KVM: arm64: vgic-its: Add pointer to corresponding kvm_device
[deliverable/linux.git] / virt / kvm / arm / vgic / vgic-its.c
1 /*
2 * GICv3 ITS emulation
3 *
4 * Copyright (C) 2015,2016 ARM Ltd.
5 * Author: Andre Przywara <andre.przywara@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/cpu.h>
21 #include <linux/kvm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/interrupt.h>
24 #include <linux/list.h>
25 #include <linux/uaccess.h>
26
27 #include <linux/irqchip/arm-gic-v3.h>
28
29 #include <asm/kvm_emulate.h>
30 #include <asm/kvm_arm.h>
31 #include <asm/kvm_mmu.h>
32
33 #include "vgic.h"
34 #include "vgic-mmio.h"
35
36 /*
37 * Creates a new (reference to a) struct vgic_irq for a given LPI.
38 * If this LPI is already mapped on another ITS, we increase its refcount
39 * and return a pointer to the existing structure.
40 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
41 * This function returns a pointer to the _unlocked_ structure.
42 */
43 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid)
44 {
45 struct vgic_dist *dist = &kvm->arch.vgic;
46 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
47
48 /* In this case there is no put, since we keep the reference. */
49 if (irq)
50 return irq;
51
52 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
53 if (!irq)
54 return NULL;
55
56 INIT_LIST_HEAD(&irq->lpi_list);
57 INIT_LIST_HEAD(&irq->ap_list);
58 spin_lock_init(&irq->irq_lock);
59
60 irq->config = VGIC_CONFIG_EDGE;
61 kref_init(&irq->refcount);
62 irq->intid = intid;
63
64 spin_lock(&dist->lpi_list_lock);
65
66 /*
67 * There could be a race with another vgic_add_lpi(), so we need to
68 * check that we don't add a second list entry with the same LPI.
69 */
70 list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
71 if (oldirq->intid != intid)
72 continue;
73
74 /* Someone was faster with adding this LPI, lets use that. */
75 kfree(irq);
76 irq = oldirq;
77
78 /*
79 * This increases the refcount, the caller is expected to
80 * call vgic_put_irq() on the returned pointer once it's
81 * finished with the IRQ.
82 */
83 vgic_get_irq_kref(irq);
84
85 goto out_unlock;
86 }
87
88 list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
89 dist->lpi_list_count++;
90
91 out_unlock:
92 spin_unlock(&dist->lpi_list_lock);
93
94 return irq;
95 }
96
97 struct its_device {
98 struct list_head dev_list;
99
100 /* the head for the list of ITTEs */
101 struct list_head itt_head;
102 u32 device_id;
103 };
104
105 #define COLLECTION_NOT_MAPPED ((u32)~0)
106
107 struct its_collection {
108 struct list_head coll_list;
109
110 u32 collection_id;
111 u32 target_addr;
112 };
113
114 #define its_is_collection_mapped(coll) ((coll) && \
115 ((coll)->target_addr != COLLECTION_NOT_MAPPED))
116
117 struct its_itte {
118 struct list_head itte_list;
119
120 struct vgic_irq *irq;
121 struct its_collection *collection;
122 u32 lpi;
123 u32 event_id;
124 };
125
126 /*
127 * Find and returns a device in the device table for an ITS.
128 * Must be called with the its_lock mutex held.
129 */
130 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
131 {
132 struct its_device *device;
133
134 list_for_each_entry(device, &its->device_list, dev_list)
135 if (device_id == device->device_id)
136 return device;
137
138 return NULL;
139 }
140
141 /*
142 * Find and returns an interrupt translation table entry (ITTE) for a given
143 * Device ID/Event ID pair on an ITS.
144 * Must be called with the its_lock mutex held.
145 */
146 static struct its_itte *find_itte(struct vgic_its *its, u32 device_id,
147 u32 event_id)
148 {
149 struct its_device *device;
150 struct its_itte *itte;
151
152 device = find_its_device(its, device_id);
153 if (device == NULL)
154 return NULL;
155
156 list_for_each_entry(itte, &device->itt_head, itte_list)
157 if (itte->event_id == event_id)
158 return itte;
159
160 return NULL;
161 }
162
163 /* To be used as an iterator this macro misses the enclosing parentheses */
164 #define for_each_lpi_its(dev, itte, its) \
165 list_for_each_entry(dev, &(its)->device_list, dev_list) \
166 list_for_each_entry(itte, &(dev)->itt_head, itte_list)
167
168 /*
169 * We only implement 48 bits of PA at the moment, although the ITS
170 * supports more. Let's be restrictive here.
171 */
172 #define BASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 16))
173 #define CBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 12))
174 #define PENDBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 16))
175 #define PROPBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 12))
176
177 #define GIC_LPI_OFFSET 8192
178
179 /*
180 * Finds and returns a collection in the ITS collection table.
181 * Must be called with the its_lock mutex held.
182 */
183 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
184 {
185 struct its_collection *collection;
186
187 list_for_each_entry(collection, &its->collection_list, coll_list) {
188 if (coll_id == collection->collection_id)
189 return collection;
190 }
191
192 return NULL;
193 }
194
195 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED)
196 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc)
197
198 /*
199 * Reads the configuration data for a given LPI from guest memory and
200 * updates the fields in struct vgic_irq.
201 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
202 * VCPU. Unconditionally applies if filter_vcpu is NULL.
203 */
204 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
205 struct kvm_vcpu *filter_vcpu)
206 {
207 u64 propbase = PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
208 u8 prop;
209 int ret;
210
211 ret = kvm_read_guest(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
212 &prop, 1);
213
214 if (ret)
215 return ret;
216
217 spin_lock(&irq->irq_lock);
218
219 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
220 irq->priority = LPI_PROP_PRIORITY(prop);
221 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
222
223 vgic_queue_irq_unlock(kvm, irq);
224 } else {
225 spin_unlock(&irq->irq_lock);
226 }
227
228 return 0;
229 }
230
231 /*
232 * Create a snapshot of the current LPI list, so that we can enumerate all
233 * LPIs without holding any lock.
234 * Returns the array length and puts the kmalloc'ed array into intid_ptr.
235 */
236 static int vgic_copy_lpi_list(struct kvm *kvm, u32 **intid_ptr)
237 {
238 struct vgic_dist *dist = &kvm->arch.vgic;
239 struct vgic_irq *irq;
240 u32 *intids;
241 int irq_count = dist->lpi_list_count, i = 0;
242
243 /*
244 * We use the current value of the list length, which may change
245 * after the kmalloc. We don't care, because the guest shouldn't
246 * change anything while the command handling is still running,
247 * and in the worst case we would miss a new IRQ, which one wouldn't
248 * expect to be covered by this command anyway.
249 */
250 intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
251 if (!intids)
252 return -ENOMEM;
253
254 spin_lock(&dist->lpi_list_lock);
255 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
256 /* We don't need to "get" the IRQ, as we hold the list lock. */
257 intids[i] = irq->intid;
258 if (++i == irq_count)
259 break;
260 }
261 spin_unlock(&dist->lpi_list_lock);
262
263 *intid_ptr = intids;
264 return irq_count;
265 }
266
267 /*
268 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
269 * is targeting) to the VGIC's view, which deals with target VCPUs.
270 * Needs to be called whenever either the collection for a LPIs has
271 * changed or the collection itself got retargeted.
272 */
273 static void update_affinity_itte(struct kvm *kvm, struct its_itte *itte)
274 {
275 struct kvm_vcpu *vcpu;
276
277 if (!its_is_collection_mapped(itte->collection))
278 return;
279
280 vcpu = kvm_get_vcpu(kvm, itte->collection->target_addr);
281
282 spin_lock(&itte->irq->irq_lock);
283 itte->irq->target_vcpu = vcpu;
284 spin_unlock(&itte->irq->irq_lock);
285 }
286
287 /*
288 * Updates the target VCPU for every LPI targeting this collection.
289 * Must be called with the its_lock mutex held.
290 */
291 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
292 struct its_collection *coll)
293 {
294 struct its_device *device;
295 struct its_itte *itte;
296
297 for_each_lpi_its(device, itte, its) {
298 if (!itte->collection || coll != itte->collection)
299 continue;
300
301 update_affinity_itte(kvm, itte);
302 }
303 }
304
305 static u32 max_lpis_propbaser(u64 propbaser)
306 {
307 int nr_idbits = (propbaser & 0x1f) + 1;
308
309 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
310 }
311
312 /*
313 * Scan the whole LPI pending table and sync the pending bit in there
314 * with our own data structures. This relies on the LPI being
315 * mapped before.
316 */
317 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
318 {
319 gpa_t pendbase = PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
320 struct vgic_irq *irq;
321 int last_byte_offset = -1;
322 int ret = 0;
323 u32 *intids;
324 int nr_irqs, i;
325
326 nr_irqs = vgic_copy_lpi_list(vcpu->kvm, &intids);
327 if (nr_irqs < 0)
328 return nr_irqs;
329
330 for (i = 0; i < nr_irqs; i++) {
331 int byte_offset, bit_nr;
332 u8 pendmask;
333
334 byte_offset = intids[i] / BITS_PER_BYTE;
335 bit_nr = intids[i] % BITS_PER_BYTE;
336
337 /*
338 * For contiguously allocated LPIs chances are we just read
339 * this very same byte in the last iteration. Reuse that.
340 */
341 if (byte_offset != last_byte_offset) {
342 ret = kvm_read_guest(vcpu->kvm, pendbase + byte_offset,
343 &pendmask, 1);
344 if (ret) {
345 kfree(intids);
346 return ret;
347 }
348 last_byte_offset = byte_offset;
349 }
350
351 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
352 spin_lock(&irq->irq_lock);
353 irq->pending = pendmask & (1U << bit_nr);
354 vgic_queue_irq_unlock(vcpu->kvm, irq);
355 vgic_put_irq(vcpu->kvm, irq);
356 }
357
358 kfree(intids);
359
360 return ret;
361 }
362
363 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
364 struct vgic_its *its,
365 gpa_t addr, unsigned int len)
366 {
367 u32 reg = 0;
368
369 mutex_lock(&its->cmd_lock);
370 if (its->creadr == its->cwriter)
371 reg |= GITS_CTLR_QUIESCENT;
372 if (its->enabled)
373 reg |= GITS_CTLR_ENABLE;
374 mutex_unlock(&its->cmd_lock);
375
376 return reg;
377 }
378
379 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
380 gpa_t addr, unsigned int len,
381 unsigned long val)
382 {
383 its->enabled = !!(val & GITS_CTLR_ENABLE);
384 }
385
386 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
387 struct vgic_its *its,
388 gpa_t addr, unsigned int len)
389 {
390 u64 reg = GITS_TYPER_PLPIS;
391
392 /*
393 * We use linear CPU numbers for redistributor addressing,
394 * so GITS_TYPER.PTA is 0.
395 * Also we force all PROPBASER registers to be the same, so
396 * CommonLPIAff is 0 as well.
397 * To avoid memory waste in the guest, we keep the number of IDBits and
398 * DevBits low - as least for the time being.
399 */
400 reg |= 0x0f << GITS_TYPER_DEVBITS_SHIFT;
401 reg |= 0x0f << GITS_TYPER_IDBITS_SHIFT;
402
403 return extract_bytes(reg, addr & 7, len);
404 }
405
406 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
407 struct vgic_its *its,
408 gpa_t addr, unsigned int len)
409 {
410 return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
411 }
412
413 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
414 struct vgic_its *its,
415 gpa_t addr, unsigned int len)
416 {
417 switch (addr & 0xffff) {
418 case GITS_PIDR0:
419 return 0x92; /* part number, bits[7:0] */
420 case GITS_PIDR1:
421 return 0xb4; /* part number, bits[11:8] */
422 case GITS_PIDR2:
423 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
424 case GITS_PIDR4:
425 return 0x40; /* This is a 64K software visible page */
426 /* The following are the ID registers for (any) GIC. */
427 case GITS_CIDR0:
428 return 0x0d;
429 case GITS_CIDR1:
430 return 0xf0;
431 case GITS_CIDR2:
432 return 0x05;
433 case GITS_CIDR3:
434 return 0xb1;
435 }
436
437 return 0;
438 }
439
440 /*
441 * Find the target VCPU and the LPI number for a given devid/eventid pair
442 * and make this IRQ pending, possibly injecting it.
443 * Must be called with the its_lock mutex held.
444 */
445 static void vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
446 u32 devid, u32 eventid)
447 {
448 struct its_itte *itte;
449
450 if (!its->enabled)
451 return;
452
453 itte = find_itte(its, devid, eventid);
454 /* Triggering an unmapped IRQ gets silently dropped. */
455 if (itte && its_is_collection_mapped(itte->collection)) {
456 struct kvm_vcpu *vcpu;
457
458 vcpu = kvm_get_vcpu(kvm, itte->collection->target_addr);
459 if (vcpu && vcpu->arch.vgic_cpu.lpis_enabled) {
460 spin_lock(&itte->irq->irq_lock);
461 itte->irq->pending = true;
462 vgic_queue_irq_unlock(kvm, itte->irq);
463 }
464 }
465 }
466
467 /*
468 * Queries the KVM IO bus framework to get the ITS pointer from the given
469 * doorbell address.
470 * We then call vgic_its_trigger_msi() with the decoded data.
471 */
472 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
473 {
474 u64 address;
475 struct kvm_io_device *kvm_io_dev;
476 struct vgic_io_device *iodev;
477
478 if (!vgic_has_its(kvm))
479 return -ENODEV;
480
481 if (!(msi->flags & KVM_MSI_VALID_DEVID))
482 return -EINVAL;
483
484 address = (u64)msi->address_hi << 32 | msi->address_lo;
485
486 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
487 if (!kvm_io_dev)
488 return -ENODEV;
489
490 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
491
492 mutex_lock(&iodev->its->its_lock);
493 vgic_its_trigger_msi(kvm, iodev->its, msi->devid, msi->data);
494 mutex_unlock(&iodev->its->its_lock);
495
496 return 0;
497 }
498
499 /* Requires the its_lock to be held. */
500 static void its_free_itte(struct kvm *kvm, struct its_itte *itte)
501 {
502 list_del(&itte->itte_list);
503
504 /* This put matches the get in vgic_add_lpi. */
505 vgic_put_irq(kvm, itte->irq);
506
507 kfree(itte);
508 }
509
510 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
511 {
512 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
513 }
514
515 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
516 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
517 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
518 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
519 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
520 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
521 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
522
523 /*
524 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
525 * Must be called with the its_lock mutex held.
526 */
527 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
528 u64 *its_cmd)
529 {
530 u32 device_id = its_cmd_get_deviceid(its_cmd);
531 u32 event_id = its_cmd_get_id(its_cmd);
532 struct its_itte *itte;
533
534
535 itte = find_itte(its, device_id, event_id);
536 if (itte && itte->collection) {
537 /*
538 * Though the spec talks about removing the pending state, we
539 * don't bother here since we clear the ITTE anyway and the
540 * pending state is a property of the ITTE struct.
541 */
542 its_free_itte(kvm, itte);
543 return 0;
544 }
545
546 return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
547 }
548
549 /*
550 * The MOVI command moves an ITTE to a different collection.
551 * Must be called with the its_lock mutex held.
552 */
553 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
554 u64 *its_cmd)
555 {
556 u32 device_id = its_cmd_get_deviceid(its_cmd);
557 u32 event_id = its_cmd_get_id(its_cmd);
558 u32 coll_id = its_cmd_get_collection(its_cmd);
559 struct kvm_vcpu *vcpu;
560 struct its_itte *itte;
561 struct its_collection *collection;
562
563 itte = find_itte(its, device_id, event_id);
564 if (!itte)
565 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
566
567 if (!its_is_collection_mapped(itte->collection))
568 return E_ITS_MOVI_UNMAPPED_COLLECTION;
569
570 collection = find_collection(its, coll_id);
571 if (!its_is_collection_mapped(collection))
572 return E_ITS_MOVI_UNMAPPED_COLLECTION;
573
574 itte->collection = collection;
575 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
576
577 spin_lock(&itte->irq->irq_lock);
578 itte->irq->target_vcpu = vcpu;
579 spin_unlock(&itte->irq->irq_lock);
580
581 return 0;
582 }
583
584 static int vgic_its_alloc_collection(struct vgic_its *its,
585 struct its_collection **colp,
586 u32 coll_id)
587 {
588 struct its_collection *collection;
589
590 collection = kzalloc(sizeof(*collection), GFP_KERNEL);
591
592 collection->collection_id = coll_id;
593 collection->target_addr = COLLECTION_NOT_MAPPED;
594
595 list_add_tail(&collection->coll_list, &its->collection_list);
596 *colp = collection;
597
598 return 0;
599 }
600
601 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
602 {
603 struct its_collection *collection;
604 struct its_device *device;
605 struct its_itte *itte;
606
607 /*
608 * Clearing the mapping for that collection ID removes the
609 * entry from the list. If there wasn't any before, we can
610 * go home early.
611 */
612 collection = find_collection(its, coll_id);
613 if (!collection)
614 return;
615
616 for_each_lpi_its(device, itte, its)
617 if (itte->collection &&
618 itte->collection->collection_id == coll_id)
619 itte->collection = NULL;
620
621 list_del(&collection->coll_list);
622 kfree(collection);
623 }
624
625 /*
626 * The MAPTI and MAPI commands map LPIs to ITTEs.
627 * Must be called with its_lock mutex held.
628 */
629 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
630 u64 *its_cmd, u8 subcmd)
631 {
632 u32 device_id = its_cmd_get_deviceid(its_cmd);
633 u32 event_id = its_cmd_get_id(its_cmd);
634 u32 coll_id = its_cmd_get_collection(its_cmd);
635 struct its_itte *itte;
636 struct its_device *device;
637 struct its_collection *collection, *new_coll = NULL;
638 int lpi_nr;
639 int ret;
640
641 device = find_its_device(its, device_id);
642 if (!device)
643 return E_ITS_MAPTI_UNMAPPED_DEVICE;
644
645 collection = find_collection(its, coll_id);
646 if (!collection) {
647 ret = vgic_its_alloc_collection(its, &collection, coll_id);
648 if (ret)
649 return ret;
650 new_coll = collection;
651 }
652
653 if (subcmd == GITS_CMD_MAPTI)
654 lpi_nr = its_cmd_get_physical_id(its_cmd);
655 else
656 lpi_nr = event_id;
657 if (lpi_nr < GIC_LPI_OFFSET ||
658 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser)) {
659 ret = E_ITS_MAPTI_PHYSICALID_OOR;
660 goto err;
661 }
662
663 itte = find_itte(its, device_id, event_id);
664 if (!itte) {
665 itte = kzalloc(sizeof(struct its_itte), GFP_KERNEL);
666 if (!itte) {
667 ret = -ENOMEM;
668 goto err;
669 }
670
671 itte->event_id = event_id;
672 list_add_tail(&itte->itte_list, &device->itt_head);
673 }
674
675 itte->collection = collection;
676 itte->lpi = lpi_nr;
677 itte->irq = vgic_add_lpi(kvm, lpi_nr);
678 update_affinity_itte(kvm, itte);
679
680 /*
681 * We "cache" the configuration table entries in out struct vgic_irq's.
682 * However we only have those structs for mapped IRQs, so we read in
683 * the respective config data from memory here upon mapping the LPI.
684 */
685 update_lpi_config(kvm, itte->irq, NULL);
686
687 return 0;
688 err:
689 if (new_coll)
690 vgic_its_free_collection(its, coll_id);
691 return ret;
692 }
693
694 /* Requires the its_lock to be held. */
695 static void vgic_its_unmap_device(struct kvm *kvm, struct its_device *device)
696 {
697 struct its_itte *itte, *temp;
698
699 /*
700 * The spec says that unmapping a device with still valid
701 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
702 * since we cannot leave the memory unreferenced.
703 */
704 list_for_each_entry_safe(itte, temp, &device->itt_head, itte_list)
705 its_free_itte(kvm, itte);
706
707 list_del(&device->dev_list);
708 kfree(device);
709 }
710
711 /*
712 * Check whether a device ID can be stored into the guest device tables.
713 * For a direct table this is pretty easy, but gets a bit nasty for
714 * indirect tables. We check whether the resulting guest physical address
715 * is actually valid (covered by a memslot and guest accessbible).
716 * For this we have to read the respective first level entry.
717 */
718 static bool vgic_its_check_device_id(struct kvm *kvm, struct vgic_its *its,
719 int device_id)
720 {
721 u64 r = its->baser_device_table;
722 int l1_tbl_size = GITS_BASER_NR_PAGES(r) * SZ_64K;
723 int index;
724 u64 indirect_ptr;
725 gfn_t gfn;
726
727
728 if (!(r & GITS_BASER_INDIRECT)) {
729 phys_addr_t addr;
730
731 if (device_id >= (l1_tbl_size / GITS_BASER_ENTRY_SIZE(r)))
732 return false;
733
734 addr = BASER_ADDRESS(r) + device_id * GITS_BASER_ENTRY_SIZE(r);
735 gfn = addr >> PAGE_SHIFT;
736
737 return kvm_is_visible_gfn(kvm, gfn);
738 }
739
740 /* calculate and check the index into the 1st level */
741 index = device_id / (SZ_64K / GITS_BASER_ENTRY_SIZE(r));
742 if (index >= (l1_tbl_size / sizeof(u64)))
743 return false;
744
745 /* Each 1st level entry is represented by a 64-bit value. */
746 if (kvm_read_guest(kvm,
747 BASER_ADDRESS(r) + index * sizeof(indirect_ptr),
748 &indirect_ptr, sizeof(indirect_ptr)))
749 return false;
750
751 indirect_ptr = le64_to_cpu(indirect_ptr);
752
753 /* check the valid bit of the first level entry */
754 if (!(indirect_ptr & BIT_ULL(63)))
755 return false;
756
757 /*
758 * Mask the guest physical address and calculate the frame number.
759 * Any address beyond our supported 48 bits of PA will be caught
760 * by the actual check in the final step.
761 */
762 indirect_ptr &= GENMASK_ULL(51, 16);
763
764 /* Find the address of the actual entry */
765 index = device_id % (SZ_64K / GITS_BASER_ENTRY_SIZE(r));
766 indirect_ptr += index * GITS_BASER_ENTRY_SIZE(r);
767 gfn = indirect_ptr >> PAGE_SHIFT;
768
769 return kvm_is_visible_gfn(kvm, gfn);
770 }
771
772 /*
773 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
774 * Must be called with the its_lock mutex held.
775 */
776 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
777 u64 *its_cmd)
778 {
779 u32 device_id = its_cmd_get_deviceid(its_cmd);
780 bool valid = its_cmd_get_validbit(its_cmd);
781 struct its_device *device;
782
783 if (!vgic_its_check_device_id(kvm, its, device_id))
784 return E_ITS_MAPD_DEVICE_OOR;
785
786 device = find_its_device(its, device_id);
787
788 /*
789 * The spec says that calling MAPD on an already mapped device
790 * invalidates all cached data for this device. We implement this
791 * by removing the mapping and re-establishing it.
792 */
793 if (device)
794 vgic_its_unmap_device(kvm, device);
795
796 /*
797 * The spec does not say whether unmapping a not-mapped device
798 * is an error, so we are done in any case.
799 */
800 if (!valid)
801 return 0;
802
803 device = kzalloc(sizeof(struct its_device), GFP_KERNEL);
804 if (!device)
805 return -ENOMEM;
806
807 device->device_id = device_id;
808 INIT_LIST_HEAD(&device->itt_head);
809
810 list_add_tail(&device->dev_list, &its->device_list);
811
812 return 0;
813 }
814
815 static int vgic_its_nr_collection_ids(struct vgic_its *its)
816 {
817 u64 r = its->baser_coll_table;
818
819 return (GITS_BASER_NR_PAGES(r) * SZ_64K) / GITS_BASER_ENTRY_SIZE(r);
820 }
821
822 /*
823 * The MAPC command maps collection IDs to redistributors.
824 * Must be called with the its_lock mutex held.
825 */
826 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
827 u64 *its_cmd)
828 {
829 u16 coll_id;
830 u32 target_addr;
831 struct its_collection *collection;
832 bool valid;
833
834 valid = its_cmd_get_validbit(its_cmd);
835 coll_id = its_cmd_get_collection(its_cmd);
836 target_addr = its_cmd_get_target_addr(its_cmd);
837
838 if (target_addr >= atomic_read(&kvm->online_vcpus))
839 return E_ITS_MAPC_PROCNUM_OOR;
840
841 if (coll_id >= vgic_its_nr_collection_ids(its))
842 return E_ITS_MAPC_COLLECTION_OOR;
843
844 if (!valid) {
845 vgic_its_free_collection(its, coll_id);
846 } else {
847 collection = find_collection(its, coll_id);
848
849 if (!collection) {
850 int ret;
851
852 ret = vgic_its_alloc_collection(its, &collection,
853 coll_id);
854 if (ret)
855 return ret;
856 collection->target_addr = target_addr;
857 } else {
858 collection->target_addr = target_addr;
859 update_affinity_collection(kvm, its, collection);
860 }
861 }
862
863 return 0;
864 }
865
866 /*
867 * The CLEAR command removes the pending state for a particular LPI.
868 * Must be called with the its_lock mutex held.
869 */
870 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
871 u64 *its_cmd)
872 {
873 u32 device_id = its_cmd_get_deviceid(its_cmd);
874 u32 event_id = its_cmd_get_id(its_cmd);
875 struct its_itte *itte;
876
877
878 itte = find_itte(its, device_id, event_id);
879 if (!itte)
880 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
881
882 itte->irq->pending = false;
883
884 return 0;
885 }
886
887 /*
888 * The INV command syncs the configuration bits from the memory table.
889 * Must be called with the its_lock mutex held.
890 */
891 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
892 u64 *its_cmd)
893 {
894 u32 device_id = its_cmd_get_deviceid(its_cmd);
895 u32 event_id = its_cmd_get_id(its_cmd);
896 struct its_itte *itte;
897
898
899 itte = find_itte(its, device_id, event_id);
900 if (!itte)
901 return E_ITS_INV_UNMAPPED_INTERRUPT;
902
903 return update_lpi_config(kvm, itte->irq, NULL);
904 }
905
906 /*
907 * The INVALL command requests flushing of all IRQ data in this collection.
908 * Find the VCPU mapped to that collection, then iterate over the VM's list
909 * of mapped LPIs and update the configuration for each IRQ which targets
910 * the specified vcpu. The configuration will be read from the in-memory
911 * configuration table.
912 * Must be called with the its_lock mutex held.
913 */
914 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
915 u64 *its_cmd)
916 {
917 u32 coll_id = its_cmd_get_collection(its_cmd);
918 struct its_collection *collection;
919 struct kvm_vcpu *vcpu;
920 struct vgic_irq *irq;
921 u32 *intids;
922 int irq_count, i;
923
924 collection = find_collection(its, coll_id);
925 if (!its_is_collection_mapped(collection))
926 return E_ITS_INVALL_UNMAPPED_COLLECTION;
927
928 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
929
930 irq_count = vgic_copy_lpi_list(kvm, &intids);
931 if (irq_count < 0)
932 return irq_count;
933
934 for (i = 0; i < irq_count; i++) {
935 irq = vgic_get_irq(kvm, NULL, intids[i]);
936 if (!irq)
937 continue;
938 update_lpi_config(kvm, irq, vcpu);
939 vgic_put_irq(kvm, irq);
940 }
941
942 kfree(intids);
943
944 return 0;
945 }
946
947 /*
948 * The MOVALL command moves the pending state of all IRQs targeting one
949 * redistributor to another. We don't hold the pending state in the VCPUs,
950 * but in the IRQs instead, so there is really not much to do for us here.
951 * However the spec says that no IRQ must target the old redistributor
952 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
953 * This command affects all LPIs in the system that target that redistributor.
954 */
955 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
956 u64 *its_cmd)
957 {
958 struct vgic_dist *dist = &kvm->arch.vgic;
959 u32 target1_addr = its_cmd_get_target_addr(its_cmd);
960 u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
961 struct kvm_vcpu *vcpu1, *vcpu2;
962 struct vgic_irq *irq;
963
964 if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
965 target2_addr >= atomic_read(&kvm->online_vcpus))
966 return E_ITS_MOVALL_PROCNUM_OOR;
967
968 if (target1_addr == target2_addr)
969 return 0;
970
971 vcpu1 = kvm_get_vcpu(kvm, target1_addr);
972 vcpu2 = kvm_get_vcpu(kvm, target2_addr);
973
974 spin_lock(&dist->lpi_list_lock);
975
976 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
977 spin_lock(&irq->irq_lock);
978
979 if (irq->target_vcpu == vcpu1)
980 irq->target_vcpu = vcpu2;
981
982 spin_unlock(&irq->irq_lock);
983 }
984
985 spin_unlock(&dist->lpi_list_lock);
986
987 return 0;
988 }
989
990 /*
991 * The INT command injects the LPI associated with that DevID/EvID pair.
992 * Must be called with the its_lock mutex held.
993 */
994 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
995 u64 *its_cmd)
996 {
997 u32 msi_data = its_cmd_get_id(its_cmd);
998 u64 msi_devid = its_cmd_get_deviceid(its_cmd);
999
1000 vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1001
1002 return 0;
1003 }
1004
1005 /*
1006 * This function is called with the its_cmd lock held, but the ITS data
1007 * structure lock dropped.
1008 */
1009 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1010 u64 *its_cmd)
1011 {
1012 u8 cmd = its_cmd_get_command(its_cmd);
1013 int ret = -ENODEV;
1014
1015 mutex_lock(&its->its_lock);
1016 switch (cmd) {
1017 case GITS_CMD_MAPD:
1018 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1019 break;
1020 case GITS_CMD_MAPC:
1021 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1022 break;
1023 case GITS_CMD_MAPI:
1024 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd, cmd);
1025 break;
1026 case GITS_CMD_MAPTI:
1027 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd, cmd);
1028 break;
1029 case GITS_CMD_MOVI:
1030 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1031 break;
1032 case GITS_CMD_DISCARD:
1033 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1034 break;
1035 case GITS_CMD_CLEAR:
1036 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1037 break;
1038 case GITS_CMD_MOVALL:
1039 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1040 break;
1041 case GITS_CMD_INT:
1042 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1043 break;
1044 case GITS_CMD_INV:
1045 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1046 break;
1047 case GITS_CMD_INVALL:
1048 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1049 break;
1050 case GITS_CMD_SYNC:
1051 /* we ignore this command: we are in sync all of the time */
1052 ret = 0;
1053 break;
1054 }
1055 mutex_unlock(&its->its_lock);
1056
1057 return ret;
1058 }
1059
1060 static u64 vgic_sanitise_its_baser(u64 reg)
1061 {
1062 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1063 GITS_BASER_SHAREABILITY_SHIFT,
1064 vgic_sanitise_shareability);
1065 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1066 GITS_BASER_INNER_CACHEABILITY_SHIFT,
1067 vgic_sanitise_inner_cacheability);
1068 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1069 GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1070 vgic_sanitise_outer_cacheability);
1071
1072 /* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */
1073 reg &= ~GENMASK_ULL(15, 12);
1074
1075 /* We support only one (ITS) page size: 64K */
1076 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1077
1078 return reg;
1079 }
1080
1081 static u64 vgic_sanitise_its_cbaser(u64 reg)
1082 {
1083 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1084 GITS_CBASER_SHAREABILITY_SHIFT,
1085 vgic_sanitise_shareability);
1086 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1087 GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1088 vgic_sanitise_inner_cacheability);
1089 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1090 GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1091 vgic_sanitise_outer_cacheability);
1092
1093 /*
1094 * Sanitise the physical address to be 64k aligned.
1095 * Also limit the physical addresses to 48 bits.
1096 */
1097 reg &= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12));
1098
1099 return reg;
1100 }
1101
1102 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1103 struct vgic_its *its,
1104 gpa_t addr, unsigned int len)
1105 {
1106 return extract_bytes(its->cbaser, addr & 7, len);
1107 }
1108
1109 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1110 gpa_t addr, unsigned int len,
1111 unsigned long val)
1112 {
1113 /* When GITS_CTLR.Enable is 1, this register is RO. */
1114 if (its->enabled)
1115 return;
1116
1117 mutex_lock(&its->cmd_lock);
1118 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1119 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1120 its->creadr = 0;
1121 /*
1122 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1123 * it to CREADR to make sure we start with an empty command buffer.
1124 */
1125 its->cwriter = its->creadr;
1126 mutex_unlock(&its->cmd_lock);
1127 }
1128
1129 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12)
1130 #define ITS_CMD_SIZE 32
1131 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5))
1132
1133 /*
1134 * By writing to CWRITER the guest announces new commands to be processed.
1135 * To avoid any races in the first place, we take the its_cmd lock, which
1136 * protects our ring buffer variables, so that there is only one user
1137 * per ITS handling commands at a given time.
1138 */
1139 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1140 gpa_t addr, unsigned int len,
1141 unsigned long val)
1142 {
1143 gpa_t cbaser;
1144 u64 cmd_buf[4];
1145 u32 reg;
1146
1147 if (!its)
1148 return;
1149
1150 mutex_lock(&its->cmd_lock);
1151
1152 reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1153 reg = ITS_CMD_OFFSET(reg);
1154 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1155 mutex_unlock(&its->cmd_lock);
1156 return;
1157 }
1158
1159 its->cwriter = reg;
1160 cbaser = CBASER_ADDRESS(its->cbaser);
1161
1162 while (its->cwriter != its->creadr) {
1163 int ret = kvm_read_guest(kvm, cbaser + its->creadr,
1164 cmd_buf, ITS_CMD_SIZE);
1165 /*
1166 * If kvm_read_guest() fails, this could be due to the guest
1167 * programming a bogus value in CBASER or something else going
1168 * wrong from which we cannot easily recover.
1169 * According to section 6.3.2 in the GICv3 spec we can just
1170 * ignore that command then.
1171 */
1172 if (!ret)
1173 vgic_its_handle_command(kvm, its, cmd_buf);
1174
1175 its->creadr += ITS_CMD_SIZE;
1176 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1177 its->creadr = 0;
1178 }
1179
1180 mutex_unlock(&its->cmd_lock);
1181 }
1182
1183 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1184 struct vgic_its *its,
1185 gpa_t addr, unsigned int len)
1186 {
1187 return extract_bytes(its->cwriter, addr & 0x7, len);
1188 }
1189
1190 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1191 struct vgic_its *its,
1192 gpa_t addr, unsigned int len)
1193 {
1194 return extract_bytes(its->creadr, addr & 0x7, len);
1195 }
1196
1197 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1198 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1199 struct vgic_its *its,
1200 gpa_t addr, unsigned int len)
1201 {
1202 u64 reg;
1203
1204 switch (BASER_INDEX(addr)) {
1205 case 0:
1206 reg = its->baser_device_table;
1207 break;
1208 case 1:
1209 reg = its->baser_coll_table;
1210 break;
1211 default:
1212 reg = 0;
1213 break;
1214 }
1215
1216 return extract_bytes(reg, addr & 7, len);
1217 }
1218
1219 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1220 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1221 struct vgic_its *its,
1222 gpa_t addr, unsigned int len,
1223 unsigned long val)
1224 {
1225 u64 entry_size, device_type;
1226 u64 reg, *regptr, clearbits = 0;
1227
1228 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1229 if (its->enabled)
1230 return;
1231
1232 switch (BASER_INDEX(addr)) {
1233 case 0:
1234 regptr = &its->baser_device_table;
1235 entry_size = 8;
1236 device_type = GITS_BASER_TYPE_DEVICE;
1237 break;
1238 case 1:
1239 regptr = &its->baser_coll_table;
1240 entry_size = 8;
1241 device_type = GITS_BASER_TYPE_COLLECTION;
1242 clearbits = GITS_BASER_INDIRECT;
1243 break;
1244 default:
1245 return;
1246 }
1247
1248 reg = update_64bit_reg(*regptr, addr & 7, len, val);
1249 reg &= ~GITS_BASER_RO_MASK;
1250 reg &= ~clearbits;
1251
1252 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1253 reg |= device_type << GITS_BASER_TYPE_SHIFT;
1254 reg = vgic_sanitise_its_baser(reg);
1255
1256 *regptr = reg;
1257 }
1258
1259 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \
1260 { \
1261 .reg_offset = off, \
1262 .len = length, \
1263 .access_flags = acc, \
1264 .its_read = rd, \
1265 .its_write = wr, \
1266 }
1267
1268 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1269 gpa_t addr, unsigned int len, unsigned long val)
1270 {
1271 /* Ignore */
1272 }
1273
1274 static struct vgic_register_region its_registers[] = {
1275 REGISTER_ITS_DESC(GITS_CTLR,
1276 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1277 VGIC_ACCESS_32bit),
1278 REGISTER_ITS_DESC(GITS_IIDR,
1279 vgic_mmio_read_its_iidr, its_mmio_write_wi, 4,
1280 VGIC_ACCESS_32bit),
1281 REGISTER_ITS_DESC(GITS_TYPER,
1282 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1283 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1284 REGISTER_ITS_DESC(GITS_CBASER,
1285 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1286 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1287 REGISTER_ITS_DESC(GITS_CWRITER,
1288 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1289 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1290 REGISTER_ITS_DESC(GITS_CREADR,
1291 vgic_mmio_read_its_creadr, its_mmio_write_wi, 8,
1292 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1293 REGISTER_ITS_DESC(GITS_BASER,
1294 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1295 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1296 REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1297 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1298 VGIC_ACCESS_32bit),
1299 };
1300
1301 /* This is called on setting the LPI enable bit in the redistributor. */
1302 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1303 {
1304 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1305 its_sync_lpi_pending_table(vcpu);
1306 }
1307
1308 static int vgic_its_init_its(struct kvm *kvm, struct vgic_its *its)
1309 {
1310 struct vgic_io_device *iodev = &its->iodev;
1311 int ret;
1312
1313 if (its->initialized)
1314 return 0;
1315
1316 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base))
1317 return -ENXIO;
1318
1319 iodev->regions = its_registers;
1320 iodev->nr_regions = ARRAY_SIZE(its_registers);
1321 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1322
1323 iodev->base_addr = its->vgic_its_base;
1324 iodev->iodev_type = IODEV_ITS;
1325 iodev->its = its;
1326 mutex_lock(&kvm->slots_lock);
1327 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1328 KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1329 mutex_unlock(&kvm->slots_lock);
1330
1331 if (!ret)
1332 its->initialized = true;
1333
1334 return ret;
1335 }
1336
1337 #define INITIAL_BASER_VALUE \
1338 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
1339 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
1340 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
1341 ((8ULL - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | \
1342 GITS_BASER_PAGE_SIZE_64K)
1343
1344 #define INITIAL_PROPBASER_VALUE \
1345 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \
1346 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \
1347 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1348
1349 static int vgic_its_create(struct kvm_device *dev, u32 type)
1350 {
1351 struct vgic_its *its;
1352
1353 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1354 return -ENODEV;
1355
1356 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1357 if (!its)
1358 return -ENOMEM;
1359
1360 mutex_init(&its->its_lock);
1361 mutex_init(&its->cmd_lock);
1362
1363 its->vgic_its_base = VGIC_ADDR_UNDEF;
1364
1365 INIT_LIST_HEAD(&its->device_list);
1366 INIT_LIST_HEAD(&its->collection_list);
1367
1368 dev->kvm->arch.vgic.has_its = true;
1369 its->initialized = false;
1370 its->enabled = false;
1371 its->dev = dev;
1372
1373 its->baser_device_table = INITIAL_BASER_VALUE |
1374 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1375 its->baser_coll_table = INITIAL_BASER_VALUE |
1376 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1377 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1378
1379 dev->private = its;
1380
1381 return 0;
1382 }
1383
1384 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1385 {
1386 struct kvm *kvm = kvm_dev->kvm;
1387 struct vgic_its *its = kvm_dev->private;
1388 struct its_device *dev;
1389 struct its_itte *itte;
1390 struct list_head *dev_cur, *dev_temp;
1391 struct list_head *cur, *temp;
1392
1393 /*
1394 * We may end up here without the lists ever having been initialized.
1395 * Check this and bail out early to avoid dereferencing a NULL pointer.
1396 */
1397 if (!its->device_list.next)
1398 return;
1399
1400 mutex_lock(&its->its_lock);
1401 list_for_each_safe(dev_cur, dev_temp, &its->device_list) {
1402 dev = container_of(dev_cur, struct its_device, dev_list);
1403 list_for_each_safe(cur, temp, &dev->itt_head) {
1404 itte = (container_of(cur, struct its_itte, itte_list));
1405 its_free_itte(kvm, itte);
1406 }
1407 list_del(dev_cur);
1408 kfree(dev);
1409 }
1410
1411 list_for_each_safe(cur, temp, &its->collection_list) {
1412 list_del(cur);
1413 kfree(container_of(cur, struct its_collection, coll_list));
1414 }
1415 mutex_unlock(&its->its_lock);
1416
1417 kfree(its);
1418 }
1419
1420 static int vgic_its_has_attr(struct kvm_device *dev,
1421 struct kvm_device_attr *attr)
1422 {
1423 switch (attr->group) {
1424 case KVM_DEV_ARM_VGIC_GRP_ADDR:
1425 switch (attr->attr) {
1426 case KVM_VGIC_ITS_ADDR_TYPE:
1427 return 0;
1428 }
1429 break;
1430 case KVM_DEV_ARM_VGIC_GRP_CTRL:
1431 switch (attr->attr) {
1432 case KVM_DEV_ARM_VGIC_CTRL_INIT:
1433 return 0;
1434 }
1435 break;
1436 }
1437 return -ENXIO;
1438 }
1439
1440 static int vgic_its_set_attr(struct kvm_device *dev,
1441 struct kvm_device_attr *attr)
1442 {
1443 struct vgic_its *its = dev->private;
1444 int ret;
1445
1446 switch (attr->group) {
1447 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1448 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1449 unsigned long type = (unsigned long)attr->attr;
1450 u64 addr;
1451
1452 if (type != KVM_VGIC_ITS_ADDR_TYPE)
1453 return -ENODEV;
1454
1455 if (its->initialized)
1456 return -EBUSY;
1457
1458 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1459 return -EFAULT;
1460
1461 ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
1462 addr, SZ_64K);
1463 if (ret)
1464 return ret;
1465
1466 its->vgic_its_base = addr;
1467
1468 return 0;
1469 }
1470 case KVM_DEV_ARM_VGIC_GRP_CTRL:
1471 switch (attr->attr) {
1472 case KVM_DEV_ARM_VGIC_CTRL_INIT:
1473 return vgic_its_init_its(dev->kvm, its);
1474 }
1475 break;
1476 }
1477 return -ENXIO;
1478 }
1479
1480 static int vgic_its_get_attr(struct kvm_device *dev,
1481 struct kvm_device_attr *attr)
1482 {
1483 switch (attr->group) {
1484 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1485 struct vgic_its *its = dev->private;
1486 u64 addr = its->vgic_its_base;
1487 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1488 unsigned long type = (unsigned long)attr->attr;
1489
1490 if (type != KVM_VGIC_ITS_ADDR_TYPE)
1491 return -ENODEV;
1492
1493 if (copy_to_user(uaddr, &addr, sizeof(addr)))
1494 return -EFAULT;
1495 break;
1496 default:
1497 return -ENXIO;
1498 }
1499 }
1500
1501 return 0;
1502 }
1503
1504 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
1505 .name = "kvm-arm-vgic-its",
1506 .create = vgic_its_create,
1507 .destroy = vgic_its_destroy,
1508 .set_attr = vgic_its_set_attr,
1509 .get_attr = vgic_its_get_attr,
1510 .has_attr = vgic_its_has_attr,
1511 };
1512
1513 int kvm_vgic_register_its_device(void)
1514 {
1515 return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
1516 KVM_DEV_TYPE_ARM_VGIC_ITS);
1517 }
This page took 0.191656 seconds and 6 git commands to generate.