 * expect to be covered by this command anyway.
249 */
250 intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
251 if (!intids)
252 return -ENOMEM;
253
254 spin_lock(&dist->lpi_list_lock);
255 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
256 /* We don't need to "get" the IRQ, as we hold the list lock. */
257 intids[i] = irq->intid;
258 if (++i == irq_count)
259 break;
260 }
261 spin_unlock(&dist->lpi_list_lock);
262
263 *intid_ptr = intids;
264 return irq_count;
265 }
266
267 /*
268 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
269 * is targeting) to the VGIC's view, which deals with target VCPUs.
270 * Needs to be called whenever either the collection for a LPIs has
271 * changed or the collection itself got retargeted.
272 */
273 static void update_affinity_itte(struct kvm *kvm, struct its_itte *itte)
274 {
275 struct kvm_vcpu *vcpu;
276
277 if (!its_is_collection_mapped(itte->collection))
278 return;
279
280 vcpu = kvm_get_vcpu(kvm, itte->collection->target_addr);
281
282 spin_lock(&itte->irq->irq_lock);
283 itte->irq->target_vcpu = vcpu;
284 spin_unlock(&itte->irq->irq_lock);
285 }
286
287 /*
288 * Updates the target VCPU for every LPI targeting this collection.
289 * Must be called with the its_lock mutex held.
290 */
291 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
292 struct its_collection *coll)
293 {
294 struct its_device *device;
295 struct its_itte *itte;
296
297 for_each_lpi_its(device, itte, its) {
298 if (!itte->collection || coll != itte->collection)
299 continue;
300
301 update_affinity_itte(kvm, itte);
302 }
303 }
304
305 static u32 max_lpis_propbaser(u64 propbaser)
306 {
307 int nr_idbits = (propbaser & 0x1f) + 1;
308
309 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
310 }
311
312 /*
313 * Scan the whole LPI pending table and sync the pending bit in there
314 * with our own data structures. This relies on the LPI being
315 * mapped before.
316 */
317 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
318 {
319 gpa_t pendbase = PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
320 struct vgic_irq *irq;
321 int last_byte_offset = -1;
322 int ret = 0;
323 u32 *intids;
324 int nr_irqs, i;
325
326 nr_irqs = vgic_copy_lpi_list(vcpu->kvm, &intids);
327 if (nr_irqs < 0)
328 return nr_irqs;
329
330 for (i = 0; i < nr_irqs; i++) {
331 int byte_offset, bit_nr;
332 u8 pendmask;
333
334 byte_offset = intids[i] / BITS_PER_BYTE;
335 bit_nr = intids[i] % BITS_PER_BYTE;
336
337 /*
338 * For contiguously allocated LPIs chances are we just read
339 * this very same byte in the last iteration. Reuse that.
340 */
341 if (byte_offset != last_byte_offset) {
342 ret = kvm_read_guest(vcpu->kvm, pendbase + byte_offset,
343 &pendmask, 1);
344 if (ret) {
345 kfree(intids);
346 return ret;
347 }
348 last_byte_offset = byte_offset;
349 }
350
351 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
352 spin_lock(&irq->irq_lock);
353 irq->pending = pendmask & (1U << bit_nr);
354 vgic_queue_irq_unlock(vcpu->kvm, irq);
355 vgic_put_irq(vcpu->kvm, irq);
356 }
357
358 kfree(intids);
359
360 return ret;
361 }
362
363 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
364 struct vgic_its *its,
365 gpa_t addr, unsigned int len)
366 {
367 u32 reg = 0;
368
369 mutex_lock(&its->cmd_lock);
370 if (its->creadr == its->cwriter)
371 reg |= GITS_CTLR_QUIESCENT;
372 if (its->enabled)
373 reg |= GITS_CTLR_ENABLE;
374 mutex_unlock(&its->cmd_lock);
375
376 return reg;
377 }
378
379 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
380 gpa_t addr, unsigned int len,
381 unsigned long val)
382 {
383 its->enabled = !!(val & GITS_CTLR_ENABLE);
384 }
385
386 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
387 struct vgic_its *its,
388 gpa_t addr, unsigned int len)
389 {
390 u64 reg = GITS_TYPER_PLPIS;
391
392 /*
393 * We use linear CPU numbers for redistributor addressing,
394 * so GITS_TYPER.PTA is 0.
395 * Also we force all PROPBASER registers to be the same, so
396 * CommonLPIAff is 0 as well.
397 * To avoid memory waste in the guest, we keep the number of IDBits and
398 * DevBits low - as least for the time being.
399 */
400 reg |= 0x0f << GITS_TYPER_DEVBITS_SHIFT;
401 reg |= 0x0f << GITS_TYPER_IDBITS_SHIFT;
402
403 return extract_bytes(reg, addr & 7, len);
404 }
405
406 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
407 struct vgic_its *its,
408 gpa_t addr, unsigned int len)
409 {
410 return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
411 }
412
413 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
414 struct vgic_its *its,
415 gpa_t addr, unsigned int len)
416 {
417 switch (addr & 0xffff) {
418 case GITS_PIDR0:
419 return 0x92; /* part number, bits[7:0] */
420 case GITS_PIDR1:
421 return 0xb4; /* part number, bits[11:8] */
422 case GITS_PIDR2:
423 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
424 case GITS_PIDR4:
425 return 0x40; /* This is a 64K software visible page */
426 /* The following are the ID registers for (any) GIC. */
427 case GITS_CIDR0:
428 return 0x0d;
429 case GITS_CIDR1:
430 return 0xf0;
431 case GITS_CIDR2:
432 return 0x05;
433 case GITS_CIDR3:
434 return 0xb1;
435 }
436
437 return 0;
438 }
439
440 /*
441 * Find the target VCPU and the LPI number for a given devid/eventid pair
442 * and make this IRQ pending, possibly injecting it.
443 * Must be called with the its_lock mutex held.
444 */
445 static void vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
446 u32 devid, u32 eventid)
447 {
448 struct its_itte *itte;
449
450 if (!its->enabled)
451 return;
452
453 itte = find_itte(its, devid, eventid);
454 /* Triggering an unmapped IRQ gets silently dropped. */
455 if (itte && its_is_collection_mapped(itte->collection)) {
456 struct kvm_vcpu *vcpu;
457
458 vcpu = kvm_get_vcpu(kvm, itte->collection->target_addr);
459 if (vcpu && vcpu->arch.vgic_cpu.lpis_enabled) {
460 spin_lock(&itte->irq->irq_lock);
461 itte->irq->pending = true;
462 vgic_queue_irq_unlock(kvm, itte->irq);
463 }
464 }
465 }
466
467 /*
468 * Queries the KVM IO bus framework to get the ITS pointer from the given
469 * doorbell address.
470 * We then call vgic_its_trigger_msi() with the decoded data.
471 */
472 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
473 {
474 u64 address;
475 struct kvm_io_device *kvm_io_dev;
476 struct vgic_io_device *iodev;
477
478 if (!vgic_has_its(kvm))
479 return -ENODEV;
480
481 if (!(msi->flags & KVM_MSI_VALID_DEVID))
482 return -EINVAL;
483
484 address = (u64)msi->address_hi << 32 | msi->address_lo;
485
486 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
487 if (!kvm_io_dev)
488 return -ENODEV;
489
490 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
491
492 mutex_lock(&iodev->its->its_lock);
493 vgic_its_trigger_msi(kvm, iodev->its, msi->devid, msi->data);
494 mutex_unlock(&iodev->its->its_lock);
495
496 return 0;
497 }
498
499 /* Requires the its_lock to be held. */
500 static void its_free_itte(struct kvm *kvm, struct its_itte *itte)
501 {
502 list_del(&itte->itte_list);
503
504 /* This put matches the get in vgic_add_lpi. */
505 vgic_put_irq(kvm, itte->irq);
506
507 kfree(itte);
508 }
509
510 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
511 {
512 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
513 }
514
515 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
516 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
517 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
518 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
519 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
520 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
521 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
522
523 /*
524 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
525 * Must be called with the its_lock mutex held.
526 */
527 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
528 u64 *its_cmd)
529 {
530 u32 device_id = its_cmd_get_deviceid(its_cmd);
531 u32 event_id = its_cmd_get_id(its_cmd);
532 struct its_itte *itte;
533
534
535 itte = find_itte(its, device_id, event_id);
536 if (itte && itte->collection) {
537 /*
538 * Though the spec talks about removing the pending state, we
539 * don't bother here since we clear the ITTE anyway and the
540 * pending state is a property of the ITTE struct.
541 */
542 its_free_itte(kvm, itte);
543 return 0;
544 }
545
546 return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
547 }
548
549 /*
550 * The MOVI command moves an ITTE to a different collection.
551 * Must be called with the its_lock mutex held.
552 */
553 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
554 u64 *its_cmd)
555 {
556 u32 device_id = its_cmd_get_deviceid(its_cmd);
557 u32 event_id = its_cmd_get_id(its_cmd);
558 u32 coll_id = its_cmd_get_collection(its_cmd);
559 struct kvm_vcpu *vcpu;
560 struct its_itte *itte;
561 struct its_collection *collection;
562
563 itte = find_itte(its, device_id, event_id);
564 if (!itte)
565 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
566
567 if (!its_is_collection_mapped(itte->collection))
568 return E_ITS_MOVI_UNMAPPED_COLLECTION;
569
570 collection = find_collection(its, coll_id);
571 if (!its_is_collection_mapped(collection))
572 return E_ITS_MOVI_UNMAPPED_COLLECTION;
573
574 itte->collection = collection;
575 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
576
577 spin_lock(&itte->irq->irq_lock);
578 itte->irq->target_vcpu = vcpu;
579 spin_unlock(&itte->irq->irq_lock);
580
581 return 0;
582 }
583
584 static void vgic_its_init_collection(struct vgic_its *its,
585 struct its_collection *collection,
586 u32 coll_id)
587 {
588 collection->collection_id = coll_id;
589 collection->target_addr = COLLECTION_NOT_MAPPED;
590
591 list_add_tail(&collection->coll_list, &its->collection_list);
592 }
593
594 /*
595 * The MAPTI and MAPI commands map LPIs to ITTEs.
596 * Must be called with its_lock mutex held.
597 */
598 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
599 u64 *its_cmd, u8 subcmd)
600 {
601 u32 device_id = its_cmd_get_deviceid(its_cmd);
602 u32 event_id = its_cmd_get_id(its_cmd);
603 u32 coll_id = its_cmd_get_collection(its_cmd);
604 struct its_itte *itte;
605 struct its_device *device;
606 struct its_collection *collection, *new_coll = NULL;
607 int lpi_nr;
608
609 device = find_its_device(its, device_id);
610 if (!device)
611 return E_ITS_MAPTI_UNMAPPED_DEVICE;
612
613 collection = find_collection(its, coll_id);
614 if (!collection) {
615 new_coll = kzalloc(sizeof(struct its_collection), GFP_KERNEL);
616 if (!new_coll)
617 return -ENOMEM;
618 }
619
620 if (subcmd == GITS_CMD_MAPTI)
621 lpi_nr = its_cmd_get_physical_id(its_cmd);
622 else
623 lpi_nr = event_id;
624 if (lpi_nr < GIC_LPI_OFFSET ||
625 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser)) {
626 kfree(new_coll);
627 return E_ITS_MAPTI_PHYSICALID_OOR;
628 }
629
630 itte = find_itte(its, device_id, event_id);
631 if (!itte) {
632 itte = kzalloc(sizeof(struct its_itte), GFP_KERNEL);
633 if (!itte) {
634 kfree(new_coll);
635 return -ENOMEM;
636 }
637
638 itte->event_id = event_id;
639 list_add_tail(&itte->itte_list, &device->itt_head);
640 }
641
642 if (!collection) {
643 collection = new_coll;
644 vgic_its_init_collection(its, collection, coll_id);
645 }
646
647 itte->collection = collection;
648 itte->lpi = lpi_nr;
649 itte->irq = vgic_add_lpi(kvm, lpi_nr);
650 update_affinity_itte(kvm, itte);
651
652 /*
653 * We "cache" the configuration table entries in out struct vgic_irq's.
654 * However we only have those structs for mapped IRQs, so we read in
655 * the respective config data from memory here upon mapping the LPI.
656 */
657 update_lpi_config(kvm, itte->irq, NULL);
658
659 return 0;
660 }
661
662 /* Requires the its_lock to be held. */
663 static void vgic_its_unmap_device(struct kvm *kvm, struct its_device *device)
664 {
665 struct its_itte *itte, *temp;
666
667 /*
668 * The spec says that unmapping a device with still valid
669 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
670 * since we cannot leave the memory unreferenced.
671 */
672 list_for_each_entry_safe(itte, temp, &device->itt_head, itte_list)
673 its_free_itte(kvm, itte);
674
675 list_del(&device->dev_list);
676 kfree(device);
677 }
678
679 /*
680 * Check whether a device ID can be stored into the guest device tables.
681 * For a direct table this is pretty easy, but gets a bit nasty for
682 * indirect tables. We check whether the resulting guest physical address
683 * is actually valid (covered by a memslot and guest accessbible).
684 * For this we have to read the respective first level entry.
685 */
686 static bool vgic_its_check_device_id(struct kvm *kvm, struct vgic_its *its,
687 int device_id)
688 {
689 u64 r = its->baser_device_table;
690 int l1_tbl_size = GITS_BASER_NR_PAGES(r) * SZ_64K;
691 int index;
692 u64 indirect_ptr;
693 gfn_t gfn;
694
695
696 if (!(r & GITS_BASER_INDIRECT))
697 return device_id < (l1_tbl_size / GITS_BASER_ENTRY_SIZE(r));
698
699 /* calculate and check the index into the 1st level */
700 index = device_id / (SZ_64K / GITS_BASER_ENTRY_SIZE(r));
701 if (index >= (l1_tbl_size / sizeof(u64)))
702 return false;
703
704 /* Each 1st level entry is represented by a 64-bit value. */
705 if (kvm_read_guest(kvm,
706 BASER_ADDRESS(r) + index * sizeof(indirect_ptr),
707 &indirect_ptr, sizeof(indirect_ptr)))
708 return false;
709
710 indirect_ptr = le64_to_cpu(indirect_ptr);
711
712 /* check the valid bit of the first level entry */
713 if (!(indirect_ptr & BIT_ULL(63)))
714 return false;
715
716 /*
717 * Mask the guest physical address and calculate the frame number.
718 * Any address beyond our supported 48 bits of PA will be caught
719 * by the actual check in the final step.
720 */
721 gfn = (indirect_ptr & GENMASK_ULL(51, 16)) >> PAGE_SHIFT;
722
723 return kvm_is_visible_gfn(kvm, gfn);
724 }
725
726 /*
727 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
728 * Must be called with the its_lock mutex held.
729 */
730 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
731 u64 *its_cmd)
732 {
733 u32 device_id = its_cmd_get_deviceid(its_cmd);
734 bool valid = its_cmd_get_validbit(its_cmd);
735 struct its_device *device;
736
737 if (!vgic_its_check_device_id(kvm, its, device_id))
738 return E_ITS_MAPD_DEVICE_OOR;
739
740 device = find_its_device(its, device_id);
741
742 /*
743 * The spec says that calling MAPD on an already mapped device
744 * invalidates all cached data for this device. We implement this
745 * by removing the mapping and re-establishing it.
746 */
747 if (device)
748 vgic_its_unmap_device(kvm, device);
749
750 /*
751 * The spec does not say whether unmapping a not-mapped device
752 * is an error, so we are done in any case.
753 */
754 if (!valid)
755 return 0;
756
757 device = kzalloc(sizeof(struct its_device), GFP_KERNEL);
758 if (!device)
759 return -ENOMEM;
760
761 device->device_id = device_id;
762 INIT_LIST_HEAD(&device->itt_head);
763
764 list_add_tail(&device->dev_list, &its->device_list);
765
766 return 0;
767 }
768
769 static int vgic_its_nr_collection_ids(struct vgic_its *its)
770 {
771 u64 r = its->baser_coll_table;
772
773 return (GITS_BASER_NR_PAGES(r) * SZ_64K) / GITS_BASER_ENTRY_SIZE(r);
774 }
775
776 /*
777 * The MAPC command maps collection IDs to redistributors.
778 * Must be called with the its_lock mutex held.
779 */
780 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
781 u64 *its_cmd)
782 {
783 u16 coll_id;
784 u32 target_addr;
785 struct its_collection *collection;
786 bool valid;
787
788 valid = its_cmd_get_validbit(its_cmd);
789 coll_id = its_cmd_get_collection(its_cmd);
790 target_addr = its_cmd_get_target_addr(its_cmd);
791
792 if (target_addr >= atomic_read(&kvm->online_vcpus))
793 return E_ITS_MAPC_PROCNUM_OOR;
794
795 if (coll_id >= vgic_its_nr_collection_ids(its))
796 return E_ITS_MAPC_COLLECTION_OOR;
797
798 collection = find_collection(its, coll_id);
799
800 if (!valid) {
801 struct its_device *device;
802 struct its_itte *itte;
803 /*
804 * Clearing the mapping for that collection ID removes the
805 * entry from the list. If there wasn't any before, we can
806 * go home early.
807 */
808 if (!collection)
809 return 0;
810
811 for_each_lpi_its(device, itte, its)
812 if (itte->collection &&
813 itte->collection->collection_id == coll_id)
814 itte->collection = NULL;
815
816 list_del(&collection->coll_list);
817 kfree(collection);
818 } else {
819 if (!collection) {
820 collection = kzalloc(sizeof(struct its_collection),
821 GFP_KERNEL);
822 if (!collection)
823 return -ENOMEM;
824
825 vgic_its_init_collection(its, collection, coll_id);
826 collection->target_addr = target_addr;
827 } else {
828 collection->target_addr = target_addr;
829 update_affinity_collection(kvm, its, collection);
830 }
831 }
832
833 return 0;
834 }
835
836 /*
837 * The CLEAR command removes the pending state for a particular LPI.
838 * Must be called with the its_lock mutex held.
839 */
840 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
841 u64 *its_cmd)
842 {
843 u32 device_id = its_cmd_get_deviceid(its_cmd);
844 u32 event_id = its_cmd_get_id(its_cmd);
845 struct its_itte *itte;
846
847
848 itte = find_itte(its, device_id, event_id);
849 if (!itte)
850 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
851
852 itte->irq->pending = false;
853
854 return 0;
855 }
856
857 /*
858 * The INV command syncs the configuration bits from the memory table.
859 * Must be called with the its_lock mutex held.
860 */
861 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
862 u64 *its_cmd)
863 {
864 u32 device_id = its_cmd_get_deviceid(its_cmd);
865 u32 event_id = its_cmd_get_id(its_cmd);
866 struct its_itte *itte;
867
868
869 itte = find_itte(its, device_id, event_id);
870 if (!itte)
871 return E_ITS_INV_UNMAPPED_INTERRUPT;
872
873 return update_lpi_config(kvm, itte->irq, NULL);
874 }
875
876 /*
877 * The INVALL command requests flushing of all IRQ data in this collection.
878 * Find the VCPU mapped to that collection, then iterate over the VM's list
879 * of mapped LPIs and update the configuration for each IRQ which targets
880 * the specified vcpu. The configuration will be read from the in-memory
881 * configuration table.
882 * Must be called with the its_lock mutex held.
883 */
884 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
885 u64 *its_cmd)
886 {
887 u32 coll_id = its_cmd_get_collection(its_cmd);
888 struct its_collection *collection;
889 struct kvm_vcpu *vcpu;
890 struct vgic_irq *irq;
891 u32 *intids;
892 int irq_count, i;
893
894 collection = find_collection(its, coll_id);
895 if (!its_is_collection_mapped(collection))
896 return E_ITS_INVALL_UNMAPPED_COLLECTION;
897
898 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
899
900 irq_count = vgic_copy_lpi_list(kvm, &intids);
901 if (irq_count < 0)
902 return irq_count;
903
904 for (i = 0; i < irq_count; i++) {
905 irq = vgic_get_irq(kvm, NULL, intids[i]);
906 if (!irq)
907 continue;
908 update_lpi_config(kvm, irq, vcpu);
909 vgic_put_irq(kvm, irq);
910 }
911
912 kfree(intids);
913
914 return 0;
915 }
916
917 /*
918 * The MOVALL command moves the pending state of all IRQs targeting one
919 * redistributor to another. We don't hold the pending state in the VCPUs,
920 * but in the IRQs instead, so there is really not much to do for us here.
921 * However the spec says that no IRQ must target the old redistributor
922 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
923 * This command affects all LPIs in the system that target that redistributor.
924 */
925 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
926 u64 *its_cmd)
927 {
928 struct vgic_dist *dist = &kvm->arch.vgic;
929 u32 target1_addr = its_cmd_get_target_addr(its_cmd);
930 u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
931 struct kvm_vcpu *vcpu1, *vcpu2;
932 struct vgic_irq *irq;
933
934 if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
935 target2_addr >= atomic_read(&kvm->online_vcpus))
936 return E_ITS_MOVALL_PROCNUM_OOR;
937
938 if (target1_addr == target2_addr)
939 return 0;
940
941 vcpu1 = kvm_get_vcpu(kvm, target1_addr);
942 vcpu2 = kvm_get_vcpu(kvm, target2_addr);
943
944 spin_lock(&dist->lpi_list_lock);
945
946 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
947 spin_lock(&irq->irq_lock);
948
949 if (irq->target_vcpu == vcpu1)
950 irq->target_vcpu = vcpu2;
951
952 spin_unlock(&irq->irq_lock);
953 }
954
955 spin_unlock(&dist->lpi_list_lock);
956
957 return 0;
958 }
959
960 /*
961 * The INT command injects the LPI associated with that DevID/EvID pair.
962 * Must be called with the its_lock mutex held.
963 */
964 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
965 u64 *its_cmd)
966 {
967 u32 msi_data = its_cmd_get_id(its_cmd);
968 u64 msi_devid = its_cmd_get_deviceid(its_cmd);
969
970 vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
971
972 return 0;
973 }
974
975 /*
976 * This function is called with the its_cmd lock held, but the ITS data
977 * structure lock dropped.
978 */
979 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
980 u64 *its_cmd)
981 {
982 u8 cmd = its_cmd_get_command(its_cmd);
983 int ret = -ENODEV;
984
985 mutex_lock(&its->its_lock);
986 switch (cmd) {
987 case GITS_CMD_MAPD:
988 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
989 break;
990 case GITS_CMD_MAPC:
991 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
992 break;
993 case GITS_CMD_MAPI:
994 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd, cmd);
995 break;
996 case GITS_CMD_MAPTI:
997 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd, cmd);
998 break;
999 case GITS_CMD_MOVI:
1000 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1001 break;
1002 case GITS_CMD_DISCARD:
1003 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1004 break;
1005 case GITS_CMD_CLEAR:
1006 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1007 break;
1008 case GITS_CMD_MOVALL:
1009 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1010 break;
1011 case GITS_CMD_INT:
1012 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1013 break;
1014 case GITS_CMD_INV:
1015 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1016 break;
1017 case GITS_CMD_INVALL:
1018 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1019 break;
1020 case GITS_CMD_SYNC:
1021 /* we ignore this command: we are in sync all of the time */
1022 ret = 0;
1023 break;
1024 }
1025 mutex_unlock(&its->its_lock);
1026
1027 return ret;
1028 }
1029
1030 static u64 vgic_sanitise_its_baser(u64 reg)
1031 {
1032 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1033 GITS_BASER_SHAREABILITY_SHIFT,
1034 vgic_sanitise_shareability);
1035 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1036 GITS_BASER_INNER_CACHEABILITY_SHIFT,
1037 vgic_sanitise_inner_cacheability);
1038 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1039 GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1040 vgic_sanitise_outer_cacheability);
1041
1042 /* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */
1043 reg &= ~GENMASK_ULL(15, 12);
1044
1045 /* We support only one (ITS) page size: 64K */
1046 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1047
1048 return reg;
1049 }
1050
1051 static u64 vgic_sanitise_its_cbaser(u64 reg)
1052 {
1053 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1054 GITS_CBASER_SHAREABILITY_SHIFT,
1055 vgic_sanitise_shareability);
1056 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1057 GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1058 vgic_sanitise_inner_cacheability);
1059 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1060 GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1061 vgic_sanitise_outer_cacheability);
1062
1063 /*
1064 * Sanitise the physical address to be 64k aligned.
1065 * Also limit the physical addresses to 48 bits.
1066 */
1067 reg &= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12));
1068
1069 return reg;
1070 }
1071
1072 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1073 struct vgic_its *its,
1074 gpa_t addr, unsigned int len)
1075 {
1076 return extract_bytes(its->cbaser, addr & 7, len);
1077 }
1078
1079 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1080 gpa_t addr, unsigned int len,
1081 unsigned long val)
1082 {
1083 /* When GITS_CTLR.Enable is 1, this register is RO. */
1084 if (its->enabled)
1085 return;
1086
1087 mutex_lock(&its->cmd_lock);
1088 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1089 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1090 its->creadr = 0;
1091 /*
1092 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1093 * it to CREADR to make sure we start with an empty command buffer.
1094 */
1095 its->cwriter = its->creadr;
1096 mutex_unlock(&its->cmd_lock);
1097 }
1098
1099 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12)
1100 #define ITS_CMD_SIZE 32
1101 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5))
1102
1103 /*
1104 * By writing to CWRITER the guest announces new commands to be processed.
1105 * To avoid any races in the first place, we take the its_cmd lock, which
1106 * protects our ring buffer variables, so that there is only one user
1107 * per ITS handling commands at a given time.
1108 */
1109 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1110 gpa_t addr, unsigned int len,
1111 unsigned long val)
1112 {
1113 gpa_t cbaser;
1114 u64 cmd_buf[4];
1115 u32 reg;
1116
1117 if (!its)
1118 return;
1119
1120 mutex_lock(&its->cmd_lock);
1121
1122 reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1123 reg = ITS_CMD_OFFSET(reg);
1124 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1125 mutex_unlock(&its->cmd_lock);
1126 return;
1127 }
1128
1129 its->cwriter = reg;
1130 cbaser = CBASER_ADDRESS(its->cbaser);
1131
1132 while (its->cwriter != its->creadr) {
1133 int ret = kvm_read_guest(kvm, cbaser + its->creadr,
1134 cmd_buf, ITS_CMD_SIZE);
1135 /*
1136 * If kvm_read_guest() fails, this could be due to the guest
1137 * programming a bogus value in CBASER or something else going
1138 * wrong from which we cannot easily recover.
1139 * According to section 6.3.2 in the GICv3 spec we can just
1140 * ignore that command then.
1141 */
1142 if (!ret)
1143 vgic_its_handle_command(kvm, its, cmd_buf);
1144
1145 its->creadr += ITS_CMD_SIZE;
1146 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1147 its->creadr = 0;
1148 }
1149
1150 mutex_unlock(&its->cmd_lock);
1151 }
1152
1153 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1154 struct vgic_its *its,
1155 gpa_t addr, unsigned int len)
1156 {
1157 return extract_bytes(its->cwriter, addr & 0x7, len);
1158 }
1159
1160 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1161 struct vgic_its *its,
1162 gpa_t addr, unsigned int len)
1163 {
1164 return extract_bytes(its->creadr, addr & 0x7, len);
1165 }
1166
1167 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1168 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1169 struct vgic_its *its,
1170 gpa_t addr, unsigned int len)
1171 {
1172 u64 reg;
1173
1174 switch (BASER_INDEX(addr)) {
1175 case 0:
1176 reg = its->baser_device_table;
1177 break;
1178 case 1:
1179 reg = its->baser_coll_table;
1180 break;
1181 default:
1182 reg = 0;
1183 break;
1184 }
1185
1186 return extract_bytes(reg, addr & 7, len);
1187 }
1188
1189 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1190 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1191 struct vgic_its *its,
1192 gpa_t addr, unsigned int len,
1193 unsigned long val)
1194 {
1195 u64 entry_size, device_type;
1196 u64 reg, *regptr, clearbits = 0;
1197
1198 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1199 if (its->enabled)
1200 return;
1201
1202 switch (BASER_INDEX(addr)) {
1203 case 0:
1204 regptr = &its->baser_device_table;
1205 entry_size = 8;
1206 device_type = GITS_BASER_TYPE_DEVICE;
1207 break;
1208 case 1:
1209 regptr = &its->baser_coll_table;
1210 entry_size = 8;
1211 device_type = GITS_BASER_TYPE_COLLECTION;
1212 clearbits = GITS_BASER_INDIRECT;
1213 break;
1214 default:
1215 return;
1216 }
1217
1218 reg = update_64bit_reg(*regptr, addr & 7, len, val);
1219 reg &= ~GITS_BASER_RO_MASK;
1220 reg &= ~clearbits;
1221
1222 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1223 reg |= device_type << GITS_BASER_TYPE_SHIFT;
1224 reg = vgic_sanitise_its_baser(reg);
1225
1226 *regptr = reg;
1227 }
1228
1229 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \
1230 { \
1231 .reg_offset = off, \
1232 .len = length, \
1233 .access_flags = acc, \
1234 .its_read = rd, \
1235 .its_write = wr, \
1236 }
1237
1238 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1239 gpa_t addr, unsigned int len, unsigned long val)
1240 {
1241 /* Ignore */
1242 }
1243
1244 static struct vgic_register_region its_registers[] = {
1245 REGISTER_ITS_DESC(GITS_CTLR,
1246 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1247 VGIC_ACCESS_32bit),
1248 REGISTER_ITS_DESC(GITS_IIDR,
1249 vgic_mmio_read_its_iidr, its_mmio_write_wi, 4,
1250 VGIC_ACCESS_32bit),
1251 REGISTER_ITS_DESC(GITS_TYPER,
1252 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1253 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1254 REGISTER_ITS_DESC(GITS_CBASER,
1255 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1256 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1257 REGISTER_ITS_DESC(GITS_CWRITER,
1258 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1259 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1260 REGISTER_ITS_DESC(GITS_CREADR,
1261 vgic_mmio_read_its_creadr, its_mmio_write_wi, 8,
1262 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1263 REGISTER_ITS_DESC(GITS_BASER,
1264 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1265 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1266 REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1267 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1268 VGIC_ACCESS_32bit),
1269 };
1270
1271 /* This is called on setting the LPI enable bit in the redistributor. */
1272 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1273 {
1274 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1275 its_sync_lpi_pending_table(vcpu);
1276 }
1277
1278 static int vgic_its_init_its(struct kvm *kvm, struct vgic_its *its)
1279 {
1280 struct vgic_io_device *iodev = &its->iodev;
1281 int ret;
1282
1283 if (its->initialized)
1284 return 0;
1285
1286 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base))
1287 return -ENXIO;
1288
1289 iodev->regions = its_registers;
1290 iodev->nr_regions = ARRAY_SIZE(its_registers);
1291 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1292
1293 iodev->base_addr = its->vgic_its_base;
1294 iodev->iodev_type = IODEV_ITS;
1295 iodev->its = its;
1296 mutex_lock(&kvm->slots_lock);
1297 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1298 KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1299 mutex_unlock(&kvm->slots_lock);
1300
1301 if (!ret)
1302 its->initialized = true;
1303
1304 return ret;
1305 }
1306
1307 #define INITIAL_BASER_VALUE \
1308 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
1309 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
1310 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
1311 ((8ULL - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | \
1312 GITS_BASER_PAGE_SIZE_64K)
1313
1314 #define INITIAL_PROPBASER_VALUE \
1315 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \
1316 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \
1317 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1318
1319 static int vgic_its_create(struct kvm_device *dev, u32 type)
1320 {
1321 struct vgic_its *its;
1322
1323 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1324 return -ENODEV;
1325
1326 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1327 if (!its)
1328 return -ENOMEM;
1329
1330 mutex_init(&its->its_lock);
1331 mutex_init(&its->cmd_lock);
1332
1333 its->vgic_its_base = VGIC_ADDR_UNDEF;
1334
1335 INIT_LIST_HEAD(&its->device_list);
1336 INIT_LIST_HEAD(&its->collection_list);
1337
1338 dev->kvm->arch.vgic.has_its = true;
1339 its->initialized = false;
1340 its->enabled = false;
1341
1342 its->baser_device_table = INITIAL_BASER_VALUE |
1343 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1344 its->baser_coll_table = INITIAL_BASER_VALUE |
1345 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1346 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1347
1348 dev->private = its;
1349
1350 return 0;
1351 }
1352
1353 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1354 {
1355 struct kvm *kvm = kvm_dev->kvm;
1356 struct vgic_its *its = kvm_dev->private;
1357 struct its_device *dev;
1358 struct its_itte *itte;
1359 struct list_head *dev_cur, *dev_temp;
1360 struct list_head *cur, *temp;
1361
1362 /*
1363 * We may end up here without the lists ever having been initialized.
1364 * Check this and bail out early to avoid dereferencing a NULL pointer.
1365 */
1366 if (!its->device_list.next)
1367 return;
1368
1369 mutex_lock(&its->its_lock);
1370 list_for_each_safe(dev_cur, dev_temp, &its->device_list) {
1371 dev = container_of(dev_cur, struct its_device, dev_list);
1372 list_for_each_safe(cur, temp, &dev->itt_head) {
1373 itte = (container_of(cur, struct its_itte, itte_list));
1374 its_free_itte(kvm, itte);
1375 }
1376 list_del(dev_cur);
1377 kfree(dev);
1378 }
1379
1380 list_for_each_safe(cur, temp, &its->collection_list) {
1381 list_del(cur);
1382 kfree(container_of(cur, struct its_collection, coll_list));
1383 }
1384 mutex_unlock(&its->its_lock);
1385
1386 kfree(its);
1387 }
1388
1389 static int vgic_its_has_attr(struct kvm_device *dev,
1390 struct kvm_device_attr *attr)
1391 {
1392 switch (attr->group) {
1393 case KVM_DEV_ARM_VGIC_GRP_ADDR:
1394 switch (attr->attr) {
1395 case KVM_VGIC_ITS_ADDR_TYPE:
1396 return 0;
1397 }
1398 break;
1399 case KVM_DEV_ARM_VGIC_GRP_CTRL:
1400 switch (attr->attr) {
1401 case KVM_DEV_ARM_VGIC_CTRL_INIT:
1402 return 0;
1403 }
1404 break;
1405 }
1406 return -ENXIO;
1407 }
1408
1409 static int vgic_its_set_attr(struct kvm_device *dev,
1410 struct kvm_device_attr *attr)
1411 {
1412 struct vgic_its *its = dev->private;
1413 int ret;
1414
1415 switch (attr->group) {
1416 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1417 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1418 unsigned long type = (unsigned long)attr->attr;
1419 u64 addr;
1420
1421 if (type != KVM_VGIC_ITS_ADDR_TYPE)
1422 return -ENODEV;
1423
1424 if (its->initialized)
1425 return -EBUSY;
1426
1427 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1428 return -EFAULT;
1429
1430 ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
1431 addr, SZ_64K);
1432 if (ret)
1433 return ret;
1434
1435 its->vgic_its_base = addr;
1436
1437 return 0;
1438 }
1439 case KVM_DEV_ARM_VGIC_GRP_CTRL:
1440 switch (attr->attr) {
1441 case KVM_DEV_ARM_VGIC_CTRL_INIT:
1442 return vgic_its_init_its(dev->kvm, its);
1443 }
1444 break;
1445 }
1446 return -ENXIO;
1447 }
1448
1449 static int vgic_its_get_attr(struct kvm_device *dev,
1450 struct kvm_device_attr *attr)
1451 {
1452 switch (attr->group) {
1453 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1454 struct vgic_its *its = dev->private;
1455 u64 addr = its->vgic_its_base;
1456 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1457 unsigned long type = (unsigned long)attr->attr;
1458
1459 if (type != KVM_VGIC_ITS_ADDR_TYPE)
1460 return -ENODEV;
1461
1462 if (copy_to_user(uaddr, &addr, sizeof(addr)))
1463 return -EFAULT;
1464 break;
1465 default:
1466 return -ENXIO;
1467 }
1468 }
1469
1470 return 0;
1471 }
1472
1473 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
1474 .name = "kvm-arm-vgic-its",
1475 .create = vgic_its_create,
1476 .destroy = vgic_its_destroy,
1477 .set_attr = vgic_its_set_attr,
1478 .get_attr = vgic_its_get_attr,
1479 .has_attr = vgic_its_has_attr,
1480 };
1481
1482 int kvm_vgic_register_its_device(void)
1483 {
1484 return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
1485 KVM_DEV_TYPE_ARM_VGIC_ITS);
1486 }
This page took 0.06041 seconds and 6 git commands to generate.