arm/arm64: KVM: split GICv2 specific emulation code from vgic.c
[deliverable/linux.git] / virt / kvm / arm / vgic.c
1 /*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/uaccess.h>
28
29 #include <linux/irqchip/arm-gic.h>
30
31 #include <asm/kvm_emulate.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_mmu.h>
34
35 /*
36 * How the whole thing works (courtesy of Christoffer Dall):
37 *
38 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
39 * something is pending on the CPU interface.
40 * - Interrupts that are pending on the distributor are stored on the
41 * vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
42 * ioctls and guest mmio ops, and other in-kernel peripherals such as the
43 * arch. timers).
44 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
45 * recalculated
46 * - To calculate the oracle, we need info for each cpu from
47 * compute_pending_for_cpu, which considers:
48 * - PPI: dist->irq_pending & dist->irq_enable
49 * - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
50 * - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
51 * registers, stored on each vcpu. We only keep one bit of
52 * information per interrupt, making sure that only one vcpu can
53 * accept the interrupt.
54 * - If any of the above state changes, we must recalculate the oracle.
55 * - The same is true when injecting an interrupt, except that we only
56 * consider a single interrupt at a time. The irq_spi_cpu array
57 * contains the target CPU for each SPI.
58 *
59 * The handling of level interrupts adds some extra complexity. We
60 * need to track when the interrupt has been EOIed, so we can sample
61 * the 'line' again. This is achieved as such:
62 *
63 * - When a level interrupt is moved onto a vcpu, the corresponding
64 * bit in irq_queued is set. As long as this bit is set, the line
65 * will be ignored for further interrupts. The interrupt is injected
66 * into the vcpu with the GICH_LR_EOI bit set (generate a
67 * maintenance interrupt on EOI).
68 * - When the interrupt is EOIed, the maintenance interrupt fires,
69 * and clears the corresponding bit in irq_queued. This allows the
70 * interrupt line to be sampled again.
71 * - Note that level-triggered interrupts can also be set to pending from
72 * writes to GICD_ISPENDRn and lowering the external input line does not
73 * cause the interrupt to become inactive in such a situation.
74 * Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
75 * inactive as long as the external input line is held high.
76 */
77
78 #include "vgic.h"
79
80 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
81 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
82 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
83 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
84
85 static const struct vgic_ops *vgic_ops;
86 static const struct vgic_params *vgic;
87
88 static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
89 {
90 vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
91 }
92
93 static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
94 {
95 return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
96 }
97
98 int kvm_vgic_map_resources(struct kvm *kvm)
99 {
100 return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
101 }
102
103 /*
104 * struct vgic_bitmap contains a bitmap made of unsigned longs, but
105 * extracts u32s out of them.
106 *
107 * This does not work on 64-bit BE systems, because the bitmap access
108 * will store two consecutive 32-bit words with the higher-addressed
109 * register's bits at the lower index and the lower-addressed register's
110 * bits at the higher index.
111 *
112 * Therefore, swizzle the register index when accessing the 32-bit word
113 * registers to access the right register's value.
114 */
115 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
116 #define REG_OFFSET_SWIZZLE 1
117 #else
118 #define REG_OFFSET_SWIZZLE 0
119 #endif
120
121 static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
122 {
123 int nr_longs;
124
125 nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
126
127 b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
128 if (!b->private)
129 return -ENOMEM;
130
131 b->shared = b->private + nr_cpus;
132
133 return 0;
134 }
135
136 static void vgic_free_bitmap(struct vgic_bitmap *b)
137 {
138 kfree(b->private);
139 b->private = NULL;
140 b->shared = NULL;
141 }
142
143 /*
144 * Call this function to convert a u64 value to an unsigned long * bitmask
145 * in a way that works on both 32-bit and 64-bit LE and BE platforms.
146 *
147 * Warning: Calling this function may modify *val.
148 */
149 static unsigned long *u64_to_bitmask(u64 *val)
150 {
151 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
152 *val = (*val >> 32) | (*val << 32);
153 #endif
154 return (unsigned long *)val;
155 }
156
157 u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
158 {
159 offset >>= 2;
160 if (!offset)
161 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
162 else
163 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
164 }
165
166 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
167 int cpuid, int irq)
168 {
169 if (irq < VGIC_NR_PRIVATE_IRQS)
170 return test_bit(irq, x->private + cpuid);
171
172 return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
173 }
174
175 void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
176 int irq, int val)
177 {
178 unsigned long *reg;
179
180 if (irq < VGIC_NR_PRIVATE_IRQS) {
181 reg = x->private + cpuid;
182 } else {
183 reg = x->shared;
184 irq -= VGIC_NR_PRIVATE_IRQS;
185 }
186
187 if (val)
188 set_bit(irq, reg);
189 else
190 clear_bit(irq, reg);
191 }
192
193 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
194 {
195 return x->private + cpuid;
196 }
197
198 unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
199 {
200 return x->shared;
201 }
202
203 static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
204 {
205 int size;
206
207 size = nr_cpus * VGIC_NR_PRIVATE_IRQS;
208 size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
209
210 x->private = kzalloc(size, GFP_KERNEL);
211 if (!x->private)
212 return -ENOMEM;
213
214 x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
215 return 0;
216 }
217
218 static void vgic_free_bytemap(struct vgic_bytemap *b)
219 {
220 kfree(b->private);
221 b->private = NULL;
222 b->shared = NULL;
223 }
224
225 u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
226 {
227 u32 *reg;
228
229 if (offset < VGIC_NR_PRIVATE_IRQS) {
230 reg = x->private;
231 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
232 } else {
233 reg = x->shared;
234 offset -= VGIC_NR_PRIVATE_IRQS;
235 }
236
237 return reg + (offset / sizeof(u32));
238 }
239
240 #define VGIC_CFG_LEVEL 0
241 #define VGIC_CFG_EDGE 1
242
243 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
244 {
245 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
246 int irq_val;
247
248 irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
249 return irq_val == VGIC_CFG_EDGE;
250 }
251
252 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
253 {
254 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
255
256 return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
257 }
258
259 static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
260 {
261 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
262
263 return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
264 }
265
266 static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
267 {
268 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
269
270 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
271 }
272
273 static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
274 {
275 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
276
277 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
278 }
279
280 static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
281 {
282 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
283
284 return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
285 }
286
287 static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
288 {
289 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
290
291 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
292 }
293
294 static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
295 {
296 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
297
298 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
299 }
300
301 static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
302 {
303 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
304
305 return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
306 }
307
308 static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
309 {
310 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
311
312 vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
313 }
314
315 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
316 {
317 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
318
319 return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
320 }
321
322 void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
323 {
324 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
325
326 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
327 }
328
329 void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
330 {
331 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
332
333 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
334 }
335
336 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
337 {
338 if (irq < VGIC_NR_PRIVATE_IRQS)
339 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
340 else
341 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
342 vcpu->arch.vgic_cpu.pending_shared);
343 }
344
345 void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
346 {
347 if (irq < VGIC_NR_PRIVATE_IRQS)
348 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
349 else
350 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
351 vcpu->arch.vgic_cpu.pending_shared);
352 }
353
354 static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
355 {
356 return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
357 }
358
359 /**
360 * vgic_reg_access - access vgic register
361 * @mmio: pointer to the data describing the mmio access
362 * @reg: pointer to the virtual backing of vgic distributor data
363 * @offset: least significant 2 bits used for word offset
364 * @mode: ACCESS_ mode (see defines above)
365 *
366 * Helper to make vgic register access easier using one of the access
367 * modes defined for vgic register access
368 * (read,raz,write-ignored,setbit,clearbit,write)
369 */
370 void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
371 phys_addr_t offset, int mode)
372 {
373 int word_offset = (offset & 3) * 8;
374 u32 mask = (1UL << (mmio->len * 8)) - 1;
375 u32 regval;
376
377 /*
378 * Any alignment fault should have been delivered to the guest
379 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
380 */
381
382 if (reg) {
383 regval = *reg;
384 } else {
385 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
386 regval = 0;
387 }
388
389 if (mmio->is_write) {
390 u32 data = mmio_data_read(mmio, mask) << word_offset;
391 switch (ACCESS_WRITE_MASK(mode)) {
392 case ACCESS_WRITE_IGNORED:
393 return;
394
395 case ACCESS_WRITE_SETBIT:
396 regval |= data;
397 break;
398
399 case ACCESS_WRITE_CLEARBIT:
400 regval &= ~data;
401 break;
402
403 case ACCESS_WRITE_VALUE:
404 regval = (regval & ~(mask << word_offset)) | data;
405 break;
406 }
407 *reg = regval;
408 } else {
409 switch (ACCESS_READ_MASK(mode)) {
410 case ACCESS_READ_RAZ:
411 regval = 0;
412 /* fall through */
413
414 case ACCESS_READ_VALUE:
415 mmio_data_write(mmio, mask, regval >> word_offset);
416 }
417 }
418 }
419
420 bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
421 phys_addr_t offset)
422 {
423 vgic_reg_access(mmio, NULL, offset,
424 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
425 return false;
426 }
427
428 bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
429 phys_addr_t offset, int vcpu_id, int access)
430 {
431 u32 *reg;
432 int mode = ACCESS_READ_VALUE | access;
433 struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
434
435 reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
436 vgic_reg_access(mmio, reg, offset, mode);
437 if (mmio->is_write) {
438 if (access & ACCESS_WRITE_CLEARBIT) {
439 if (offset < 4) /* Force SGI enabled */
440 *reg |= 0xffff;
441 vgic_retire_disabled_irqs(target_vcpu);
442 }
443 vgic_update_state(kvm);
444 return true;
445 }
446
447 return false;
448 }
449
450 bool vgic_handle_set_pending_reg(struct kvm *kvm,
451 struct kvm_exit_mmio *mmio,
452 phys_addr_t offset, int vcpu_id)
453 {
454 u32 *reg, orig;
455 u32 level_mask;
456 int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
457 struct vgic_dist *dist = &kvm->arch.vgic;
458
459 reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
460 level_mask = (~(*reg));
461
462 /* Mark both level and edge triggered irqs as pending */
463 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
464 orig = *reg;
465 vgic_reg_access(mmio, reg, offset, mode);
466
467 if (mmio->is_write) {
468 /* Set the soft-pending flag only for level-triggered irqs */
469 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
470 vcpu_id, offset);
471 vgic_reg_access(mmio, reg, offset, mode);
472 *reg &= level_mask;
473
474 /* Ignore writes to SGIs */
475 if (offset < 2) {
476 *reg &= ~0xffff;
477 *reg |= orig & 0xffff;
478 }
479
480 vgic_update_state(kvm);
481 return true;
482 }
483
484 return false;
485 }
486
487 bool vgic_handle_clear_pending_reg(struct kvm *kvm,
488 struct kvm_exit_mmio *mmio,
489 phys_addr_t offset, int vcpu_id)
490 {
491 u32 *level_active;
492 u32 *reg, orig;
493 int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
494 struct vgic_dist *dist = &kvm->arch.vgic;
495
496 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
497 orig = *reg;
498 vgic_reg_access(mmio, reg, offset, mode);
499 if (mmio->is_write) {
500 /* Re-set level triggered level-active interrupts */
501 level_active = vgic_bitmap_get_reg(&dist->irq_level,
502 vcpu_id, offset);
503 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
504 *reg |= *level_active;
505
506 /* Ignore writes to SGIs */
507 if (offset < 2) {
508 *reg &= ~0xffff;
509 *reg |= orig & 0xffff;
510 }
511
512 /* Clear soft-pending flags */
513 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
514 vcpu_id, offset);
515 vgic_reg_access(mmio, reg, offset, mode);
516
517 vgic_update_state(kvm);
518 return true;
519 }
520 return false;
521 }
522
523 static u32 vgic_cfg_expand(u16 val)
524 {
525 u32 res = 0;
526 int i;
527
528 /*
529 * Turn a 16bit value like abcd...mnop into a 32bit word
530 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
531 */
532 for (i = 0; i < 16; i++)
533 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
534
535 return res;
536 }
537
538 static u16 vgic_cfg_compress(u32 val)
539 {
540 u16 res = 0;
541 int i;
542
543 /*
544 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
545 * abcd...mnop which is what we really care about.
546 */
547 for (i = 0; i < 16; i++)
548 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
549
550 return res;
551 }
552
553 /*
554 * The distributor uses 2 bits per IRQ for the CFG register, but the
555 * LSB is always 0. As such, we only keep the upper bit, and use the
556 * two above functions to compress/expand the bits
557 */
558 bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
559 phys_addr_t offset)
560 {
561 u32 val;
562
563 if (offset & 4)
564 val = *reg >> 16;
565 else
566 val = *reg & 0xffff;
567
568 val = vgic_cfg_expand(val);
569 vgic_reg_access(mmio, &val, offset,
570 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
571 if (mmio->is_write) {
572 if (offset < 8) {
573 *reg = ~0U; /* Force PPIs/SGIs to 1 */
574 return false;
575 }
576
577 val = vgic_cfg_compress(val);
578 if (offset & 4) {
579 *reg &= 0xffff;
580 *reg |= val << 16;
581 } else {
582 *reg &= 0xffff << 16;
583 *reg |= val;
584 }
585 }
586
587 return false;
588 }
589
590 /**
591 * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
592 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
593 *
594 * Move any pending IRQs that have already been assigned to LRs back to the
595 * emulated distributor state so that the complete emulated state can be read
596 * from the main emulation structures without investigating the LRs.
597 *
598 * Note that IRQs in the active state in the LRs get their pending state moved
599 * to the distributor but the active state stays in the LRs, because we don't
600 * track the active state on the distributor side.
601 */
602 void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
603 {
604 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
605 int i;
606
607 for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
608 struct vgic_lr lr = vgic_get_lr(vcpu, i);
609
610 /*
611 * There are three options for the state bits:
612 *
613 * 01: pending
614 * 10: active
615 * 11: pending and active
616 *
617 * If the LR holds only an active interrupt (not pending) then
618 * just leave it alone.
619 */
620 if ((lr.state & LR_STATE_MASK) == LR_STATE_ACTIVE)
621 continue;
622
623 /*
624 * Reestablish the pending state on the distributor and the
625 * CPU interface. It may have already been pending, but that
626 * is fine, then we are only setting a few bits that were
627 * already set.
628 */
629 vgic_dist_irq_set_pending(vcpu, lr.irq);
630 if (lr.irq < VGIC_NR_SGIS)
631 add_sgi_source(vcpu, lr.irq, lr.source);
632 lr.state &= ~LR_STATE_PENDING;
633 vgic_set_lr(vcpu, i, lr);
634
635 /*
636 * If there's no state left on the LR (it could still be
637 * active), then the LR does not hold any useful info and can
638 * be marked as free for other use.
639 */
640 if (!(lr.state & LR_STATE_MASK)) {
641 vgic_retire_lr(i, lr.irq, vcpu);
642 vgic_irq_clear_queued(vcpu, lr.irq);
643 }
644
645 /* Finally update the VGIC state. */
646 vgic_update_state(vcpu->kvm);
647 }
648 }
649
650 const
651 struct kvm_mmio_range *vgic_find_range(const struct kvm_mmio_range *ranges,
652 struct kvm_exit_mmio *mmio,
653 phys_addr_t offset)
654 {
655 const struct kvm_mmio_range *r = ranges;
656
657 while (r->len) {
658 if (offset >= r->base &&
659 (offset + mmio->len) <= (r->base + r->len))
660 return r;
661 r++;
662 }
663
664 return NULL;
665 }
666
667 static bool vgic_validate_access(const struct vgic_dist *dist,
668 const struct kvm_mmio_range *range,
669 unsigned long offset)
670 {
671 int irq;
672
673 if (!range->bits_per_irq)
674 return true; /* Not an irq-based access */
675
676 irq = offset * 8 / range->bits_per_irq;
677 if (irq >= dist->nr_irqs)
678 return false;
679
680 return true;
681 }
682
683 /*
684 * Call the respective handler function for the given range.
685 * We split up any 64 bit accesses into two consecutive 32 bit
686 * handler calls and merge the result afterwards.
687 * We do this in a little endian fashion regardless of the host's
688 * or guest's endianness, because the GIC is always LE and the rest of
689 * the code (vgic_reg_access) also puts it in a LE fashion already.
690 * At this point we have already identified the handle function, so
691 * range points to that one entry and offset is relative to this.
692 */
693 static bool call_range_handler(struct kvm_vcpu *vcpu,
694 struct kvm_exit_mmio *mmio,
695 unsigned long offset,
696 const struct kvm_mmio_range *range)
697 {
698 u32 *data32 = (void *)mmio->data;
699 struct kvm_exit_mmio mmio32;
700 bool ret;
701
702 if (likely(mmio->len <= 4))
703 return range->handle_mmio(vcpu, mmio, offset);
704
705 /*
706 * Any access bigger than 4 bytes (that we currently handle in KVM)
707 * is actually 8 bytes long, caused by a 64-bit access
708 */
709
710 mmio32.len = 4;
711 mmio32.is_write = mmio->is_write;
712
713 mmio32.phys_addr = mmio->phys_addr + 4;
714 if (mmio->is_write)
715 *(u32 *)mmio32.data = data32[1];
716 ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
717 if (!mmio->is_write)
718 data32[1] = *(u32 *)mmio32.data;
719
720 mmio32.phys_addr = mmio->phys_addr;
721 if (mmio->is_write)
722 *(u32 *)mmio32.data = data32[0];
723 ret |= range->handle_mmio(vcpu, &mmio32, offset);
724 if (!mmio->is_write)
725 data32[0] = *(u32 *)mmio32.data;
726
727 return ret;
728 }
729
730 /**
731 * vgic_handle_mmio_range - handle an in-kernel MMIO access
732 * @vcpu: pointer to the vcpu performing the access
733 * @run: pointer to the kvm_run structure
734 * @mmio: pointer to the data describing the access
735 * @ranges: array of MMIO ranges in a given region
736 * @mmio_base: base address of that region
737 *
738 * returns true if the MMIO access could be performed
739 */
740 bool vgic_handle_mmio_range(struct kvm_vcpu *vcpu, struct kvm_run *run,
741 struct kvm_exit_mmio *mmio,
742 const struct kvm_mmio_range *ranges,
743 unsigned long mmio_base)
744 {
745 const struct kvm_mmio_range *range;
746 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
747 bool updated_state;
748 unsigned long offset;
749
750 offset = mmio->phys_addr - mmio_base;
751 range = vgic_find_range(ranges, mmio, offset);
752 if (unlikely(!range || !range->handle_mmio)) {
753 pr_warn("Unhandled access %d %08llx %d\n",
754 mmio->is_write, mmio->phys_addr, mmio->len);
755 return false;
756 }
757
758 spin_lock(&vcpu->kvm->arch.vgic.lock);
759 offset -= range->base;
760 if (vgic_validate_access(dist, range, offset)) {
761 updated_state = call_range_handler(vcpu, mmio, offset, range);
762 } else {
763 if (!mmio->is_write)
764 memset(mmio->data, 0, mmio->len);
765 updated_state = false;
766 }
767 spin_unlock(&vcpu->kvm->arch.vgic.lock);
768 kvm_prepare_mmio(run, mmio);
769 kvm_handle_mmio_return(vcpu, run);
770
771 if (updated_state)
772 vgic_kick_vcpus(vcpu->kvm);
773
774 return true;
775 }
776
777 /**
778 * vgic_handle_mmio - handle an in-kernel MMIO access for the GIC emulation
779 * @vcpu: pointer to the vcpu performing the access
780 * @run: pointer to the kvm_run structure
781 * @mmio: pointer to the data describing the access
782 *
783 * returns true if the MMIO access has been performed in kernel space,
784 * and false if it needs to be emulated in user space.
785 * Calls the actual handling routine for the selected VGIC model.
786 */
787 bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
788 struct kvm_exit_mmio *mmio)
789 {
790 if (!irqchip_in_kernel(vcpu->kvm))
791 return false;
792
793 /*
794 * This will currently call either vgic_v2_handle_mmio() or
795 * vgic_v3_handle_mmio(), which in turn will call
796 * vgic_handle_mmio_range() defined above.
797 */
798 return vcpu->kvm->arch.vgic.vm_ops.handle_mmio(vcpu, run, mmio);
799 }
800
801 static int vgic_nr_shared_irqs(struct vgic_dist *dist)
802 {
803 return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
804 }
805
806 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
807 {
808 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
809 unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
810 unsigned long pending_private, pending_shared;
811 int nr_shared = vgic_nr_shared_irqs(dist);
812 int vcpu_id;
813
814 vcpu_id = vcpu->vcpu_id;
815 pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
816 pend_shared = vcpu->arch.vgic_cpu.pending_shared;
817
818 pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
819 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
820 bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
821
822 pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
823 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
824 bitmap_and(pend_shared, pending, enabled, nr_shared);
825 bitmap_and(pend_shared, pend_shared,
826 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
827 nr_shared);
828
829 pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
830 pending_shared = find_first_bit(pend_shared, nr_shared);
831 return (pending_private < VGIC_NR_PRIVATE_IRQS ||
832 pending_shared < vgic_nr_shared_irqs(dist));
833 }
834
835 /*
836 * Update the interrupt state and determine which CPUs have pending
837 * interrupts. Must be called with distributor lock held.
838 */
839 void vgic_update_state(struct kvm *kvm)
840 {
841 struct vgic_dist *dist = &kvm->arch.vgic;
842 struct kvm_vcpu *vcpu;
843 int c;
844
845 if (!dist->enabled) {
846 set_bit(0, dist->irq_pending_on_cpu);
847 return;
848 }
849
850 kvm_for_each_vcpu(c, vcpu, kvm) {
851 if (compute_pending_for_cpu(vcpu)) {
852 pr_debug("CPU%d has pending interrupts\n", c);
853 set_bit(c, dist->irq_pending_on_cpu);
854 }
855 }
856 }
857
858 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
859 {
860 return vgic_ops->get_lr(vcpu, lr);
861 }
862
863 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
864 struct vgic_lr vlr)
865 {
866 vgic_ops->set_lr(vcpu, lr, vlr);
867 }
868
869 static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
870 struct vgic_lr vlr)
871 {
872 vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
873 }
874
875 static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
876 {
877 return vgic_ops->get_elrsr(vcpu);
878 }
879
880 static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
881 {
882 return vgic_ops->get_eisr(vcpu);
883 }
884
885 static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
886 {
887 return vgic_ops->get_interrupt_status(vcpu);
888 }
889
890 static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
891 {
892 vgic_ops->enable_underflow(vcpu);
893 }
894
895 static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
896 {
897 vgic_ops->disable_underflow(vcpu);
898 }
899
900 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
901 {
902 vgic_ops->get_vmcr(vcpu, vmcr);
903 }
904
905 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
906 {
907 vgic_ops->set_vmcr(vcpu, vmcr);
908 }
909
910 static inline void vgic_enable(struct kvm_vcpu *vcpu)
911 {
912 vgic_ops->enable(vcpu);
913 }
914
915 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
916 {
917 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
918 struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
919
920 vlr.state = 0;
921 vgic_set_lr(vcpu, lr_nr, vlr);
922 clear_bit(lr_nr, vgic_cpu->lr_used);
923 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
924 }
925
926 /*
927 * An interrupt may have been disabled after being made pending on the
928 * CPU interface (the classic case is a timer running while we're
929 * rebooting the guest - the interrupt would kick as soon as the CPU
930 * interface gets enabled, with deadly consequences).
931 *
932 * The solution is to examine already active LRs, and check the
933 * interrupt is still enabled. If not, just retire it.
934 */
935 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
936 {
937 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
938 int lr;
939
940 for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
941 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
942
943 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
944 vgic_retire_lr(lr, vlr.irq, vcpu);
945 if (vgic_irq_is_queued(vcpu, vlr.irq))
946 vgic_irq_clear_queued(vcpu, vlr.irq);
947 }
948 }
949 }
950
951 /*
952 * Queue an interrupt to a CPU virtual interface. Return true on success,
953 * or false if it wasn't possible to queue it.
954 * sgi_source must be zero for any non-SGI interrupts.
955 */
956 bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
957 {
958 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
959 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
960 struct vgic_lr vlr;
961 int lr;
962
963 /* Sanitize the input... */
964 BUG_ON(sgi_source_id & ~7);
965 BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
966 BUG_ON(irq >= dist->nr_irqs);
967
968 kvm_debug("Queue IRQ%d\n", irq);
969
970 lr = vgic_cpu->vgic_irq_lr_map[irq];
971
972 /* Do we have an active interrupt for the same CPUID? */
973 if (lr != LR_EMPTY) {
974 vlr = vgic_get_lr(vcpu, lr);
975 if (vlr.source == sgi_source_id) {
976 kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
977 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
978 vlr.state |= LR_STATE_PENDING;
979 vgic_set_lr(vcpu, lr, vlr);
980 return true;
981 }
982 }
983
984 /* Try to use another LR for this interrupt */
985 lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
986 vgic->nr_lr);
987 if (lr >= vgic->nr_lr)
988 return false;
989
990 kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
991 vgic_cpu->vgic_irq_lr_map[irq] = lr;
992 set_bit(lr, vgic_cpu->lr_used);
993
994 vlr.irq = irq;
995 vlr.source = sgi_source_id;
996 vlr.state = LR_STATE_PENDING;
997 if (!vgic_irq_is_edge(vcpu, irq))
998 vlr.state |= LR_EOI_INT;
999
1000 vgic_set_lr(vcpu, lr, vlr);
1001
1002 return true;
1003 }
1004
1005 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1006 {
1007 if (!vgic_can_sample_irq(vcpu, irq))
1008 return true; /* level interrupt, already queued */
1009
1010 if (vgic_queue_irq(vcpu, 0, irq)) {
1011 if (vgic_irq_is_edge(vcpu, irq)) {
1012 vgic_dist_irq_clear_pending(vcpu, irq);
1013 vgic_cpu_irq_clear(vcpu, irq);
1014 } else {
1015 vgic_irq_set_queued(vcpu, irq);
1016 }
1017
1018 return true;
1019 }
1020
1021 return false;
1022 }
1023
1024 /*
1025 * Fill the list registers with pending interrupts before running the
1026 * guest.
1027 */
1028 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1029 {
1030 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1031 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1032 int i, vcpu_id;
1033 int overflow = 0;
1034
1035 vcpu_id = vcpu->vcpu_id;
1036
1037 /*
1038 * We may not have any pending interrupt, or the interrupts
1039 * may have been serviced from another vcpu. In all cases,
1040 * move along.
1041 */
1042 if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
1043 pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
1044 goto epilog;
1045 }
1046
1047 /* SGIs */
1048 for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
1049 if (!queue_sgi(vcpu, i))
1050 overflow = 1;
1051 }
1052
1053 /* PPIs */
1054 for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
1055 if (!vgic_queue_hwirq(vcpu, i))
1056 overflow = 1;
1057 }
1058
1059 /* SPIs */
1060 for_each_set_bit(i, vgic_cpu->pending_shared, vgic_nr_shared_irqs(dist)) {
1061 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1062 overflow = 1;
1063 }
1064
1065 epilog:
1066 if (overflow) {
1067 vgic_enable_underflow(vcpu);
1068 } else {
1069 vgic_disable_underflow(vcpu);
1070 /*
1071 * We're about to run this VCPU, and we've consumed
1072 * everything the distributor had in store for
1073 * us. Claim we don't have anything pending. We'll
1074 * adjust that if needed while exiting.
1075 */
1076 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
1077 }
1078 }
1079
1080 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1081 {
1082 u32 status = vgic_get_interrupt_status(vcpu);
1083 bool level_pending = false;
1084
1085 kvm_debug("STATUS = %08x\n", status);
1086
1087 if (status & INT_STATUS_EOI) {
1088 /*
1089 * Some level interrupts have been EOIed. Clear their
1090 * active bit.
1091 */
1092 u64 eisr = vgic_get_eisr(vcpu);
1093 unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
1094 int lr;
1095
1096 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1097 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1098 WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1099
1100 vgic_irq_clear_queued(vcpu, vlr.irq);
1101 WARN_ON(vlr.state & LR_STATE_MASK);
1102 vlr.state = 0;
1103 vgic_set_lr(vcpu, lr, vlr);
1104
1105 /*
1106 * If the IRQ was EOIed it was also ACKed and we we
1107 * therefore assume we can clear the soft pending
1108 * state (should it had been set) for this interrupt.
1109 *
1110 * Note: if the IRQ soft pending state was set after
1111 * the IRQ was acked, it actually shouldn't be
1112 * cleared, but we have no way of knowing that unless
1113 * we start trapping ACKs when the soft-pending state
1114 * is set.
1115 */
1116 vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1117
1118 /* Any additional pending interrupt? */
1119 if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1120 vgic_cpu_irq_set(vcpu, vlr.irq);
1121 level_pending = true;
1122 } else {
1123 vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1124 vgic_cpu_irq_clear(vcpu, vlr.irq);
1125 }
1126
1127 /*
1128 * Despite being EOIed, the LR may not have
1129 * been marked as empty.
1130 */
1131 vgic_sync_lr_elrsr(vcpu, lr, vlr);
1132 }
1133 }
1134
1135 if (status & INT_STATUS_UNDERFLOW)
1136 vgic_disable_underflow(vcpu);
1137
1138 return level_pending;
1139 }
1140
1141 /*
1142 * Sync back the VGIC state after a guest run. The distributor lock is
1143 * needed so we don't get preempted in the middle of the state processing.
1144 */
1145 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1146 {
1147 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1148 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1149 u64 elrsr;
1150 unsigned long *elrsr_ptr;
1151 int lr, pending;
1152 bool level_pending;
1153
1154 level_pending = vgic_process_maintenance(vcpu);
1155 elrsr = vgic_get_elrsr(vcpu);
1156 elrsr_ptr = u64_to_bitmask(&elrsr);
1157
1158 /* Clear mappings for empty LRs */
1159 for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
1160 struct vgic_lr vlr;
1161
1162 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1163 continue;
1164
1165 vlr = vgic_get_lr(vcpu, lr);
1166
1167 BUG_ON(vlr.irq >= dist->nr_irqs);
1168 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
1169 }
1170
1171 /* Check if we still have something up our sleeve... */
1172 pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1173 if (level_pending || pending < vgic->nr_lr)
1174 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1175 }
1176
1177 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1178 {
1179 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1180
1181 if (!irqchip_in_kernel(vcpu->kvm))
1182 return;
1183
1184 spin_lock(&dist->lock);
1185 __kvm_vgic_flush_hwstate(vcpu);
1186 spin_unlock(&dist->lock);
1187 }
1188
1189 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1190 {
1191 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1192
1193 if (!irqchip_in_kernel(vcpu->kvm))
1194 return;
1195
1196 spin_lock(&dist->lock);
1197 __kvm_vgic_sync_hwstate(vcpu);
1198 spin_unlock(&dist->lock);
1199 }
1200
1201 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1202 {
1203 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1204
1205 if (!irqchip_in_kernel(vcpu->kvm))
1206 return 0;
1207
1208 return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1209 }
1210
1211 void vgic_kick_vcpus(struct kvm *kvm)
1212 {
1213 struct kvm_vcpu *vcpu;
1214 int c;
1215
1216 /*
1217 * We've injected an interrupt, time to find out who deserves
1218 * a good kick...
1219 */
1220 kvm_for_each_vcpu(c, vcpu, kvm) {
1221 if (kvm_vgic_vcpu_pending_irq(vcpu))
1222 kvm_vcpu_kick(vcpu);
1223 }
1224 }
1225
1226 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1227 {
1228 int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1229
1230 /*
1231 * Only inject an interrupt if:
1232 * - edge triggered and we have a rising edge
1233 * - level triggered and we change level
1234 */
1235 if (edge_triggered) {
1236 int state = vgic_dist_irq_is_pending(vcpu, irq);
1237 return level > state;
1238 } else {
1239 int state = vgic_dist_irq_get_level(vcpu, irq);
1240 return level != state;
1241 }
1242 }
1243
1244 static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1245 unsigned int irq_num, bool level)
1246 {
1247 struct vgic_dist *dist = &kvm->arch.vgic;
1248 struct kvm_vcpu *vcpu;
1249 int edge_triggered, level_triggered;
1250 int enabled;
1251 bool ret = true;
1252
1253 spin_lock(&dist->lock);
1254
1255 vcpu = kvm_get_vcpu(kvm, cpuid);
1256 edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1257 level_triggered = !edge_triggered;
1258
1259 if (!vgic_validate_injection(vcpu, irq_num, level)) {
1260 ret = false;
1261 goto out;
1262 }
1263
1264 if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1265 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1266 vcpu = kvm_get_vcpu(kvm, cpuid);
1267 }
1268
1269 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1270
1271 if (level) {
1272 if (level_triggered)
1273 vgic_dist_irq_set_level(vcpu, irq_num);
1274 vgic_dist_irq_set_pending(vcpu, irq_num);
1275 } else {
1276 if (level_triggered) {
1277 vgic_dist_irq_clear_level(vcpu, irq_num);
1278 if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
1279 vgic_dist_irq_clear_pending(vcpu, irq_num);
1280 }
1281
1282 ret = false;
1283 goto out;
1284 }
1285
1286 enabled = vgic_irq_is_enabled(vcpu, irq_num);
1287
1288 if (!enabled) {
1289 ret = false;
1290 goto out;
1291 }
1292
1293 if (!vgic_can_sample_irq(vcpu, irq_num)) {
1294 /*
1295 * Level interrupt in progress, will be picked up
1296 * when EOId.
1297 */
1298 ret = false;
1299 goto out;
1300 }
1301
1302 if (level) {
1303 vgic_cpu_irq_set(vcpu, irq_num);
1304 set_bit(cpuid, dist->irq_pending_on_cpu);
1305 }
1306
1307 out:
1308 spin_unlock(&dist->lock);
1309
1310 return ret ? cpuid : -EINVAL;
1311 }
1312
1313 /**
1314 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1315 * @kvm: The VM structure pointer
1316 * @cpuid: The CPU for PPIs
1317 * @irq_num: The IRQ number that is assigned to the device
1318 * @level: Edge-triggered: true: to trigger the interrupt
1319 * false: to ignore the call
1320 * Level-sensitive true: activates an interrupt
1321 * false: deactivates an interrupt
1322 *
1323 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1324 * level-sensitive interrupts. You can think of the level parameter as 1
1325 * being HIGH and 0 being LOW and all devices being active-HIGH.
1326 */
1327 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1328 bool level)
1329 {
1330 int ret = 0;
1331 int vcpu_id;
1332
1333 if (unlikely(!vgic_initialized(kvm))) {
1334 /*
1335 * We only provide the automatic initialization of the VGIC
1336 * for the legacy case of a GICv2. Any other type must
1337 * be explicitly initialized once setup with the respective
1338 * KVM device call.
1339 */
1340 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) {
1341 ret = -EBUSY;
1342 goto out;
1343 }
1344 mutex_lock(&kvm->lock);
1345 ret = vgic_init(kvm);
1346 mutex_unlock(&kvm->lock);
1347
1348 if (ret)
1349 goto out;
1350 }
1351
1352 vcpu_id = vgic_update_irq_pending(kvm, cpuid, irq_num, level);
1353 if (vcpu_id >= 0) {
1354 /* kick the specified vcpu */
1355 kvm_vcpu_kick(kvm_get_vcpu(kvm, vcpu_id));
1356 }
1357
1358 out:
1359 return ret;
1360 }
1361
1362 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1363 {
1364 /*
1365 * We cannot rely on the vgic maintenance interrupt to be
1366 * delivered synchronously. This means we can only use it to
1367 * exit the VM, and we perform the handling of EOIed
1368 * interrupts on the exit path (see vgic_process_maintenance).
1369 */
1370 return IRQ_HANDLED;
1371 }
1372
1373 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1374 {
1375 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1376
1377 kfree(vgic_cpu->pending_shared);
1378 kfree(vgic_cpu->vgic_irq_lr_map);
1379 vgic_cpu->pending_shared = NULL;
1380 vgic_cpu->vgic_irq_lr_map = NULL;
1381 }
1382
1383 static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1384 {
1385 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1386
1387 int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
1388 vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
1389 vgic_cpu->vgic_irq_lr_map = kmalloc(nr_irqs, GFP_KERNEL);
1390
1391 if (!vgic_cpu->pending_shared || !vgic_cpu->vgic_irq_lr_map) {
1392 kvm_vgic_vcpu_destroy(vcpu);
1393 return -ENOMEM;
1394 }
1395
1396 memset(vgic_cpu->vgic_irq_lr_map, LR_EMPTY, nr_irqs);
1397
1398 /*
1399 * Store the number of LRs per vcpu, so we don't have to go
1400 * all the way to the distributor structure to find out. Only
1401 * assembly code should use this one.
1402 */
1403 vgic_cpu->nr_lr = vgic->nr_lr;
1404
1405 return 0;
1406 }
1407
1408 /**
1409 * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
1410 *
1411 * The host's GIC naturally limits the maximum amount of VCPUs a guest
1412 * can use.
1413 */
1414 int kvm_vgic_get_max_vcpus(void)
1415 {
1416 return vgic->max_gic_vcpus;
1417 }
1418
1419 void kvm_vgic_destroy(struct kvm *kvm)
1420 {
1421 struct vgic_dist *dist = &kvm->arch.vgic;
1422 struct kvm_vcpu *vcpu;
1423 int i;
1424
1425 kvm_for_each_vcpu(i, vcpu, kvm)
1426 kvm_vgic_vcpu_destroy(vcpu);
1427
1428 vgic_free_bitmap(&dist->irq_enabled);
1429 vgic_free_bitmap(&dist->irq_level);
1430 vgic_free_bitmap(&dist->irq_pending);
1431 vgic_free_bitmap(&dist->irq_soft_pend);
1432 vgic_free_bitmap(&dist->irq_queued);
1433 vgic_free_bitmap(&dist->irq_cfg);
1434 vgic_free_bytemap(&dist->irq_priority);
1435 if (dist->irq_spi_target) {
1436 for (i = 0; i < dist->nr_cpus; i++)
1437 vgic_free_bitmap(&dist->irq_spi_target[i]);
1438 }
1439 kfree(dist->irq_sgi_sources);
1440 kfree(dist->irq_spi_cpu);
1441 kfree(dist->irq_spi_target);
1442 kfree(dist->irq_pending_on_cpu);
1443 dist->irq_sgi_sources = NULL;
1444 dist->irq_spi_cpu = NULL;
1445 dist->irq_spi_target = NULL;
1446 dist->irq_pending_on_cpu = NULL;
1447 dist->nr_cpus = 0;
1448 }
1449
1450 /*
1451 * Allocate and initialize the various data structures. Must be called
1452 * with kvm->lock held!
1453 */
1454 int vgic_init(struct kvm *kvm)
1455 {
1456 struct vgic_dist *dist = &kvm->arch.vgic;
1457 struct kvm_vcpu *vcpu;
1458 int nr_cpus, nr_irqs;
1459 int ret, i, vcpu_id;
1460
1461 if (vgic_initialized(kvm))
1462 return 0;
1463
1464 nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
1465 if (!nr_cpus) /* No vcpus? Can't be good... */
1466 return -ENODEV;
1467
1468 /*
1469 * If nobody configured the number of interrupts, use the
1470 * legacy one.
1471 */
1472 if (!dist->nr_irqs)
1473 dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
1474
1475 nr_irqs = dist->nr_irqs;
1476
1477 ret = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
1478 ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
1479 ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
1480 ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
1481 ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
1482 ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
1483 ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
1484
1485 if (ret)
1486 goto out;
1487
1488 dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
1489 dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
1490 dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
1491 GFP_KERNEL);
1492 dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1493 GFP_KERNEL);
1494 if (!dist->irq_sgi_sources ||
1495 !dist->irq_spi_cpu ||
1496 !dist->irq_spi_target ||
1497 !dist->irq_pending_on_cpu) {
1498 ret = -ENOMEM;
1499 goto out;
1500 }
1501
1502 for (i = 0; i < nr_cpus; i++)
1503 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
1504 nr_cpus, nr_irqs);
1505
1506 if (ret)
1507 goto out;
1508
1509 ret = kvm->arch.vgic.vm_ops.init_model(kvm);
1510 if (ret)
1511 goto out;
1512
1513 kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
1514 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
1515 if (ret) {
1516 kvm_err("VGIC: Failed to allocate vcpu memory\n");
1517 break;
1518 }
1519
1520 for (i = 0; i < dist->nr_irqs; i++) {
1521 if (i < VGIC_NR_PPIS)
1522 vgic_bitmap_set_irq_val(&dist->irq_enabled,
1523 vcpu->vcpu_id, i, 1);
1524 if (i < VGIC_NR_PRIVATE_IRQS)
1525 vgic_bitmap_set_irq_val(&dist->irq_cfg,
1526 vcpu->vcpu_id, i,
1527 VGIC_CFG_EDGE);
1528 }
1529
1530 vgic_enable(vcpu);
1531 }
1532
1533 out:
1534 if (ret)
1535 kvm_vgic_destroy(kvm);
1536
1537 return ret;
1538 }
1539
1540 static int init_vgic_model(struct kvm *kvm, int type)
1541 {
1542 switch (type) {
1543 case KVM_DEV_TYPE_ARM_VGIC_V2:
1544 vgic_v2_init_emulation(kvm);
1545 break;
1546 default:
1547 return -ENODEV;
1548 }
1549
1550 if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
1551 return -E2BIG;
1552
1553 return 0;
1554 }
1555
1556 int kvm_vgic_create(struct kvm *kvm, u32 type)
1557 {
1558 int i, vcpu_lock_idx = -1, ret;
1559 struct kvm_vcpu *vcpu;
1560
1561 mutex_lock(&kvm->lock);
1562
1563 if (irqchip_in_kernel(kvm)) {
1564 ret = -EEXIST;
1565 goto out;
1566 }
1567
1568 /*
1569 * Any time a vcpu is run, vcpu_load is called which tries to grab the
1570 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
1571 * that no other VCPUs are run while we create the vgic.
1572 */
1573 ret = -EBUSY;
1574 kvm_for_each_vcpu(i, vcpu, kvm) {
1575 if (!mutex_trylock(&vcpu->mutex))
1576 goto out_unlock;
1577 vcpu_lock_idx = i;
1578 }
1579
1580 kvm_for_each_vcpu(i, vcpu, kvm) {
1581 if (vcpu->arch.has_run_once)
1582 goto out_unlock;
1583 }
1584 ret = 0;
1585
1586 ret = init_vgic_model(kvm, type);
1587 if (ret)
1588 goto out_unlock;
1589
1590 spin_lock_init(&kvm->arch.vgic.lock);
1591 kvm->arch.vgic.in_kernel = true;
1592 kvm->arch.vgic.vgic_model = type;
1593 kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
1594 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1595 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1596
1597 out_unlock:
1598 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1599 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1600 mutex_unlock(&vcpu->mutex);
1601 }
1602
1603 out:
1604 mutex_unlock(&kvm->lock);
1605 return ret;
1606 }
1607
1608 static int vgic_ioaddr_overlap(struct kvm *kvm)
1609 {
1610 phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1611 phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1612
1613 if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1614 return 0;
1615 if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1616 (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1617 return -EBUSY;
1618 return 0;
1619 }
1620
1621 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1622 phys_addr_t addr, phys_addr_t size)
1623 {
1624 int ret;
1625
1626 if (addr & ~KVM_PHYS_MASK)
1627 return -E2BIG;
1628
1629 if (addr & (SZ_4K - 1))
1630 return -EINVAL;
1631
1632 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1633 return -EEXIST;
1634 if (addr + size < addr)
1635 return -EINVAL;
1636
1637 *ioaddr = addr;
1638 ret = vgic_ioaddr_overlap(kvm);
1639 if (ret)
1640 *ioaddr = VGIC_ADDR_UNDEF;
1641
1642 return ret;
1643 }
1644
1645 /**
1646 * kvm_vgic_addr - set or get vgic VM base addresses
1647 * @kvm: pointer to the vm struct
1648 * @type: the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
1649 * @addr: pointer to address value
1650 * @write: if true set the address in the VM address space, if false read the
1651 * address
1652 *
1653 * Set or get the vgic base addresses for the distributor and the virtual CPU
1654 * interface in the VM physical address space. These addresses are properties
1655 * of the emulated core/SoC and therefore user space initially knows this
1656 * information.
1657 */
1658 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
1659 {
1660 int r = 0;
1661 struct vgic_dist *vgic = &kvm->arch.vgic;
1662
1663 mutex_lock(&kvm->lock);
1664 switch (type) {
1665 case KVM_VGIC_V2_ADDR_TYPE_DIST:
1666 if (write) {
1667 r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
1668 *addr, KVM_VGIC_V2_DIST_SIZE);
1669 } else {
1670 *addr = vgic->vgic_dist_base;
1671 }
1672 break;
1673 case KVM_VGIC_V2_ADDR_TYPE_CPU:
1674 if (write) {
1675 r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
1676 *addr, KVM_VGIC_V2_CPU_SIZE);
1677 } else {
1678 *addr = vgic->vgic_cpu_base;
1679 }
1680 break;
1681 default:
1682 r = -ENODEV;
1683 }
1684
1685 mutex_unlock(&kvm->lock);
1686 return r;
1687 }
1688
1689 int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1690 {
1691 int r;
1692
1693 switch (attr->group) {
1694 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1695 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1696 u64 addr;
1697 unsigned long type = (unsigned long)attr->attr;
1698
1699 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1700 return -EFAULT;
1701
1702 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
1703 return (r == -ENODEV) ? -ENXIO : r;
1704 }
1705 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
1706 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1707 u32 val;
1708 int ret = 0;
1709
1710 if (get_user(val, uaddr))
1711 return -EFAULT;
1712
1713 /*
1714 * We require:
1715 * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
1716 * - at most 1024 interrupts
1717 * - a multiple of 32 interrupts
1718 */
1719 if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
1720 val > VGIC_MAX_IRQS ||
1721 (val & 31))
1722 return -EINVAL;
1723
1724 mutex_lock(&dev->kvm->lock);
1725
1726 if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
1727 ret = -EBUSY;
1728 else
1729 dev->kvm->arch.vgic.nr_irqs = val;
1730
1731 mutex_unlock(&dev->kvm->lock);
1732
1733 return ret;
1734 }
1735 case KVM_DEV_ARM_VGIC_GRP_CTRL: {
1736 switch (attr->attr) {
1737 case KVM_DEV_ARM_VGIC_CTRL_INIT:
1738 r = vgic_init(dev->kvm);
1739 return r;
1740 }
1741 break;
1742 }
1743 }
1744
1745 return -ENXIO;
1746 }
1747
1748 int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1749 {
1750 int r = -ENXIO;
1751
1752 switch (attr->group) {
1753 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1754 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1755 u64 addr;
1756 unsigned long type = (unsigned long)attr->attr;
1757
1758 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
1759 if (r)
1760 return (r == -ENODEV) ? -ENXIO : r;
1761
1762 if (copy_to_user(uaddr, &addr, sizeof(addr)))
1763 return -EFAULT;
1764 break;
1765 }
1766 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
1767 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1768
1769 r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
1770 break;
1771 }
1772
1773 }
1774
1775 return r;
1776 }
1777
1778 int vgic_has_attr_regs(const struct kvm_mmio_range *ranges, phys_addr_t offset)
1779 {
1780 struct kvm_exit_mmio dev_attr_mmio;
1781
1782 dev_attr_mmio.len = 4;
1783 if (vgic_find_range(ranges, &dev_attr_mmio, offset))
1784 return 0;
1785 else
1786 return -ENXIO;
1787 }
1788
1789 static void vgic_init_maintenance_interrupt(void *info)
1790 {
1791 enable_percpu_irq(vgic->maint_irq, 0);
1792 }
1793
1794 static int vgic_cpu_notify(struct notifier_block *self,
1795 unsigned long action, void *cpu)
1796 {
1797 switch (action) {
1798 case CPU_STARTING:
1799 case CPU_STARTING_FROZEN:
1800 vgic_init_maintenance_interrupt(NULL);
1801 break;
1802 case CPU_DYING:
1803 case CPU_DYING_FROZEN:
1804 disable_percpu_irq(vgic->maint_irq);
1805 break;
1806 }
1807
1808 return NOTIFY_OK;
1809 }
1810
1811 static struct notifier_block vgic_cpu_nb = {
1812 .notifier_call = vgic_cpu_notify,
1813 };
1814
1815 static const struct of_device_id vgic_ids[] = {
1816 { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
1817 { .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
1818 {},
1819 };
1820
1821 int kvm_vgic_hyp_init(void)
1822 {
1823 const struct of_device_id *matched_id;
1824 const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
1825 const struct vgic_params **);
1826 struct device_node *vgic_node;
1827 int ret;
1828
1829 vgic_node = of_find_matching_node_and_match(NULL,
1830 vgic_ids, &matched_id);
1831 if (!vgic_node) {
1832 kvm_err("error: no compatible GIC node found\n");
1833 return -ENODEV;
1834 }
1835
1836 vgic_probe = matched_id->data;
1837 ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
1838 if (ret)
1839 return ret;
1840
1841 ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
1842 "vgic", kvm_get_running_vcpus());
1843 if (ret) {
1844 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
1845 return ret;
1846 }
1847
1848 ret = __register_cpu_notifier(&vgic_cpu_nb);
1849 if (ret) {
1850 kvm_err("Cannot register vgic CPU notifier\n");
1851 goto out_free_irq;
1852 }
1853
1854 /* Callback into for arch code for setup */
1855 vgic_arch_setup(vgic);
1856
1857 on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
1858
1859 return 0;
1860
1861 out_free_irq:
1862 free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
1863 return ret;
1864 }
This page took 0.256936 seconds and 5 git commands to generate.