arm/arm64: KVM: vgic: Fix SGI writes to GICD_I{CS}PENDR0
[deliverable/linux.git] / virt / kvm / arm / vgic.c
1 /*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/uaccess.h>
28
29 #include <linux/irqchip/arm-gic.h>
30
31 #include <asm/kvm_emulate.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_mmu.h>
34
35 /*
36 * How the whole thing works (courtesy of Christoffer Dall):
37 *
38 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
39 * something is pending
40 * - VGIC pending interrupts are stored on the vgic.irq_pending vgic
41 * bitmap (this bitmap is updated by both user land ioctls and guest
42 * mmio ops, and other in-kernel peripherals such as the
43 * arch. timers) and indicate the 'wire' state.
44 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
45 * recalculated
46 * - To calculate the oracle, we need info for each cpu from
47 * compute_pending_for_cpu, which considers:
48 * - PPI: dist->irq_pending & dist->irq_enable
49 * - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
50 * - irq_spi_target is a 'formatted' version of the GICD_ICFGR
51 * registers, stored on each vcpu. We only keep one bit of
52 * information per interrupt, making sure that only one vcpu can
53 * accept the interrupt.
54 * - The same is true when injecting an interrupt, except that we only
55 * consider a single interrupt at a time. The irq_spi_cpu array
56 * contains the target CPU for each SPI.
57 *
58 * The handling of level interrupts adds some extra complexity. We
59 * need to track when the interrupt has been EOIed, so we can sample
60 * the 'line' again. This is achieved as such:
61 *
62 * - When a level interrupt is moved onto a vcpu, the corresponding
63 * bit in irq_queued is set. As long as this bit is set, the line
64 * will be ignored for further interrupts. The interrupt is injected
65 * into the vcpu with the GICH_LR_EOI bit set (generate a
66 * maintenance interrupt on EOI).
67 * - When the interrupt is EOIed, the maintenance interrupt fires,
68 * and clears the corresponding bit in irq_queued. This allows the
69 * interrupt line to be sampled again.
70 * - Note that level-triggered interrupts can also be set to pending from
71 * writes to GICD_ISPENDRn and lowering the external input line does not
72 * cause the interrupt to become inactive in such a situation.
73 * Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
74 * inactive as long as the external input line is held high.
75 */
76
77 #define VGIC_ADDR_UNDEF (-1)
78 #define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF)
79
80 #define PRODUCT_ID_KVM 0x4b /* ASCII code K */
81 #define IMPLEMENTER_ARM 0x43b
82 #define GICC_ARCH_VERSION_V2 0x2
83
84 #define ACCESS_READ_VALUE (1 << 0)
85 #define ACCESS_READ_RAZ (0 << 0)
86 #define ACCESS_READ_MASK(x) ((x) & (1 << 0))
87 #define ACCESS_WRITE_IGNORED (0 << 1)
88 #define ACCESS_WRITE_SETBIT (1 << 1)
89 #define ACCESS_WRITE_CLEARBIT (2 << 1)
90 #define ACCESS_WRITE_VALUE (3 << 1)
91 #define ACCESS_WRITE_MASK(x) ((x) & (3 << 1))
92
93 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
94 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
95 static void vgic_update_state(struct kvm *kvm);
96 static void vgic_kick_vcpus(struct kvm *kvm);
97 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
98 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
99 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
100 static void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
101 static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
102
103 static const struct vgic_ops *vgic_ops;
104 static const struct vgic_params *vgic;
105
106 /*
107 * struct vgic_bitmap contains unions that provide two views of
108 * the same data. In one case it is an array of registers of
109 * u32's, and in the other case it is a bitmap of unsigned
110 * longs.
111 *
112 * This does not work on 64-bit BE systems, because the bitmap access
113 * will store two consecutive 32-bit words with the higher-addressed
114 * register's bits at the lower index and the lower-addressed register's
115 * bits at the higher index.
116 *
117 * Therefore, swizzle the register index when accessing the 32-bit word
118 * registers to access the right register's value.
119 */
120 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
121 #define REG_OFFSET_SWIZZLE 1
122 #else
123 #define REG_OFFSET_SWIZZLE 0
124 #endif
125
126 static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
127 int cpuid, u32 offset)
128 {
129 offset >>= 2;
130 if (!offset)
131 return x->percpu[cpuid].reg + (offset ^ REG_OFFSET_SWIZZLE);
132 else
133 return x->shared.reg + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
134 }
135
136 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
137 int cpuid, int irq)
138 {
139 if (irq < VGIC_NR_PRIVATE_IRQS)
140 return test_bit(irq, x->percpu[cpuid].reg_ul);
141
142 return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared.reg_ul);
143 }
144
145 static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
146 int irq, int val)
147 {
148 unsigned long *reg;
149
150 if (irq < VGIC_NR_PRIVATE_IRQS) {
151 reg = x->percpu[cpuid].reg_ul;
152 } else {
153 reg = x->shared.reg_ul;
154 irq -= VGIC_NR_PRIVATE_IRQS;
155 }
156
157 if (val)
158 set_bit(irq, reg);
159 else
160 clear_bit(irq, reg);
161 }
162
163 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
164 {
165 if (unlikely(cpuid >= VGIC_MAX_CPUS))
166 return NULL;
167 return x->percpu[cpuid].reg_ul;
168 }
169
170 static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
171 {
172 return x->shared.reg_ul;
173 }
174
175 static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
176 {
177 offset >>= 2;
178 BUG_ON(offset > (VGIC_NR_IRQS / 4));
179 if (offset < 8)
180 return x->percpu[cpuid] + offset;
181 else
182 return x->shared + offset - 8;
183 }
184
185 #define VGIC_CFG_LEVEL 0
186 #define VGIC_CFG_EDGE 1
187
188 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
189 {
190 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
191 int irq_val;
192
193 irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
194 return irq_val == VGIC_CFG_EDGE;
195 }
196
197 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
198 {
199 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
200
201 return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
202 }
203
204 static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
205 {
206 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
207
208 return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
209 }
210
211 static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
212 {
213 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
214
215 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
216 }
217
218 static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
219 {
220 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
221
222 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
223 }
224
225 static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
226 {
227 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
228
229 return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
230 }
231
232 static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
233 {
234 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
235
236 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
237 }
238
239 static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
240 {
241 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
242
243 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
244 }
245
246 static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
247 {
248 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
249
250 return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
251 }
252
253 static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
254 {
255 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
256
257 vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
258 }
259
260 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
261 {
262 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
263
264 return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
265 }
266
267 static void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
268 {
269 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
270
271 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
272 }
273
274 static void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
275 {
276 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
277
278 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
279 }
280
281 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
282 {
283 if (irq < VGIC_NR_PRIVATE_IRQS)
284 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
285 else
286 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
287 vcpu->arch.vgic_cpu.pending_shared);
288 }
289
290 static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
291 {
292 if (irq < VGIC_NR_PRIVATE_IRQS)
293 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
294 else
295 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
296 vcpu->arch.vgic_cpu.pending_shared);
297 }
298
299 static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
300 {
301 return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
302 }
303
304 static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
305 {
306 return le32_to_cpu(*((u32 *)mmio->data)) & mask;
307 }
308
309 static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
310 {
311 *((u32 *)mmio->data) = cpu_to_le32(value) & mask;
312 }
313
314 /**
315 * vgic_reg_access - access vgic register
316 * @mmio: pointer to the data describing the mmio access
317 * @reg: pointer to the virtual backing of vgic distributor data
318 * @offset: least significant 2 bits used for word offset
319 * @mode: ACCESS_ mode (see defines above)
320 *
321 * Helper to make vgic register access easier using one of the access
322 * modes defined for vgic register access
323 * (read,raz,write-ignored,setbit,clearbit,write)
324 */
325 static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
326 phys_addr_t offset, int mode)
327 {
328 int word_offset = (offset & 3) * 8;
329 u32 mask = (1UL << (mmio->len * 8)) - 1;
330 u32 regval;
331
332 /*
333 * Any alignment fault should have been delivered to the guest
334 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
335 */
336
337 if (reg) {
338 regval = *reg;
339 } else {
340 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
341 regval = 0;
342 }
343
344 if (mmio->is_write) {
345 u32 data = mmio_data_read(mmio, mask) << word_offset;
346 switch (ACCESS_WRITE_MASK(mode)) {
347 case ACCESS_WRITE_IGNORED:
348 return;
349
350 case ACCESS_WRITE_SETBIT:
351 regval |= data;
352 break;
353
354 case ACCESS_WRITE_CLEARBIT:
355 regval &= ~data;
356 break;
357
358 case ACCESS_WRITE_VALUE:
359 regval = (regval & ~(mask << word_offset)) | data;
360 break;
361 }
362 *reg = regval;
363 } else {
364 switch (ACCESS_READ_MASK(mode)) {
365 case ACCESS_READ_RAZ:
366 regval = 0;
367 /* fall through */
368
369 case ACCESS_READ_VALUE:
370 mmio_data_write(mmio, mask, regval >> word_offset);
371 }
372 }
373 }
374
375 static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
376 struct kvm_exit_mmio *mmio, phys_addr_t offset)
377 {
378 u32 reg;
379 u32 word_offset = offset & 3;
380
381 switch (offset & ~3) {
382 case 0: /* GICD_CTLR */
383 reg = vcpu->kvm->arch.vgic.enabled;
384 vgic_reg_access(mmio, &reg, word_offset,
385 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
386 if (mmio->is_write) {
387 vcpu->kvm->arch.vgic.enabled = reg & 1;
388 vgic_update_state(vcpu->kvm);
389 return true;
390 }
391 break;
392
393 case 4: /* GICD_TYPER */
394 reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
395 reg |= (VGIC_NR_IRQS >> 5) - 1;
396 vgic_reg_access(mmio, &reg, word_offset,
397 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
398 break;
399
400 case 8: /* GICD_IIDR */
401 reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
402 vgic_reg_access(mmio, &reg, word_offset,
403 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
404 break;
405 }
406
407 return false;
408 }
409
410 static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
411 struct kvm_exit_mmio *mmio, phys_addr_t offset)
412 {
413 vgic_reg_access(mmio, NULL, offset,
414 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
415 return false;
416 }
417
418 static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
419 struct kvm_exit_mmio *mmio,
420 phys_addr_t offset)
421 {
422 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
423 vcpu->vcpu_id, offset);
424 vgic_reg_access(mmio, reg, offset,
425 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
426 if (mmio->is_write) {
427 vgic_update_state(vcpu->kvm);
428 return true;
429 }
430
431 return false;
432 }
433
434 static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
435 struct kvm_exit_mmio *mmio,
436 phys_addr_t offset)
437 {
438 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
439 vcpu->vcpu_id, offset);
440 vgic_reg_access(mmio, reg, offset,
441 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
442 if (mmio->is_write) {
443 if (offset < 4) /* Force SGI enabled */
444 *reg |= 0xffff;
445 vgic_retire_disabled_irqs(vcpu);
446 vgic_update_state(vcpu->kvm);
447 return true;
448 }
449
450 return false;
451 }
452
453 static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
454 struct kvm_exit_mmio *mmio,
455 phys_addr_t offset)
456 {
457 u32 *reg, orig;
458 u32 level_mask;
459 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
460
461 reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu->vcpu_id, offset);
462 level_mask = (~(*reg));
463
464 /* Mark both level and edge triggered irqs as pending */
465 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
466 orig = *reg;
467 vgic_reg_access(mmio, reg, offset,
468 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
469
470 if (mmio->is_write) {
471 /* Set the soft-pending flag only for level-triggered irqs */
472 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
473 vcpu->vcpu_id, offset);
474 vgic_reg_access(mmio, reg, offset,
475 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
476 *reg &= level_mask;
477
478 /* Ignore writes to SGIs */
479 if (offset < 2) {
480 *reg &= ~0xffff;
481 *reg |= orig & 0xffff;
482 }
483
484 vgic_update_state(vcpu->kvm);
485 return true;
486 }
487
488 return false;
489 }
490
491 static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
492 struct kvm_exit_mmio *mmio,
493 phys_addr_t offset)
494 {
495 u32 *level_active;
496 u32 *reg, orig;
497 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
498
499 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
500 orig = *reg;
501 vgic_reg_access(mmio, reg, offset,
502 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
503 if (mmio->is_write) {
504 /* Re-set level triggered level-active interrupts */
505 level_active = vgic_bitmap_get_reg(&dist->irq_level,
506 vcpu->vcpu_id, offset);
507 reg = vgic_bitmap_get_reg(&dist->irq_pending,
508 vcpu->vcpu_id, offset);
509 *reg |= *level_active;
510
511 /* Ignore writes to SGIs */
512 if (offset < 2) {
513 *reg &= ~0xffff;
514 *reg |= orig & 0xffff;
515 }
516
517 /* Clear soft-pending flags */
518 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
519 vcpu->vcpu_id, offset);
520 vgic_reg_access(mmio, reg, offset,
521 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
522
523 vgic_update_state(vcpu->kvm);
524 return true;
525 }
526
527 return false;
528 }
529
530 static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
531 struct kvm_exit_mmio *mmio,
532 phys_addr_t offset)
533 {
534 u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
535 vcpu->vcpu_id, offset);
536 vgic_reg_access(mmio, reg, offset,
537 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
538 return false;
539 }
540
541 #define GICD_ITARGETSR_SIZE 32
542 #define GICD_CPUTARGETS_BITS 8
543 #define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
544 static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
545 {
546 struct vgic_dist *dist = &kvm->arch.vgic;
547 int i;
548 u32 val = 0;
549
550 irq -= VGIC_NR_PRIVATE_IRQS;
551
552 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
553 val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
554
555 return val;
556 }
557
558 static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
559 {
560 struct vgic_dist *dist = &kvm->arch.vgic;
561 struct kvm_vcpu *vcpu;
562 int i, c;
563 unsigned long *bmap;
564 u32 target;
565
566 irq -= VGIC_NR_PRIVATE_IRQS;
567
568 /*
569 * Pick the LSB in each byte. This ensures we target exactly
570 * one vcpu per IRQ. If the byte is null, assume we target
571 * CPU0.
572 */
573 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
574 int shift = i * GICD_CPUTARGETS_BITS;
575 target = ffs((val >> shift) & 0xffU);
576 target = target ? (target - 1) : 0;
577 dist->irq_spi_cpu[irq + i] = target;
578 kvm_for_each_vcpu(c, vcpu, kvm) {
579 bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
580 if (c == target)
581 set_bit(irq + i, bmap);
582 else
583 clear_bit(irq + i, bmap);
584 }
585 }
586 }
587
588 static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
589 struct kvm_exit_mmio *mmio,
590 phys_addr_t offset)
591 {
592 u32 reg;
593
594 /* We treat the banked interrupts targets as read-only */
595 if (offset < 32) {
596 u32 roreg = 1 << vcpu->vcpu_id;
597 roreg |= roreg << 8;
598 roreg |= roreg << 16;
599
600 vgic_reg_access(mmio, &roreg, offset,
601 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
602 return false;
603 }
604
605 reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
606 vgic_reg_access(mmio, &reg, offset,
607 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
608 if (mmio->is_write) {
609 vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
610 vgic_update_state(vcpu->kvm);
611 return true;
612 }
613
614 return false;
615 }
616
617 static u32 vgic_cfg_expand(u16 val)
618 {
619 u32 res = 0;
620 int i;
621
622 /*
623 * Turn a 16bit value like abcd...mnop into a 32bit word
624 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
625 */
626 for (i = 0; i < 16; i++)
627 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
628
629 return res;
630 }
631
632 static u16 vgic_cfg_compress(u32 val)
633 {
634 u16 res = 0;
635 int i;
636
637 /*
638 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
639 * abcd...mnop which is what we really care about.
640 */
641 for (i = 0; i < 16; i++)
642 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
643
644 return res;
645 }
646
647 /*
648 * The distributor uses 2 bits per IRQ for the CFG register, but the
649 * LSB is always 0. As such, we only keep the upper bit, and use the
650 * two above functions to compress/expand the bits
651 */
652 static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
653 struct kvm_exit_mmio *mmio, phys_addr_t offset)
654 {
655 u32 val;
656 u32 *reg;
657
658 reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
659 vcpu->vcpu_id, offset >> 1);
660
661 if (offset & 4)
662 val = *reg >> 16;
663 else
664 val = *reg & 0xffff;
665
666 val = vgic_cfg_expand(val);
667 vgic_reg_access(mmio, &val, offset,
668 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
669 if (mmio->is_write) {
670 if (offset < 8) {
671 *reg = ~0U; /* Force PPIs/SGIs to 1 */
672 return false;
673 }
674
675 val = vgic_cfg_compress(val);
676 if (offset & 4) {
677 *reg &= 0xffff;
678 *reg |= val << 16;
679 } else {
680 *reg &= 0xffff << 16;
681 *reg |= val;
682 }
683 }
684
685 return false;
686 }
687
688 static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
689 struct kvm_exit_mmio *mmio, phys_addr_t offset)
690 {
691 u32 reg;
692 vgic_reg_access(mmio, &reg, offset,
693 ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
694 if (mmio->is_write) {
695 vgic_dispatch_sgi(vcpu, reg);
696 vgic_update_state(vcpu->kvm);
697 return true;
698 }
699
700 return false;
701 }
702
703 /**
704 * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
705 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
706 *
707 * Move any pending IRQs that have already been assigned to LRs back to the
708 * emulated distributor state so that the complete emulated state can be read
709 * from the main emulation structures without investigating the LRs.
710 *
711 * Note that IRQs in the active state in the LRs get their pending state moved
712 * to the distributor but the active state stays in the LRs, because we don't
713 * track the active state on the distributor side.
714 */
715 static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
716 {
717 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
718 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
719 int vcpu_id = vcpu->vcpu_id;
720 int i;
721
722 for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
723 struct vgic_lr lr = vgic_get_lr(vcpu, i);
724
725 /*
726 * There are three options for the state bits:
727 *
728 * 01: pending
729 * 10: active
730 * 11: pending and active
731 *
732 * If the LR holds only an active interrupt (not pending) then
733 * just leave it alone.
734 */
735 if ((lr.state & LR_STATE_MASK) == LR_STATE_ACTIVE)
736 continue;
737
738 /*
739 * Reestablish the pending state on the distributor and the
740 * CPU interface. It may have already been pending, but that
741 * is fine, then we are only setting a few bits that were
742 * already set.
743 */
744 vgic_dist_irq_set_pending(vcpu, lr.irq);
745 if (lr.irq < VGIC_NR_SGIS)
746 dist->irq_sgi_sources[vcpu_id][lr.irq] |= 1 << lr.source;
747 lr.state &= ~LR_STATE_PENDING;
748 vgic_set_lr(vcpu, i, lr);
749
750 /*
751 * If there's no state left on the LR (it could still be
752 * active), then the LR does not hold any useful info and can
753 * be marked as free for other use.
754 */
755 if (!(lr.state & LR_STATE_MASK)) {
756 vgic_retire_lr(i, lr.irq, vcpu);
757 vgic_irq_clear_queued(vcpu, lr.irq);
758 }
759
760 /* Finally update the VGIC state. */
761 vgic_update_state(vcpu->kvm);
762 }
763 }
764
765 /* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
766 static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
767 struct kvm_exit_mmio *mmio,
768 phys_addr_t offset)
769 {
770 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
771 int sgi;
772 int min_sgi = (offset & ~0x3) * 4;
773 int max_sgi = min_sgi + 3;
774 int vcpu_id = vcpu->vcpu_id;
775 u32 reg = 0;
776
777 /* Copy source SGIs from distributor side */
778 for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
779 int shift = 8 * (sgi - min_sgi);
780 reg |= (u32)dist->irq_sgi_sources[vcpu_id][sgi] << shift;
781 }
782
783 mmio_data_write(mmio, ~0, reg);
784 return false;
785 }
786
787 static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
788 struct kvm_exit_mmio *mmio,
789 phys_addr_t offset, bool set)
790 {
791 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
792 int sgi;
793 int min_sgi = (offset & ~0x3) * 4;
794 int max_sgi = min_sgi + 3;
795 int vcpu_id = vcpu->vcpu_id;
796 u32 reg;
797 bool updated = false;
798
799 reg = mmio_data_read(mmio, ~0);
800
801 /* Clear pending SGIs on the distributor */
802 for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
803 u8 mask = reg >> (8 * (sgi - min_sgi));
804 if (set) {
805 if ((dist->irq_sgi_sources[vcpu_id][sgi] & mask) != mask)
806 updated = true;
807 dist->irq_sgi_sources[vcpu_id][sgi] |= mask;
808 } else {
809 if (dist->irq_sgi_sources[vcpu_id][sgi] & mask)
810 updated = true;
811 dist->irq_sgi_sources[vcpu_id][sgi] &= ~mask;
812 }
813 }
814
815 if (updated)
816 vgic_update_state(vcpu->kvm);
817
818 return updated;
819 }
820
821 static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
822 struct kvm_exit_mmio *mmio,
823 phys_addr_t offset)
824 {
825 if (!mmio->is_write)
826 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
827 else
828 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
829 }
830
831 static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
832 struct kvm_exit_mmio *mmio,
833 phys_addr_t offset)
834 {
835 if (!mmio->is_write)
836 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
837 else
838 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
839 }
840
841 /*
842 * I would have liked to use the kvm_bus_io_*() API instead, but it
843 * cannot cope with banked registers (only the VM pointer is passed
844 * around, and we need the vcpu). One of these days, someone please
845 * fix it!
846 */
847 struct mmio_range {
848 phys_addr_t base;
849 unsigned long len;
850 bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
851 phys_addr_t offset);
852 };
853
854 static const struct mmio_range vgic_dist_ranges[] = {
855 {
856 .base = GIC_DIST_CTRL,
857 .len = 12,
858 .handle_mmio = handle_mmio_misc,
859 },
860 {
861 .base = GIC_DIST_IGROUP,
862 .len = VGIC_NR_IRQS / 8,
863 .handle_mmio = handle_mmio_raz_wi,
864 },
865 {
866 .base = GIC_DIST_ENABLE_SET,
867 .len = VGIC_NR_IRQS / 8,
868 .handle_mmio = handle_mmio_set_enable_reg,
869 },
870 {
871 .base = GIC_DIST_ENABLE_CLEAR,
872 .len = VGIC_NR_IRQS / 8,
873 .handle_mmio = handle_mmio_clear_enable_reg,
874 },
875 {
876 .base = GIC_DIST_PENDING_SET,
877 .len = VGIC_NR_IRQS / 8,
878 .handle_mmio = handle_mmio_set_pending_reg,
879 },
880 {
881 .base = GIC_DIST_PENDING_CLEAR,
882 .len = VGIC_NR_IRQS / 8,
883 .handle_mmio = handle_mmio_clear_pending_reg,
884 },
885 {
886 .base = GIC_DIST_ACTIVE_SET,
887 .len = VGIC_NR_IRQS / 8,
888 .handle_mmio = handle_mmio_raz_wi,
889 },
890 {
891 .base = GIC_DIST_ACTIVE_CLEAR,
892 .len = VGIC_NR_IRQS / 8,
893 .handle_mmio = handle_mmio_raz_wi,
894 },
895 {
896 .base = GIC_DIST_PRI,
897 .len = VGIC_NR_IRQS,
898 .handle_mmio = handle_mmio_priority_reg,
899 },
900 {
901 .base = GIC_DIST_TARGET,
902 .len = VGIC_NR_IRQS,
903 .handle_mmio = handle_mmio_target_reg,
904 },
905 {
906 .base = GIC_DIST_CONFIG,
907 .len = VGIC_NR_IRQS / 4,
908 .handle_mmio = handle_mmio_cfg_reg,
909 },
910 {
911 .base = GIC_DIST_SOFTINT,
912 .len = 4,
913 .handle_mmio = handle_mmio_sgi_reg,
914 },
915 {
916 .base = GIC_DIST_SGI_PENDING_CLEAR,
917 .len = VGIC_NR_SGIS,
918 .handle_mmio = handle_mmio_sgi_clear,
919 },
920 {
921 .base = GIC_DIST_SGI_PENDING_SET,
922 .len = VGIC_NR_SGIS,
923 .handle_mmio = handle_mmio_sgi_set,
924 },
925 {}
926 };
927
928 static const
929 struct mmio_range *find_matching_range(const struct mmio_range *ranges,
930 struct kvm_exit_mmio *mmio,
931 phys_addr_t offset)
932 {
933 const struct mmio_range *r = ranges;
934
935 while (r->len) {
936 if (offset >= r->base &&
937 (offset + mmio->len) <= (r->base + r->len))
938 return r;
939 r++;
940 }
941
942 return NULL;
943 }
944
945 /**
946 * vgic_handle_mmio - handle an in-kernel MMIO access
947 * @vcpu: pointer to the vcpu performing the access
948 * @run: pointer to the kvm_run structure
949 * @mmio: pointer to the data describing the access
950 *
951 * returns true if the MMIO access has been performed in kernel space,
952 * and false if it needs to be emulated in user space.
953 */
954 bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
955 struct kvm_exit_mmio *mmio)
956 {
957 const struct mmio_range *range;
958 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
959 unsigned long base = dist->vgic_dist_base;
960 bool updated_state;
961 unsigned long offset;
962
963 if (!irqchip_in_kernel(vcpu->kvm) ||
964 mmio->phys_addr < base ||
965 (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
966 return false;
967
968 /* We don't support ldrd / strd or ldm / stm to the emulated vgic */
969 if (mmio->len > 4) {
970 kvm_inject_dabt(vcpu, mmio->phys_addr);
971 return true;
972 }
973
974 offset = mmio->phys_addr - base;
975 range = find_matching_range(vgic_dist_ranges, mmio, offset);
976 if (unlikely(!range || !range->handle_mmio)) {
977 pr_warn("Unhandled access %d %08llx %d\n",
978 mmio->is_write, mmio->phys_addr, mmio->len);
979 return false;
980 }
981
982 spin_lock(&vcpu->kvm->arch.vgic.lock);
983 offset = mmio->phys_addr - range->base - base;
984 updated_state = range->handle_mmio(vcpu, mmio, offset);
985 spin_unlock(&vcpu->kvm->arch.vgic.lock);
986 kvm_prepare_mmio(run, mmio);
987 kvm_handle_mmio_return(vcpu, run);
988
989 if (updated_state)
990 vgic_kick_vcpus(vcpu->kvm);
991
992 return true;
993 }
994
995 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
996 {
997 struct kvm *kvm = vcpu->kvm;
998 struct vgic_dist *dist = &kvm->arch.vgic;
999 int nrcpus = atomic_read(&kvm->online_vcpus);
1000 u8 target_cpus;
1001 int sgi, mode, c, vcpu_id;
1002
1003 vcpu_id = vcpu->vcpu_id;
1004
1005 sgi = reg & 0xf;
1006 target_cpus = (reg >> 16) & 0xff;
1007 mode = (reg >> 24) & 3;
1008
1009 switch (mode) {
1010 case 0:
1011 if (!target_cpus)
1012 return;
1013 break;
1014
1015 case 1:
1016 target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
1017 break;
1018
1019 case 2:
1020 target_cpus = 1 << vcpu_id;
1021 break;
1022 }
1023
1024 kvm_for_each_vcpu(c, vcpu, kvm) {
1025 if (target_cpus & 1) {
1026 /* Flag the SGI as pending */
1027 vgic_dist_irq_set_pending(vcpu, sgi);
1028 dist->irq_sgi_sources[c][sgi] |= 1 << vcpu_id;
1029 kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
1030 }
1031
1032 target_cpus >>= 1;
1033 }
1034 }
1035
1036 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
1037 {
1038 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1039 unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
1040 unsigned long pending_private, pending_shared;
1041 int vcpu_id;
1042
1043 vcpu_id = vcpu->vcpu_id;
1044 pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
1045 pend_shared = vcpu->arch.vgic_cpu.pending_shared;
1046
1047 pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
1048 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
1049 bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
1050
1051 pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
1052 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
1053 bitmap_and(pend_shared, pending, enabled, VGIC_NR_SHARED_IRQS);
1054 bitmap_and(pend_shared, pend_shared,
1055 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
1056 VGIC_NR_SHARED_IRQS);
1057
1058 pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
1059 pending_shared = find_first_bit(pend_shared, VGIC_NR_SHARED_IRQS);
1060 return (pending_private < VGIC_NR_PRIVATE_IRQS ||
1061 pending_shared < VGIC_NR_SHARED_IRQS);
1062 }
1063
1064 /*
1065 * Update the interrupt state and determine which CPUs have pending
1066 * interrupts. Must be called with distributor lock held.
1067 */
1068 static void vgic_update_state(struct kvm *kvm)
1069 {
1070 struct vgic_dist *dist = &kvm->arch.vgic;
1071 struct kvm_vcpu *vcpu;
1072 int c;
1073
1074 if (!dist->enabled) {
1075 set_bit(0, &dist->irq_pending_on_cpu);
1076 return;
1077 }
1078
1079 kvm_for_each_vcpu(c, vcpu, kvm) {
1080 if (compute_pending_for_cpu(vcpu)) {
1081 pr_debug("CPU%d has pending interrupts\n", c);
1082 set_bit(c, &dist->irq_pending_on_cpu);
1083 }
1084 }
1085 }
1086
1087 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1088 {
1089 return vgic_ops->get_lr(vcpu, lr);
1090 }
1091
1092 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1093 struct vgic_lr vlr)
1094 {
1095 vgic_ops->set_lr(vcpu, lr, vlr);
1096 }
1097
1098 static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1099 struct vgic_lr vlr)
1100 {
1101 vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
1102 }
1103
1104 static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1105 {
1106 return vgic_ops->get_elrsr(vcpu);
1107 }
1108
1109 static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1110 {
1111 return vgic_ops->get_eisr(vcpu);
1112 }
1113
1114 static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1115 {
1116 return vgic_ops->get_interrupt_status(vcpu);
1117 }
1118
1119 static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1120 {
1121 vgic_ops->enable_underflow(vcpu);
1122 }
1123
1124 static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1125 {
1126 vgic_ops->disable_underflow(vcpu);
1127 }
1128
1129 static inline void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1130 {
1131 vgic_ops->get_vmcr(vcpu, vmcr);
1132 }
1133
1134 static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1135 {
1136 vgic_ops->set_vmcr(vcpu, vmcr);
1137 }
1138
1139 static inline void vgic_enable(struct kvm_vcpu *vcpu)
1140 {
1141 vgic_ops->enable(vcpu);
1142 }
1143
1144 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1145 {
1146 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1147 struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1148
1149 vlr.state = 0;
1150 vgic_set_lr(vcpu, lr_nr, vlr);
1151 clear_bit(lr_nr, vgic_cpu->lr_used);
1152 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1153 }
1154
1155 /*
1156 * An interrupt may have been disabled after being made pending on the
1157 * CPU interface (the classic case is a timer running while we're
1158 * rebooting the guest - the interrupt would kick as soon as the CPU
1159 * interface gets enabled, with deadly consequences).
1160 *
1161 * The solution is to examine already active LRs, and check the
1162 * interrupt is still enabled. If not, just retire it.
1163 */
1164 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1165 {
1166 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1167 int lr;
1168
1169 for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
1170 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1171
1172 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1173 vgic_retire_lr(lr, vlr.irq, vcpu);
1174 if (vgic_irq_is_queued(vcpu, vlr.irq))
1175 vgic_irq_clear_queued(vcpu, vlr.irq);
1176 }
1177 }
1178 }
1179
1180 /*
1181 * Queue an interrupt to a CPU virtual interface. Return true on success,
1182 * or false if it wasn't possible to queue it.
1183 */
1184 static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1185 {
1186 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1187 struct vgic_lr vlr;
1188 int lr;
1189
1190 /* Sanitize the input... */
1191 BUG_ON(sgi_source_id & ~7);
1192 BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1193 BUG_ON(irq >= VGIC_NR_IRQS);
1194
1195 kvm_debug("Queue IRQ%d\n", irq);
1196
1197 lr = vgic_cpu->vgic_irq_lr_map[irq];
1198
1199 /* Do we have an active interrupt for the same CPUID? */
1200 if (lr != LR_EMPTY) {
1201 vlr = vgic_get_lr(vcpu, lr);
1202 if (vlr.source == sgi_source_id) {
1203 kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1204 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1205 vlr.state |= LR_STATE_PENDING;
1206 vgic_set_lr(vcpu, lr, vlr);
1207 return true;
1208 }
1209 }
1210
1211 /* Try to use another LR for this interrupt */
1212 lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1213 vgic->nr_lr);
1214 if (lr >= vgic->nr_lr)
1215 return false;
1216
1217 kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1218 vgic_cpu->vgic_irq_lr_map[irq] = lr;
1219 set_bit(lr, vgic_cpu->lr_used);
1220
1221 vlr.irq = irq;
1222 vlr.source = sgi_source_id;
1223 vlr.state = LR_STATE_PENDING;
1224 if (!vgic_irq_is_edge(vcpu, irq))
1225 vlr.state |= LR_EOI_INT;
1226
1227 vgic_set_lr(vcpu, lr, vlr);
1228
1229 return true;
1230 }
1231
1232 static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
1233 {
1234 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1235 unsigned long sources;
1236 int vcpu_id = vcpu->vcpu_id;
1237 int c;
1238
1239 sources = dist->irq_sgi_sources[vcpu_id][irq];
1240
1241 for_each_set_bit(c, &sources, VGIC_MAX_CPUS) {
1242 if (vgic_queue_irq(vcpu, c, irq))
1243 clear_bit(c, &sources);
1244 }
1245
1246 dist->irq_sgi_sources[vcpu_id][irq] = sources;
1247
1248 /*
1249 * If the sources bitmap has been cleared it means that we
1250 * could queue all the SGIs onto link registers (see the
1251 * clear_bit above), and therefore we are done with them in
1252 * our emulated gic and can get rid of them.
1253 */
1254 if (!sources) {
1255 vgic_dist_irq_clear_pending(vcpu, irq);
1256 vgic_cpu_irq_clear(vcpu, irq);
1257 return true;
1258 }
1259
1260 return false;
1261 }
1262
1263 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1264 {
1265 if (!vgic_can_sample_irq(vcpu, irq))
1266 return true; /* level interrupt, already queued */
1267
1268 if (vgic_queue_irq(vcpu, 0, irq)) {
1269 if (vgic_irq_is_edge(vcpu, irq)) {
1270 vgic_dist_irq_clear_pending(vcpu, irq);
1271 vgic_cpu_irq_clear(vcpu, irq);
1272 } else {
1273 vgic_irq_set_queued(vcpu, irq);
1274 }
1275
1276 return true;
1277 }
1278
1279 return false;
1280 }
1281
1282 /*
1283 * Fill the list registers with pending interrupts before running the
1284 * guest.
1285 */
1286 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1287 {
1288 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1289 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1290 int i, vcpu_id;
1291 int overflow = 0;
1292
1293 vcpu_id = vcpu->vcpu_id;
1294
1295 /*
1296 * We may not have any pending interrupt, or the interrupts
1297 * may have been serviced from another vcpu. In all cases,
1298 * move along.
1299 */
1300 if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
1301 pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
1302 goto epilog;
1303 }
1304
1305 /* SGIs */
1306 for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
1307 if (!vgic_queue_sgi(vcpu, i))
1308 overflow = 1;
1309 }
1310
1311 /* PPIs */
1312 for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
1313 if (!vgic_queue_hwirq(vcpu, i))
1314 overflow = 1;
1315 }
1316
1317 /* SPIs */
1318 for_each_set_bit(i, vgic_cpu->pending_shared, VGIC_NR_SHARED_IRQS) {
1319 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1320 overflow = 1;
1321 }
1322
1323 epilog:
1324 if (overflow) {
1325 vgic_enable_underflow(vcpu);
1326 } else {
1327 vgic_disable_underflow(vcpu);
1328 /*
1329 * We're about to run this VCPU, and we've consumed
1330 * everything the distributor had in store for
1331 * us. Claim we don't have anything pending. We'll
1332 * adjust that if needed while exiting.
1333 */
1334 clear_bit(vcpu_id, &dist->irq_pending_on_cpu);
1335 }
1336 }
1337
1338 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1339 {
1340 u32 status = vgic_get_interrupt_status(vcpu);
1341 bool level_pending = false;
1342
1343 kvm_debug("STATUS = %08x\n", status);
1344
1345 if (status & INT_STATUS_EOI) {
1346 /*
1347 * Some level interrupts have been EOIed. Clear their
1348 * active bit.
1349 */
1350 u64 eisr = vgic_get_eisr(vcpu);
1351 unsigned long *eisr_ptr = (unsigned long *)&eisr;
1352 int lr;
1353
1354 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1355 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1356 WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1357
1358 vgic_irq_clear_queued(vcpu, vlr.irq);
1359 WARN_ON(vlr.state & LR_STATE_MASK);
1360 vlr.state = 0;
1361 vgic_set_lr(vcpu, lr, vlr);
1362
1363 /*
1364 * If the IRQ was EOIed it was also ACKed and we we
1365 * therefore assume we can clear the soft pending
1366 * state (should it had been set) for this interrupt.
1367 *
1368 * Note: if the IRQ soft pending state was set after
1369 * the IRQ was acked, it actually shouldn't be
1370 * cleared, but we have no way of knowing that unless
1371 * we start trapping ACKs when the soft-pending state
1372 * is set.
1373 */
1374 vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1375
1376 /* Any additional pending interrupt? */
1377 if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1378 vgic_cpu_irq_set(vcpu, vlr.irq);
1379 level_pending = true;
1380 } else {
1381 vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1382 vgic_cpu_irq_clear(vcpu, vlr.irq);
1383 }
1384
1385 /*
1386 * Despite being EOIed, the LR may not have
1387 * been marked as empty.
1388 */
1389 vgic_sync_lr_elrsr(vcpu, lr, vlr);
1390 }
1391 }
1392
1393 if (status & INT_STATUS_UNDERFLOW)
1394 vgic_disable_underflow(vcpu);
1395
1396 return level_pending;
1397 }
1398
1399 /*
1400 * Sync back the VGIC state after a guest run. The distributor lock is
1401 * needed so we don't get preempted in the middle of the state processing.
1402 */
1403 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1404 {
1405 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1406 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1407 u64 elrsr;
1408 unsigned long *elrsr_ptr;
1409 int lr, pending;
1410 bool level_pending;
1411
1412 level_pending = vgic_process_maintenance(vcpu);
1413 elrsr = vgic_get_elrsr(vcpu);
1414 elrsr_ptr = (unsigned long *)&elrsr;
1415
1416 /* Clear mappings for empty LRs */
1417 for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
1418 struct vgic_lr vlr;
1419
1420 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1421 continue;
1422
1423 vlr = vgic_get_lr(vcpu, lr);
1424
1425 BUG_ON(vlr.irq >= VGIC_NR_IRQS);
1426 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
1427 }
1428
1429 /* Check if we still have something up our sleeve... */
1430 pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1431 if (level_pending || pending < vgic->nr_lr)
1432 set_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1433 }
1434
1435 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1436 {
1437 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1438
1439 if (!irqchip_in_kernel(vcpu->kvm))
1440 return;
1441
1442 spin_lock(&dist->lock);
1443 __kvm_vgic_flush_hwstate(vcpu);
1444 spin_unlock(&dist->lock);
1445 }
1446
1447 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1448 {
1449 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1450
1451 if (!irqchip_in_kernel(vcpu->kvm))
1452 return;
1453
1454 spin_lock(&dist->lock);
1455 __kvm_vgic_sync_hwstate(vcpu);
1456 spin_unlock(&dist->lock);
1457 }
1458
1459 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1460 {
1461 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1462
1463 if (!irqchip_in_kernel(vcpu->kvm))
1464 return 0;
1465
1466 return test_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1467 }
1468
1469 static void vgic_kick_vcpus(struct kvm *kvm)
1470 {
1471 struct kvm_vcpu *vcpu;
1472 int c;
1473
1474 /*
1475 * We've injected an interrupt, time to find out who deserves
1476 * a good kick...
1477 */
1478 kvm_for_each_vcpu(c, vcpu, kvm) {
1479 if (kvm_vgic_vcpu_pending_irq(vcpu))
1480 kvm_vcpu_kick(vcpu);
1481 }
1482 }
1483
1484 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1485 {
1486 int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1487
1488 /*
1489 * Only inject an interrupt if:
1490 * - edge triggered and we have a rising edge
1491 * - level triggered and we change level
1492 */
1493 if (edge_triggered) {
1494 int state = vgic_dist_irq_is_pending(vcpu, irq);
1495 return level > state;
1496 } else {
1497 int state = vgic_dist_irq_get_level(vcpu, irq);
1498 return level != state;
1499 }
1500 }
1501
1502 static bool vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1503 unsigned int irq_num, bool level)
1504 {
1505 struct vgic_dist *dist = &kvm->arch.vgic;
1506 struct kvm_vcpu *vcpu;
1507 int edge_triggered, level_triggered;
1508 int enabled;
1509 bool ret = true;
1510
1511 spin_lock(&dist->lock);
1512
1513 vcpu = kvm_get_vcpu(kvm, cpuid);
1514 edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1515 level_triggered = !edge_triggered;
1516
1517 if (!vgic_validate_injection(vcpu, irq_num, level)) {
1518 ret = false;
1519 goto out;
1520 }
1521
1522 if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1523 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1524 vcpu = kvm_get_vcpu(kvm, cpuid);
1525 }
1526
1527 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1528
1529 if (level) {
1530 if (level_triggered)
1531 vgic_dist_irq_set_level(vcpu, irq_num);
1532 vgic_dist_irq_set_pending(vcpu, irq_num);
1533 } else {
1534 if (level_triggered) {
1535 vgic_dist_irq_clear_level(vcpu, irq_num);
1536 if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
1537 vgic_dist_irq_clear_pending(vcpu, irq_num);
1538 } else {
1539 vgic_dist_irq_clear_pending(vcpu, irq_num);
1540 }
1541 }
1542
1543 enabled = vgic_irq_is_enabled(vcpu, irq_num);
1544
1545 if (!enabled) {
1546 ret = false;
1547 goto out;
1548 }
1549
1550 if (!vgic_can_sample_irq(vcpu, irq_num)) {
1551 /*
1552 * Level interrupt in progress, will be picked up
1553 * when EOId.
1554 */
1555 ret = false;
1556 goto out;
1557 }
1558
1559 if (level) {
1560 vgic_cpu_irq_set(vcpu, irq_num);
1561 set_bit(cpuid, &dist->irq_pending_on_cpu);
1562 }
1563
1564 out:
1565 spin_unlock(&dist->lock);
1566
1567 return ret;
1568 }
1569
1570 /**
1571 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1572 * @kvm: The VM structure pointer
1573 * @cpuid: The CPU for PPIs
1574 * @irq_num: The IRQ number that is assigned to the device
1575 * @level: Edge-triggered: true: to trigger the interrupt
1576 * false: to ignore the call
1577 * Level-sensitive true: activates an interrupt
1578 * false: deactivates an interrupt
1579 *
1580 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1581 * level-sensitive interrupts. You can think of the level parameter as 1
1582 * being HIGH and 0 being LOW and all devices being active-HIGH.
1583 */
1584 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1585 bool level)
1586 {
1587 if (vgic_update_irq_pending(kvm, cpuid, irq_num, level))
1588 vgic_kick_vcpus(kvm);
1589
1590 return 0;
1591 }
1592
1593 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1594 {
1595 /*
1596 * We cannot rely on the vgic maintenance interrupt to be
1597 * delivered synchronously. This means we can only use it to
1598 * exit the VM, and we perform the handling of EOIed
1599 * interrupts on the exit path (see vgic_process_maintenance).
1600 */
1601 return IRQ_HANDLED;
1602 }
1603
1604 /**
1605 * kvm_vgic_vcpu_init - Initialize per-vcpu VGIC state
1606 * @vcpu: pointer to the vcpu struct
1607 *
1608 * Initialize the vgic_cpu struct and vgic_dist struct fields pertaining to
1609 * this vcpu and enable the VGIC for this VCPU
1610 */
1611 int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
1612 {
1613 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1614 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1615 int i;
1616
1617 if (vcpu->vcpu_id >= VGIC_MAX_CPUS)
1618 return -EBUSY;
1619
1620 for (i = 0; i < VGIC_NR_IRQS; i++) {
1621 if (i < VGIC_NR_PPIS)
1622 vgic_bitmap_set_irq_val(&dist->irq_enabled,
1623 vcpu->vcpu_id, i, 1);
1624 if (i < VGIC_NR_PRIVATE_IRQS)
1625 vgic_bitmap_set_irq_val(&dist->irq_cfg,
1626 vcpu->vcpu_id, i, VGIC_CFG_EDGE);
1627
1628 vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY;
1629 }
1630
1631 /*
1632 * Store the number of LRs per vcpu, so we don't have to go
1633 * all the way to the distributor structure to find out. Only
1634 * assembly code should use this one.
1635 */
1636 vgic_cpu->nr_lr = vgic->nr_lr;
1637
1638 vgic_enable(vcpu);
1639
1640 return 0;
1641 }
1642
1643 /**
1644 * kvm_vgic_init - Initialize global VGIC state before running any VCPUs
1645 * @kvm: pointer to the kvm struct
1646 *
1647 * Map the virtual CPU interface into the VM before running any VCPUs. We
1648 * can't do this at creation time, because user space must first set the
1649 * virtual CPU interface address in the guest physical address space. Also
1650 * initialize the ITARGETSRn regs to 0 on the emulated distributor.
1651 */
1652 int kvm_vgic_init(struct kvm *kvm)
1653 {
1654 int ret = 0, i;
1655
1656 if (!irqchip_in_kernel(kvm))
1657 return 0;
1658
1659 mutex_lock(&kvm->lock);
1660
1661 if (vgic_initialized(kvm))
1662 goto out;
1663
1664 if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
1665 IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
1666 kvm_err("Need to set vgic cpu and dist addresses first\n");
1667 ret = -ENXIO;
1668 goto out;
1669 }
1670
1671 ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
1672 vgic->vcpu_base, KVM_VGIC_V2_CPU_SIZE);
1673 if (ret) {
1674 kvm_err("Unable to remap VGIC CPU to VCPU\n");
1675 goto out;
1676 }
1677
1678 for (i = VGIC_NR_PRIVATE_IRQS; i < VGIC_NR_IRQS; i += 4)
1679 vgic_set_target_reg(kvm, 0, i);
1680
1681 kvm->arch.vgic.ready = true;
1682 out:
1683 mutex_unlock(&kvm->lock);
1684 return ret;
1685 }
1686
1687 int kvm_vgic_create(struct kvm *kvm)
1688 {
1689 int i, vcpu_lock_idx = -1, ret = 0;
1690 struct kvm_vcpu *vcpu;
1691
1692 mutex_lock(&kvm->lock);
1693
1694 if (kvm->arch.vgic.vctrl_base) {
1695 ret = -EEXIST;
1696 goto out;
1697 }
1698
1699 /*
1700 * Any time a vcpu is run, vcpu_load is called which tries to grab the
1701 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
1702 * that no other VCPUs are run while we create the vgic.
1703 */
1704 kvm_for_each_vcpu(i, vcpu, kvm) {
1705 if (!mutex_trylock(&vcpu->mutex))
1706 goto out_unlock;
1707 vcpu_lock_idx = i;
1708 }
1709
1710 kvm_for_each_vcpu(i, vcpu, kvm) {
1711 if (vcpu->arch.has_run_once) {
1712 ret = -EBUSY;
1713 goto out_unlock;
1714 }
1715 }
1716
1717 spin_lock_init(&kvm->arch.vgic.lock);
1718 kvm->arch.vgic.in_kernel = true;
1719 kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
1720 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1721 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1722
1723 out_unlock:
1724 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1725 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1726 mutex_unlock(&vcpu->mutex);
1727 }
1728
1729 out:
1730 mutex_unlock(&kvm->lock);
1731 return ret;
1732 }
1733
1734 static int vgic_ioaddr_overlap(struct kvm *kvm)
1735 {
1736 phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1737 phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1738
1739 if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1740 return 0;
1741 if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1742 (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1743 return -EBUSY;
1744 return 0;
1745 }
1746
1747 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1748 phys_addr_t addr, phys_addr_t size)
1749 {
1750 int ret;
1751
1752 if (addr & ~KVM_PHYS_MASK)
1753 return -E2BIG;
1754
1755 if (addr & (SZ_4K - 1))
1756 return -EINVAL;
1757
1758 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1759 return -EEXIST;
1760 if (addr + size < addr)
1761 return -EINVAL;
1762
1763 *ioaddr = addr;
1764 ret = vgic_ioaddr_overlap(kvm);
1765 if (ret)
1766 *ioaddr = VGIC_ADDR_UNDEF;
1767
1768 return ret;
1769 }
1770
1771 /**
1772 * kvm_vgic_addr - set or get vgic VM base addresses
1773 * @kvm: pointer to the vm struct
1774 * @type: the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
1775 * @addr: pointer to address value
1776 * @write: if true set the address in the VM address space, if false read the
1777 * address
1778 *
1779 * Set or get the vgic base addresses for the distributor and the virtual CPU
1780 * interface in the VM physical address space. These addresses are properties
1781 * of the emulated core/SoC and therefore user space initially knows this
1782 * information.
1783 */
1784 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
1785 {
1786 int r = 0;
1787 struct vgic_dist *vgic = &kvm->arch.vgic;
1788
1789 mutex_lock(&kvm->lock);
1790 switch (type) {
1791 case KVM_VGIC_V2_ADDR_TYPE_DIST:
1792 if (write) {
1793 r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
1794 *addr, KVM_VGIC_V2_DIST_SIZE);
1795 } else {
1796 *addr = vgic->vgic_dist_base;
1797 }
1798 break;
1799 case KVM_VGIC_V2_ADDR_TYPE_CPU:
1800 if (write) {
1801 r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
1802 *addr, KVM_VGIC_V2_CPU_SIZE);
1803 } else {
1804 *addr = vgic->vgic_cpu_base;
1805 }
1806 break;
1807 default:
1808 r = -ENODEV;
1809 }
1810
1811 mutex_unlock(&kvm->lock);
1812 return r;
1813 }
1814
1815 static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
1816 struct kvm_exit_mmio *mmio, phys_addr_t offset)
1817 {
1818 bool updated = false;
1819 struct vgic_vmcr vmcr;
1820 u32 *vmcr_field;
1821 u32 reg;
1822
1823 vgic_get_vmcr(vcpu, &vmcr);
1824
1825 switch (offset & ~0x3) {
1826 case GIC_CPU_CTRL:
1827 vmcr_field = &vmcr.ctlr;
1828 break;
1829 case GIC_CPU_PRIMASK:
1830 vmcr_field = &vmcr.pmr;
1831 break;
1832 case GIC_CPU_BINPOINT:
1833 vmcr_field = &vmcr.bpr;
1834 break;
1835 case GIC_CPU_ALIAS_BINPOINT:
1836 vmcr_field = &vmcr.abpr;
1837 break;
1838 default:
1839 BUG();
1840 }
1841
1842 if (!mmio->is_write) {
1843 reg = *vmcr_field;
1844 mmio_data_write(mmio, ~0, reg);
1845 } else {
1846 reg = mmio_data_read(mmio, ~0);
1847 if (reg != *vmcr_field) {
1848 *vmcr_field = reg;
1849 vgic_set_vmcr(vcpu, &vmcr);
1850 updated = true;
1851 }
1852 }
1853 return updated;
1854 }
1855
1856 static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
1857 struct kvm_exit_mmio *mmio, phys_addr_t offset)
1858 {
1859 return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
1860 }
1861
1862 static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
1863 struct kvm_exit_mmio *mmio,
1864 phys_addr_t offset)
1865 {
1866 u32 reg;
1867
1868 if (mmio->is_write)
1869 return false;
1870
1871 /* GICC_IIDR */
1872 reg = (PRODUCT_ID_KVM << 20) |
1873 (GICC_ARCH_VERSION_V2 << 16) |
1874 (IMPLEMENTER_ARM << 0);
1875 mmio_data_write(mmio, ~0, reg);
1876 return false;
1877 }
1878
1879 /*
1880 * CPU Interface Register accesses - these are not accessed by the VM, but by
1881 * user space for saving and restoring VGIC state.
1882 */
1883 static const struct mmio_range vgic_cpu_ranges[] = {
1884 {
1885 .base = GIC_CPU_CTRL,
1886 .len = 12,
1887 .handle_mmio = handle_cpu_mmio_misc,
1888 },
1889 {
1890 .base = GIC_CPU_ALIAS_BINPOINT,
1891 .len = 4,
1892 .handle_mmio = handle_mmio_abpr,
1893 },
1894 {
1895 .base = GIC_CPU_ACTIVEPRIO,
1896 .len = 16,
1897 .handle_mmio = handle_mmio_raz_wi,
1898 },
1899 {
1900 .base = GIC_CPU_IDENT,
1901 .len = 4,
1902 .handle_mmio = handle_cpu_mmio_ident,
1903 },
1904 };
1905
1906 static int vgic_attr_regs_access(struct kvm_device *dev,
1907 struct kvm_device_attr *attr,
1908 u32 *reg, bool is_write)
1909 {
1910 const struct mmio_range *r = NULL, *ranges;
1911 phys_addr_t offset;
1912 int ret, cpuid, c;
1913 struct kvm_vcpu *vcpu, *tmp_vcpu;
1914 struct vgic_dist *vgic;
1915 struct kvm_exit_mmio mmio;
1916
1917 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
1918 cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
1919 KVM_DEV_ARM_VGIC_CPUID_SHIFT;
1920
1921 mutex_lock(&dev->kvm->lock);
1922
1923 if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
1924 ret = -EINVAL;
1925 goto out;
1926 }
1927
1928 vcpu = kvm_get_vcpu(dev->kvm, cpuid);
1929 vgic = &dev->kvm->arch.vgic;
1930
1931 mmio.len = 4;
1932 mmio.is_write = is_write;
1933 if (is_write)
1934 mmio_data_write(&mmio, ~0, *reg);
1935 switch (attr->group) {
1936 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1937 mmio.phys_addr = vgic->vgic_dist_base + offset;
1938 ranges = vgic_dist_ranges;
1939 break;
1940 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
1941 mmio.phys_addr = vgic->vgic_cpu_base + offset;
1942 ranges = vgic_cpu_ranges;
1943 break;
1944 default:
1945 BUG();
1946 }
1947 r = find_matching_range(ranges, &mmio, offset);
1948
1949 if (unlikely(!r || !r->handle_mmio)) {
1950 ret = -ENXIO;
1951 goto out;
1952 }
1953
1954
1955 spin_lock(&vgic->lock);
1956
1957 /*
1958 * Ensure that no other VCPU is running by checking the vcpu->cpu
1959 * field. If no other VPCUs are running we can safely access the VGIC
1960 * state, because even if another VPU is run after this point, that
1961 * VCPU will not touch the vgic state, because it will block on
1962 * getting the vgic->lock in kvm_vgic_sync_hwstate().
1963 */
1964 kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
1965 if (unlikely(tmp_vcpu->cpu != -1)) {
1966 ret = -EBUSY;
1967 goto out_vgic_unlock;
1968 }
1969 }
1970
1971 /*
1972 * Move all pending IRQs from the LRs on all VCPUs so the pending
1973 * state can be properly represented in the register state accessible
1974 * through this API.
1975 */
1976 kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
1977 vgic_unqueue_irqs(tmp_vcpu);
1978
1979 offset -= r->base;
1980 r->handle_mmio(vcpu, &mmio, offset);
1981
1982 if (!is_write)
1983 *reg = mmio_data_read(&mmio, ~0);
1984
1985 ret = 0;
1986 out_vgic_unlock:
1987 spin_unlock(&vgic->lock);
1988 out:
1989 mutex_unlock(&dev->kvm->lock);
1990 return ret;
1991 }
1992
1993 static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1994 {
1995 int r;
1996
1997 switch (attr->group) {
1998 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1999 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2000 u64 addr;
2001 unsigned long type = (unsigned long)attr->attr;
2002
2003 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2004 return -EFAULT;
2005
2006 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
2007 return (r == -ENODEV) ? -ENXIO : r;
2008 }
2009
2010 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2011 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
2012 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2013 u32 reg;
2014
2015 if (get_user(reg, uaddr))
2016 return -EFAULT;
2017
2018 return vgic_attr_regs_access(dev, attr, &reg, true);
2019 }
2020
2021 }
2022
2023 return -ENXIO;
2024 }
2025
2026 static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2027 {
2028 int r = -ENXIO;
2029
2030 switch (attr->group) {
2031 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2032 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2033 u64 addr;
2034 unsigned long type = (unsigned long)attr->attr;
2035
2036 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2037 if (r)
2038 return (r == -ENODEV) ? -ENXIO : r;
2039
2040 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2041 return -EFAULT;
2042 break;
2043 }
2044
2045 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2046 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
2047 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2048 u32 reg = 0;
2049
2050 r = vgic_attr_regs_access(dev, attr, &reg, false);
2051 if (r)
2052 return r;
2053 r = put_user(reg, uaddr);
2054 break;
2055 }
2056
2057 }
2058
2059 return r;
2060 }
2061
2062 static int vgic_has_attr_regs(const struct mmio_range *ranges,
2063 phys_addr_t offset)
2064 {
2065 struct kvm_exit_mmio dev_attr_mmio;
2066
2067 dev_attr_mmio.len = 4;
2068 if (find_matching_range(ranges, &dev_attr_mmio, offset))
2069 return 0;
2070 else
2071 return -ENXIO;
2072 }
2073
2074 static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2075 {
2076 phys_addr_t offset;
2077
2078 switch (attr->group) {
2079 case KVM_DEV_ARM_VGIC_GRP_ADDR:
2080 switch (attr->attr) {
2081 case KVM_VGIC_V2_ADDR_TYPE_DIST:
2082 case KVM_VGIC_V2_ADDR_TYPE_CPU:
2083 return 0;
2084 }
2085 break;
2086 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2087 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2088 return vgic_has_attr_regs(vgic_dist_ranges, offset);
2089 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
2090 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2091 return vgic_has_attr_regs(vgic_cpu_ranges, offset);
2092 }
2093 return -ENXIO;
2094 }
2095
2096 static void vgic_destroy(struct kvm_device *dev)
2097 {
2098 kfree(dev);
2099 }
2100
2101 static int vgic_create(struct kvm_device *dev, u32 type)
2102 {
2103 return kvm_vgic_create(dev->kvm);
2104 }
2105
2106 static struct kvm_device_ops kvm_arm_vgic_v2_ops = {
2107 .name = "kvm-arm-vgic",
2108 .create = vgic_create,
2109 .destroy = vgic_destroy,
2110 .set_attr = vgic_set_attr,
2111 .get_attr = vgic_get_attr,
2112 .has_attr = vgic_has_attr,
2113 };
2114
2115 static void vgic_init_maintenance_interrupt(void *info)
2116 {
2117 enable_percpu_irq(vgic->maint_irq, 0);
2118 }
2119
2120 static int vgic_cpu_notify(struct notifier_block *self,
2121 unsigned long action, void *cpu)
2122 {
2123 switch (action) {
2124 case CPU_STARTING:
2125 case CPU_STARTING_FROZEN:
2126 vgic_init_maintenance_interrupt(NULL);
2127 break;
2128 case CPU_DYING:
2129 case CPU_DYING_FROZEN:
2130 disable_percpu_irq(vgic->maint_irq);
2131 break;
2132 }
2133
2134 return NOTIFY_OK;
2135 }
2136
2137 static struct notifier_block vgic_cpu_nb = {
2138 .notifier_call = vgic_cpu_notify,
2139 };
2140
2141 static const struct of_device_id vgic_ids[] = {
2142 { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
2143 { .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
2144 {},
2145 };
2146
2147 int kvm_vgic_hyp_init(void)
2148 {
2149 const struct of_device_id *matched_id;
2150 const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2151 const struct vgic_params **);
2152 struct device_node *vgic_node;
2153 int ret;
2154
2155 vgic_node = of_find_matching_node_and_match(NULL,
2156 vgic_ids, &matched_id);
2157 if (!vgic_node) {
2158 kvm_err("error: no compatible GIC node found\n");
2159 return -ENODEV;
2160 }
2161
2162 vgic_probe = matched_id->data;
2163 ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2164 if (ret)
2165 return ret;
2166
2167 ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2168 "vgic", kvm_get_running_vcpus());
2169 if (ret) {
2170 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2171 return ret;
2172 }
2173
2174 ret = __register_cpu_notifier(&vgic_cpu_nb);
2175 if (ret) {
2176 kvm_err("Cannot register vgic CPU notifier\n");
2177 goto out_free_irq;
2178 }
2179
2180 /* Callback into for arch code for setup */
2181 vgic_arch_setup(vgic);
2182
2183 on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2184
2185 return kvm_register_device_ops(&kvm_arm_vgic_v2_ops,
2186 KVM_DEV_TYPE_ARM_VGIC_V2);
2187
2188 out_free_irq:
2189 free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2190 return ret;
2191 }
This page took 0.081392 seconds and 6 git commands to generate.