ce6c998a3f8d896b264eeaa7701d395b5e714810
[deliverable/linux.git] / virt / kvm / arm / vgic.c
1 /*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/uaccess.h>
28
29 #include <linux/irqchip/arm-gic.h>
30
31 #include <asm/kvm_emulate.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_mmu.h>
34
35 /*
36 * How the whole thing works (courtesy of Christoffer Dall):
37 *
38 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
39 * something is pending on the CPU interface.
40 * - Interrupts that are pending on the distributor are stored on the
41 * vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
42 * ioctls and guest mmio ops, and other in-kernel peripherals such as the
43 * arch. timers).
44 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
45 * recalculated
46 * - To calculate the oracle, we need info for each cpu from
47 * compute_pending_for_cpu, which considers:
48 * - PPI: dist->irq_pending & dist->irq_enable
49 * - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
50 * - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
51 * registers, stored on each vcpu. We only keep one bit of
52 * information per interrupt, making sure that only one vcpu can
53 * accept the interrupt.
54 * - If any of the above state changes, we must recalculate the oracle.
55 * - The same is true when injecting an interrupt, except that we only
56 * consider a single interrupt at a time. The irq_spi_cpu array
57 * contains the target CPU for each SPI.
58 *
59 * The handling of level interrupts adds some extra complexity. We
60 * need to track when the interrupt has been EOIed, so we can sample
61 * the 'line' again. This is achieved as such:
62 *
63 * - When a level interrupt is moved onto a vcpu, the corresponding
64 * bit in irq_queued is set. As long as this bit is set, the line
65 * will be ignored for further interrupts. The interrupt is injected
66 * into the vcpu with the GICH_LR_EOI bit set (generate a
67 * maintenance interrupt on EOI).
68 * - When the interrupt is EOIed, the maintenance interrupt fires,
69 * and clears the corresponding bit in irq_queued. This allows the
70 * interrupt line to be sampled again.
71 * - Note that level-triggered interrupts can also be set to pending from
72 * writes to GICD_ISPENDRn and lowering the external input line does not
73 * cause the interrupt to become inactive in such a situation.
74 * Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
75 * inactive as long as the external input line is held high.
76 */
77
78 #include "vgic.h"
79
80 #define GICC_ARCH_VERSION_V2 0x2
81
82 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
83 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
84 static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi);
85 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
86 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
87 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
88
89 static const struct vgic_ops *vgic_ops;
90 static const struct vgic_params *vgic;
91
92 static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
93 {
94 vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
95 }
96
97 static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
98 {
99 return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
100 }
101
102 int kvm_vgic_map_resources(struct kvm *kvm)
103 {
104 return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
105 }
106
107 /*
108 * struct vgic_bitmap contains a bitmap made of unsigned longs, but
109 * extracts u32s out of them.
110 *
111 * This does not work on 64-bit BE systems, because the bitmap access
112 * will store two consecutive 32-bit words with the higher-addressed
113 * register's bits at the lower index and the lower-addressed register's
114 * bits at the higher index.
115 *
116 * Therefore, swizzle the register index when accessing the 32-bit word
117 * registers to access the right register's value.
118 */
119 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
120 #define REG_OFFSET_SWIZZLE 1
121 #else
122 #define REG_OFFSET_SWIZZLE 0
123 #endif
124
125 static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
126 {
127 int nr_longs;
128
129 nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
130
131 b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
132 if (!b->private)
133 return -ENOMEM;
134
135 b->shared = b->private + nr_cpus;
136
137 return 0;
138 }
139
140 static void vgic_free_bitmap(struct vgic_bitmap *b)
141 {
142 kfree(b->private);
143 b->private = NULL;
144 b->shared = NULL;
145 }
146
147 /*
148 * Call this function to convert a u64 value to an unsigned long * bitmask
149 * in a way that works on both 32-bit and 64-bit LE and BE platforms.
150 *
151 * Warning: Calling this function may modify *val.
152 */
153 static unsigned long *u64_to_bitmask(u64 *val)
154 {
155 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
156 *val = (*val >> 32) | (*val << 32);
157 #endif
158 return (unsigned long *)val;
159 }
160
161 u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
162 {
163 offset >>= 2;
164 if (!offset)
165 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
166 else
167 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
168 }
169
170 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
171 int cpuid, int irq)
172 {
173 if (irq < VGIC_NR_PRIVATE_IRQS)
174 return test_bit(irq, x->private + cpuid);
175
176 return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
177 }
178
179 void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
180 int irq, int val)
181 {
182 unsigned long *reg;
183
184 if (irq < VGIC_NR_PRIVATE_IRQS) {
185 reg = x->private + cpuid;
186 } else {
187 reg = x->shared;
188 irq -= VGIC_NR_PRIVATE_IRQS;
189 }
190
191 if (val)
192 set_bit(irq, reg);
193 else
194 clear_bit(irq, reg);
195 }
196
197 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
198 {
199 return x->private + cpuid;
200 }
201
202 unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
203 {
204 return x->shared;
205 }
206
207 static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
208 {
209 int size;
210
211 size = nr_cpus * VGIC_NR_PRIVATE_IRQS;
212 size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
213
214 x->private = kzalloc(size, GFP_KERNEL);
215 if (!x->private)
216 return -ENOMEM;
217
218 x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
219 return 0;
220 }
221
222 static void vgic_free_bytemap(struct vgic_bytemap *b)
223 {
224 kfree(b->private);
225 b->private = NULL;
226 b->shared = NULL;
227 }
228
229 u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
230 {
231 u32 *reg;
232
233 if (offset < VGIC_NR_PRIVATE_IRQS) {
234 reg = x->private;
235 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
236 } else {
237 reg = x->shared;
238 offset -= VGIC_NR_PRIVATE_IRQS;
239 }
240
241 return reg + (offset / sizeof(u32));
242 }
243
244 #define VGIC_CFG_LEVEL 0
245 #define VGIC_CFG_EDGE 1
246
247 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
248 {
249 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
250 int irq_val;
251
252 irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
253 return irq_val == VGIC_CFG_EDGE;
254 }
255
256 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
257 {
258 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
259
260 return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
261 }
262
263 static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
264 {
265 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
266
267 return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
268 }
269
270 static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
271 {
272 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
273
274 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
275 }
276
277 static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
278 {
279 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
280
281 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
282 }
283
284 static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
285 {
286 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
287
288 return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
289 }
290
291 static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
292 {
293 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
294
295 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
296 }
297
298 static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
299 {
300 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
301
302 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
303 }
304
305 static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
306 {
307 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
308
309 return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
310 }
311
312 static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
313 {
314 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
315
316 vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
317 }
318
319 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
320 {
321 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
322
323 return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
324 }
325
326 void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
327 {
328 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
329
330 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
331 }
332
333 void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
334 {
335 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
336
337 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
338 }
339
340 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
341 {
342 if (irq < VGIC_NR_PRIVATE_IRQS)
343 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
344 else
345 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
346 vcpu->arch.vgic_cpu.pending_shared);
347 }
348
349 void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
350 {
351 if (irq < VGIC_NR_PRIVATE_IRQS)
352 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
353 else
354 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
355 vcpu->arch.vgic_cpu.pending_shared);
356 }
357
358 static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
359 {
360 return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
361 }
362
363 /**
364 * vgic_reg_access - access vgic register
365 * @mmio: pointer to the data describing the mmio access
366 * @reg: pointer to the virtual backing of vgic distributor data
367 * @offset: least significant 2 bits used for word offset
368 * @mode: ACCESS_ mode (see defines above)
369 *
370 * Helper to make vgic register access easier using one of the access
371 * modes defined for vgic register access
372 * (read,raz,write-ignored,setbit,clearbit,write)
373 */
374 void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
375 phys_addr_t offset, int mode)
376 {
377 int word_offset = (offset & 3) * 8;
378 u32 mask = (1UL << (mmio->len * 8)) - 1;
379 u32 regval;
380
381 /*
382 * Any alignment fault should have been delivered to the guest
383 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
384 */
385
386 if (reg) {
387 regval = *reg;
388 } else {
389 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
390 regval = 0;
391 }
392
393 if (mmio->is_write) {
394 u32 data = mmio_data_read(mmio, mask) << word_offset;
395 switch (ACCESS_WRITE_MASK(mode)) {
396 case ACCESS_WRITE_IGNORED:
397 return;
398
399 case ACCESS_WRITE_SETBIT:
400 regval |= data;
401 break;
402
403 case ACCESS_WRITE_CLEARBIT:
404 regval &= ~data;
405 break;
406
407 case ACCESS_WRITE_VALUE:
408 regval = (regval & ~(mask << word_offset)) | data;
409 break;
410 }
411 *reg = regval;
412 } else {
413 switch (ACCESS_READ_MASK(mode)) {
414 case ACCESS_READ_RAZ:
415 regval = 0;
416 /* fall through */
417
418 case ACCESS_READ_VALUE:
419 mmio_data_write(mmio, mask, regval >> word_offset);
420 }
421 }
422 }
423
424 static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
425 struct kvm_exit_mmio *mmio, phys_addr_t offset)
426 {
427 u32 reg;
428 u32 word_offset = offset & 3;
429
430 switch (offset & ~3) {
431 case 0: /* GICD_CTLR */
432 reg = vcpu->kvm->arch.vgic.enabled;
433 vgic_reg_access(mmio, &reg, word_offset,
434 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
435 if (mmio->is_write) {
436 vcpu->kvm->arch.vgic.enabled = reg & 1;
437 vgic_update_state(vcpu->kvm);
438 return true;
439 }
440 break;
441
442 case 4: /* GICD_TYPER */
443 reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
444 reg |= (vcpu->kvm->arch.vgic.nr_irqs >> 5) - 1;
445 vgic_reg_access(mmio, &reg, word_offset,
446 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
447 break;
448
449 case 8: /* GICD_IIDR */
450 reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
451 vgic_reg_access(mmio, &reg, word_offset,
452 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
453 break;
454 }
455
456 return false;
457 }
458
459 bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
460 phys_addr_t offset)
461 {
462 vgic_reg_access(mmio, NULL, offset,
463 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
464 return false;
465 }
466
467 bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
468 phys_addr_t offset, int vcpu_id, int access)
469 {
470 u32 *reg;
471 int mode = ACCESS_READ_VALUE | access;
472 struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
473
474 reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
475 vgic_reg_access(mmio, reg, offset, mode);
476 if (mmio->is_write) {
477 if (access & ACCESS_WRITE_CLEARBIT) {
478 if (offset < 4) /* Force SGI enabled */
479 *reg |= 0xffff;
480 vgic_retire_disabled_irqs(target_vcpu);
481 }
482 vgic_update_state(kvm);
483 return true;
484 }
485
486 return false;
487 }
488
489 static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
490 struct kvm_exit_mmio *mmio,
491 phys_addr_t offset)
492 {
493 return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
494 vcpu->vcpu_id, ACCESS_WRITE_SETBIT);
495 }
496
497 static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
498 struct kvm_exit_mmio *mmio,
499 phys_addr_t offset)
500 {
501 return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
502 vcpu->vcpu_id, ACCESS_WRITE_CLEARBIT);
503 }
504
505 bool vgic_handle_set_pending_reg(struct kvm *kvm,
506 struct kvm_exit_mmio *mmio,
507 phys_addr_t offset, int vcpu_id)
508 {
509 u32 *reg, orig;
510 u32 level_mask;
511 int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
512 struct vgic_dist *dist = &kvm->arch.vgic;
513
514 reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
515 level_mask = (~(*reg));
516
517 /* Mark both level and edge triggered irqs as pending */
518 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
519 orig = *reg;
520 vgic_reg_access(mmio, reg, offset, mode);
521
522 if (mmio->is_write) {
523 /* Set the soft-pending flag only for level-triggered irqs */
524 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
525 vcpu_id, offset);
526 vgic_reg_access(mmio, reg, offset, mode);
527 *reg &= level_mask;
528
529 /* Ignore writes to SGIs */
530 if (offset < 2) {
531 *reg &= ~0xffff;
532 *reg |= orig & 0xffff;
533 }
534
535 vgic_update_state(kvm);
536 return true;
537 }
538
539 return false;
540 }
541
542 bool vgic_handle_clear_pending_reg(struct kvm *kvm,
543 struct kvm_exit_mmio *mmio,
544 phys_addr_t offset, int vcpu_id)
545 {
546 u32 *level_active;
547 u32 *reg, orig;
548 int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
549 struct vgic_dist *dist = &kvm->arch.vgic;
550
551 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
552 orig = *reg;
553 vgic_reg_access(mmio, reg, offset, mode);
554 if (mmio->is_write) {
555 /* Re-set level triggered level-active interrupts */
556 level_active = vgic_bitmap_get_reg(&dist->irq_level,
557 vcpu_id, offset);
558 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
559 *reg |= *level_active;
560
561 /* Ignore writes to SGIs */
562 if (offset < 2) {
563 *reg &= ~0xffff;
564 *reg |= orig & 0xffff;
565 }
566
567 /* Clear soft-pending flags */
568 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
569 vcpu_id, offset);
570 vgic_reg_access(mmio, reg, offset, mode);
571
572 vgic_update_state(kvm);
573 return true;
574 }
575 return false;
576 }
577
578 static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
579 struct kvm_exit_mmio *mmio,
580 phys_addr_t offset)
581 {
582 return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset,
583 vcpu->vcpu_id);
584 }
585
586 static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
587 struct kvm_exit_mmio *mmio,
588 phys_addr_t offset)
589 {
590 return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset,
591 vcpu->vcpu_id);
592 }
593
594 static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
595 struct kvm_exit_mmio *mmio,
596 phys_addr_t offset)
597 {
598 u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
599 vcpu->vcpu_id, offset);
600 vgic_reg_access(mmio, reg, offset,
601 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
602 return false;
603 }
604
605 #define GICD_ITARGETSR_SIZE 32
606 #define GICD_CPUTARGETS_BITS 8
607 #define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
608 static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
609 {
610 struct vgic_dist *dist = &kvm->arch.vgic;
611 int i;
612 u32 val = 0;
613
614 irq -= VGIC_NR_PRIVATE_IRQS;
615
616 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
617 val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
618
619 return val;
620 }
621
622 static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
623 {
624 struct vgic_dist *dist = &kvm->arch.vgic;
625 struct kvm_vcpu *vcpu;
626 int i, c;
627 unsigned long *bmap;
628 u32 target;
629
630 irq -= VGIC_NR_PRIVATE_IRQS;
631
632 /*
633 * Pick the LSB in each byte. This ensures we target exactly
634 * one vcpu per IRQ. If the byte is null, assume we target
635 * CPU0.
636 */
637 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
638 int shift = i * GICD_CPUTARGETS_BITS;
639 target = ffs((val >> shift) & 0xffU);
640 target = target ? (target - 1) : 0;
641 dist->irq_spi_cpu[irq + i] = target;
642 kvm_for_each_vcpu(c, vcpu, kvm) {
643 bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
644 if (c == target)
645 set_bit(irq + i, bmap);
646 else
647 clear_bit(irq + i, bmap);
648 }
649 }
650 }
651
652 static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
653 struct kvm_exit_mmio *mmio,
654 phys_addr_t offset)
655 {
656 u32 reg;
657
658 /* We treat the banked interrupts targets as read-only */
659 if (offset < 32) {
660 u32 roreg = 1 << vcpu->vcpu_id;
661 roreg |= roreg << 8;
662 roreg |= roreg << 16;
663
664 vgic_reg_access(mmio, &roreg, offset,
665 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
666 return false;
667 }
668
669 reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
670 vgic_reg_access(mmio, &reg, offset,
671 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
672 if (mmio->is_write) {
673 vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
674 vgic_update_state(vcpu->kvm);
675 return true;
676 }
677
678 return false;
679 }
680
681 static u32 vgic_cfg_expand(u16 val)
682 {
683 u32 res = 0;
684 int i;
685
686 /*
687 * Turn a 16bit value like abcd...mnop into a 32bit word
688 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
689 */
690 for (i = 0; i < 16; i++)
691 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
692
693 return res;
694 }
695
696 static u16 vgic_cfg_compress(u32 val)
697 {
698 u16 res = 0;
699 int i;
700
701 /*
702 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
703 * abcd...mnop which is what we really care about.
704 */
705 for (i = 0; i < 16; i++)
706 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
707
708 return res;
709 }
710
711 /*
712 * The distributor uses 2 bits per IRQ for the CFG register, but the
713 * LSB is always 0. As such, we only keep the upper bit, and use the
714 * two above functions to compress/expand the bits
715 */
716 bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
717 phys_addr_t offset)
718 {
719 u32 val;
720
721 if (offset & 4)
722 val = *reg >> 16;
723 else
724 val = *reg & 0xffff;
725
726 val = vgic_cfg_expand(val);
727 vgic_reg_access(mmio, &val, offset,
728 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
729 if (mmio->is_write) {
730 if (offset < 8) {
731 *reg = ~0U; /* Force PPIs/SGIs to 1 */
732 return false;
733 }
734
735 val = vgic_cfg_compress(val);
736 if (offset & 4) {
737 *reg &= 0xffff;
738 *reg |= val << 16;
739 } else {
740 *reg &= 0xffff << 16;
741 *reg |= val;
742 }
743 }
744
745 return false;
746 }
747
748 static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
749 struct kvm_exit_mmio *mmio, phys_addr_t offset)
750 {
751 u32 *reg;
752
753 reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
754 vcpu->vcpu_id, offset >> 1);
755
756 return vgic_handle_cfg_reg(reg, mmio, offset);
757 }
758
759 static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
760 struct kvm_exit_mmio *mmio, phys_addr_t offset)
761 {
762 u32 reg;
763 vgic_reg_access(mmio, &reg, offset,
764 ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
765 if (mmio->is_write) {
766 vgic_dispatch_sgi(vcpu, reg);
767 vgic_update_state(vcpu->kvm);
768 return true;
769 }
770
771 return false;
772 }
773
774 static void vgic_v2_add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
775 {
776 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
777
778 *vgic_get_sgi_sources(dist, vcpu->vcpu_id, irq) |= 1 << source;
779 }
780
781 /**
782 * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
783 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
784 *
785 * Move any pending IRQs that have already been assigned to LRs back to the
786 * emulated distributor state so that the complete emulated state can be read
787 * from the main emulation structures without investigating the LRs.
788 *
789 * Note that IRQs in the active state in the LRs get their pending state moved
790 * to the distributor but the active state stays in the LRs, because we don't
791 * track the active state on the distributor side.
792 */
793 void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
794 {
795 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
796 int i;
797
798 for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
799 struct vgic_lr lr = vgic_get_lr(vcpu, i);
800
801 /*
802 * There are three options for the state bits:
803 *
804 * 01: pending
805 * 10: active
806 * 11: pending and active
807 *
808 * If the LR holds only an active interrupt (not pending) then
809 * just leave it alone.
810 */
811 if ((lr.state & LR_STATE_MASK) == LR_STATE_ACTIVE)
812 continue;
813
814 /*
815 * Reestablish the pending state on the distributor and the
816 * CPU interface. It may have already been pending, but that
817 * is fine, then we are only setting a few bits that were
818 * already set.
819 */
820 vgic_dist_irq_set_pending(vcpu, lr.irq);
821 if (lr.irq < VGIC_NR_SGIS)
822 add_sgi_source(vcpu, lr.irq, lr.source);
823 lr.state &= ~LR_STATE_PENDING;
824 vgic_set_lr(vcpu, i, lr);
825
826 /*
827 * If there's no state left on the LR (it could still be
828 * active), then the LR does not hold any useful info and can
829 * be marked as free for other use.
830 */
831 if (!(lr.state & LR_STATE_MASK)) {
832 vgic_retire_lr(i, lr.irq, vcpu);
833 vgic_irq_clear_queued(vcpu, lr.irq);
834 }
835
836 /* Finally update the VGIC state. */
837 vgic_update_state(vcpu->kvm);
838 }
839 }
840
841 /* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
842 static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
843 struct kvm_exit_mmio *mmio,
844 phys_addr_t offset)
845 {
846 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
847 int sgi;
848 int min_sgi = (offset & ~0x3);
849 int max_sgi = min_sgi + 3;
850 int vcpu_id = vcpu->vcpu_id;
851 u32 reg = 0;
852
853 /* Copy source SGIs from distributor side */
854 for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
855 int shift = 8 * (sgi - min_sgi);
856 reg |= ((u32)*vgic_get_sgi_sources(dist, vcpu_id, sgi)) << shift;
857 }
858
859 mmio_data_write(mmio, ~0, reg);
860 return false;
861 }
862
863 static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
864 struct kvm_exit_mmio *mmio,
865 phys_addr_t offset, bool set)
866 {
867 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
868 int sgi;
869 int min_sgi = (offset & ~0x3);
870 int max_sgi = min_sgi + 3;
871 int vcpu_id = vcpu->vcpu_id;
872 u32 reg;
873 bool updated = false;
874
875 reg = mmio_data_read(mmio, ~0);
876
877 /* Clear pending SGIs on the distributor */
878 for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
879 u8 mask = reg >> (8 * (sgi - min_sgi));
880 u8 *src = vgic_get_sgi_sources(dist, vcpu_id, sgi);
881 if (set) {
882 if ((*src & mask) != mask)
883 updated = true;
884 *src |= mask;
885 } else {
886 if (*src & mask)
887 updated = true;
888 *src &= ~mask;
889 }
890 }
891
892 if (updated)
893 vgic_update_state(vcpu->kvm);
894
895 return updated;
896 }
897
898 static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
899 struct kvm_exit_mmio *mmio,
900 phys_addr_t offset)
901 {
902 if (!mmio->is_write)
903 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
904 else
905 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
906 }
907
908 static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
909 struct kvm_exit_mmio *mmio,
910 phys_addr_t offset)
911 {
912 if (!mmio->is_write)
913 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
914 else
915 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
916 }
917
918 static const struct kvm_mmio_range vgic_dist_ranges[] = {
919 {
920 .base = GIC_DIST_CTRL,
921 .len = 12,
922 .bits_per_irq = 0,
923 .handle_mmio = handle_mmio_misc,
924 },
925 {
926 .base = GIC_DIST_IGROUP,
927 .len = VGIC_MAX_IRQS / 8,
928 .bits_per_irq = 1,
929 .handle_mmio = handle_mmio_raz_wi,
930 },
931 {
932 .base = GIC_DIST_ENABLE_SET,
933 .len = VGIC_MAX_IRQS / 8,
934 .bits_per_irq = 1,
935 .handle_mmio = handle_mmio_set_enable_reg,
936 },
937 {
938 .base = GIC_DIST_ENABLE_CLEAR,
939 .len = VGIC_MAX_IRQS / 8,
940 .bits_per_irq = 1,
941 .handle_mmio = handle_mmio_clear_enable_reg,
942 },
943 {
944 .base = GIC_DIST_PENDING_SET,
945 .len = VGIC_MAX_IRQS / 8,
946 .bits_per_irq = 1,
947 .handle_mmio = handle_mmio_set_pending_reg,
948 },
949 {
950 .base = GIC_DIST_PENDING_CLEAR,
951 .len = VGIC_MAX_IRQS / 8,
952 .bits_per_irq = 1,
953 .handle_mmio = handle_mmio_clear_pending_reg,
954 },
955 {
956 .base = GIC_DIST_ACTIVE_SET,
957 .len = VGIC_MAX_IRQS / 8,
958 .bits_per_irq = 1,
959 .handle_mmio = handle_mmio_raz_wi,
960 },
961 {
962 .base = GIC_DIST_ACTIVE_CLEAR,
963 .len = VGIC_MAX_IRQS / 8,
964 .bits_per_irq = 1,
965 .handle_mmio = handle_mmio_raz_wi,
966 },
967 {
968 .base = GIC_DIST_PRI,
969 .len = VGIC_MAX_IRQS,
970 .bits_per_irq = 8,
971 .handle_mmio = handle_mmio_priority_reg,
972 },
973 {
974 .base = GIC_DIST_TARGET,
975 .len = VGIC_MAX_IRQS,
976 .bits_per_irq = 8,
977 .handle_mmio = handle_mmio_target_reg,
978 },
979 {
980 .base = GIC_DIST_CONFIG,
981 .len = VGIC_MAX_IRQS / 4,
982 .bits_per_irq = 2,
983 .handle_mmio = handle_mmio_cfg_reg,
984 },
985 {
986 .base = GIC_DIST_SOFTINT,
987 .len = 4,
988 .handle_mmio = handle_mmio_sgi_reg,
989 },
990 {
991 .base = GIC_DIST_SGI_PENDING_CLEAR,
992 .len = VGIC_NR_SGIS,
993 .handle_mmio = handle_mmio_sgi_clear,
994 },
995 {
996 .base = GIC_DIST_SGI_PENDING_SET,
997 .len = VGIC_NR_SGIS,
998 .handle_mmio = handle_mmio_sgi_set,
999 },
1000 {}
1001 };
1002
1003 const
1004 struct kvm_mmio_range *vgic_find_range(const struct kvm_mmio_range *ranges,
1005 struct kvm_exit_mmio *mmio,
1006 phys_addr_t offset)
1007 {
1008 const struct kvm_mmio_range *r = ranges;
1009
1010 while (r->len) {
1011 if (offset >= r->base &&
1012 (offset + mmio->len) <= (r->base + r->len))
1013 return r;
1014 r++;
1015 }
1016
1017 return NULL;
1018 }
1019
1020 static bool vgic_validate_access(const struct vgic_dist *dist,
1021 const struct kvm_mmio_range *range,
1022 unsigned long offset)
1023 {
1024 int irq;
1025
1026 if (!range->bits_per_irq)
1027 return true; /* Not an irq-based access */
1028
1029 irq = offset * 8 / range->bits_per_irq;
1030 if (irq >= dist->nr_irqs)
1031 return false;
1032
1033 return true;
1034 }
1035
1036 /*
1037 * Call the respective handler function for the given range.
1038 * We split up any 64 bit accesses into two consecutive 32 bit
1039 * handler calls and merge the result afterwards.
1040 * We do this in a little endian fashion regardless of the host's
1041 * or guest's endianness, because the GIC is always LE and the rest of
1042 * the code (vgic_reg_access) also puts it in a LE fashion already.
1043 * At this point we have already identified the handle function, so
1044 * range points to that one entry and offset is relative to this.
1045 */
1046 static bool call_range_handler(struct kvm_vcpu *vcpu,
1047 struct kvm_exit_mmio *mmio,
1048 unsigned long offset,
1049 const struct kvm_mmio_range *range)
1050 {
1051 u32 *data32 = (void *)mmio->data;
1052 struct kvm_exit_mmio mmio32;
1053 bool ret;
1054
1055 if (likely(mmio->len <= 4))
1056 return range->handle_mmio(vcpu, mmio, offset);
1057
1058 /*
1059 * Any access bigger than 4 bytes (that we currently handle in KVM)
1060 * is actually 8 bytes long, caused by a 64-bit access
1061 */
1062
1063 mmio32.len = 4;
1064 mmio32.is_write = mmio->is_write;
1065
1066 mmio32.phys_addr = mmio->phys_addr + 4;
1067 if (mmio->is_write)
1068 *(u32 *)mmio32.data = data32[1];
1069 ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
1070 if (!mmio->is_write)
1071 data32[1] = *(u32 *)mmio32.data;
1072
1073 mmio32.phys_addr = mmio->phys_addr;
1074 if (mmio->is_write)
1075 *(u32 *)mmio32.data = data32[0];
1076 ret |= range->handle_mmio(vcpu, &mmio32, offset);
1077 if (!mmio->is_write)
1078 data32[0] = *(u32 *)mmio32.data;
1079
1080 return ret;
1081 }
1082
1083 /**
1084 * vgic_handle_mmio_range - handle an in-kernel MMIO access
1085 * @vcpu: pointer to the vcpu performing the access
1086 * @run: pointer to the kvm_run structure
1087 * @mmio: pointer to the data describing the access
1088 * @ranges: array of MMIO ranges in a given region
1089 * @mmio_base: base address of that region
1090 *
1091 * returns true if the MMIO access could be performed
1092 */
1093 bool vgic_handle_mmio_range(struct kvm_vcpu *vcpu, struct kvm_run *run,
1094 struct kvm_exit_mmio *mmio,
1095 const struct kvm_mmio_range *ranges,
1096 unsigned long mmio_base)
1097 {
1098 const struct kvm_mmio_range *range;
1099 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1100 bool updated_state;
1101 unsigned long offset;
1102
1103 offset = mmio->phys_addr - mmio_base;
1104 range = vgic_find_range(ranges, mmio, offset);
1105 if (unlikely(!range || !range->handle_mmio)) {
1106 pr_warn("Unhandled access %d %08llx %d\n",
1107 mmio->is_write, mmio->phys_addr, mmio->len);
1108 return false;
1109 }
1110
1111 spin_lock(&vcpu->kvm->arch.vgic.lock);
1112 offset -= range->base;
1113 if (vgic_validate_access(dist, range, offset)) {
1114 updated_state = call_range_handler(vcpu, mmio, offset, range);
1115 } else {
1116 if (!mmio->is_write)
1117 memset(mmio->data, 0, mmio->len);
1118 updated_state = false;
1119 }
1120 spin_unlock(&vcpu->kvm->arch.vgic.lock);
1121 kvm_prepare_mmio(run, mmio);
1122 kvm_handle_mmio_return(vcpu, run);
1123
1124 if (updated_state)
1125 vgic_kick_vcpus(vcpu->kvm);
1126
1127 return true;
1128 }
1129
1130 static bool vgic_v2_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
1131 struct kvm_exit_mmio *mmio)
1132 {
1133 unsigned long base = vcpu->kvm->arch.vgic.vgic_dist_base;
1134
1135 if (!is_in_range(mmio->phys_addr, mmio->len, base,
1136 KVM_VGIC_V2_DIST_SIZE))
1137 return false;
1138
1139 /* GICv2 does not support accesses wider than 32 bits */
1140 if (mmio->len > 4) {
1141 kvm_inject_dabt(vcpu, mmio->phys_addr);
1142 return true;
1143 }
1144
1145 return vgic_handle_mmio_range(vcpu, run, mmio, vgic_dist_ranges, base);
1146 }
1147
1148 /**
1149 * vgic_handle_mmio - handle an in-kernel MMIO access for the GIC emulation
1150 * @vcpu: pointer to the vcpu performing the access
1151 * @run: pointer to the kvm_run structure
1152 * @mmio: pointer to the data describing the access
1153 *
1154 * returns true if the MMIO access has been performed in kernel space,
1155 * and false if it needs to be emulated in user space.
1156 * Calls the actual handling routine for the selected VGIC model.
1157 */
1158 bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
1159 struct kvm_exit_mmio *mmio)
1160 {
1161 if (!irqchip_in_kernel(vcpu->kvm))
1162 return false;
1163
1164 /*
1165 * This will currently call either vgic_v2_handle_mmio() or
1166 * vgic_v3_handle_mmio(), which in turn will call
1167 * vgic_handle_mmio_range() defined above.
1168 */
1169 return vcpu->kvm->arch.vgic.vm_ops.handle_mmio(vcpu, run, mmio);
1170 }
1171
1172 static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi)
1173 {
1174 return dist->irq_sgi_sources + vcpu_id * VGIC_NR_SGIS + sgi;
1175 }
1176
1177 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
1178 {
1179 struct kvm *kvm = vcpu->kvm;
1180 struct vgic_dist *dist = &kvm->arch.vgic;
1181 int nrcpus = atomic_read(&kvm->online_vcpus);
1182 u8 target_cpus;
1183 int sgi, mode, c, vcpu_id;
1184
1185 vcpu_id = vcpu->vcpu_id;
1186
1187 sgi = reg & 0xf;
1188 target_cpus = (reg >> 16) & 0xff;
1189 mode = (reg >> 24) & 3;
1190
1191 switch (mode) {
1192 case 0:
1193 if (!target_cpus)
1194 return;
1195 break;
1196
1197 case 1:
1198 target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
1199 break;
1200
1201 case 2:
1202 target_cpus = 1 << vcpu_id;
1203 break;
1204 }
1205
1206 kvm_for_each_vcpu(c, vcpu, kvm) {
1207 if (target_cpus & 1) {
1208 /* Flag the SGI as pending */
1209 vgic_dist_irq_set_pending(vcpu, sgi);
1210 *vgic_get_sgi_sources(dist, c, sgi) |= 1 << vcpu_id;
1211 kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
1212 }
1213
1214 target_cpus >>= 1;
1215 }
1216 }
1217
1218 static int vgic_nr_shared_irqs(struct vgic_dist *dist)
1219 {
1220 return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
1221 }
1222
1223 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
1224 {
1225 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1226 unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
1227 unsigned long pending_private, pending_shared;
1228 int nr_shared = vgic_nr_shared_irqs(dist);
1229 int vcpu_id;
1230
1231 vcpu_id = vcpu->vcpu_id;
1232 pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
1233 pend_shared = vcpu->arch.vgic_cpu.pending_shared;
1234
1235 pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
1236 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
1237 bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
1238
1239 pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
1240 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
1241 bitmap_and(pend_shared, pending, enabled, nr_shared);
1242 bitmap_and(pend_shared, pend_shared,
1243 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
1244 nr_shared);
1245
1246 pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
1247 pending_shared = find_first_bit(pend_shared, nr_shared);
1248 return (pending_private < VGIC_NR_PRIVATE_IRQS ||
1249 pending_shared < vgic_nr_shared_irqs(dist));
1250 }
1251
1252 /*
1253 * Update the interrupt state and determine which CPUs have pending
1254 * interrupts. Must be called with distributor lock held.
1255 */
1256 void vgic_update_state(struct kvm *kvm)
1257 {
1258 struct vgic_dist *dist = &kvm->arch.vgic;
1259 struct kvm_vcpu *vcpu;
1260 int c;
1261
1262 if (!dist->enabled) {
1263 set_bit(0, dist->irq_pending_on_cpu);
1264 return;
1265 }
1266
1267 kvm_for_each_vcpu(c, vcpu, kvm) {
1268 if (compute_pending_for_cpu(vcpu)) {
1269 pr_debug("CPU%d has pending interrupts\n", c);
1270 set_bit(c, dist->irq_pending_on_cpu);
1271 }
1272 }
1273 }
1274
1275 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1276 {
1277 return vgic_ops->get_lr(vcpu, lr);
1278 }
1279
1280 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1281 struct vgic_lr vlr)
1282 {
1283 vgic_ops->set_lr(vcpu, lr, vlr);
1284 }
1285
1286 static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1287 struct vgic_lr vlr)
1288 {
1289 vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
1290 }
1291
1292 static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1293 {
1294 return vgic_ops->get_elrsr(vcpu);
1295 }
1296
1297 static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1298 {
1299 return vgic_ops->get_eisr(vcpu);
1300 }
1301
1302 static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1303 {
1304 return vgic_ops->get_interrupt_status(vcpu);
1305 }
1306
1307 static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1308 {
1309 vgic_ops->enable_underflow(vcpu);
1310 }
1311
1312 static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1313 {
1314 vgic_ops->disable_underflow(vcpu);
1315 }
1316
1317 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1318 {
1319 vgic_ops->get_vmcr(vcpu, vmcr);
1320 }
1321
1322 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1323 {
1324 vgic_ops->set_vmcr(vcpu, vmcr);
1325 }
1326
1327 static inline void vgic_enable(struct kvm_vcpu *vcpu)
1328 {
1329 vgic_ops->enable(vcpu);
1330 }
1331
1332 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1333 {
1334 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1335 struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1336
1337 vlr.state = 0;
1338 vgic_set_lr(vcpu, lr_nr, vlr);
1339 clear_bit(lr_nr, vgic_cpu->lr_used);
1340 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1341 }
1342
1343 /*
1344 * An interrupt may have been disabled after being made pending on the
1345 * CPU interface (the classic case is a timer running while we're
1346 * rebooting the guest - the interrupt would kick as soon as the CPU
1347 * interface gets enabled, with deadly consequences).
1348 *
1349 * The solution is to examine already active LRs, and check the
1350 * interrupt is still enabled. If not, just retire it.
1351 */
1352 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1353 {
1354 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1355 int lr;
1356
1357 for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
1358 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1359
1360 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1361 vgic_retire_lr(lr, vlr.irq, vcpu);
1362 if (vgic_irq_is_queued(vcpu, vlr.irq))
1363 vgic_irq_clear_queued(vcpu, vlr.irq);
1364 }
1365 }
1366 }
1367
1368 /*
1369 * Queue an interrupt to a CPU virtual interface. Return true on success,
1370 * or false if it wasn't possible to queue it.
1371 */
1372 bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1373 {
1374 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1375 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1376 struct vgic_lr vlr;
1377 int lr;
1378
1379 /* Sanitize the input... */
1380 BUG_ON(sgi_source_id & ~7);
1381 BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1382 BUG_ON(irq >= dist->nr_irqs);
1383
1384 kvm_debug("Queue IRQ%d\n", irq);
1385
1386 lr = vgic_cpu->vgic_irq_lr_map[irq];
1387
1388 /* Do we have an active interrupt for the same CPUID? */
1389 if (lr != LR_EMPTY) {
1390 vlr = vgic_get_lr(vcpu, lr);
1391 if (vlr.source == sgi_source_id) {
1392 kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1393 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1394 vlr.state |= LR_STATE_PENDING;
1395 vgic_set_lr(vcpu, lr, vlr);
1396 return true;
1397 }
1398 }
1399
1400 /* Try to use another LR for this interrupt */
1401 lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1402 vgic->nr_lr);
1403 if (lr >= vgic->nr_lr)
1404 return false;
1405
1406 kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1407 vgic_cpu->vgic_irq_lr_map[irq] = lr;
1408 set_bit(lr, vgic_cpu->lr_used);
1409
1410 vlr.irq = irq;
1411 vlr.source = sgi_source_id;
1412 vlr.state = LR_STATE_PENDING;
1413 if (!vgic_irq_is_edge(vcpu, irq))
1414 vlr.state |= LR_EOI_INT;
1415
1416 vgic_set_lr(vcpu, lr, vlr);
1417
1418 return true;
1419 }
1420
1421 static bool vgic_v2_queue_sgi(struct kvm_vcpu *vcpu, int irq)
1422 {
1423 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1424 unsigned long sources;
1425 int vcpu_id = vcpu->vcpu_id;
1426 int c;
1427
1428 sources = *vgic_get_sgi_sources(dist, vcpu_id, irq);
1429
1430 for_each_set_bit(c, &sources, dist->nr_cpus) {
1431 if (vgic_queue_irq(vcpu, c, irq))
1432 clear_bit(c, &sources);
1433 }
1434
1435 *vgic_get_sgi_sources(dist, vcpu_id, irq) = sources;
1436
1437 /*
1438 * If the sources bitmap has been cleared it means that we
1439 * could queue all the SGIs onto link registers (see the
1440 * clear_bit above), and therefore we are done with them in
1441 * our emulated gic and can get rid of them.
1442 */
1443 if (!sources) {
1444 vgic_dist_irq_clear_pending(vcpu, irq);
1445 vgic_cpu_irq_clear(vcpu, irq);
1446 return true;
1447 }
1448
1449 return false;
1450 }
1451
1452 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1453 {
1454 if (!vgic_can_sample_irq(vcpu, irq))
1455 return true; /* level interrupt, already queued */
1456
1457 if (vgic_queue_irq(vcpu, 0, irq)) {
1458 if (vgic_irq_is_edge(vcpu, irq)) {
1459 vgic_dist_irq_clear_pending(vcpu, irq);
1460 vgic_cpu_irq_clear(vcpu, irq);
1461 } else {
1462 vgic_irq_set_queued(vcpu, irq);
1463 }
1464
1465 return true;
1466 }
1467
1468 return false;
1469 }
1470
1471 /*
1472 * Fill the list registers with pending interrupts before running the
1473 * guest.
1474 */
1475 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1476 {
1477 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1478 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1479 int i, vcpu_id;
1480 int overflow = 0;
1481
1482 vcpu_id = vcpu->vcpu_id;
1483
1484 /*
1485 * We may not have any pending interrupt, or the interrupts
1486 * may have been serviced from another vcpu. In all cases,
1487 * move along.
1488 */
1489 if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
1490 pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
1491 goto epilog;
1492 }
1493
1494 /* SGIs */
1495 for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
1496 if (!queue_sgi(vcpu, i))
1497 overflow = 1;
1498 }
1499
1500 /* PPIs */
1501 for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
1502 if (!vgic_queue_hwirq(vcpu, i))
1503 overflow = 1;
1504 }
1505
1506 /* SPIs */
1507 for_each_set_bit(i, vgic_cpu->pending_shared, vgic_nr_shared_irqs(dist)) {
1508 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1509 overflow = 1;
1510 }
1511
1512 epilog:
1513 if (overflow) {
1514 vgic_enable_underflow(vcpu);
1515 } else {
1516 vgic_disable_underflow(vcpu);
1517 /*
1518 * We're about to run this VCPU, and we've consumed
1519 * everything the distributor had in store for
1520 * us. Claim we don't have anything pending. We'll
1521 * adjust that if needed while exiting.
1522 */
1523 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
1524 }
1525 }
1526
1527 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1528 {
1529 u32 status = vgic_get_interrupt_status(vcpu);
1530 bool level_pending = false;
1531
1532 kvm_debug("STATUS = %08x\n", status);
1533
1534 if (status & INT_STATUS_EOI) {
1535 /*
1536 * Some level interrupts have been EOIed. Clear their
1537 * active bit.
1538 */
1539 u64 eisr = vgic_get_eisr(vcpu);
1540 unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
1541 int lr;
1542
1543 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1544 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1545 WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1546
1547 vgic_irq_clear_queued(vcpu, vlr.irq);
1548 WARN_ON(vlr.state & LR_STATE_MASK);
1549 vlr.state = 0;
1550 vgic_set_lr(vcpu, lr, vlr);
1551
1552 /*
1553 * If the IRQ was EOIed it was also ACKed and we we
1554 * therefore assume we can clear the soft pending
1555 * state (should it had been set) for this interrupt.
1556 *
1557 * Note: if the IRQ soft pending state was set after
1558 * the IRQ was acked, it actually shouldn't be
1559 * cleared, but we have no way of knowing that unless
1560 * we start trapping ACKs when the soft-pending state
1561 * is set.
1562 */
1563 vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1564
1565 /* Any additional pending interrupt? */
1566 if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1567 vgic_cpu_irq_set(vcpu, vlr.irq);
1568 level_pending = true;
1569 } else {
1570 vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1571 vgic_cpu_irq_clear(vcpu, vlr.irq);
1572 }
1573
1574 /*
1575 * Despite being EOIed, the LR may not have
1576 * been marked as empty.
1577 */
1578 vgic_sync_lr_elrsr(vcpu, lr, vlr);
1579 }
1580 }
1581
1582 if (status & INT_STATUS_UNDERFLOW)
1583 vgic_disable_underflow(vcpu);
1584
1585 return level_pending;
1586 }
1587
1588 /*
1589 * Sync back the VGIC state after a guest run. The distributor lock is
1590 * needed so we don't get preempted in the middle of the state processing.
1591 */
1592 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1593 {
1594 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1595 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1596 u64 elrsr;
1597 unsigned long *elrsr_ptr;
1598 int lr, pending;
1599 bool level_pending;
1600
1601 level_pending = vgic_process_maintenance(vcpu);
1602 elrsr = vgic_get_elrsr(vcpu);
1603 elrsr_ptr = u64_to_bitmask(&elrsr);
1604
1605 /* Clear mappings for empty LRs */
1606 for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
1607 struct vgic_lr vlr;
1608
1609 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1610 continue;
1611
1612 vlr = vgic_get_lr(vcpu, lr);
1613
1614 BUG_ON(vlr.irq >= dist->nr_irqs);
1615 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
1616 }
1617
1618 /* Check if we still have something up our sleeve... */
1619 pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1620 if (level_pending || pending < vgic->nr_lr)
1621 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1622 }
1623
1624 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1625 {
1626 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1627
1628 if (!irqchip_in_kernel(vcpu->kvm))
1629 return;
1630
1631 spin_lock(&dist->lock);
1632 __kvm_vgic_flush_hwstate(vcpu);
1633 spin_unlock(&dist->lock);
1634 }
1635
1636 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1637 {
1638 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1639
1640 if (!irqchip_in_kernel(vcpu->kvm))
1641 return;
1642
1643 spin_lock(&dist->lock);
1644 __kvm_vgic_sync_hwstate(vcpu);
1645 spin_unlock(&dist->lock);
1646 }
1647
1648 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1649 {
1650 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1651
1652 if (!irqchip_in_kernel(vcpu->kvm))
1653 return 0;
1654
1655 return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1656 }
1657
1658 void vgic_kick_vcpus(struct kvm *kvm)
1659 {
1660 struct kvm_vcpu *vcpu;
1661 int c;
1662
1663 /*
1664 * We've injected an interrupt, time to find out who deserves
1665 * a good kick...
1666 */
1667 kvm_for_each_vcpu(c, vcpu, kvm) {
1668 if (kvm_vgic_vcpu_pending_irq(vcpu))
1669 kvm_vcpu_kick(vcpu);
1670 }
1671 }
1672
1673 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1674 {
1675 int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1676
1677 /*
1678 * Only inject an interrupt if:
1679 * - edge triggered and we have a rising edge
1680 * - level triggered and we change level
1681 */
1682 if (edge_triggered) {
1683 int state = vgic_dist_irq_is_pending(vcpu, irq);
1684 return level > state;
1685 } else {
1686 int state = vgic_dist_irq_get_level(vcpu, irq);
1687 return level != state;
1688 }
1689 }
1690
1691 static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1692 unsigned int irq_num, bool level)
1693 {
1694 struct vgic_dist *dist = &kvm->arch.vgic;
1695 struct kvm_vcpu *vcpu;
1696 int edge_triggered, level_triggered;
1697 int enabled;
1698 bool ret = true;
1699
1700 spin_lock(&dist->lock);
1701
1702 vcpu = kvm_get_vcpu(kvm, cpuid);
1703 edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1704 level_triggered = !edge_triggered;
1705
1706 if (!vgic_validate_injection(vcpu, irq_num, level)) {
1707 ret = false;
1708 goto out;
1709 }
1710
1711 if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1712 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1713 vcpu = kvm_get_vcpu(kvm, cpuid);
1714 }
1715
1716 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1717
1718 if (level) {
1719 if (level_triggered)
1720 vgic_dist_irq_set_level(vcpu, irq_num);
1721 vgic_dist_irq_set_pending(vcpu, irq_num);
1722 } else {
1723 if (level_triggered) {
1724 vgic_dist_irq_clear_level(vcpu, irq_num);
1725 if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
1726 vgic_dist_irq_clear_pending(vcpu, irq_num);
1727 }
1728
1729 ret = false;
1730 goto out;
1731 }
1732
1733 enabled = vgic_irq_is_enabled(vcpu, irq_num);
1734
1735 if (!enabled) {
1736 ret = false;
1737 goto out;
1738 }
1739
1740 if (!vgic_can_sample_irq(vcpu, irq_num)) {
1741 /*
1742 * Level interrupt in progress, will be picked up
1743 * when EOId.
1744 */
1745 ret = false;
1746 goto out;
1747 }
1748
1749 if (level) {
1750 vgic_cpu_irq_set(vcpu, irq_num);
1751 set_bit(cpuid, dist->irq_pending_on_cpu);
1752 }
1753
1754 out:
1755 spin_unlock(&dist->lock);
1756
1757 return ret ? cpuid : -EINVAL;
1758 }
1759
1760 /**
1761 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1762 * @kvm: The VM structure pointer
1763 * @cpuid: The CPU for PPIs
1764 * @irq_num: The IRQ number that is assigned to the device
1765 * @level: Edge-triggered: true: to trigger the interrupt
1766 * false: to ignore the call
1767 * Level-sensitive true: activates an interrupt
1768 * false: deactivates an interrupt
1769 *
1770 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1771 * level-sensitive interrupts. You can think of the level parameter as 1
1772 * being HIGH and 0 being LOW and all devices being active-HIGH.
1773 */
1774 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1775 bool level)
1776 {
1777 int ret = 0;
1778 int vcpu_id;
1779
1780 if (unlikely(!vgic_initialized(kvm))) {
1781 /*
1782 * We only provide the automatic initialization of the VGIC
1783 * for the legacy case of a GICv2. Any other type must
1784 * be explicitly initialized once setup with the respective
1785 * KVM device call.
1786 */
1787 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) {
1788 ret = -EBUSY;
1789 goto out;
1790 }
1791 mutex_lock(&kvm->lock);
1792 ret = vgic_init(kvm);
1793 mutex_unlock(&kvm->lock);
1794
1795 if (ret)
1796 goto out;
1797 }
1798
1799 vcpu_id = vgic_update_irq_pending(kvm, cpuid, irq_num, level);
1800 if (vcpu_id >= 0) {
1801 /* kick the specified vcpu */
1802 kvm_vcpu_kick(kvm_get_vcpu(kvm, vcpu_id));
1803 }
1804
1805 out:
1806 return ret;
1807 }
1808
1809 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1810 {
1811 /*
1812 * We cannot rely on the vgic maintenance interrupt to be
1813 * delivered synchronously. This means we can only use it to
1814 * exit the VM, and we perform the handling of EOIed
1815 * interrupts on the exit path (see vgic_process_maintenance).
1816 */
1817 return IRQ_HANDLED;
1818 }
1819
1820 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1821 {
1822 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1823
1824 kfree(vgic_cpu->pending_shared);
1825 kfree(vgic_cpu->vgic_irq_lr_map);
1826 vgic_cpu->pending_shared = NULL;
1827 vgic_cpu->vgic_irq_lr_map = NULL;
1828 }
1829
1830 static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1831 {
1832 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1833
1834 int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
1835 vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
1836 vgic_cpu->vgic_irq_lr_map = kmalloc(nr_irqs, GFP_KERNEL);
1837
1838 if (!vgic_cpu->pending_shared || !vgic_cpu->vgic_irq_lr_map) {
1839 kvm_vgic_vcpu_destroy(vcpu);
1840 return -ENOMEM;
1841 }
1842
1843 memset(vgic_cpu->vgic_irq_lr_map, LR_EMPTY, nr_irqs);
1844
1845 /*
1846 * Store the number of LRs per vcpu, so we don't have to go
1847 * all the way to the distributor structure to find out. Only
1848 * assembly code should use this one.
1849 */
1850 vgic_cpu->nr_lr = vgic->nr_lr;
1851
1852 return 0;
1853 }
1854
1855 /**
1856 * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
1857 *
1858 * The host's GIC naturally limits the maximum amount of VCPUs a guest
1859 * can use.
1860 */
1861 int kvm_vgic_get_max_vcpus(void)
1862 {
1863 return vgic->max_gic_vcpus;
1864 }
1865
1866 void kvm_vgic_destroy(struct kvm *kvm)
1867 {
1868 struct vgic_dist *dist = &kvm->arch.vgic;
1869 struct kvm_vcpu *vcpu;
1870 int i;
1871
1872 kvm_for_each_vcpu(i, vcpu, kvm)
1873 kvm_vgic_vcpu_destroy(vcpu);
1874
1875 vgic_free_bitmap(&dist->irq_enabled);
1876 vgic_free_bitmap(&dist->irq_level);
1877 vgic_free_bitmap(&dist->irq_pending);
1878 vgic_free_bitmap(&dist->irq_soft_pend);
1879 vgic_free_bitmap(&dist->irq_queued);
1880 vgic_free_bitmap(&dist->irq_cfg);
1881 vgic_free_bytemap(&dist->irq_priority);
1882 if (dist->irq_spi_target) {
1883 for (i = 0; i < dist->nr_cpus; i++)
1884 vgic_free_bitmap(&dist->irq_spi_target[i]);
1885 }
1886 kfree(dist->irq_sgi_sources);
1887 kfree(dist->irq_spi_cpu);
1888 kfree(dist->irq_spi_target);
1889 kfree(dist->irq_pending_on_cpu);
1890 dist->irq_sgi_sources = NULL;
1891 dist->irq_spi_cpu = NULL;
1892 dist->irq_spi_target = NULL;
1893 dist->irq_pending_on_cpu = NULL;
1894 dist->nr_cpus = 0;
1895 }
1896
1897 static int vgic_v2_init_model(struct kvm *kvm)
1898 {
1899 int i;
1900
1901 for (i = VGIC_NR_PRIVATE_IRQS; i < kvm->arch.vgic.nr_irqs; i += 4)
1902 vgic_set_target_reg(kvm, 0, i);
1903
1904 return 0;
1905 }
1906
1907 /*
1908 * Allocate and initialize the various data structures. Must be called
1909 * with kvm->lock held!
1910 */
1911 int vgic_init(struct kvm *kvm)
1912 {
1913 struct vgic_dist *dist = &kvm->arch.vgic;
1914 struct kvm_vcpu *vcpu;
1915 int nr_cpus, nr_irqs;
1916 int ret, i, vcpu_id;
1917
1918 if (vgic_initialized(kvm))
1919 return 0;
1920
1921 nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
1922 if (!nr_cpus) /* No vcpus? Can't be good... */
1923 return -ENODEV;
1924
1925 /*
1926 * If nobody configured the number of interrupts, use the
1927 * legacy one.
1928 */
1929 if (!dist->nr_irqs)
1930 dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
1931
1932 nr_irqs = dist->nr_irqs;
1933
1934 ret = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
1935 ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
1936 ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
1937 ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
1938 ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
1939 ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
1940 ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
1941
1942 if (ret)
1943 goto out;
1944
1945 dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
1946 dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
1947 dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
1948 GFP_KERNEL);
1949 dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1950 GFP_KERNEL);
1951 if (!dist->irq_sgi_sources ||
1952 !dist->irq_spi_cpu ||
1953 !dist->irq_spi_target ||
1954 !dist->irq_pending_on_cpu) {
1955 ret = -ENOMEM;
1956 goto out;
1957 }
1958
1959 for (i = 0; i < nr_cpus; i++)
1960 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
1961 nr_cpus, nr_irqs);
1962
1963 if (ret)
1964 goto out;
1965
1966 ret = kvm->arch.vgic.vm_ops.init_model(kvm);
1967 if (ret)
1968 goto out;
1969
1970 kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
1971 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
1972 if (ret) {
1973 kvm_err("VGIC: Failed to allocate vcpu memory\n");
1974 break;
1975 }
1976
1977 for (i = 0; i < dist->nr_irqs; i++) {
1978 if (i < VGIC_NR_PPIS)
1979 vgic_bitmap_set_irq_val(&dist->irq_enabled,
1980 vcpu->vcpu_id, i, 1);
1981 if (i < VGIC_NR_PRIVATE_IRQS)
1982 vgic_bitmap_set_irq_val(&dist->irq_cfg,
1983 vcpu->vcpu_id, i,
1984 VGIC_CFG_EDGE);
1985 }
1986
1987 vgic_enable(vcpu);
1988 }
1989
1990 out:
1991 if (ret)
1992 kvm_vgic_destroy(kvm);
1993
1994 return ret;
1995 }
1996
1997 /**
1998 * kvm_vgic_map_resources - Configure global VGIC state before running any VCPUs
1999 * @kvm: pointer to the kvm struct
2000 *
2001 * Map the virtual CPU interface into the VM before running any VCPUs. We
2002 * can't do this at creation time, because user space must first set the
2003 * virtual CPU interface address in the guest physical address space.
2004 */
2005 static int vgic_v2_map_resources(struct kvm *kvm,
2006 const struct vgic_params *params)
2007 {
2008 int ret = 0;
2009
2010 if (!irqchip_in_kernel(kvm))
2011 return 0;
2012
2013 mutex_lock(&kvm->lock);
2014
2015 if (vgic_ready(kvm))
2016 goto out;
2017
2018 if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
2019 IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
2020 kvm_err("Need to set vgic cpu and dist addresses first\n");
2021 ret = -ENXIO;
2022 goto out;
2023 }
2024
2025 /*
2026 * Initialize the vgic if this hasn't already been done on demand by
2027 * accessing the vgic state from userspace.
2028 */
2029 ret = vgic_init(kvm);
2030 if (ret) {
2031 kvm_err("Unable to allocate maps\n");
2032 goto out;
2033 }
2034
2035 ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
2036 params->vcpu_base, KVM_VGIC_V2_CPU_SIZE,
2037 true);
2038 if (ret) {
2039 kvm_err("Unable to remap VGIC CPU to VCPU\n");
2040 goto out;
2041 }
2042
2043 kvm->arch.vgic.ready = true;
2044 out:
2045 if (ret)
2046 kvm_vgic_destroy(kvm);
2047 mutex_unlock(&kvm->lock);
2048 return ret;
2049 }
2050
2051 void vgic_v2_init_emulation(struct kvm *kvm)
2052 {
2053 struct vgic_dist *dist = &kvm->arch.vgic;
2054
2055 dist->vm_ops.handle_mmio = vgic_v2_handle_mmio;
2056 dist->vm_ops.queue_sgi = vgic_v2_queue_sgi;
2057 dist->vm_ops.add_sgi_source = vgic_v2_add_sgi_source;
2058 dist->vm_ops.init_model = vgic_v2_init_model;
2059 dist->vm_ops.map_resources = vgic_v2_map_resources;
2060
2061 kvm->arch.max_vcpus = VGIC_V2_MAX_CPUS;
2062 }
2063
2064 static int init_vgic_model(struct kvm *kvm, int type)
2065 {
2066 switch (type) {
2067 case KVM_DEV_TYPE_ARM_VGIC_V2:
2068 vgic_v2_init_emulation(kvm);
2069 break;
2070 default:
2071 return -ENODEV;
2072 }
2073
2074 if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
2075 return -E2BIG;
2076
2077 return 0;
2078 }
2079
2080 int kvm_vgic_create(struct kvm *kvm, u32 type)
2081 {
2082 int i, vcpu_lock_idx = -1, ret;
2083 struct kvm_vcpu *vcpu;
2084
2085 mutex_lock(&kvm->lock);
2086
2087 if (irqchip_in_kernel(kvm)) {
2088 ret = -EEXIST;
2089 goto out;
2090 }
2091
2092 /*
2093 * Any time a vcpu is run, vcpu_load is called which tries to grab the
2094 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
2095 * that no other VCPUs are run while we create the vgic.
2096 */
2097 ret = -EBUSY;
2098 kvm_for_each_vcpu(i, vcpu, kvm) {
2099 if (!mutex_trylock(&vcpu->mutex))
2100 goto out_unlock;
2101 vcpu_lock_idx = i;
2102 }
2103
2104 kvm_for_each_vcpu(i, vcpu, kvm) {
2105 if (vcpu->arch.has_run_once)
2106 goto out_unlock;
2107 }
2108 ret = 0;
2109
2110 ret = init_vgic_model(kvm, type);
2111 if (ret)
2112 goto out_unlock;
2113
2114 spin_lock_init(&kvm->arch.vgic.lock);
2115 kvm->arch.vgic.in_kernel = true;
2116 kvm->arch.vgic.vgic_model = type;
2117 kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
2118 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
2119 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
2120
2121 out_unlock:
2122 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
2123 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
2124 mutex_unlock(&vcpu->mutex);
2125 }
2126
2127 out:
2128 mutex_unlock(&kvm->lock);
2129 return ret;
2130 }
2131
2132 static int vgic_ioaddr_overlap(struct kvm *kvm)
2133 {
2134 phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
2135 phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
2136
2137 if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
2138 return 0;
2139 if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
2140 (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
2141 return -EBUSY;
2142 return 0;
2143 }
2144
2145 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
2146 phys_addr_t addr, phys_addr_t size)
2147 {
2148 int ret;
2149
2150 if (addr & ~KVM_PHYS_MASK)
2151 return -E2BIG;
2152
2153 if (addr & (SZ_4K - 1))
2154 return -EINVAL;
2155
2156 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
2157 return -EEXIST;
2158 if (addr + size < addr)
2159 return -EINVAL;
2160
2161 *ioaddr = addr;
2162 ret = vgic_ioaddr_overlap(kvm);
2163 if (ret)
2164 *ioaddr = VGIC_ADDR_UNDEF;
2165
2166 return ret;
2167 }
2168
2169 /**
2170 * kvm_vgic_addr - set or get vgic VM base addresses
2171 * @kvm: pointer to the vm struct
2172 * @type: the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
2173 * @addr: pointer to address value
2174 * @write: if true set the address in the VM address space, if false read the
2175 * address
2176 *
2177 * Set or get the vgic base addresses for the distributor and the virtual CPU
2178 * interface in the VM physical address space. These addresses are properties
2179 * of the emulated core/SoC and therefore user space initially knows this
2180 * information.
2181 */
2182 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
2183 {
2184 int r = 0;
2185 struct vgic_dist *vgic = &kvm->arch.vgic;
2186
2187 mutex_lock(&kvm->lock);
2188 switch (type) {
2189 case KVM_VGIC_V2_ADDR_TYPE_DIST:
2190 if (write) {
2191 r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
2192 *addr, KVM_VGIC_V2_DIST_SIZE);
2193 } else {
2194 *addr = vgic->vgic_dist_base;
2195 }
2196 break;
2197 case KVM_VGIC_V2_ADDR_TYPE_CPU:
2198 if (write) {
2199 r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
2200 *addr, KVM_VGIC_V2_CPU_SIZE);
2201 } else {
2202 *addr = vgic->vgic_cpu_base;
2203 }
2204 break;
2205 default:
2206 r = -ENODEV;
2207 }
2208
2209 mutex_unlock(&kvm->lock);
2210 return r;
2211 }
2212
2213 static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
2214 struct kvm_exit_mmio *mmio, phys_addr_t offset)
2215 {
2216 bool updated = false;
2217 struct vgic_vmcr vmcr;
2218 u32 *vmcr_field;
2219 u32 reg;
2220
2221 vgic_get_vmcr(vcpu, &vmcr);
2222
2223 switch (offset & ~0x3) {
2224 case GIC_CPU_CTRL:
2225 vmcr_field = &vmcr.ctlr;
2226 break;
2227 case GIC_CPU_PRIMASK:
2228 vmcr_field = &vmcr.pmr;
2229 break;
2230 case GIC_CPU_BINPOINT:
2231 vmcr_field = &vmcr.bpr;
2232 break;
2233 case GIC_CPU_ALIAS_BINPOINT:
2234 vmcr_field = &vmcr.abpr;
2235 break;
2236 default:
2237 BUG();
2238 }
2239
2240 if (!mmio->is_write) {
2241 reg = *vmcr_field;
2242 mmio_data_write(mmio, ~0, reg);
2243 } else {
2244 reg = mmio_data_read(mmio, ~0);
2245 if (reg != *vmcr_field) {
2246 *vmcr_field = reg;
2247 vgic_set_vmcr(vcpu, &vmcr);
2248 updated = true;
2249 }
2250 }
2251 return updated;
2252 }
2253
2254 static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
2255 struct kvm_exit_mmio *mmio, phys_addr_t offset)
2256 {
2257 return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
2258 }
2259
2260 static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
2261 struct kvm_exit_mmio *mmio,
2262 phys_addr_t offset)
2263 {
2264 u32 reg;
2265
2266 if (mmio->is_write)
2267 return false;
2268
2269 /* GICC_IIDR */
2270 reg = (PRODUCT_ID_KVM << 20) |
2271 (GICC_ARCH_VERSION_V2 << 16) |
2272 (IMPLEMENTER_ARM << 0);
2273 mmio_data_write(mmio, ~0, reg);
2274 return false;
2275 }
2276
2277 /*
2278 * CPU Interface Register accesses - these are not accessed by the VM, but by
2279 * user space for saving and restoring VGIC state.
2280 */
2281 static const struct kvm_mmio_range vgic_cpu_ranges[] = {
2282 {
2283 .base = GIC_CPU_CTRL,
2284 .len = 12,
2285 .handle_mmio = handle_cpu_mmio_misc,
2286 },
2287 {
2288 .base = GIC_CPU_ALIAS_BINPOINT,
2289 .len = 4,
2290 .handle_mmio = handle_mmio_abpr,
2291 },
2292 {
2293 .base = GIC_CPU_ACTIVEPRIO,
2294 .len = 16,
2295 .handle_mmio = handle_mmio_raz_wi,
2296 },
2297 {
2298 .base = GIC_CPU_IDENT,
2299 .len = 4,
2300 .handle_mmio = handle_cpu_mmio_ident,
2301 },
2302 };
2303
2304 static int vgic_attr_regs_access(struct kvm_device *dev,
2305 struct kvm_device_attr *attr,
2306 u32 *reg, bool is_write)
2307 {
2308 const struct kvm_mmio_range *r = NULL, *ranges;
2309 phys_addr_t offset;
2310 int ret, cpuid, c;
2311 struct kvm_vcpu *vcpu, *tmp_vcpu;
2312 struct vgic_dist *vgic;
2313 struct kvm_exit_mmio mmio;
2314
2315 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2316 cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
2317 KVM_DEV_ARM_VGIC_CPUID_SHIFT;
2318
2319 mutex_lock(&dev->kvm->lock);
2320
2321 ret = vgic_init(dev->kvm);
2322 if (ret)
2323 goto out;
2324
2325 if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
2326 ret = -EINVAL;
2327 goto out;
2328 }
2329
2330 vcpu = kvm_get_vcpu(dev->kvm, cpuid);
2331 vgic = &dev->kvm->arch.vgic;
2332
2333 mmio.len = 4;
2334 mmio.is_write = is_write;
2335 if (is_write)
2336 mmio_data_write(&mmio, ~0, *reg);
2337 switch (attr->group) {
2338 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2339 mmio.phys_addr = vgic->vgic_dist_base + offset;
2340 ranges = vgic_dist_ranges;
2341 break;
2342 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
2343 mmio.phys_addr = vgic->vgic_cpu_base + offset;
2344 ranges = vgic_cpu_ranges;
2345 break;
2346 default:
2347 BUG();
2348 }
2349 r = vgic_find_range(ranges, &mmio, offset);
2350
2351 if (unlikely(!r || !r->handle_mmio)) {
2352 ret = -ENXIO;
2353 goto out;
2354 }
2355
2356
2357 spin_lock(&vgic->lock);
2358
2359 /*
2360 * Ensure that no other VCPU is running by checking the vcpu->cpu
2361 * field. If no other VPCUs are running we can safely access the VGIC
2362 * state, because even if another VPU is run after this point, that
2363 * VCPU will not touch the vgic state, because it will block on
2364 * getting the vgic->lock in kvm_vgic_sync_hwstate().
2365 */
2366 kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
2367 if (unlikely(tmp_vcpu->cpu != -1)) {
2368 ret = -EBUSY;
2369 goto out_vgic_unlock;
2370 }
2371 }
2372
2373 /*
2374 * Move all pending IRQs from the LRs on all VCPUs so the pending
2375 * state can be properly represented in the register state accessible
2376 * through this API.
2377 */
2378 kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
2379 vgic_unqueue_irqs(tmp_vcpu);
2380
2381 offset -= r->base;
2382 r->handle_mmio(vcpu, &mmio, offset);
2383
2384 if (!is_write)
2385 *reg = mmio_data_read(&mmio, ~0);
2386
2387 ret = 0;
2388 out_vgic_unlock:
2389 spin_unlock(&vgic->lock);
2390 out:
2391 mutex_unlock(&dev->kvm->lock);
2392 return ret;
2393 }
2394
2395 int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2396 {
2397 int r;
2398
2399 switch (attr->group) {
2400 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2401 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2402 u64 addr;
2403 unsigned long type = (unsigned long)attr->attr;
2404
2405 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2406 return -EFAULT;
2407
2408 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
2409 return (r == -ENODEV) ? -ENXIO : r;
2410 }
2411 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2412 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2413 u32 val;
2414 int ret = 0;
2415
2416 if (get_user(val, uaddr))
2417 return -EFAULT;
2418
2419 /*
2420 * We require:
2421 * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
2422 * - at most 1024 interrupts
2423 * - a multiple of 32 interrupts
2424 */
2425 if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
2426 val > VGIC_MAX_IRQS ||
2427 (val & 31))
2428 return -EINVAL;
2429
2430 mutex_lock(&dev->kvm->lock);
2431
2432 if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
2433 ret = -EBUSY;
2434 else
2435 dev->kvm->arch.vgic.nr_irqs = val;
2436
2437 mutex_unlock(&dev->kvm->lock);
2438
2439 return ret;
2440 }
2441 case KVM_DEV_ARM_VGIC_GRP_CTRL: {
2442 switch (attr->attr) {
2443 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2444 r = vgic_init(dev->kvm);
2445 return r;
2446 }
2447 break;
2448 }
2449 }
2450
2451 return -ENXIO;
2452 }
2453
2454 static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2455 {
2456 int ret;
2457
2458 ret = vgic_set_common_attr(dev, attr);
2459 if (ret != -ENXIO)
2460 return ret;
2461
2462 switch (attr->group) {
2463 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2464 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
2465 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2466 u32 reg;
2467
2468 if (get_user(reg, uaddr))
2469 return -EFAULT;
2470
2471 return vgic_attr_regs_access(dev, attr, &reg, true);
2472 }
2473
2474 }
2475
2476 return -ENXIO;
2477 }
2478
2479 int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2480 {
2481 int r = -ENXIO;
2482
2483 switch (attr->group) {
2484 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2485 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2486 u64 addr;
2487 unsigned long type = (unsigned long)attr->attr;
2488
2489 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2490 if (r)
2491 return (r == -ENODEV) ? -ENXIO : r;
2492
2493 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2494 return -EFAULT;
2495 break;
2496 }
2497 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2498 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2499
2500 r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
2501 break;
2502 }
2503
2504 }
2505
2506 return r;
2507 }
2508
2509 static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2510 {
2511 int ret;
2512
2513 ret = vgic_get_common_attr(dev, attr);
2514 if (ret != -ENXIO)
2515 return ret;
2516
2517 switch (attr->group) {
2518 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2519 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
2520 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2521 u32 reg = 0;
2522
2523 ret = vgic_attr_regs_access(dev, attr, &reg, false);
2524 if (ret)
2525 return ret;
2526 return put_user(reg, uaddr);
2527 }
2528
2529 }
2530
2531 return -ENXIO;
2532 }
2533
2534 int vgic_has_attr_regs(const struct kvm_mmio_range *ranges, phys_addr_t offset)
2535 {
2536 struct kvm_exit_mmio dev_attr_mmio;
2537
2538 dev_attr_mmio.len = 4;
2539 if (vgic_find_range(ranges, &dev_attr_mmio, offset))
2540 return 0;
2541 else
2542 return -ENXIO;
2543 }
2544
2545 static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2546 {
2547 phys_addr_t offset;
2548
2549 switch (attr->group) {
2550 case KVM_DEV_ARM_VGIC_GRP_ADDR:
2551 switch (attr->attr) {
2552 case KVM_VGIC_V2_ADDR_TYPE_DIST:
2553 case KVM_VGIC_V2_ADDR_TYPE_CPU:
2554 return 0;
2555 }
2556 break;
2557 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2558 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2559 return vgic_has_attr_regs(vgic_dist_ranges, offset);
2560 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
2561 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2562 return vgic_has_attr_regs(vgic_cpu_ranges, offset);
2563 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
2564 return 0;
2565 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2566 switch (attr->attr) {
2567 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2568 return 0;
2569 }
2570 }
2571 return -ENXIO;
2572 }
2573
2574 void vgic_destroy(struct kvm_device *dev)
2575 {
2576 kfree(dev);
2577 }
2578
2579 int vgic_create(struct kvm_device *dev, u32 type)
2580 {
2581 return kvm_vgic_create(dev->kvm, type);
2582 }
2583
2584 struct kvm_device_ops kvm_arm_vgic_v2_ops = {
2585 .name = "kvm-arm-vgic",
2586 .create = vgic_create,
2587 .destroy = vgic_destroy,
2588 .set_attr = vgic_set_attr,
2589 .get_attr = vgic_get_attr,
2590 .has_attr = vgic_has_attr,
2591 };
2592
2593 static void vgic_init_maintenance_interrupt(void *info)
2594 {
2595 enable_percpu_irq(vgic->maint_irq, 0);
2596 }
2597
2598 static int vgic_cpu_notify(struct notifier_block *self,
2599 unsigned long action, void *cpu)
2600 {
2601 switch (action) {
2602 case CPU_STARTING:
2603 case CPU_STARTING_FROZEN:
2604 vgic_init_maintenance_interrupt(NULL);
2605 break;
2606 case CPU_DYING:
2607 case CPU_DYING_FROZEN:
2608 disable_percpu_irq(vgic->maint_irq);
2609 break;
2610 }
2611
2612 return NOTIFY_OK;
2613 }
2614
2615 static struct notifier_block vgic_cpu_nb = {
2616 .notifier_call = vgic_cpu_notify,
2617 };
2618
2619 static const struct of_device_id vgic_ids[] = {
2620 { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
2621 { .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
2622 {},
2623 };
2624
2625 int kvm_vgic_hyp_init(void)
2626 {
2627 const struct of_device_id *matched_id;
2628 const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2629 const struct vgic_params **);
2630 struct device_node *vgic_node;
2631 int ret;
2632
2633 vgic_node = of_find_matching_node_and_match(NULL,
2634 vgic_ids, &matched_id);
2635 if (!vgic_node) {
2636 kvm_err("error: no compatible GIC node found\n");
2637 return -ENODEV;
2638 }
2639
2640 vgic_probe = matched_id->data;
2641 ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2642 if (ret)
2643 return ret;
2644
2645 ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2646 "vgic", kvm_get_running_vcpus());
2647 if (ret) {
2648 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2649 return ret;
2650 }
2651
2652 ret = __register_cpu_notifier(&vgic_cpu_nb);
2653 if (ret) {
2654 kvm_err("Cannot register vgic CPU notifier\n");
2655 goto out_free_irq;
2656 }
2657
2658 /* Callback into for arch code for setup */
2659 vgic_arch_setup(vgic);
2660
2661 on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2662
2663 return 0;
2664
2665 out_free_irq:
2666 free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2667 return ret;
2668 }
This page took 0.127309 seconds and 4 git commands to generate.