qed: Fail driver load in 100g MSI mode.
[deliverable/linux.git] / virt / kvm / arm / vgic-v3-emul.c
1 /*
2 * GICv3 distributor and redistributor emulation
3 *
4 * GICv3 emulation is currently only supported on a GICv3 host (because
5 * we rely on the hardware's CPU interface virtualization support), but
6 * supports both hardware with or without the optional GICv2 backwards
7 * compatibility features.
8 *
9 * Limitations of the emulation:
10 * (RAZ/WI: read as zero, write ignore, RAO/WI: read as one, write ignore)
11 * - We do not support LPIs (yet). TYPER.LPIS is reported as 0 and is RAZ/WI.
12 * - We do not support the message based interrupts (MBIs) triggered by
13 * writes to the GICD_{SET,CLR}SPI_* registers. TYPER.MBIS is reported as 0.
14 * - We do not support the (optional) backwards compatibility feature.
15 * GICD_CTLR.ARE resets to 1 and is RAO/WI. If the _host_ GIC supports
16 * the compatiblity feature, you can use a GICv2 in the guest, though.
17 * - We only support a single security state. GICD_CTLR.DS is 1 and is RAO/WI.
18 * - Priorities are not emulated (same as the GICv2 emulation). Linux
19 * as a guest is fine with this, because it does not use priorities.
20 * - We only support Group1 interrupts. Again Linux uses only those.
21 *
22 * Copyright (C) 2014 ARM Ltd.
23 * Author: Andre Przywara <andre.przywara@arm.com>
24 *
25 * This program is free software; you can redistribute it and/or modify
26 * it under the terms of the GNU General Public License version 2 as
27 * published by the Free Software Foundation.
28 *
29 * This program is distributed in the hope that it will be useful,
30 * but WITHOUT ANY WARRANTY; without even the implied warranty of
31 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
32 * GNU General Public License for more details.
33 *
34 * You should have received a copy of the GNU General Public License
35 * along with this program. If not, see <http://www.gnu.org/licenses/>.
36 */
37
38 #include <linux/cpu.h>
39 #include <linux/kvm.h>
40 #include <linux/kvm_host.h>
41 #include <linux/interrupt.h>
42
43 #include <linux/irqchip/arm-gic-v3.h>
44 #include <kvm/arm_vgic.h>
45
46 #include <asm/kvm_emulate.h>
47 #include <asm/kvm_arm.h>
48 #include <asm/kvm_mmu.h>
49
50 #include "vgic.h"
51
52 static bool handle_mmio_rao_wi(struct kvm_vcpu *vcpu,
53 struct kvm_exit_mmio *mmio, phys_addr_t offset)
54 {
55 u32 reg = 0xffffffff;
56
57 vgic_reg_access(mmio, &reg, offset,
58 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
59
60 return false;
61 }
62
63 static bool handle_mmio_ctlr(struct kvm_vcpu *vcpu,
64 struct kvm_exit_mmio *mmio, phys_addr_t offset)
65 {
66 u32 reg = 0;
67
68 /*
69 * Force ARE and DS to 1, the guest cannot change this.
70 * For the time being we only support Group1 interrupts.
71 */
72 if (vcpu->kvm->arch.vgic.enabled)
73 reg = GICD_CTLR_ENABLE_SS_G1;
74 reg |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
75
76 vgic_reg_access(mmio, &reg, offset,
77 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
78 if (mmio->is_write) {
79 vcpu->kvm->arch.vgic.enabled = !!(reg & GICD_CTLR_ENABLE_SS_G1);
80 vgic_update_state(vcpu->kvm);
81 return true;
82 }
83 return false;
84 }
85
86 /*
87 * As this implementation does not provide compatibility
88 * with GICv2 (ARE==1), we report zero CPUs in bits [5..7].
89 * Also LPIs and MBIs are not supported, so we set the respective bits to 0.
90 * Also we report at most 2**10=1024 interrupt IDs (to match 1024 SPIs).
91 */
92 #define INTERRUPT_ID_BITS 10
93 static bool handle_mmio_typer(struct kvm_vcpu *vcpu,
94 struct kvm_exit_mmio *mmio, phys_addr_t offset)
95 {
96 u32 reg;
97
98 reg = (min(vcpu->kvm->arch.vgic.nr_irqs, 1024) >> 5) - 1;
99
100 reg |= (INTERRUPT_ID_BITS - 1) << 19;
101
102 vgic_reg_access(mmio, &reg, offset,
103 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
104
105 return false;
106 }
107
108 static bool handle_mmio_iidr(struct kvm_vcpu *vcpu,
109 struct kvm_exit_mmio *mmio, phys_addr_t offset)
110 {
111 u32 reg;
112
113 reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
114 vgic_reg_access(mmio, &reg, offset,
115 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
116
117 return false;
118 }
119
120 static bool handle_mmio_set_enable_reg_dist(struct kvm_vcpu *vcpu,
121 struct kvm_exit_mmio *mmio,
122 phys_addr_t offset)
123 {
124 if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
125 return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
126 vcpu->vcpu_id,
127 ACCESS_WRITE_SETBIT);
128
129 vgic_reg_access(mmio, NULL, offset,
130 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
131 return false;
132 }
133
134 static bool handle_mmio_clear_enable_reg_dist(struct kvm_vcpu *vcpu,
135 struct kvm_exit_mmio *mmio,
136 phys_addr_t offset)
137 {
138 if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
139 return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
140 vcpu->vcpu_id,
141 ACCESS_WRITE_CLEARBIT);
142
143 vgic_reg_access(mmio, NULL, offset,
144 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
145 return false;
146 }
147
148 static bool handle_mmio_set_pending_reg_dist(struct kvm_vcpu *vcpu,
149 struct kvm_exit_mmio *mmio,
150 phys_addr_t offset)
151 {
152 if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
153 return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset,
154 vcpu->vcpu_id);
155
156 vgic_reg_access(mmio, NULL, offset,
157 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
158 return false;
159 }
160
161 static bool handle_mmio_clear_pending_reg_dist(struct kvm_vcpu *vcpu,
162 struct kvm_exit_mmio *mmio,
163 phys_addr_t offset)
164 {
165 if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
166 return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset,
167 vcpu->vcpu_id);
168
169 vgic_reg_access(mmio, NULL, offset,
170 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
171 return false;
172 }
173
174 static bool handle_mmio_set_active_reg_dist(struct kvm_vcpu *vcpu,
175 struct kvm_exit_mmio *mmio,
176 phys_addr_t offset)
177 {
178 if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
179 return vgic_handle_set_active_reg(vcpu->kvm, mmio, offset,
180 vcpu->vcpu_id);
181
182 vgic_reg_access(mmio, NULL, offset,
183 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
184 return false;
185 }
186
187 static bool handle_mmio_clear_active_reg_dist(struct kvm_vcpu *vcpu,
188 struct kvm_exit_mmio *mmio,
189 phys_addr_t offset)
190 {
191 if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
192 return vgic_handle_clear_active_reg(vcpu->kvm, mmio, offset,
193 vcpu->vcpu_id);
194
195 vgic_reg_access(mmio, NULL, offset,
196 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
197 return false;
198 }
199
200 static bool handle_mmio_priority_reg_dist(struct kvm_vcpu *vcpu,
201 struct kvm_exit_mmio *mmio,
202 phys_addr_t offset)
203 {
204 u32 *reg;
205
206 if (unlikely(offset < VGIC_NR_PRIVATE_IRQS)) {
207 vgic_reg_access(mmio, NULL, offset,
208 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
209 return false;
210 }
211
212 reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
213 vcpu->vcpu_id, offset);
214 vgic_reg_access(mmio, reg, offset,
215 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
216 return false;
217 }
218
219 static bool handle_mmio_cfg_reg_dist(struct kvm_vcpu *vcpu,
220 struct kvm_exit_mmio *mmio,
221 phys_addr_t offset)
222 {
223 u32 *reg;
224
225 if (unlikely(offset < VGIC_NR_PRIVATE_IRQS / 4)) {
226 vgic_reg_access(mmio, NULL, offset,
227 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
228 return false;
229 }
230
231 reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
232 vcpu->vcpu_id, offset >> 1);
233
234 return vgic_handle_cfg_reg(reg, mmio, offset);
235 }
236
237 /*
238 * We use a compressed version of the MPIDR (all 32 bits in one 32-bit word)
239 * when we store the target MPIDR written by the guest.
240 */
241 static u32 compress_mpidr(unsigned long mpidr)
242 {
243 u32 ret;
244
245 ret = MPIDR_AFFINITY_LEVEL(mpidr, 0);
246 ret |= MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8;
247 ret |= MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16;
248 ret |= MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24;
249
250 return ret;
251 }
252
253 static unsigned long uncompress_mpidr(u32 value)
254 {
255 unsigned long mpidr;
256
257 mpidr = ((value >> 0) & 0xFF) << MPIDR_LEVEL_SHIFT(0);
258 mpidr |= ((value >> 8) & 0xFF) << MPIDR_LEVEL_SHIFT(1);
259 mpidr |= ((value >> 16) & 0xFF) << MPIDR_LEVEL_SHIFT(2);
260 mpidr |= (u64)((value >> 24) & 0xFF) << MPIDR_LEVEL_SHIFT(3);
261
262 return mpidr;
263 }
264
265 /*
266 * Lookup the given MPIDR value to get the vcpu_id (if there is one)
267 * and store that in the irq_spi_cpu[] array.
268 * This limits the number of VCPUs to 255 for now, extending the data
269 * type (or storing kvm_vcpu pointers) should lift the limit.
270 * Store the original MPIDR value in an extra array to support read-as-written.
271 * Unallocated MPIDRs are translated to a special value and caught
272 * before any array accesses.
273 */
274 static bool handle_mmio_route_reg(struct kvm_vcpu *vcpu,
275 struct kvm_exit_mmio *mmio,
276 phys_addr_t offset)
277 {
278 struct kvm *kvm = vcpu->kvm;
279 struct vgic_dist *dist = &kvm->arch.vgic;
280 int spi;
281 u32 reg;
282 int vcpu_id;
283 unsigned long *bmap, mpidr;
284
285 /*
286 * The upper 32 bits of each 64 bit register are zero,
287 * as we don't support Aff3.
288 */
289 if ((offset & 4)) {
290 vgic_reg_access(mmio, NULL, offset,
291 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
292 return false;
293 }
294
295 /* This region only covers SPIs, so no handling of private IRQs here. */
296 spi = offset / 8;
297
298 /* get the stored MPIDR for this IRQ */
299 mpidr = uncompress_mpidr(dist->irq_spi_mpidr[spi]);
300 reg = mpidr;
301
302 vgic_reg_access(mmio, &reg, offset,
303 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
304
305 if (!mmio->is_write)
306 return false;
307
308 /*
309 * Now clear the currently assigned vCPU from the map, making room
310 * for the new one to be written below
311 */
312 vcpu = kvm_mpidr_to_vcpu(kvm, mpidr);
313 if (likely(vcpu)) {
314 vcpu_id = vcpu->vcpu_id;
315 bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]);
316 __clear_bit(spi, bmap);
317 }
318
319 dist->irq_spi_mpidr[spi] = compress_mpidr(reg);
320 vcpu = kvm_mpidr_to_vcpu(kvm, reg & MPIDR_HWID_BITMASK);
321
322 /*
323 * The spec says that non-existent MPIDR values should not be
324 * forwarded to any existent (v)CPU, but should be able to become
325 * pending anyway. We simply keep the irq_spi_target[] array empty, so
326 * the interrupt will never be injected.
327 * irq_spi_cpu[irq] gets a magic value in this case.
328 */
329 if (likely(vcpu)) {
330 vcpu_id = vcpu->vcpu_id;
331 dist->irq_spi_cpu[spi] = vcpu_id;
332 bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]);
333 __set_bit(spi, bmap);
334 } else {
335 dist->irq_spi_cpu[spi] = VCPU_NOT_ALLOCATED;
336 }
337
338 vgic_update_state(kvm);
339
340 return true;
341 }
342
343 /*
344 * We should be careful about promising too much when a guest reads
345 * this register. Don't claim to be like any hardware implementation,
346 * but just report the GIC as version 3 - which is what a Linux guest
347 * would check.
348 */
349 static bool handle_mmio_idregs(struct kvm_vcpu *vcpu,
350 struct kvm_exit_mmio *mmio,
351 phys_addr_t offset)
352 {
353 u32 reg = 0;
354
355 switch (offset + GICD_IDREGS) {
356 case GICD_PIDR2:
357 reg = 0x3b;
358 break;
359 }
360
361 vgic_reg_access(mmio, &reg, offset,
362 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
363
364 return false;
365 }
366
367 static const struct vgic_io_range vgic_v3_dist_ranges[] = {
368 {
369 .base = GICD_CTLR,
370 .len = 0x04,
371 .bits_per_irq = 0,
372 .handle_mmio = handle_mmio_ctlr,
373 },
374 {
375 .base = GICD_TYPER,
376 .len = 0x04,
377 .bits_per_irq = 0,
378 .handle_mmio = handle_mmio_typer,
379 },
380 {
381 .base = GICD_IIDR,
382 .len = 0x04,
383 .bits_per_irq = 0,
384 .handle_mmio = handle_mmio_iidr,
385 },
386 {
387 /* this register is optional, it is RAZ/WI if not implemented */
388 .base = GICD_STATUSR,
389 .len = 0x04,
390 .bits_per_irq = 0,
391 .handle_mmio = handle_mmio_raz_wi,
392 },
393 {
394 /* this write only register is WI when TYPER.MBIS=0 */
395 .base = GICD_SETSPI_NSR,
396 .len = 0x04,
397 .bits_per_irq = 0,
398 .handle_mmio = handle_mmio_raz_wi,
399 },
400 {
401 /* this write only register is WI when TYPER.MBIS=0 */
402 .base = GICD_CLRSPI_NSR,
403 .len = 0x04,
404 .bits_per_irq = 0,
405 .handle_mmio = handle_mmio_raz_wi,
406 },
407 {
408 /* this is RAZ/WI when DS=1 */
409 .base = GICD_SETSPI_SR,
410 .len = 0x04,
411 .bits_per_irq = 0,
412 .handle_mmio = handle_mmio_raz_wi,
413 },
414 {
415 /* this is RAZ/WI when DS=1 */
416 .base = GICD_CLRSPI_SR,
417 .len = 0x04,
418 .bits_per_irq = 0,
419 .handle_mmio = handle_mmio_raz_wi,
420 },
421 {
422 .base = GICD_IGROUPR,
423 .len = 0x80,
424 .bits_per_irq = 1,
425 .handle_mmio = handle_mmio_rao_wi,
426 },
427 {
428 .base = GICD_ISENABLER,
429 .len = 0x80,
430 .bits_per_irq = 1,
431 .handle_mmio = handle_mmio_set_enable_reg_dist,
432 },
433 {
434 .base = GICD_ICENABLER,
435 .len = 0x80,
436 .bits_per_irq = 1,
437 .handle_mmio = handle_mmio_clear_enable_reg_dist,
438 },
439 {
440 .base = GICD_ISPENDR,
441 .len = 0x80,
442 .bits_per_irq = 1,
443 .handle_mmio = handle_mmio_set_pending_reg_dist,
444 },
445 {
446 .base = GICD_ICPENDR,
447 .len = 0x80,
448 .bits_per_irq = 1,
449 .handle_mmio = handle_mmio_clear_pending_reg_dist,
450 },
451 {
452 .base = GICD_ISACTIVER,
453 .len = 0x80,
454 .bits_per_irq = 1,
455 .handle_mmio = handle_mmio_set_active_reg_dist,
456 },
457 {
458 .base = GICD_ICACTIVER,
459 .len = 0x80,
460 .bits_per_irq = 1,
461 .handle_mmio = handle_mmio_clear_active_reg_dist,
462 },
463 {
464 .base = GICD_IPRIORITYR,
465 .len = 0x400,
466 .bits_per_irq = 8,
467 .handle_mmio = handle_mmio_priority_reg_dist,
468 },
469 {
470 /* TARGETSRn is RES0 when ARE=1 */
471 .base = GICD_ITARGETSR,
472 .len = 0x400,
473 .bits_per_irq = 8,
474 .handle_mmio = handle_mmio_raz_wi,
475 },
476 {
477 .base = GICD_ICFGR,
478 .len = 0x100,
479 .bits_per_irq = 2,
480 .handle_mmio = handle_mmio_cfg_reg_dist,
481 },
482 {
483 /* this is RAZ/WI when DS=1 */
484 .base = GICD_IGRPMODR,
485 .len = 0x80,
486 .bits_per_irq = 1,
487 .handle_mmio = handle_mmio_raz_wi,
488 },
489 {
490 /* this is RAZ/WI when DS=1 */
491 .base = GICD_NSACR,
492 .len = 0x100,
493 .bits_per_irq = 2,
494 .handle_mmio = handle_mmio_raz_wi,
495 },
496 {
497 /* this is RAZ/WI when ARE=1 */
498 .base = GICD_SGIR,
499 .len = 0x04,
500 .handle_mmio = handle_mmio_raz_wi,
501 },
502 {
503 /* this is RAZ/WI when ARE=1 */
504 .base = GICD_CPENDSGIR,
505 .len = 0x10,
506 .handle_mmio = handle_mmio_raz_wi,
507 },
508 {
509 /* this is RAZ/WI when ARE=1 */
510 .base = GICD_SPENDSGIR,
511 .len = 0x10,
512 .handle_mmio = handle_mmio_raz_wi,
513 },
514 {
515 .base = GICD_IROUTER + 0x100,
516 .len = 0x1ee0,
517 .bits_per_irq = 64,
518 .handle_mmio = handle_mmio_route_reg,
519 },
520 {
521 .base = GICD_IDREGS,
522 .len = 0x30,
523 .bits_per_irq = 0,
524 .handle_mmio = handle_mmio_idregs,
525 },
526 {},
527 };
528
529 static bool handle_mmio_ctlr_redist(struct kvm_vcpu *vcpu,
530 struct kvm_exit_mmio *mmio,
531 phys_addr_t offset)
532 {
533 /* since we don't support LPIs, this register is zero for now */
534 vgic_reg_access(mmio, NULL, offset,
535 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
536 return false;
537 }
538
539 static bool handle_mmio_typer_redist(struct kvm_vcpu *vcpu,
540 struct kvm_exit_mmio *mmio,
541 phys_addr_t offset)
542 {
543 u32 reg;
544 u64 mpidr;
545 struct kvm_vcpu *redist_vcpu = mmio->private;
546 int target_vcpu_id = redist_vcpu->vcpu_id;
547
548 /* the upper 32 bits contain the affinity value */
549 if ((offset & ~3) == 4) {
550 mpidr = kvm_vcpu_get_mpidr_aff(redist_vcpu);
551 reg = compress_mpidr(mpidr);
552
553 vgic_reg_access(mmio, &reg, offset,
554 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
555 return false;
556 }
557
558 reg = redist_vcpu->vcpu_id << 8;
559 if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1)
560 reg |= GICR_TYPER_LAST;
561 vgic_reg_access(mmio, &reg, offset,
562 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
563 return false;
564 }
565
566 static bool handle_mmio_set_enable_reg_redist(struct kvm_vcpu *vcpu,
567 struct kvm_exit_mmio *mmio,
568 phys_addr_t offset)
569 {
570 struct kvm_vcpu *redist_vcpu = mmio->private;
571
572 return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
573 redist_vcpu->vcpu_id,
574 ACCESS_WRITE_SETBIT);
575 }
576
577 static bool handle_mmio_clear_enable_reg_redist(struct kvm_vcpu *vcpu,
578 struct kvm_exit_mmio *mmio,
579 phys_addr_t offset)
580 {
581 struct kvm_vcpu *redist_vcpu = mmio->private;
582
583 return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
584 redist_vcpu->vcpu_id,
585 ACCESS_WRITE_CLEARBIT);
586 }
587
588 static bool handle_mmio_set_active_reg_redist(struct kvm_vcpu *vcpu,
589 struct kvm_exit_mmio *mmio,
590 phys_addr_t offset)
591 {
592 struct kvm_vcpu *redist_vcpu = mmio->private;
593
594 return vgic_handle_set_active_reg(vcpu->kvm, mmio, offset,
595 redist_vcpu->vcpu_id);
596 }
597
598 static bool handle_mmio_clear_active_reg_redist(struct kvm_vcpu *vcpu,
599 struct kvm_exit_mmio *mmio,
600 phys_addr_t offset)
601 {
602 struct kvm_vcpu *redist_vcpu = mmio->private;
603
604 return vgic_handle_clear_active_reg(vcpu->kvm, mmio, offset,
605 redist_vcpu->vcpu_id);
606 }
607
608 static bool handle_mmio_set_pending_reg_redist(struct kvm_vcpu *vcpu,
609 struct kvm_exit_mmio *mmio,
610 phys_addr_t offset)
611 {
612 struct kvm_vcpu *redist_vcpu = mmio->private;
613
614 return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset,
615 redist_vcpu->vcpu_id);
616 }
617
618 static bool handle_mmio_clear_pending_reg_redist(struct kvm_vcpu *vcpu,
619 struct kvm_exit_mmio *mmio,
620 phys_addr_t offset)
621 {
622 struct kvm_vcpu *redist_vcpu = mmio->private;
623
624 return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset,
625 redist_vcpu->vcpu_id);
626 }
627
628 static bool handle_mmio_priority_reg_redist(struct kvm_vcpu *vcpu,
629 struct kvm_exit_mmio *mmio,
630 phys_addr_t offset)
631 {
632 struct kvm_vcpu *redist_vcpu = mmio->private;
633 u32 *reg;
634
635 reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
636 redist_vcpu->vcpu_id, offset);
637 vgic_reg_access(mmio, reg, offset,
638 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
639 return false;
640 }
641
642 static bool handle_mmio_cfg_reg_redist(struct kvm_vcpu *vcpu,
643 struct kvm_exit_mmio *mmio,
644 phys_addr_t offset)
645 {
646 struct kvm_vcpu *redist_vcpu = mmio->private;
647
648 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
649 redist_vcpu->vcpu_id, offset >> 1);
650
651 return vgic_handle_cfg_reg(reg, mmio, offset);
652 }
653
654 #define SGI_base(x) ((x) + SZ_64K)
655
656 static const struct vgic_io_range vgic_redist_ranges[] = {
657 {
658 .base = GICR_CTLR,
659 .len = 0x04,
660 .bits_per_irq = 0,
661 .handle_mmio = handle_mmio_ctlr_redist,
662 },
663 {
664 .base = GICR_TYPER,
665 .len = 0x08,
666 .bits_per_irq = 0,
667 .handle_mmio = handle_mmio_typer_redist,
668 },
669 {
670 .base = GICR_IIDR,
671 .len = 0x04,
672 .bits_per_irq = 0,
673 .handle_mmio = handle_mmio_iidr,
674 },
675 {
676 .base = GICR_WAKER,
677 .len = 0x04,
678 .bits_per_irq = 0,
679 .handle_mmio = handle_mmio_raz_wi,
680 },
681 {
682 .base = GICR_IDREGS,
683 .len = 0x30,
684 .bits_per_irq = 0,
685 .handle_mmio = handle_mmio_idregs,
686 },
687 {
688 .base = SGI_base(GICR_IGROUPR0),
689 .len = 0x04,
690 .bits_per_irq = 1,
691 .handle_mmio = handle_mmio_rao_wi,
692 },
693 {
694 .base = SGI_base(GICR_ISENABLER0),
695 .len = 0x04,
696 .bits_per_irq = 1,
697 .handle_mmio = handle_mmio_set_enable_reg_redist,
698 },
699 {
700 .base = SGI_base(GICR_ICENABLER0),
701 .len = 0x04,
702 .bits_per_irq = 1,
703 .handle_mmio = handle_mmio_clear_enable_reg_redist,
704 },
705 {
706 .base = SGI_base(GICR_ISPENDR0),
707 .len = 0x04,
708 .bits_per_irq = 1,
709 .handle_mmio = handle_mmio_set_pending_reg_redist,
710 },
711 {
712 .base = SGI_base(GICR_ICPENDR0),
713 .len = 0x04,
714 .bits_per_irq = 1,
715 .handle_mmio = handle_mmio_clear_pending_reg_redist,
716 },
717 {
718 .base = SGI_base(GICR_ISACTIVER0),
719 .len = 0x04,
720 .bits_per_irq = 1,
721 .handle_mmio = handle_mmio_set_active_reg_redist,
722 },
723 {
724 .base = SGI_base(GICR_ICACTIVER0),
725 .len = 0x04,
726 .bits_per_irq = 1,
727 .handle_mmio = handle_mmio_clear_active_reg_redist,
728 },
729 {
730 .base = SGI_base(GICR_IPRIORITYR0),
731 .len = 0x20,
732 .bits_per_irq = 8,
733 .handle_mmio = handle_mmio_priority_reg_redist,
734 },
735 {
736 .base = SGI_base(GICR_ICFGR0),
737 .len = 0x08,
738 .bits_per_irq = 2,
739 .handle_mmio = handle_mmio_cfg_reg_redist,
740 },
741 {
742 .base = SGI_base(GICR_IGRPMODR0),
743 .len = 0x04,
744 .bits_per_irq = 1,
745 .handle_mmio = handle_mmio_raz_wi,
746 },
747 {
748 .base = SGI_base(GICR_NSACR),
749 .len = 0x04,
750 .handle_mmio = handle_mmio_raz_wi,
751 },
752 {},
753 };
754
755 static bool vgic_v3_queue_sgi(struct kvm_vcpu *vcpu, int irq)
756 {
757 if (vgic_queue_irq(vcpu, 0, irq)) {
758 vgic_dist_irq_clear_pending(vcpu, irq);
759 vgic_cpu_irq_clear(vcpu, irq);
760 return true;
761 }
762
763 return false;
764 }
765
766 static int vgic_v3_map_resources(struct kvm *kvm,
767 const struct vgic_params *params)
768 {
769 int ret = 0;
770 struct vgic_dist *dist = &kvm->arch.vgic;
771 gpa_t rdbase = dist->vgic_redist_base;
772 struct vgic_io_device *iodevs = NULL;
773 int i;
774
775 if (!irqchip_in_kernel(kvm))
776 return 0;
777
778 mutex_lock(&kvm->lock);
779
780 if (vgic_ready(kvm))
781 goto out;
782
783 if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) ||
784 IS_VGIC_ADDR_UNDEF(dist->vgic_redist_base)) {
785 kvm_err("Need to set vgic distributor addresses first\n");
786 ret = -ENXIO;
787 goto out;
788 }
789
790 /*
791 * For a VGICv3 we require the userland to explicitly initialize
792 * the VGIC before we need to use it.
793 */
794 if (!vgic_initialized(kvm)) {
795 ret = -EBUSY;
796 goto out;
797 }
798
799 ret = vgic_register_kvm_io_dev(kvm, dist->vgic_dist_base,
800 GIC_V3_DIST_SIZE, vgic_v3_dist_ranges,
801 -1, &dist->dist_iodev);
802 if (ret)
803 goto out;
804
805 iodevs = kcalloc(dist->nr_cpus, sizeof(iodevs[0]), GFP_KERNEL);
806 if (!iodevs) {
807 ret = -ENOMEM;
808 goto out_unregister;
809 }
810
811 for (i = 0; i < dist->nr_cpus; i++) {
812 ret = vgic_register_kvm_io_dev(kvm, rdbase,
813 SZ_128K, vgic_redist_ranges,
814 i, &iodevs[i]);
815 if (ret)
816 goto out_unregister;
817 rdbase += GIC_V3_REDIST_SIZE;
818 }
819
820 dist->redist_iodevs = iodevs;
821 dist->ready = true;
822 goto out;
823
824 out_unregister:
825 kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS, &dist->dist_iodev.dev);
826 if (iodevs) {
827 for (i = 0; i < dist->nr_cpus; i++) {
828 if (iodevs[i].dev.ops)
829 kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
830 &iodevs[i].dev);
831 }
832 }
833
834 out:
835 if (ret)
836 kvm_vgic_destroy(kvm);
837 mutex_unlock(&kvm->lock);
838 return ret;
839 }
840
841 static int vgic_v3_init_model(struct kvm *kvm)
842 {
843 int i;
844 u32 mpidr;
845 struct vgic_dist *dist = &kvm->arch.vgic;
846 int nr_spis = dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
847
848 dist->irq_spi_mpidr = kcalloc(nr_spis, sizeof(dist->irq_spi_mpidr[0]),
849 GFP_KERNEL);
850
851 if (!dist->irq_spi_mpidr)
852 return -ENOMEM;
853
854 /* Initialize the target VCPUs for each IRQ to VCPU 0 */
855 mpidr = compress_mpidr(kvm_vcpu_get_mpidr_aff(kvm_get_vcpu(kvm, 0)));
856 for (i = VGIC_NR_PRIVATE_IRQS; i < dist->nr_irqs; i++) {
857 dist->irq_spi_cpu[i - VGIC_NR_PRIVATE_IRQS] = 0;
858 dist->irq_spi_mpidr[i - VGIC_NR_PRIVATE_IRQS] = mpidr;
859 vgic_bitmap_set_irq_val(dist->irq_spi_target, 0, i, 1);
860 }
861
862 return 0;
863 }
864
865 /* GICv3 does not keep track of SGI sources anymore. */
866 static void vgic_v3_add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
867 {
868 }
869
870 void vgic_v3_init_emulation(struct kvm *kvm)
871 {
872 struct vgic_dist *dist = &kvm->arch.vgic;
873
874 dist->vm_ops.queue_sgi = vgic_v3_queue_sgi;
875 dist->vm_ops.add_sgi_source = vgic_v3_add_sgi_source;
876 dist->vm_ops.init_model = vgic_v3_init_model;
877 dist->vm_ops.map_resources = vgic_v3_map_resources;
878
879 kvm->arch.max_vcpus = KVM_MAX_VCPUS;
880 }
881
882 /*
883 * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
884 * generation register ICC_SGI1R_EL1) with a given VCPU.
885 * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
886 * return -1.
887 */
888 static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
889 {
890 unsigned long affinity;
891 int level0;
892
893 /*
894 * Split the current VCPU's MPIDR into affinity level 0 and the
895 * rest as this is what we have to compare against.
896 */
897 affinity = kvm_vcpu_get_mpidr_aff(vcpu);
898 level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
899 affinity &= ~MPIDR_LEVEL_MASK;
900
901 /* bail out if the upper three levels don't match */
902 if (sgi_aff != affinity)
903 return -1;
904
905 /* Is this VCPU's bit set in the mask ? */
906 if (!(sgi_cpu_mask & BIT(level0)))
907 return -1;
908
909 return level0;
910 }
911
912 #define SGI_AFFINITY_LEVEL(reg, level) \
913 ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
914 >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
915
916 /**
917 * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
918 * @vcpu: The VCPU requesting a SGI
919 * @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU
920 *
921 * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
922 * This will trap in sys_regs.c and call this function.
923 * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
924 * target processors as well as a bitmask of 16 Aff0 CPUs.
925 * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
926 * check for matching ones. If this bit is set, we signal all, but not the
927 * calling VCPU.
928 */
929 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg)
930 {
931 struct kvm *kvm = vcpu->kvm;
932 struct kvm_vcpu *c_vcpu;
933 struct vgic_dist *dist = &kvm->arch.vgic;
934 u16 target_cpus;
935 u64 mpidr;
936 int sgi, c;
937 int vcpu_id = vcpu->vcpu_id;
938 bool broadcast;
939 int updated = 0;
940
941 sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
942 broadcast = reg & BIT(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
943 target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
944 mpidr = SGI_AFFINITY_LEVEL(reg, 3);
945 mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
946 mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
947
948 /*
949 * We take the dist lock here, because we come from the sysregs
950 * code path and not from the MMIO one (which already takes the lock).
951 */
952 spin_lock(&dist->lock);
953
954 /*
955 * We iterate over all VCPUs to find the MPIDRs matching the request.
956 * If we have handled one CPU, we clear it's bit to detect early
957 * if we are already finished. This avoids iterating through all
958 * VCPUs when most of the times we just signal a single VCPU.
959 */
960 kvm_for_each_vcpu(c, c_vcpu, kvm) {
961
962 /* Exit early if we have dealt with all requested CPUs */
963 if (!broadcast && target_cpus == 0)
964 break;
965
966 /* Don't signal the calling VCPU */
967 if (broadcast && c == vcpu_id)
968 continue;
969
970 if (!broadcast) {
971 int level0;
972
973 level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
974 if (level0 == -1)
975 continue;
976
977 /* remove this matching VCPU from the mask */
978 target_cpus &= ~BIT(level0);
979 }
980
981 /* Flag the SGI as pending */
982 vgic_dist_irq_set_pending(c_vcpu, sgi);
983 updated = 1;
984 kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
985 }
986 if (updated)
987 vgic_update_state(vcpu->kvm);
988 spin_unlock(&dist->lock);
989 if (updated)
990 vgic_kick_vcpus(vcpu->kvm);
991 }
992
993 static int vgic_v3_create(struct kvm_device *dev, u32 type)
994 {
995 return kvm_vgic_create(dev->kvm, type);
996 }
997
998 static void vgic_v3_destroy(struct kvm_device *dev)
999 {
1000 kfree(dev);
1001 }
1002
1003 static int vgic_v3_set_attr(struct kvm_device *dev,
1004 struct kvm_device_attr *attr)
1005 {
1006 int ret;
1007
1008 ret = vgic_set_common_attr(dev, attr);
1009 if (ret != -ENXIO)
1010 return ret;
1011
1012 switch (attr->group) {
1013 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1014 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
1015 return -ENXIO;
1016 }
1017
1018 return -ENXIO;
1019 }
1020
1021 static int vgic_v3_get_attr(struct kvm_device *dev,
1022 struct kvm_device_attr *attr)
1023 {
1024 int ret;
1025
1026 ret = vgic_get_common_attr(dev, attr);
1027 if (ret != -ENXIO)
1028 return ret;
1029
1030 switch (attr->group) {
1031 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1032 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
1033 return -ENXIO;
1034 }
1035
1036 return -ENXIO;
1037 }
1038
1039 static int vgic_v3_has_attr(struct kvm_device *dev,
1040 struct kvm_device_attr *attr)
1041 {
1042 switch (attr->group) {
1043 case KVM_DEV_ARM_VGIC_GRP_ADDR:
1044 switch (attr->attr) {
1045 case KVM_VGIC_V2_ADDR_TYPE_DIST:
1046 case KVM_VGIC_V2_ADDR_TYPE_CPU:
1047 return -ENXIO;
1048 case KVM_VGIC_V3_ADDR_TYPE_DIST:
1049 case KVM_VGIC_V3_ADDR_TYPE_REDIST:
1050 return 0;
1051 }
1052 break;
1053 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1054 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
1055 return -ENXIO;
1056 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
1057 return 0;
1058 case KVM_DEV_ARM_VGIC_GRP_CTRL:
1059 switch (attr->attr) {
1060 case KVM_DEV_ARM_VGIC_CTRL_INIT:
1061 return 0;
1062 }
1063 }
1064 return -ENXIO;
1065 }
1066
1067 struct kvm_device_ops kvm_arm_vgic_v3_ops = {
1068 .name = "kvm-arm-vgic-v3",
1069 .create = vgic_v3_create,
1070 .destroy = vgic_v3_destroy,
1071 .set_attr = vgic_v3_set_attr,
1072 .get_attr = vgic_v3_get_attr,
1073 .has_attr = vgic_v3_has_attr,
1074 };
This page took 0.127478 seconds and 5 git commands to generate.