Merge remote-tracking branches 'regmap/topic/bulk', 'regmap/topic/i2c', 'regmap/topic...
[deliverable/linux.git] / virt / kvm / arm / vgic / vgic-mmio.c
1 /*
2 * VGIC MMIO handling functions
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 */
13
14 #include <linux/bitops.h>
15 #include <linux/bsearch.h>
16 #include <linux/kvm.h>
17 #include <linux/kvm_host.h>
18 #include <kvm/iodev.h>
19 #include <kvm/arm_vgic.h>
20
21 #include "vgic.h"
22 #include "vgic-mmio.h"
23
24 unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
25 gpa_t addr, unsigned int len)
26 {
27 return 0;
28 }
29
30 unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
31 gpa_t addr, unsigned int len)
32 {
33 return -1UL;
34 }
35
36 void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
37 unsigned int len, unsigned long val)
38 {
39 /* Ignore */
40 }
41
42 /*
43 * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value
44 * of the enabled bit, so there is only one function for both here.
45 */
46 unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
47 gpa_t addr, unsigned int len)
48 {
49 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
50 u32 value = 0;
51 int i;
52
53 /* Loop over all IRQs affected by this read */
54 for (i = 0; i < len * 8; i++) {
55 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
56
57 if (irq->enabled)
58 value |= (1U << i);
59 }
60
61 return value;
62 }
63
64 void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
65 gpa_t addr, unsigned int len,
66 unsigned long val)
67 {
68 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
69 int i;
70
71 for_each_set_bit(i, &val, len * 8) {
72 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
73
74 spin_lock(&irq->irq_lock);
75 irq->enabled = true;
76 vgic_queue_irq_unlock(vcpu->kvm, irq);
77 }
78 }
79
80 void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
81 gpa_t addr, unsigned int len,
82 unsigned long val)
83 {
84 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
85 int i;
86
87 for_each_set_bit(i, &val, len * 8) {
88 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
89
90 spin_lock(&irq->irq_lock);
91
92 irq->enabled = false;
93
94 spin_unlock(&irq->irq_lock);
95 }
96 }
97
98 unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
99 gpa_t addr, unsigned int len)
100 {
101 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
102 u32 value = 0;
103 int i;
104
105 /* Loop over all IRQs affected by this read */
106 for (i = 0; i < len * 8; i++) {
107 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
108
109 if (irq->pending)
110 value |= (1U << i);
111 }
112
113 return value;
114 }
115
116 void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
117 gpa_t addr, unsigned int len,
118 unsigned long val)
119 {
120 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
121 int i;
122
123 for_each_set_bit(i, &val, len * 8) {
124 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
125
126 spin_lock(&irq->irq_lock);
127 irq->pending = true;
128 if (irq->config == VGIC_CONFIG_LEVEL)
129 irq->soft_pending = true;
130
131 vgic_queue_irq_unlock(vcpu->kvm, irq);
132 }
133 }
134
135 void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
136 gpa_t addr, unsigned int len,
137 unsigned long val)
138 {
139 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
140 int i;
141
142 for_each_set_bit(i, &val, len * 8) {
143 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
144
145 spin_lock(&irq->irq_lock);
146
147 if (irq->config == VGIC_CONFIG_LEVEL) {
148 irq->soft_pending = false;
149 irq->pending = irq->line_level;
150 } else {
151 irq->pending = false;
152 }
153
154 spin_unlock(&irq->irq_lock);
155 }
156 }
157
158 unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
159 gpa_t addr, unsigned int len)
160 {
161 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
162 u32 value = 0;
163 int i;
164
165 /* Loop over all IRQs affected by this read */
166 for (i = 0; i < len * 8; i++) {
167 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
168
169 if (irq->active)
170 value |= (1U << i);
171 }
172
173 return value;
174 }
175
176 static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
177 bool new_active_state)
178 {
179 spin_lock(&irq->irq_lock);
180 /*
181 * If this virtual IRQ was written into a list register, we
182 * have to make sure the CPU that runs the VCPU thread has
183 * synced back LR state to the struct vgic_irq. We can only
184 * know this for sure, when either this irq is not assigned to
185 * anyone's AP list anymore, or the VCPU thread is not
186 * running on any CPUs.
187 *
188 * In the opposite case, we know the VCPU thread may be on its
189 * way back from the guest and still has to sync back this
190 * IRQ, so we release and re-acquire the spin_lock to let the
191 * other thread sync back the IRQ.
192 */
193 while (irq->vcpu && /* IRQ may have state in an LR somewhere */
194 irq->vcpu->cpu != -1) /* VCPU thread is running */
195 cond_resched_lock(&irq->irq_lock);
196
197 irq->active = new_active_state;
198 if (new_active_state)
199 vgic_queue_irq_unlock(vcpu->kvm, irq);
200 else
201 spin_unlock(&irq->irq_lock);
202 }
203
204 /*
205 * If we are fiddling with an IRQ's active state, we have to make sure the IRQ
206 * is not queued on some running VCPU's LRs, because then the change to the
207 * active state can be overwritten when the VCPU's state is synced coming back
208 * from the guest.
209 *
210 * For shared interrupts, we have to stop all the VCPUs because interrupts can
211 * be migrated while we don't hold the IRQ locks and we don't want to be
212 * chasing moving targets.
213 *
214 * For private interrupts, we only have to make sure the single and only VCPU
215 * that can potentially queue the IRQ is stopped.
216 */
217 static void vgic_change_active_prepare(struct kvm_vcpu *vcpu, u32 intid)
218 {
219 if (intid < VGIC_NR_PRIVATE_IRQS)
220 kvm_arm_halt_vcpu(vcpu);
221 else
222 kvm_arm_halt_guest(vcpu->kvm);
223 }
224
225 /* See vgic_change_active_prepare */
226 static void vgic_change_active_finish(struct kvm_vcpu *vcpu, u32 intid)
227 {
228 if (intid < VGIC_NR_PRIVATE_IRQS)
229 kvm_arm_resume_vcpu(vcpu);
230 else
231 kvm_arm_resume_guest(vcpu->kvm);
232 }
233
234 void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
235 gpa_t addr, unsigned int len,
236 unsigned long val)
237 {
238 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
239 int i;
240
241 vgic_change_active_prepare(vcpu, intid);
242 for_each_set_bit(i, &val, len * 8) {
243 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
244 vgic_mmio_change_active(vcpu, irq, false);
245 }
246 vgic_change_active_finish(vcpu, intid);
247 }
248
249 void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
250 gpa_t addr, unsigned int len,
251 unsigned long val)
252 {
253 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
254 int i;
255
256 vgic_change_active_prepare(vcpu, intid);
257 for_each_set_bit(i, &val, len * 8) {
258 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
259 vgic_mmio_change_active(vcpu, irq, true);
260 }
261 vgic_change_active_finish(vcpu, intid);
262 }
263
264 unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
265 gpa_t addr, unsigned int len)
266 {
267 u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
268 int i;
269 u64 val = 0;
270
271 for (i = 0; i < len; i++) {
272 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
273
274 val |= (u64)irq->priority << (i * 8);
275 }
276
277 return val;
278 }
279
280 /*
281 * We currently don't handle changing the priority of an interrupt that
282 * is already pending on a VCPU. If there is a need for this, we would
283 * need to make this VCPU exit and re-evaluate the priorities, potentially
284 * leading to this interrupt getting presented now to the guest (if it has
285 * been masked by the priority mask before).
286 */
287 void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
288 gpa_t addr, unsigned int len,
289 unsigned long val)
290 {
291 u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
292 int i;
293
294 for (i = 0; i < len; i++) {
295 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
296
297 spin_lock(&irq->irq_lock);
298 /* Narrow the priority range to what we actually support */
299 irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
300 spin_unlock(&irq->irq_lock);
301 }
302 }
303
304 unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
305 gpa_t addr, unsigned int len)
306 {
307 u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
308 u32 value = 0;
309 int i;
310
311 for (i = 0; i < len * 4; i++) {
312 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
313
314 if (irq->config == VGIC_CONFIG_EDGE)
315 value |= (2U << (i * 2));
316 }
317
318 return value;
319 }
320
321 void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
322 gpa_t addr, unsigned int len,
323 unsigned long val)
324 {
325 u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
326 int i;
327
328 for (i = 0; i < len * 4; i++) {
329 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
330
331 /*
332 * The configuration cannot be changed for SGIs in general,
333 * for PPIs this is IMPLEMENTATION DEFINED. The arch timer
334 * code relies on PPIs being level triggered, so we also
335 * make them read-only here.
336 */
337 if (intid + i < VGIC_NR_PRIVATE_IRQS)
338 continue;
339
340 spin_lock(&irq->irq_lock);
341 if (test_bit(i * 2 + 1, &val)) {
342 irq->config = VGIC_CONFIG_EDGE;
343 } else {
344 irq->config = VGIC_CONFIG_LEVEL;
345 irq->pending = irq->line_level | irq->soft_pending;
346 }
347 spin_unlock(&irq->irq_lock);
348 }
349 }
350
351 static int match_region(const void *key, const void *elt)
352 {
353 const unsigned int offset = (unsigned long)key;
354 const struct vgic_register_region *region = elt;
355
356 if (offset < region->reg_offset)
357 return -1;
358
359 if (offset >= region->reg_offset + region->len)
360 return 1;
361
362 return 0;
363 }
364
365 /* Find the proper register handler entry given a certain address offset. */
366 static const struct vgic_register_region *
367 vgic_find_mmio_region(const struct vgic_register_region *region, int nr_regions,
368 unsigned int offset)
369 {
370 return bsearch((void *)(uintptr_t)offset, region, nr_regions,
371 sizeof(region[0]), match_region);
372 }
373
374 /*
375 * kvm_mmio_read_buf() returns a value in a format where it can be converted
376 * to a byte array and be directly observed as the guest wanted it to appear
377 * in memory if it had done the store itself, which is LE for the GIC, as the
378 * guest knows the GIC is always LE.
379 *
380 * We convert this value to the CPUs native format to deal with it as a data
381 * value.
382 */
383 unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len)
384 {
385 unsigned long data = kvm_mmio_read_buf(val, len);
386
387 switch (len) {
388 case 1:
389 return data;
390 case 2:
391 return le16_to_cpu(data);
392 case 4:
393 return le32_to_cpu(data);
394 default:
395 return le64_to_cpu(data);
396 }
397 }
398
399 /*
400 * kvm_mmio_write_buf() expects a value in a format such that if converted to
401 * a byte array it is observed as the guest would see it if it could perform
402 * the load directly. Since the GIC is LE, and the guest knows this, the
403 * guest expects a value in little endian format.
404 *
405 * We convert the data value from the CPUs native format to LE so that the
406 * value is returned in the proper format.
407 */
408 void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
409 unsigned long data)
410 {
411 switch (len) {
412 case 1:
413 break;
414 case 2:
415 data = cpu_to_le16(data);
416 break;
417 case 4:
418 data = cpu_to_le32(data);
419 break;
420 default:
421 data = cpu_to_le64(data);
422 }
423
424 kvm_mmio_write_buf(buf, len, data);
425 }
426
427 static
428 struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev)
429 {
430 return container_of(dev, struct vgic_io_device, dev);
431 }
432
433 static bool check_region(const struct vgic_register_region *region,
434 gpa_t addr, int len)
435 {
436 if ((region->access_flags & VGIC_ACCESS_8bit) && len == 1)
437 return true;
438 if ((region->access_flags & VGIC_ACCESS_32bit) &&
439 len == sizeof(u32) && !(addr & 3))
440 return true;
441 if ((region->access_flags & VGIC_ACCESS_64bit) &&
442 len == sizeof(u64) && !(addr & 7))
443 return true;
444
445 return false;
446 }
447
448 static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
449 gpa_t addr, int len, void *val)
450 {
451 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
452 const struct vgic_register_region *region;
453 struct kvm_vcpu *r_vcpu;
454 unsigned long data;
455
456 region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
457 addr - iodev->base_addr);
458 if (!region || !check_region(region, addr, len)) {
459 memset(val, 0, len);
460 return 0;
461 }
462
463 r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
464 data = region->read(r_vcpu, addr, len);
465 vgic_data_host_to_mmio_bus(val, len, data);
466 return 0;
467 }
468
469 static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
470 gpa_t addr, int len, const void *val)
471 {
472 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
473 const struct vgic_register_region *region;
474 struct kvm_vcpu *r_vcpu;
475 unsigned long data = vgic_data_mmio_bus_to_host(val, len);
476
477 region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
478 addr - iodev->base_addr);
479 if (!region)
480 return 0;
481
482 if (!check_region(region, addr, len))
483 return 0;
484
485 r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
486 region->write(r_vcpu, addr, len, data);
487 return 0;
488 }
489
490 struct kvm_io_device_ops kvm_io_gic_ops = {
491 .read = dispatch_mmio_read,
492 .write = dispatch_mmio_write,
493 };
494
495 int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
496 enum vgic_type type)
497 {
498 struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev;
499 int ret = 0;
500 unsigned int len;
501
502 switch (type) {
503 case VGIC_V2:
504 len = vgic_v2_init_dist_iodev(io_device);
505 break;
506 #ifdef CONFIG_KVM_ARM_VGIC_V3
507 case VGIC_V3:
508 len = vgic_v3_init_dist_iodev(io_device);
509 break;
510 #endif
511 default:
512 BUG_ON(1);
513 }
514
515 io_device->base_addr = dist_base_address;
516 io_device->redist_vcpu = NULL;
517
518 mutex_lock(&kvm->slots_lock);
519 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address,
520 len, &io_device->dev);
521 mutex_unlock(&kvm->slots_lock);
522
523 return ret;
524 }
This page took 0.043061 seconds and 5 git commands to generate.