78fb8201014f74f2172baf8a48acc5173a450f4d
[deliverable/linux.git] / virt / kvm / arm / vgic.c
1 /*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/uaccess.h>
28
29 #include <linux/irqchip/arm-gic.h>
30
31 #include <asm/kvm_emulate.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_mmu.h>
34 #include <trace/events/kvm.h>
35 #include <asm/kvm.h>
36 #include <kvm/iodev.h>
37
38 /*
39 * How the whole thing works (courtesy of Christoffer Dall):
40 *
41 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
42 * something is pending on the CPU interface.
43 * - Interrupts that are pending on the distributor are stored on the
44 * vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
45 * ioctls and guest mmio ops, and other in-kernel peripherals such as the
46 * arch. timers).
47 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
48 * recalculated
49 * - To calculate the oracle, we need info for each cpu from
50 * compute_pending_for_cpu, which considers:
51 * - PPI: dist->irq_pending & dist->irq_enable
52 * - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
53 * - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
54 * registers, stored on each vcpu. We only keep one bit of
55 * information per interrupt, making sure that only one vcpu can
56 * accept the interrupt.
57 * - If any of the above state changes, we must recalculate the oracle.
58 * - The same is true when injecting an interrupt, except that we only
59 * consider a single interrupt at a time. The irq_spi_cpu array
60 * contains the target CPU for each SPI.
61 *
62 * The handling of level interrupts adds some extra complexity. We
63 * need to track when the interrupt has been EOIed, so we can sample
64 * the 'line' again. This is achieved as such:
65 *
66 * - When a level interrupt is moved onto a vcpu, the corresponding
67 * bit in irq_queued is set. As long as this bit is set, the line
68 * will be ignored for further interrupts. The interrupt is injected
69 * into the vcpu with the GICH_LR_EOI bit set (generate a
70 * maintenance interrupt on EOI).
71 * - When the interrupt is EOIed, the maintenance interrupt fires,
72 * and clears the corresponding bit in irq_queued. This allows the
73 * interrupt line to be sampled again.
74 * - Note that level-triggered interrupts can also be set to pending from
75 * writes to GICD_ISPENDRn and lowering the external input line does not
76 * cause the interrupt to become inactive in such a situation.
77 * Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
78 * inactive as long as the external input line is held high.
79 */
80
81 #include "vgic.h"
82
83 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
84 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
85 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
86 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
87
88 static const struct vgic_ops *vgic_ops;
89 static const struct vgic_params *vgic;
90
91 static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
92 {
93 vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
94 }
95
96 static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
97 {
98 return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
99 }
100
101 int kvm_vgic_map_resources(struct kvm *kvm)
102 {
103 return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
104 }
105
106 /*
107 * struct vgic_bitmap contains a bitmap made of unsigned longs, but
108 * extracts u32s out of them.
109 *
110 * This does not work on 64-bit BE systems, because the bitmap access
111 * will store two consecutive 32-bit words with the higher-addressed
112 * register's bits at the lower index and the lower-addressed register's
113 * bits at the higher index.
114 *
115 * Therefore, swizzle the register index when accessing the 32-bit word
116 * registers to access the right register's value.
117 */
118 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
119 #define REG_OFFSET_SWIZZLE 1
120 #else
121 #define REG_OFFSET_SWIZZLE 0
122 #endif
123
124 static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
125 {
126 int nr_longs;
127
128 nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
129
130 b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
131 if (!b->private)
132 return -ENOMEM;
133
134 b->shared = b->private + nr_cpus;
135
136 return 0;
137 }
138
139 static void vgic_free_bitmap(struct vgic_bitmap *b)
140 {
141 kfree(b->private);
142 b->private = NULL;
143 b->shared = NULL;
144 }
145
146 /*
147 * Call this function to convert a u64 value to an unsigned long * bitmask
148 * in a way that works on both 32-bit and 64-bit LE and BE platforms.
149 *
150 * Warning: Calling this function may modify *val.
151 */
152 static unsigned long *u64_to_bitmask(u64 *val)
153 {
154 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
155 *val = (*val >> 32) | (*val << 32);
156 #endif
157 return (unsigned long *)val;
158 }
159
160 u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
161 {
162 offset >>= 2;
163 if (!offset)
164 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
165 else
166 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
167 }
168
169 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
170 int cpuid, int irq)
171 {
172 if (irq < VGIC_NR_PRIVATE_IRQS)
173 return test_bit(irq, x->private + cpuid);
174
175 return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
176 }
177
178 void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
179 int irq, int val)
180 {
181 unsigned long *reg;
182
183 if (irq < VGIC_NR_PRIVATE_IRQS) {
184 reg = x->private + cpuid;
185 } else {
186 reg = x->shared;
187 irq -= VGIC_NR_PRIVATE_IRQS;
188 }
189
190 if (val)
191 set_bit(irq, reg);
192 else
193 clear_bit(irq, reg);
194 }
195
196 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
197 {
198 return x->private + cpuid;
199 }
200
201 unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
202 {
203 return x->shared;
204 }
205
206 static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
207 {
208 int size;
209
210 size = nr_cpus * VGIC_NR_PRIVATE_IRQS;
211 size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
212
213 x->private = kzalloc(size, GFP_KERNEL);
214 if (!x->private)
215 return -ENOMEM;
216
217 x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
218 return 0;
219 }
220
221 static void vgic_free_bytemap(struct vgic_bytemap *b)
222 {
223 kfree(b->private);
224 b->private = NULL;
225 b->shared = NULL;
226 }
227
228 u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
229 {
230 u32 *reg;
231
232 if (offset < VGIC_NR_PRIVATE_IRQS) {
233 reg = x->private;
234 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
235 } else {
236 reg = x->shared;
237 offset -= VGIC_NR_PRIVATE_IRQS;
238 }
239
240 return reg + (offset / sizeof(u32));
241 }
242
243 #define VGIC_CFG_LEVEL 0
244 #define VGIC_CFG_EDGE 1
245
246 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
247 {
248 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
249 int irq_val;
250
251 irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
252 return irq_val == VGIC_CFG_EDGE;
253 }
254
255 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
256 {
257 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
258
259 return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
260 }
261
262 static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
263 {
264 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
265
266 return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
267 }
268
269 static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
270 {
271 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
272
273 return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
274 }
275
276 static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
277 {
278 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
279
280 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
281 }
282
283 static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
284 {
285 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
286
287 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
288 }
289
290 static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
291 {
292 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
293
294 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
295 }
296
297 static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
298 {
299 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
300
301 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
302 }
303
304 static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
305 {
306 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
307
308 return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
309 }
310
311 static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
312 {
313 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
314
315 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
316 }
317
318 static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
319 {
320 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
321
322 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
323 }
324
325 static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
326 {
327 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
328
329 return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
330 }
331
332 static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
333 {
334 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
335
336 vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
337 }
338
339 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
340 {
341 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
342
343 return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
344 }
345
346 void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
347 {
348 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
349
350 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
351 }
352
353 void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
354 {
355 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
356
357 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
358 }
359
360 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
361 {
362 if (irq < VGIC_NR_PRIVATE_IRQS)
363 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
364 else
365 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
366 vcpu->arch.vgic_cpu.pending_shared);
367 }
368
369 void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
370 {
371 if (irq < VGIC_NR_PRIVATE_IRQS)
372 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
373 else
374 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
375 vcpu->arch.vgic_cpu.pending_shared);
376 }
377
378 static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
379 {
380 return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
381 }
382
383 /**
384 * vgic_reg_access - access vgic register
385 * @mmio: pointer to the data describing the mmio access
386 * @reg: pointer to the virtual backing of vgic distributor data
387 * @offset: least significant 2 bits used for word offset
388 * @mode: ACCESS_ mode (see defines above)
389 *
390 * Helper to make vgic register access easier using one of the access
391 * modes defined for vgic register access
392 * (read,raz,write-ignored,setbit,clearbit,write)
393 */
394 void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
395 phys_addr_t offset, int mode)
396 {
397 int word_offset = (offset & 3) * 8;
398 u32 mask = (1UL << (mmio->len * 8)) - 1;
399 u32 regval;
400
401 /*
402 * Any alignment fault should have been delivered to the guest
403 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
404 */
405
406 if (reg) {
407 regval = *reg;
408 } else {
409 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
410 regval = 0;
411 }
412
413 if (mmio->is_write) {
414 u32 data = mmio_data_read(mmio, mask) << word_offset;
415 switch (ACCESS_WRITE_MASK(mode)) {
416 case ACCESS_WRITE_IGNORED:
417 return;
418
419 case ACCESS_WRITE_SETBIT:
420 regval |= data;
421 break;
422
423 case ACCESS_WRITE_CLEARBIT:
424 regval &= ~data;
425 break;
426
427 case ACCESS_WRITE_VALUE:
428 regval = (regval & ~(mask << word_offset)) | data;
429 break;
430 }
431 *reg = regval;
432 } else {
433 switch (ACCESS_READ_MASK(mode)) {
434 case ACCESS_READ_RAZ:
435 regval = 0;
436 /* fall through */
437
438 case ACCESS_READ_VALUE:
439 mmio_data_write(mmio, mask, regval >> word_offset);
440 }
441 }
442 }
443
444 bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
445 phys_addr_t offset)
446 {
447 vgic_reg_access(mmio, NULL, offset,
448 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
449 return false;
450 }
451
452 bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
453 phys_addr_t offset, int vcpu_id, int access)
454 {
455 u32 *reg;
456 int mode = ACCESS_READ_VALUE | access;
457 struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
458
459 reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
460 vgic_reg_access(mmio, reg, offset, mode);
461 if (mmio->is_write) {
462 if (access & ACCESS_WRITE_CLEARBIT) {
463 if (offset < 4) /* Force SGI enabled */
464 *reg |= 0xffff;
465 vgic_retire_disabled_irqs(target_vcpu);
466 }
467 vgic_update_state(kvm);
468 return true;
469 }
470
471 return false;
472 }
473
474 bool vgic_handle_set_pending_reg(struct kvm *kvm,
475 struct kvm_exit_mmio *mmio,
476 phys_addr_t offset, int vcpu_id)
477 {
478 u32 *reg, orig;
479 u32 level_mask;
480 int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
481 struct vgic_dist *dist = &kvm->arch.vgic;
482
483 reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
484 level_mask = (~(*reg));
485
486 /* Mark both level and edge triggered irqs as pending */
487 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
488 orig = *reg;
489 vgic_reg_access(mmio, reg, offset, mode);
490
491 if (mmio->is_write) {
492 /* Set the soft-pending flag only for level-triggered irqs */
493 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
494 vcpu_id, offset);
495 vgic_reg_access(mmio, reg, offset, mode);
496 *reg &= level_mask;
497
498 /* Ignore writes to SGIs */
499 if (offset < 2) {
500 *reg &= ~0xffff;
501 *reg |= orig & 0xffff;
502 }
503
504 vgic_update_state(kvm);
505 return true;
506 }
507
508 return false;
509 }
510
511 bool vgic_handle_clear_pending_reg(struct kvm *kvm,
512 struct kvm_exit_mmio *mmio,
513 phys_addr_t offset, int vcpu_id)
514 {
515 u32 *level_active;
516 u32 *reg, orig;
517 int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
518 struct vgic_dist *dist = &kvm->arch.vgic;
519
520 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
521 orig = *reg;
522 vgic_reg_access(mmio, reg, offset, mode);
523 if (mmio->is_write) {
524 /* Re-set level triggered level-active interrupts */
525 level_active = vgic_bitmap_get_reg(&dist->irq_level,
526 vcpu_id, offset);
527 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
528 *reg |= *level_active;
529
530 /* Ignore writes to SGIs */
531 if (offset < 2) {
532 *reg &= ~0xffff;
533 *reg |= orig & 0xffff;
534 }
535
536 /* Clear soft-pending flags */
537 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
538 vcpu_id, offset);
539 vgic_reg_access(mmio, reg, offset, mode);
540
541 vgic_update_state(kvm);
542 return true;
543 }
544 return false;
545 }
546
547 bool vgic_handle_set_active_reg(struct kvm *kvm,
548 struct kvm_exit_mmio *mmio,
549 phys_addr_t offset, int vcpu_id)
550 {
551 u32 *reg;
552 struct vgic_dist *dist = &kvm->arch.vgic;
553
554 reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
555 vgic_reg_access(mmio, reg, offset,
556 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
557
558 if (mmio->is_write) {
559 vgic_update_state(kvm);
560 return true;
561 }
562
563 return false;
564 }
565
566 bool vgic_handle_clear_active_reg(struct kvm *kvm,
567 struct kvm_exit_mmio *mmio,
568 phys_addr_t offset, int vcpu_id)
569 {
570 u32 *reg;
571 struct vgic_dist *dist = &kvm->arch.vgic;
572
573 reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
574 vgic_reg_access(mmio, reg, offset,
575 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
576
577 if (mmio->is_write) {
578 vgic_update_state(kvm);
579 return true;
580 }
581
582 return false;
583 }
584
585 static u32 vgic_cfg_expand(u16 val)
586 {
587 u32 res = 0;
588 int i;
589
590 /*
591 * Turn a 16bit value like abcd...mnop into a 32bit word
592 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
593 */
594 for (i = 0; i < 16; i++)
595 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
596
597 return res;
598 }
599
600 static u16 vgic_cfg_compress(u32 val)
601 {
602 u16 res = 0;
603 int i;
604
605 /*
606 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
607 * abcd...mnop which is what we really care about.
608 */
609 for (i = 0; i < 16; i++)
610 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
611
612 return res;
613 }
614
615 /*
616 * The distributor uses 2 bits per IRQ for the CFG register, but the
617 * LSB is always 0. As such, we only keep the upper bit, and use the
618 * two above functions to compress/expand the bits
619 */
620 bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
621 phys_addr_t offset)
622 {
623 u32 val;
624
625 if (offset & 4)
626 val = *reg >> 16;
627 else
628 val = *reg & 0xffff;
629
630 val = vgic_cfg_expand(val);
631 vgic_reg_access(mmio, &val, offset,
632 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
633 if (mmio->is_write) {
634 if (offset < 8) {
635 *reg = ~0U; /* Force PPIs/SGIs to 1 */
636 return false;
637 }
638
639 val = vgic_cfg_compress(val);
640 if (offset & 4) {
641 *reg &= 0xffff;
642 *reg |= val << 16;
643 } else {
644 *reg &= 0xffff << 16;
645 *reg |= val;
646 }
647 }
648
649 return false;
650 }
651
652 /**
653 * vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor
654 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
655 *
656 * Move any IRQs that have already been assigned to LRs back to the
657 * emulated distributor state so that the complete emulated state can be read
658 * from the main emulation structures without investigating the LRs.
659 */
660 void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
661 {
662 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
663 int i;
664
665 for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
666 struct vgic_lr lr = vgic_get_lr(vcpu, i);
667
668 /*
669 * There are three options for the state bits:
670 *
671 * 01: pending
672 * 10: active
673 * 11: pending and active
674 */
675 BUG_ON(!(lr.state & LR_STATE_MASK));
676
677 /* Reestablish SGI source for pending and active IRQs */
678 if (lr.irq < VGIC_NR_SGIS)
679 add_sgi_source(vcpu, lr.irq, lr.source);
680
681 /*
682 * If the LR holds an active (10) or a pending and active (11)
683 * interrupt then move the active state to the
684 * distributor tracking bit.
685 */
686 if (lr.state & LR_STATE_ACTIVE) {
687 vgic_irq_set_active(vcpu, lr.irq);
688 lr.state &= ~LR_STATE_ACTIVE;
689 }
690
691 /*
692 * Reestablish the pending state on the distributor and the
693 * CPU interface. It may have already been pending, but that
694 * is fine, then we are only setting a few bits that were
695 * already set.
696 */
697 if (lr.state & LR_STATE_PENDING) {
698 vgic_dist_irq_set_pending(vcpu, lr.irq);
699 lr.state &= ~LR_STATE_PENDING;
700 }
701
702 vgic_set_lr(vcpu, i, lr);
703
704 /*
705 * Mark the LR as free for other use.
706 */
707 BUG_ON(lr.state & LR_STATE_MASK);
708 vgic_retire_lr(i, lr.irq, vcpu);
709 vgic_irq_clear_queued(vcpu, lr.irq);
710
711 /* Finally update the VGIC state. */
712 vgic_update_state(vcpu->kvm);
713 }
714 }
715
716 const
717 struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges,
718 int len, gpa_t offset)
719 {
720 while (ranges->len) {
721 if (offset >= ranges->base &&
722 (offset + len) <= (ranges->base + ranges->len))
723 return ranges;
724 ranges++;
725 }
726
727 return NULL;
728 }
729
730 static bool vgic_validate_access(const struct vgic_dist *dist,
731 const struct vgic_io_range *range,
732 unsigned long offset)
733 {
734 int irq;
735
736 if (!range->bits_per_irq)
737 return true; /* Not an irq-based access */
738
739 irq = offset * 8 / range->bits_per_irq;
740 if (irq >= dist->nr_irqs)
741 return false;
742
743 return true;
744 }
745
746 /*
747 * Call the respective handler function for the given range.
748 * We split up any 64 bit accesses into two consecutive 32 bit
749 * handler calls and merge the result afterwards.
750 * We do this in a little endian fashion regardless of the host's
751 * or guest's endianness, because the GIC is always LE and the rest of
752 * the code (vgic_reg_access) also puts it in a LE fashion already.
753 * At this point we have already identified the handle function, so
754 * range points to that one entry and offset is relative to this.
755 */
756 static bool call_range_handler(struct kvm_vcpu *vcpu,
757 struct kvm_exit_mmio *mmio,
758 unsigned long offset,
759 const struct vgic_io_range *range)
760 {
761 struct kvm_exit_mmio mmio32;
762 bool ret;
763
764 if (likely(mmio->len <= 4))
765 return range->handle_mmio(vcpu, mmio, offset);
766
767 /*
768 * Any access bigger than 4 bytes (that we currently handle in KVM)
769 * is actually 8 bytes long, caused by a 64-bit access
770 */
771
772 mmio32.len = 4;
773 mmio32.is_write = mmio->is_write;
774 mmio32.private = mmio->private;
775
776 mmio32.phys_addr = mmio->phys_addr + 4;
777 mmio32.data = &((u32 *)mmio->data)[1];
778 ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
779
780 mmio32.phys_addr = mmio->phys_addr;
781 mmio32.data = &((u32 *)mmio->data)[0];
782 ret |= range->handle_mmio(vcpu, &mmio32, offset);
783
784 return ret;
785 }
786
787 /**
788 * vgic_handle_mmio_access - handle an in-kernel MMIO access
789 * This is called by the read/write KVM IO device wrappers below.
790 * @vcpu: pointer to the vcpu performing the access
791 * @this: pointer to the KVM IO device in charge
792 * @addr: guest physical address of the access
793 * @len: size of the access
794 * @val: pointer to the data region
795 * @is_write: read or write access
796 *
797 * returns true if the MMIO access could be performed
798 */
799 static int vgic_handle_mmio_access(struct kvm_vcpu *vcpu,
800 struct kvm_io_device *this, gpa_t addr,
801 int len, void *val, bool is_write)
802 {
803 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
804 struct vgic_io_device *iodev = container_of(this,
805 struct vgic_io_device, dev);
806 struct kvm_run *run = vcpu->run;
807 const struct vgic_io_range *range;
808 struct kvm_exit_mmio mmio;
809 bool updated_state;
810 gpa_t offset;
811
812 offset = addr - iodev->addr;
813 range = vgic_find_range(iodev->reg_ranges, len, offset);
814 if (unlikely(!range || !range->handle_mmio)) {
815 pr_warn("Unhandled access %d %08llx %d\n", is_write, addr, len);
816 return -ENXIO;
817 }
818
819 mmio.phys_addr = addr;
820 mmio.len = len;
821 mmio.is_write = is_write;
822 mmio.data = val;
823 mmio.private = iodev->redist_vcpu;
824
825 spin_lock(&dist->lock);
826 offset -= range->base;
827 if (vgic_validate_access(dist, range, offset)) {
828 updated_state = call_range_handler(vcpu, &mmio, offset, range);
829 } else {
830 if (!is_write)
831 memset(val, 0, len);
832 updated_state = false;
833 }
834 spin_unlock(&dist->lock);
835 run->mmio.is_write = is_write;
836 run->mmio.len = len;
837 run->mmio.phys_addr = addr;
838 memcpy(run->mmio.data, val, len);
839
840 kvm_handle_mmio_return(vcpu, run);
841
842 if (updated_state)
843 vgic_kick_vcpus(vcpu->kvm);
844
845 return 0;
846 }
847
848 static int vgic_handle_mmio_read(struct kvm_vcpu *vcpu,
849 struct kvm_io_device *this,
850 gpa_t addr, int len, void *val)
851 {
852 return vgic_handle_mmio_access(vcpu, this, addr, len, val, false);
853 }
854
855 static int vgic_handle_mmio_write(struct kvm_vcpu *vcpu,
856 struct kvm_io_device *this,
857 gpa_t addr, int len, const void *val)
858 {
859 return vgic_handle_mmio_access(vcpu, this, addr, len, (void *)val,
860 true);
861 }
862
863 struct kvm_io_device_ops vgic_io_ops = {
864 .read = vgic_handle_mmio_read,
865 .write = vgic_handle_mmio_write,
866 };
867
868 /**
869 * vgic_register_kvm_io_dev - register VGIC register frame on the KVM I/O bus
870 * @kvm: The VM structure pointer
871 * @base: The (guest) base address for the register frame
872 * @len: Length of the register frame window
873 * @ranges: Describing the handler functions for each register
874 * @redist_vcpu_id: The VCPU ID to pass on to the handlers on call
875 * @iodev: Points to memory to be passed on to the handler
876 *
877 * @iodev stores the parameters of this function to be usable by the handler
878 * respectively the dispatcher function (since the KVM I/O bus framework lacks
879 * an opaque parameter). Initialization is done in this function, but the
880 * reference should be valid and unique for the whole VGIC lifetime.
881 * If the register frame is not mapped for a specific VCPU, pass -1 to
882 * @redist_vcpu_id.
883 */
884 int vgic_register_kvm_io_dev(struct kvm *kvm, gpa_t base, int len,
885 const struct vgic_io_range *ranges,
886 int redist_vcpu_id,
887 struct vgic_io_device *iodev)
888 {
889 struct kvm_vcpu *vcpu = NULL;
890 int ret;
891
892 if (redist_vcpu_id >= 0)
893 vcpu = kvm_get_vcpu(kvm, redist_vcpu_id);
894
895 iodev->addr = base;
896 iodev->len = len;
897 iodev->reg_ranges = ranges;
898 iodev->redist_vcpu = vcpu;
899
900 kvm_iodevice_init(&iodev->dev, &vgic_io_ops);
901
902 mutex_lock(&kvm->slots_lock);
903
904 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, base, len,
905 &iodev->dev);
906 mutex_unlock(&kvm->slots_lock);
907
908 /* Mark the iodev as invalid if registration fails. */
909 if (ret)
910 iodev->dev.ops = NULL;
911
912 return ret;
913 }
914
915 static int vgic_nr_shared_irqs(struct vgic_dist *dist)
916 {
917 return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
918 }
919
920 static int compute_active_for_cpu(struct kvm_vcpu *vcpu)
921 {
922 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
923 unsigned long *active, *enabled, *act_percpu, *act_shared;
924 unsigned long active_private, active_shared;
925 int nr_shared = vgic_nr_shared_irqs(dist);
926 int vcpu_id;
927
928 vcpu_id = vcpu->vcpu_id;
929 act_percpu = vcpu->arch.vgic_cpu.active_percpu;
930 act_shared = vcpu->arch.vgic_cpu.active_shared;
931
932 active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id);
933 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
934 bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS);
935
936 active = vgic_bitmap_get_shared_map(&dist->irq_active);
937 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
938 bitmap_and(act_shared, active, enabled, nr_shared);
939 bitmap_and(act_shared, act_shared,
940 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
941 nr_shared);
942
943 active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS);
944 active_shared = find_first_bit(act_shared, nr_shared);
945
946 return (active_private < VGIC_NR_PRIVATE_IRQS ||
947 active_shared < nr_shared);
948 }
949
950 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
951 {
952 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
953 unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
954 unsigned long pending_private, pending_shared;
955 int nr_shared = vgic_nr_shared_irqs(dist);
956 int vcpu_id;
957
958 vcpu_id = vcpu->vcpu_id;
959 pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
960 pend_shared = vcpu->arch.vgic_cpu.pending_shared;
961
962 pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
963 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
964 bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
965
966 pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
967 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
968 bitmap_and(pend_shared, pending, enabled, nr_shared);
969 bitmap_and(pend_shared, pend_shared,
970 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
971 nr_shared);
972
973 pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
974 pending_shared = find_first_bit(pend_shared, nr_shared);
975 return (pending_private < VGIC_NR_PRIVATE_IRQS ||
976 pending_shared < vgic_nr_shared_irqs(dist));
977 }
978
979 /*
980 * Update the interrupt state and determine which CPUs have pending
981 * or active interrupts. Must be called with distributor lock held.
982 */
983 void vgic_update_state(struct kvm *kvm)
984 {
985 struct vgic_dist *dist = &kvm->arch.vgic;
986 struct kvm_vcpu *vcpu;
987 int c;
988
989 if (!dist->enabled) {
990 set_bit(0, dist->irq_pending_on_cpu);
991 return;
992 }
993
994 kvm_for_each_vcpu(c, vcpu, kvm) {
995 if (compute_pending_for_cpu(vcpu))
996 set_bit(c, dist->irq_pending_on_cpu);
997
998 if (compute_active_for_cpu(vcpu))
999 set_bit(c, dist->irq_active_on_cpu);
1000 else
1001 clear_bit(c, dist->irq_active_on_cpu);
1002 }
1003 }
1004
1005 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1006 {
1007 return vgic_ops->get_lr(vcpu, lr);
1008 }
1009
1010 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1011 struct vgic_lr vlr)
1012 {
1013 vgic_ops->set_lr(vcpu, lr, vlr);
1014 }
1015
1016 static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1017 struct vgic_lr vlr)
1018 {
1019 vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
1020 }
1021
1022 static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1023 {
1024 return vgic_ops->get_elrsr(vcpu);
1025 }
1026
1027 static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1028 {
1029 return vgic_ops->get_eisr(vcpu);
1030 }
1031
1032 static inline void vgic_clear_eisr(struct kvm_vcpu *vcpu)
1033 {
1034 vgic_ops->clear_eisr(vcpu);
1035 }
1036
1037 static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1038 {
1039 return vgic_ops->get_interrupt_status(vcpu);
1040 }
1041
1042 static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1043 {
1044 vgic_ops->enable_underflow(vcpu);
1045 }
1046
1047 static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1048 {
1049 vgic_ops->disable_underflow(vcpu);
1050 }
1051
1052 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1053 {
1054 vgic_ops->get_vmcr(vcpu, vmcr);
1055 }
1056
1057 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1058 {
1059 vgic_ops->set_vmcr(vcpu, vmcr);
1060 }
1061
1062 static inline void vgic_enable(struct kvm_vcpu *vcpu)
1063 {
1064 vgic_ops->enable(vcpu);
1065 }
1066
1067 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1068 {
1069 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1070 struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1071
1072 vlr.state = 0;
1073 vgic_set_lr(vcpu, lr_nr, vlr);
1074 clear_bit(lr_nr, vgic_cpu->lr_used);
1075 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1076 vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
1077 }
1078
1079 /*
1080 * An interrupt may have been disabled after being made pending on the
1081 * CPU interface (the classic case is a timer running while we're
1082 * rebooting the guest - the interrupt would kick as soon as the CPU
1083 * interface gets enabled, with deadly consequences).
1084 *
1085 * The solution is to examine already active LRs, and check the
1086 * interrupt is still enabled. If not, just retire it.
1087 */
1088 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1089 {
1090 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1091 int lr;
1092
1093 for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
1094 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1095
1096 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1097 vgic_retire_lr(lr, vlr.irq, vcpu);
1098 if (vgic_irq_is_queued(vcpu, vlr.irq))
1099 vgic_irq_clear_queued(vcpu, vlr.irq);
1100 }
1101 }
1102 }
1103
1104 static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq,
1105 int lr_nr, struct vgic_lr vlr)
1106 {
1107 if (vgic_irq_is_active(vcpu, irq)) {
1108 vlr.state |= LR_STATE_ACTIVE;
1109 kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state);
1110 vgic_irq_clear_active(vcpu, irq);
1111 vgic_update_state(vcpu->kvm);
1112 } else if (vgic_dist_irq_is_pending(vcpu, irq)) {
1113 vlr.state |= LR_STATE_PENDING;
1114 kvm_debug("Set pending: 0x%x\n", vlr.state);
1115 }
1116
1117 if (!vgic_irq_is_edge(vcpu, irq))
1118 vlr.state |= LR_EOI_INT;
1119
1120 vgic_set_lr(vcpu, lr_nr, vlr);
1121 vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
1122 }
1123
1124 /*
1125 * Queue an interrupt to a CPU virtual interface. Return true on success,
1126 * or false if it wasn't possible to queue it.
1127 * sgi_source must be zero for any non-SGI interrupts.
1128 */
1129 bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1130 {
1131 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1132 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1133 struct vgic_lr vlr;
1134 int lr;
1135
1136 /* Sanitize the input... */
1137 BUG_ON(sgi_source_id & ~7);
1138 BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1139 BUG_ON(irq >= dist->nr_irqs);
1140
1141 kvm_debug("Queue IRQ%d\n", irq);
1142
1143 lr = vgic_cpu->vgic_irq_lr_map[irq];
1144
1145 /* Do we have an active interrupt for the same CPUID? */
1146 if (lr != LR_EMPTY) {
1147 vlr = vgic_get_lr(vcpu, lr);
1148 if (vlr.source == sgi_source_id) {
1149 kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1150 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1151 vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1152 return true;
1153 }
1154 }
1155
1156 /* Try to use another LR for this interrupt */
1157 lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1158 vgic->nr_lr);
1159 if (lr >= vgic->nr_lr)
1160 return false;
1161
1162 kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1163 vgic_cpu->vgic_irq_lr_map[irq] = lr;
1164 set_bit(lr, vgic_cpu->lr_used);
1165
1166 vlr.irq = irq;
1167 vlr.source = sgi_source_id;
1168 vlr.state = 0;
1169 vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1170
1171 return true;
1172 }
1173
1174 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1175 {
1176 if (!vgic_can_sample_irq(vcpu, irq))
1177 return true; /* level interrupt, already queued */
1178
1179 if (vgic_queue_irq(vcpu, 0, irq)) {
1180 if (vgic_irq_is_edge(vcpu, irq)) {
1181 vgic_dist_irq_clear_pending(vcpu, irq);
1182 vgic_cpu_irq_clear(vcpu, irq);
1183 } else {
1184 vgic_irq_set_queued(vcpu, irq);
1185 }
1186
1187 return true;
1188 }
1189
1190 return false;
1191 }
1192
1193 /*
1194 * Fill the list registers with pending interrupts before running the
1195 * guest.
1196 */
1197 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1198 {
1199 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1200 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1201 unsigned long *pa_percpu, *pa_shared;
1202 int i, vcpu_id;
1203 int overflow = 0;
1204 int nr_shared = vgic_nr_shared_irqs(dist);
1205
1206 vcpu_id = vcpu->vcpu_id;
1207
1208 pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu;
1209 pa_shared = vcpu->arch.vgic_cpu.pend_act_shared;
1210
1211 bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu,
1212 VGIC_NR_PRIVATE_IRQS);
1213 bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared,
1214 nr_shared);
1215 /*
1216 * We may not have any pending interrupt, or the interrupts
1217 * may have been serviced from another vcpu. In all cases,
1218 * move along.
1219 */
1220 if (!kvm_vgic_vcpu_pending_irq(vcpu) && !kvm_vgic_vcpu_active_irq(vcpu))
1221 goto epilog;
1222
1223 /* SGIs */
1224 for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) {
1225 if (!queue_sgi(vcpu, i))
1226 overflow = 1;
1227 }
1228
1229 /* PPIs */
1230 for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) {
1231 if (!vgic_queue_hwirq(vcpu, i))
1232 overflow = 1;
1233 }
1234
1235 /* SPIs */
1236 for_each_set_bit(i, pa_shared, nr_shared) {
1237 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1238 overflow = 1;
1239 }
1240
1241
1242
1243
1244 epilog:
1245 if (overflow) {
1246 vgic_enable_underflow(vcpu);
1247 } else {
1248 vgic_disable_underflow(vcpu);
1249 /*
1250 * We're about to run this VCPU, and we've consumed
1251 * everything the distributor had in store for
1252 * us. Claim we don't have anything pending. We'll
1253 * adjust that if needed while exiting.
1254 */
1255 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
1256 }
1257 }
1258
1259 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1260 {
1261 u32 status = vgic_get_interrupt_status(vcpu);
1262 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1263 bool level_pending = false;
1264 struct kvm *kvm = vcpu->kvm;
1265
1266 kvm_debug("STATUS = %08x\n", status);
1267
1268 if (status & INT_STATUS_EOI) {
1269 /*
1270 * Some level interrupts have been EOIed. Clear their
1271 * active bit.
1272 */
1273 u64 eisr = vgic_get_eisr(vcpu);
1274 unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
1275 int lr;
1276
1277 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1278 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1279 WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1280
1281 spin_lock(&dist->lock);
1282 vgic_irq_clear_queued(vcpu, vlr.irq);
1283 WARN_ON(vlr.state & LR_STATE_MASK);
1284 vlr.state = 0;
1285 vgic_set_lr(vcpu, lr, vlr);
1286
1287 /*
1288 * If the IRQ was EOIed it was also ACKed and we we
1289 * therefore assume we can clear the soft pending
1290 * state (should it had been set) for this interrupt.
1291 *
1292 * Note: if the IRQ soft pending state was set after
1293 * the IRQ was acked, it actually shouldn't be
1294 * cleared, but we have no way of knowing that unless
1295 * we start trapping ACKs when the soft-pending state
1296 * is set.
1297 */
1298 vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1299
1300 /*
1301 * kvm_notify_acked_irq calls kvm_set_irq()
1302 * to reset the IRQ level. Need to release the
1303 * lock for kvm_set_irq to grab it.
1304 */
1305 spin_unlock(&dist->lock);
1306
1307 kvm_notify_acked_irq(kvm, 0,
1308 vlr.irq - VGIC_NR_PRIVATE_IRQS);
1309 spin_lock(&dist->lock);
1310
1311 /* Any additional pending interrupt? */
1312 if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1313 vgic_cpu_irq_set(vcpu, vlr.irq);
1314 level_pending = true;
1315 } else {
1316 vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1317 vgic_cpu_irq_clear(vcpu, vlr.irq);
1318 }
1319
1320 spin_unlock(&dist->lock);
1321
1322 /*
1323 * Despite being EOIed, the LR may not have
1324 * been marked as empty.
1325 */
1326 vgic_sync_lr_elrsr(vcpu, lr, vlr);
1327 }
1328 }
1329
1330 if (status & INT_STATUS_UNDERFLOW)
1331 vgic_disable_underflow(vcpu);
1332
1333 /*
1334 * In the next iterations of the vcpu loop, if we sync the vgic state
1335 * after flushing it, but before entering the guest (this happens for
1336 * pending signals and vmid rollovers), then make sure we don't pick
1337 * up any old maintenance interrupts here.
1338 */
1339 vgic_clear_eisr(vcpu);
1340
1341 return level_pending;
1342 }
1343
1344 /* Sync back the VGIC state after a guest run */
1345 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1346 {
1347 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1348 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1349 u64 elrsr;
1350 unsigned long *elrsr_ptr;
1351 int lr, pending;
1352 bool level_pending;
1353
1354 level_pending = vgic_process_maintenance(vcpu);
1355 elrsr = vgic_get_elrsr(vcpu);
1356 elrsr_ptr = u64_to_bitmask(&elrsr);
1357
1358 /* Clear mappings for empty LRs */
1359 for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
1360 struct vgic_lr vlr;
1361
1362 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1363 continue;
1364
1365 vlr = vgic_get_lr(vcpu, lr);
1366
1367 BUG_ON(vlr.irq >= dist->nr_irqs);
1368 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
1369 }
1370
1371 /* Check if we still have something up our sleeve... */
1372 pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1373 if (level_pending || pending < vgic->nr_lr)
1374 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1375 }
1376
1377 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1378 {
1379 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1380
1381 if (!irqchip_in_kernel(vcpu->kvm))
1382 return;
1383
1384 spin_lock(&dist->lock);
1385 __kvm_vgic_flush_hwstate(vcpu);
1386 spin_unlock(&dist->lock);
1387 }
1388
1389 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1390 {
1391 if (!irqchip_in_kernel(vcpu->kvm))
1392 return;
1393
1394 __kvm_vgic_sync_hwstate(vcpu);
1395 }
1396
1397 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1398 {
1399 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1400
1401 if (!irqchip_in_kernel(vcpu->kvm))
1402 return 0;
1403
1404 return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1405 }
1406
1407 int kvm_vgic_vcpu_active_irq(struct kvm_vcpu *vcpu)
1408 {
1409 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1410
1411 if (!irqchip_in_kernel(vcpu->kvm))
1412 return 0;
1413
1414 return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu);
1415 }
1416
1417
1418 void vgic_kick_vcpus(struct kvm *kvm)
1419 {
1420 struct kvm_vcpu *vcpu;
1421 int c;
1422
1423 /*
1424 * We've injected an interrupt, time to find out who deserves
1425 * a good kick...
1426 */
1427 kvm_for_each_vcpu(c, vcpu, kvm) {
1428 if (kvm_vgic_vcpu_pending_irq(vcpu))
1429 kvm_vcpu_kick(vcpu);
1430 }
1431 }
1432
1433 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1434 {
1435 int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1436
1437 /*
1438 * Only inject an interrupt if:
1439 * - edge triggered and we have a rising edge
1440 * - level triggered and we change level
1441 */
1442 if (edge_triggered) {
1443 int state = vgic_dist_irq_is_pending(vcpu, irq);
1444 return level > state;
1445 } else {
1446 int state = vgic_dist_irq_get_level(vcpu, irq);
1447 return level != state;
1448 }
1449 }
1450
1451 static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1452 unsigned int irq_num, bool level)
1453 {
1454 struct vgic_dist *dist = &kvm->arch.vgic;
1455 struct kvm_vcpu *vcpu;
1456 int edge_triggered, level_triggered;
1457 int enabled;
1458 bool ret = true, can_inject = true;
1459
1460 spin_lock(&dist->lock);
1461
1462 vcpu = kvm_get_vcpu(kvm, cpuid);
1463 edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1464 level_triggered = !edge_triggered;
1465
1466 if (!vgic_validate_injection(vcpu, irq_num, level)) {
1467 ret = false;
1468 goto out;
1469 }
1470
1471 if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1472 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1473 if (cpuid == VCPU_NOT_ALLOCATED) {
1474 /* Pretend we use CPU0, and prevent injection */
1475 cpuid = 0;
1476 can_inject = false;
1477 }
1478 vcpu = kvm_get_vcpu(kvm, cpuid);
1479 }
1480
1481 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1482
1483 if (level) {
1484 if (level_triggered)
1485 vgic_dist_irq_set_level(vcpu, irq_num);
1486 vgic_dist_irq_set_pending(vcpu, irq_num);
1487 } else {
1488 if (level_triggered) {
1489 vgic_dist_irq_clear_level(vcpu, irq_num);
1490 if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
1491 vgic_dist_irq_clear_pending(vcpu, irq_num);
1492 }
1493
1494 ret = false;
1495 goto out;
1496 }
1497
1498 enabled = vgic_irq_is_enabled(vcpu, irq_num);
1499
1500 if (!enabled || !can_inject) {
1501 ret = false;
1502 goto out;
1503 }
1504
1505 if (!vgic_can_sample_irq(vcpu, irq_num)) {
1506 /*
1507 * Level interrupt in progress, will be picked up
1508 * when EOId.
1509 */
1510 ret = false;
1511 goto out;
1512 }
1513
1514 if (level) {
1515 vgic_cpu_irq_set(vcpu, irq_num);
1516 set_bit(cpuid, dist->irq_pending_on_cpu);
1517 }
1518
1519 out:
1520 spin_unlock(&dist->lock);
1521
1522 return ret ? cpuid : -EINVAL;
1523 }
1524
1525 /**
1526 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1527 * @kvm: The VM structure pointer
1528 * @cpuid: The CPU for PPIs
1529 * @irq_num: The IRQ number that is assigned to the device
1530 * @level: Edge-triggered: true: to trigger the interrupt
1531 * false: to ignore the call
1532 * Level-sensitive true: activates an interrupt
1533 * false: deactivates an interrupt
1534 *
1535 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1536 * level-sensitive interrupts. You can think of the level parameter as 1
1537 * being HIGH and 0 being LOW and all devices being active-HIGH.
1538 */
1539 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1540 bool level)
1541 {
1542 int ret = 0;
1543 int vcpu_id;
1544
1545 if (unlikely(!vgic_initialized(kvm))) {
1546 /*
1547 * We only provide the automatic initialization of the VGIC
1548 * for the legacy case of a GICv2. Any other type must
1549 * be explicitly initialized once setup with the respective
1550 * KVM device call.
1551 */
1552 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) {
1553 ret = -EBUSY;
1554 goto out;
1555 }
1556 mutex_lock(&kvm->lock);
1557 ret = vgic_init(kvm);
1558 mutex_unlock(&kvm->lock);
1559
1560 if (ret)
1561 goto out;
1562 }
1563
1564 if (irq_num >= kvm->arch.vgic.nr_irqs)
1565 return -EINVAL;
1566
1567 vcpu_id = vgic_update_irq_pending(kvm, cpuid, irq_num, level);
1568 if (vcpu_id >= 0) {
1569 /* kick the specified vcpu */
1570 kvm_vcpu_kick(kvm_get_vcpu(kvm, vcpu_id));
1571 }
1572
1573 out:
1574 return ret;
1575 }
1576
1577 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1578 {
1579 /*
1580 * We cannot rely on the vgic maintenance interrupt to be
1581 * delivered synchronously. This means we can only use it to
1582 * exit the VM, and we perform the handling of EOIed
1583 * interrupts on the exit path (see vgic_process_maintenance).
1584 */
1585 return IRQ_HANDLED;
1586 }
1587
1588 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1589 {
1590 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1591
1592 kfree(vgic_cpu->pending_shared);
1593 kfree(vgic_cpu->active_shared);
1594 kfree(vgic_cpu->pend_act_shared);
1595 kfree(vgic_cpu->vgic_irq_lr_map);
1596 vgic_cpu->pending_shared = NULL;
1597 vgic_cpu->active_shared = NULL;
1598 vgic_cpu->pend_act_shared = NULL;
1599 vgic_cpu->vgic_irq_lr_map = NULL;
1600 }
1601
1602 static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1603 {
1604 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1605
1606 int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
1607 vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
1608 vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL);
1609 vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL);
1610 vgic_cpu->vgic_irq_lr_map = kmalloc(nr_irqs, GFP_KERNEL);
1611
1612 if (!vgic_cpu->pending_shared
1613 || !vgic_cpu->active_shared
1614 || !vgic_cpu->pend_act_shared
1615 || !vgic_cpu->vgic_irq_lr_map) {
1616 kvm_vgic_vcpu_destroy(vcpu);
1617 return -ENOMEM;
1618 }
1619
1620 memset(vgic_cpu->vgic_irq_lr_map, LR_EMPTY, nr_irqs);
1621
1622 /*
1623 * Store the number of LRs per vcpu, so we don't have to go
1624 * all the way to the distributor structure to find out. Only
1625 * assembly code should use this one.
1626 */
1627 vgic_cpu->nr_lr = vgic->nr_lr;
1628
1629 return 0;
1630 }
1631
1632 /**
1633 * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
1634 *
1635 * The host's GIC naturally limits the maximum amount of VCPUs a guest
1636 * can use.
1637 */
1638 int kvm_vgic_get_max_vcpus(void)
1639 {
1640 return vgic->max_gic_vcpus;
1641 }
1642
1643 void kvm_vgic_destroy(struct kvm *kvm)
1644 {
1645 struct vgic_dist *dist = &kvm->arch.vgic;
1646 struct kvm_vcpu *vcpu;
1647 int i;
1648
1649 kvm_for_each_vcpu(i, vcpu, kvm)
1650 kvm_vgic_vcpu_destroy(vcpu);
1651
1652 vgic_free_bitmap(&dist->irq_enabled);
1653 vgic_free_bitmap(&dist->irq_level);
1654 vgic_free_bitmap(&dist->irq_pending);
1655 vgic_free_bitmap(&dist->irq_soft_pend);
1656 vgic_free_bitmap(&dist->irq_queued);
1657 vgic_free_bitmap(&dist->irq_cfg);
1658 vgic_free_bytemap(&dist->irq_priority);
1659 if (dist->irq_spi_target) {
1660 for (i = 0; i < dist->nr_cpus; i++)
1661 vgic_free_bitmap(&dist->irq_spi_target[i]);
1662 }
1663 kfree(dist->irq_sgi_sources);
1664 kfree(dist->irq_spi_cpu);
1665 kfree(dist->irq_spi_mpidr);
1666 kfree(dist->irq_spi_target);
1667 kfree(dist->irq_pending_on_cpu);
1668 kfree(dist->irq_active_on_cpu);
1669 dist->irq_sgi_sources = NULL;
1670 dist->irq_spi_cpu = NULL;
1671 dist->irq_spi_target = NULL;
1672 dist->irq_pending_on_cpu = NULL;
1673 dist->irq_active_on_cpu = NULL;
1674 dist->nr_cpus = 0;
1675 }
1676
1677 /*
1678 * Allocate and initialize the various data structures. Must be called
1679 * with kvm->lock held!
1680 */
1681 int vgic_init(struct kvm *kvm)
1682 {
1683 struct vgic_dist *dist = &kvm->arch.vgic;
1684 struct kvm_vcpu *vcpu;
1685 int nr_cpus, nr_irqs;
1686 int ret, i, vcpu_id;
1687
1688 if (vgic_initialized(kvm))
1689 return 0;
1690
1691 nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
1692 if (!nr_cpus) /* No vcpus? Can't be good... */
1693 return -ENODEV;
1694
1695 /*
1696 * If nobody configured the number of interrupts, use the
1697 * legacy one.
1698 */
1699 if (!dist->nr_irqs)
1700 dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
1701
1702 nr_irqs = dist->nr_irqs;
1703
1704 ret = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
1705 ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
1706 ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
1707 ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
1708 ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
1709 ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs);
1710 ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
1711 ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
1712
1713 if (ret)
1714 goto out;
1715
1716 dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
1717 dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
1718 dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
1719 GFP_KERNEL);
1720 dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1721 GFP_KERNEL);
1722 dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1723 GFP_KERNEL);
1724 if (!dist->irq_sgi_sources ||
1725 !dist->irq_spi_cpu ||
1726 !dist->irq_spi_target ||
1727 !dist->irq_pending_on_cpu ||
1728 !dist->irq_active_on_cpu) {
1729 ret = -ENOMEM;
1730 goto out;
1731 }
1732
1733 for (i = 0; i < nr_cpus; i++)
1734 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
1735 nr_cpus, nr_irqs);
1736
1737 if (ret)
1738 goto out;
1739
1740 ret = kvm->arch.vgic.vm_ops.init_model(kvm);
1741 if (ret)
1742 goto out;
1743
1744 kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
1745 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
1746 if (ret) {
1747 kvm_err("VGIC: Failed to allocate vcpu memory\n");
1748 break;
1749 }
1750
1751 for (i = 0; i < dist->nr_irqs; i++) {
1752 if (i < VGIC_NR_PPIS)
1753 vgic_bitmap_set_irq_val(&dist->irq_enabled,
1754 vcpu->vcpu_id, i, 1);
1755 if (i < VGIC_NR_PRIVATE_IRQS)
1756 vgic_bitmap_set_irq_val(&dist->irq_cfg,
1757 vcpu->vcpu_id, i,
1758 VGIC_CFG_EDGE);
1759 }
1760
1761 vgic_enable(vcpu);
1762 }
1763
1764 out:
1765 if (ret)
1766 kvm_vgic_destroy(kvm);
1767
1768 return ret;
1769 }
1770
1771 static int init_vgic_model(struct kvm *kvm, int type)
1772 {
1773 switch (type) {
1774 case KVM_DEV_TYPE_ARM_VGIC_V2:
1775 vgic_v2_init_emulation(kvm);
1776 break;
1777 #ifdef CONFIG_ARM_GIC_V3
1778 case KVM_DEV_TYPE_ARM_VGIC_V3:
1779 vgic_v3_init_emulation(kvm);
1780 break;
1781 #endif
1782 default:
1783 return -ENODEV;
1784 }
1785
1786 if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
1787 return -E2BIG;
1788
1789 return 0;
1790 }
1791
1792 int kvm_vgic_create(struct kvm *kvm, u32 type)
1793 {
1794 int i, vcpu_lock_idx = -1, ret;
1795 struct kvm_vcpu *vcpu;
1796
1797 mutex_lock(&kvm->lock);
1798
1799 if (irqchip_in_kernel(kvm)) {
1800 ret = -EEXIST;
1801 goto out;
1802 }
1803
1804 /*
1805 * This function is also called by the KVM_CREATE_IRQCHIP handler,
1806 * which had no chance yet to check the availability of the GICv2
1807 * emulation. So check this here again. KVM_CREATE_DEVICE does
1808 * the proper checks already.
1809 */
1810 if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) {
1811 ret = -ENODEV;
1812 goto out;
1813 }
1814
1815 /*
1816 * Any time a vcpu is run, vcpu_load is called which tries to grab the
1817 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
1818 * that no other VCPUs are run while we create the vgic.
1819 */
1820 ret = -EBUSY;
1821 kvm_for_each_vcpu(i, vcpu, kvm) {
1822 if (!mutex_trylock(&vcpu->mutex))
1823 goto out_unlock;
1824 vcpu_lock_idx = i;
1825 }
1826
1827 kvm_for_each_vcpu(i, vcpu, kvm) {
1828 if (vcpu->arch.has_run_once)
1829 goto out_unlock;
1830 }
1831 ret = 0;
1832
1833 ret = init_vgic_model(kvm, type);
1834 if (ret)
1835 goto out_unlock;
1836
1837 spin_lock_init(&kvm->arch.vgic.lock);
1838 kvm->arch.vgic.in_kernel = true;
1839 kvm->arch.vgic.vgic_model = type;
1840 kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
1841 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1842 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1843 kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
1844
1845 out_unlock:
1846 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1847 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1848 mutex_unlock(&vcpu->mutex);
1849 }
1850
1851 out:
1852 mutex_unlock(&kvm->lock);
1853 return ret;
1854 }
1855
1856 static int vgic_ioaddr_overlap(struct kvm *kvm)
1857 {
1858 phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1859 phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1860
1861 if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1862 return 0;
1863 if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1864 (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1865 return -EBUSY;
1866 return 0;
1867 }
1868
1869 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1870 phys_addr_t addr, phys_addr_t size)
1871 {
1872 int ret;
1873
1874 if (addr & ~KVM_PHYS_MASK)
1875 return -E2BIG;
1876
1877 if (addr & (SZ_4K - 1))
1878 return -EINVAL;
1879
1880 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1881 return -EEXIST;
1882 if (addr + size < addr)
1883 return -EINVAL;
1884
1885 *ioaddr = addr;
1886 ret = vgic_ioaddr_overlap(kvm);
1887 if (ret)
1888 *ioaddr = VGIC_ADDR_UNDEF;
1889
1890 return ret;
1891 }
1892
1893 /**
1894 * kvm_vgic_addr - set or get vgic VM base addresses
1895 * @kvm: pointer to the vm struct
1896 * @type: the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
1897 * @addr: pointer to address value
1898 * @write: if true set the address in the VM address space, if false read the
1899 * address
1900 *
1901 * Set or get the vgic base addresses for the distributor and the virtual CPU
1902 * interface in the VM physical address space. These addresses are properties
1903 * of the emulated core/SoC and therefore user space initially knows this
1904 * information.
1905 */
1906 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
1907 {
1908 int r = 0;
1909 struct vgic_dist *vgic = &kvm->arch.vgic;
1910 int type_needed;
1911 phys_addr_t *addr_ptr, block_size;
1912 phys_addr_t alignment;
1913
1914 mutex_lock(&kvm->lock);
1915 switch (type) {
1916 case KVM_VGIC_V2_ADDR_TYPE_DIST:
1917 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
1918 addr_ptr = &vgic->vgic_dist_base;
1919 block_size = KVM_VGIC_V2_DIST_SIZE;
1920 alignment = SZ_4K;
1921 break;
1922 case KVM_VGIC_V2_ADDR_TYPE_CPU:
1923 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
1924 addr_ptr = &vgic->vgic_cpu_base;
1925 block_size = KVM_VGIC_V2_CPU_SIZE;
1926 alignment = SZ_4K;
1927 break;
1928 #ifdef CONFIG_ARM_GIC_V3
1929 case KVM_VGIC_V3_ADDR_TYPE_DIST:
1930 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
1931 addr_ptr = &vgic->vgic_dist_base;
1932 block_size = KVM_VGIC_V3_DIST_SIZE;
1933 alignment = SZ_64K;
1934 break;
1935 case KVM_VGIC_V3_ADDR_TYPE_REDIST:
1936 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
1937 addr_ptr = &vgic->vgic_redist_base;
1938 block_size = KVM_VGIC_V3_REDIST_SIZE;
1939 alignment = SZ_64K;
1940 break;
1941 #endif
1942 default:
1943 r = -ENODEV;
1944 goto out;
1945 }
1946
1947 if (vgic->vgic_model != type_needed) {
1948 r = -ENODEV;
1949 goto out;
1950 }
1951
1952 if (write) {
1953 if (!IS_ALIGNED(*addr, alignment))
1954 r = -EINVAL;
1955 else
1956 r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
1957 block_size);
1958 } else {
1959 *addr = *addr_ptr;
1960 }
1961
1962 out:
1963 mutex_unlock(&kvm->lock);
1964 return r;
1965 }
1966
1967 int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1968 {
1969 int r;
1970
1971 switch (attr->group) {
1972 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1973 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1974 u64 addr;
1975 unsigned long type = (unsigned long)attr->attr;
1976
1977 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1978 return -EFAULT;
1979
1980 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
1981 return (r == -ENODEV) ? -ENXIO : r;
1982 }
1983 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
1984 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1985 u32 val;
1986 int ret = 0;
1987
1988 if (get_user(val, uaddr))
1989 return -EFAULT;
1990
1991 /*
1992 * We require:
1993 * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
1994 * - at most 1024 interrupts
1995 * - a multiple of 32 interrupts
1996 */
1997 if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
1998 val > VGIC_MAX_IRQS ||
1999 (val & 31))
2000 return -EINVAL;
2001
2002 mutex_lock(&dev->kvm->lock);
2003
2004 if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
2005 ret = -EBUSY;
2006 else
2007 dev->kvm->arch.vgic.nr_irqs = val;
2008
2009 mutex_unlock(&dev->kvm->lock);
2010
2011 return ret;
2012 }
2013 case KVM_DEV_ARM_VGIC_GRP_CTRL: {
2014 switch (attr->attr) {
2015 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2016 r = vgic_init(dev->kvm);
2017 return r;
2018 }
2019 break;
2020 }
2021 }
2022
2023 return -ENXIO;
2024 }
2025
2026 int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2027 {
2028 int r = -ENXIO;
2029
2030 switch (attr->group) {
2031 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2032 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2033 u64 addr;
2034 unsigned long type = (unsigned long)attr->attr;
2035
2036 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2037 if (r)
2038 return (r == -ENODEV) ? -ENXIO : r;
2039
2040 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2041 return -EFAULT;
2042 break;
2043 }
2044 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2045 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2046
2047 r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
2048 break;
2049 }
2050
2051 }
2052
2053 return r;
2054 }
2055
2056 int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset)
2057 {
2058 if (vgic_find_range(ranges, 4, offset))
2059 return 0;
2060 else
2061 return -ENXIO;
2062 }
2063
2064 static void vgic_init_maintenance_interrupt(void *info)
2065 {
2066 enable_percpu_irq(vgic->maint_irq, 0);
2067 }
2068
2069 static int vgic_cpu_notify(struct notifier_block *self,
2070 unsigned long action, void *cpu)
2071 {
2072 switch (action) {
2073 case CPU_STARTING:
2074 case CPU_STARTING_FROZEN:
2075 vgic_init_maintenance_interrupt(NULL);
2076 break;
2077 case CPU_DYING:
2078 case CPU_DYING_FROZEN:
2079 disable_percpu_irq(vgic->maint_irq);
2080 break;
2081 }
2082
2083 return NOTIFY_OK;
2084 }
2085
2086 static struct notifier_block vgic_cpu_nb = {
2087 .notifier_call = vgic_cpu_notify,
2088 };
2089
2090 static const struct of_device_id vgic_ids[] = {
2091 { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
2092 { .compatible = "arm,cortex-a7-gic", .data = vgic_v2_probe, },
2093 { .compatible = "arm,gic-400", .data = vgic_v2_probe, },
2094 { .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
2095 {},
2096 };
2097
2098 int kvm_vgic_hyp_init(void)
2099 {
2100 const struct of_device_id *matched_id;
2101 const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2102 const struct vgic_params **);
2103 struct device_node *vgic_node;
2104 int ret;
2105
2106 vgic_node = of_find_matching_node_and_match(NULL,
2107 vgic_ids, &matched_id);
2108 if (!vgic_node) {
2109 kvm_err("error: no compatible GIC node found\n");
2110 return -ENODEV;
2111 }
2112
2113 vgic_probe = matched_id->data;
2114 ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2115 if (ret)
2116 return ret;
2117
2118 ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2119 "vgic", kvm_get_running_vcpus());
2120 if (ret) {
2121 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2122 return ret;
2123 }
2124
2125 ret = __register_cpu_notifier(&vgic_cpu_nb);
2126 if (ret) {
2127 kvm_err("Cannot register vgic CPU notifier\n");
2128 goto out_free_irq;
2129 }
2130
2131 /* Callback into for arch code for setup */
2132 vgic_arch_setup(vgic);
2133
2134 on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2135
2136 return 0;
2137
2138 out_free_irq:
2139 free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2140 return ret;
2141 }
2142
2143 int kvm_irq_map_gsi(struct kvm *kvm,
2144 struct kvm_kernel_irq_routing_entry *entries,
2145 int gsi)
2146 {
2147 return 0;
2148 }
2149
2150 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
2151 {
2152 return pin;
2153 }
2154
2155 int kvm_set_irq(struct kvm *kvm, int irq_source_id,
2156 u32 irq, int level, bool line_status)
2157 {
2158 unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS;
2159
2160 trace_kvm_set_irq(irq, level, irq_source_id);
2161
2162 BUG_ON(!vgic_initialized(kvm));
2163
2164 if (spi > kvm->arch.vgic.nr_irqs)
2165 return -EINVAL;
2166 return kvm_vgic_inject_irq(kvm, 0, spi, level);
2167
2168 }
2169
2170 /* MSI not implemented yet */
2171 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
2172 struct kvm *kvm, int irq_source_id,
2173 int level, bool line_status)
2174 {
2175 return 0;
2176 }
This page took 0.136968 seconds and 4 git commands to generate.