Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / virt / kvm / arm / vgic.c
1 /*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/uaccess.h>
28
29 #include <asm/kvm_emulate.h>
30 #include <asm/kvm_arm.h>
31 #include <asm/kvm_mmu.h>
32 #include <trace/events/kvm.h>
33 #include <asm/kvm.h>
34 #include <kvm/iodev.h>
35
36 /*
37 * How the whole thing works (courtesy of Christoffer Dall):
38 *
39 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
40 * something is pending on the CPU interface.
41 * - Interrupts that are pending on the distributor are stored on the
42 * vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
43 * ioctls and guest mmio ops, and other in-kernel peripherals such as the
44 * arch. timers).
45 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
46 * recalculated
47 * - To calculate the oracle, we need info for each cpu from
48 * compute_pending_for_cpu, which considers:
49 * - PPI: dist->irq_pending & dist->irq_enable
50 * - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
51 * - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
52 * registers, stored on each vcpu. We only keep one bit of
53 * information per interrupt, making sure that only one vcpu can
54 * accept the interrupt.
55 * - If any of the above state changes, we must recalculate the oracle.
56 * - The same is true when injecting an interrupt, except that we only
57 * consider a single interrupt at a time. The irq_spi_cpu array
58 * contains the target CPU for each SPI.
59 *
60 * The handling of level interrupts adds some extra complexity. We
61 * need to track when the interrupt has been EOIed, so we can sample
62 * the 'line' again. This is achieved as such:
63 *
64 * - When a level interrupt is moved onto a vcpu, the corresponding
65 * bit in irq_queued is set. As long as this bit is set, the line
66 * will be ignored for further interrupts. The interrupt is injected
67 * into the vcpu with the GICH_LR_EOI bit set (generate a
68 * maintenance interrupt on EOI).
69 * - When the interrupt is EOIed, the maintenance interrupt fires,
70 * and clears the corresponding bit in irq_queued. This allows the
71 * interrupt line to be sampled again.
72 * - Note that level-triggered interrupts can also be set to pending from
73 * writes to GICD_ISPENDRn and lowering the external input line does not
74 * cause the interrupt to become inactive in such a situation.
75 * Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
76 * inactive as long as the external input line is held high.
77 */
78
79 #include "vgic.h"
80
81 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
82 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
83 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
84 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
85
86 static const struct vgic_ops *vgic_ops;
87 static const struct vgic_params *vgic;
88
89 static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
90 {
91 vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
92 }
93
94 static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
95 {
96 return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
97 }
98
99 int kvm_vgic_map_resources(struct kvm *kvm)
100 {
101 return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
102 }
103
104 /*
105 * struct vgic_bitmap contains a bitmap made of unsigned longs, but
106 * extracts u32s out of them.
107 *
108 * This does not work on 64-bit BE systems, because the bitmap access
109 * will store two consecutive 32-bit words with the higher-addressed
110 * register's bits at the lower index and the lower-addressed register's
111 * bits at the higher index.
112 *
113 * Therefore, swizzle the register index when accessing the 32-bit word
114 * registers to access the right register's value.
115 */
116 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
117 #define REG_OFFSET_SWIZZLE 1
118 #else
119 #define REG_OFFSET_SWIZZLE 0
120 #endif
121
122 static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
123 {
124 int nr_longs;
125
126 nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
127
128 b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
129 if (!b->private)
130 return -ENOMEM;
131
132 b->shared = b->private + nr_cpus;
133
134 return 0;
135 }
136
137 static void vgic_free_bitmap(struct vgic_bitmap *b)
138 {
139 kfree(b->private);
140 b->private = NULL;
141 b->shared = NULL;
142 }
143
144 /*
145 * Call this function to convert a u64 value to an unsigned long * bitmask
146 * in a way that works on both 32-bit and 64-bit LE and BE platforms.
147 *
148 * Warning: Calling this function may modify *val.
149 */
150 static unsigned long *u64_to_bitmask(u64 *val)
151 {
152 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
153 *val = (*val >> 32) | (*val << 32);
154 #endif
155 return (unsigned long *)val;
156 }
157
158 u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
159 {
160 offset >>= 2;
161 if (!offset)
162 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
163 else
164 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
165 }
166
167 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
168 int cpuid, int irq)
169 {
170 if (irq < VGIC_NR_PRIVATE_IRQS)
171 return test_bit(irq, x->private + cpuid);
172
173 return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
174 }
175
176 void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
177 int irq, int val)
178 {
179 unsigned long *reg;
180
181 if (irq < VGIC_NR_PRIVATE_IRQS) {
182 reg = x->private + cpuid;
183 } else {
184 reg = x->shared;
185 irq -= VGIC_NR_PRIVATE_IRQS;
186 }
187
188 if (val)
189 set_bit(irq, reg);
190 else
191 clear_bit(irq, reg);
192 }
193
194 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
195 {
196 return x->private + cpuid;
197 }
198
199 unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
200 {
201 return x->shared;
202 }
203
204 static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
205 {
206 int size;
207
208 size = nr_cpus * VGIC_NR_PRIVATE_IRQS;
209 size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
210
211 x->private = kzalloc(size, GFP_KERNEL);
212 if (!x->private)
213 return -ENOMEM;
214
215 x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
216 return 0;
217 }
218
219 static void vgic_free_bytemap(struct vgic_bytemap *b)
220 {
221 kfree(b->private);
222 b->private = NULL;
223 b->shared = NULL;
224 }
225
226 u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
227 {
228 u32 *reg;
229
230 if (offset < VGIC_NR_PRIVATE_IRQS) {
231 reg = x->private;
232 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
233 } else {
234 reg = x->shared;
235 offset -= VGIC_NR_PRIVATE_IRQS;
236 }
237
238 return reg + (offset / sizeof(u32));
239 }
240
241 #define VGIC_CFG_LEVEL 0
242 #define VGIC_CFG_EDGE 1
243
244 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
245 {
246 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
247 int irq_val;
248
249 irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
250 return irq_val == VGIC_CFG_EDGE;
251 }
252
253 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
254 {
255 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
256
257 return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
258 }
259
260 static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
261 {
262 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
263
264 return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
265 }
266
267 static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
268 {
269 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
270
271 return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
272 }
273
274 static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
275 {
276 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
277
278 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
279 }
280
281 static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
282 {
283 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
284
285 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
286 }
287
288 static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
289 {
290 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
291
292 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
293 }
294
295 static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
296 {
297 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
298
299 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
300 }
301
302 static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
303 {
304 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
305
306 return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
307 }
308
309 static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
310 {
311 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
312
313 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
314 }
315
316 static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
317 {
318 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
319
320 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
321 }
322
323 static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
324 {
325 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
326
327 return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
328 }
329
330 static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
331 {
332 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
333
334 vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
335 }
336
337 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
338 {
339 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
340
341 return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
342 }
343
344 void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
345 {
346 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
347
348 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
349 }
350
351 void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
352 {
353 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
354
355 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
356 }
357
358 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
359 {
360 if (irq < VGIC_NR_PRIVATE_IRQS)
361 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
362 else
363 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
364 vcpu->arch.vgic_cpu.pending_shared);
365 }
366
367 void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
368 {
369 if (irq < VGIC_NR_PRIVATE_IRQS)
370 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
371 else
372 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
373 vcpu->arch.vgic_cpu.pending_shared);
374 }
375
376 static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
377 {
378 return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
379 }
380
381 /**
382 * vgic_reg_access - access vgic register
383 * @mmio: pointer to the data describing the mmio access
384 * @reg: pointer to the virtual backing of vgic distributor data
385 * @offset: least significant 2 bits used for word offset
386 * @mode: ACCESS_ mode (see defines above)
387 *
388 * Helper to make vgic register access easier using one of the access
389 * modes defined for vgic register access
390 * (read,raz,write-ignored,setbit,clearbit,write)
391 */
392 void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
393 phys_addr_t offset, int mode)
394 {
395 int word_offset = (offset & 3) * 8;
396 u32 mask = (1UL << (mmio->len * 8)) - 1;
397 u32 regval;
398
399 /*
400 * Any alignment fault should have been delivered to the guest
401 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
402 */
403
404 if (reg) {
405 regval = *reg;
406 } else {
407 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
408 regval = 0;
409 }
410
411 if (mmio->is_write) {
412 u32 data = mmio_data_read(mmio, mask) << word_offset;
413 switch (ACCESS_WRITE_MASK(mode)) {
414 case ACCESS_WRITE_IGNORED:
415 return;
416
417 case ACCESS_WRITE_SETBIT:
418 regval |= data;
419 break;
420
421 case ACCESS_WRITE_CLEARBIT:
422 regval &= ~data;
423 break;
424
425 case ACCESS_WRITE_VALUE:
426 regval = (regval & ~(mask << word_offset)) | data;
427 break;
428 }
429 *reg = regval;
430 } else {
431 switch (ACCESS_READ_MASK(mode)) {
432 case ACCESS_READ_RAZ:
433 regval = 0;
434 /* fall through */
435
436 case ACCESS_READ_VALUE:
437 mmio_data_write(mmio, mask, regval >> word_offset);
438 }
439 }
440 }
441
442 bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
443 phys_addr_t offset)
444 {
445 vgic_reg_access(mmio, NULL, offset,
446 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
447 return false;
448 }
449
450 bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
451 phys_addr_t offset, int vcpu_id, int access)
452 {
453 u32 *reg;
454 int mode = ACCESS_READ_VALUE | access;
455 struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
456
457 reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
458 vgic_reg_access(mmio, reg, offset, mode);
459 if (mmio->is_write) {
460 if (access & ACCESS_WRITE_CLEARBIT) {
461 if (offset < 4) /* Force SGI enabled */
462 *reg |= 0xffff;
463 vgic_retire_disabled_irqs(target_vcpu);
464 }
465 vgic_update_state(kvm);
466 return true;
467 }
468
469 return false;
470 }
471
472 bool vgic_handle_set_pending_reg(struct kvm *kvm,
473 struct kvm_exit_mmio *mmio,
474 phys_addr_t offset, int vcpu_id)
475 {
476 u32 *reg, orig;
477 u32 level_mask;
478 int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
479 struct vgic_dist *dist = &kvm->arch.vgic;
480
481 reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
482 level_mask = (~(*reg));
483
484 /* Mark both level and edge triggered irqs as pending */
485 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
486 orig = *reg;
487 vgic_reg_access(mmio, reg, offset, mode);
488
489 if (mmio->is_write) {
490 /* Set the soft-pending flag only for level-triggered irqs */
491 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
492 vcpu_id, offset);
493 vgic_reg_access(mmio, reg, offset, mode);
494 *reg &= level_mask;
495
496 /* Ignore writes to SGIs */
497 if (offset < 2) {
498 *reg &= ~0xffff;
499 *reg |= orig & 0xffff;
500 }
501
502 vgic_update_state(kvm);
503 return true;
504 }
505
506 return false;
507 }
508
509 bool vgic_handle_clear_pending_reg(struct kvm *kvm,
510 struct kvm_exit_mmio *mmio,
511 phys_addr_t offset, int vcpu_id)
512 {
513 u32 *level_active;
514 u32 *reg, orig;
515 int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
516 struct vgic_dist *dist = &kvm->arch.vgic;
517
518 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
519 orig = *reg;
520 vgic_reg_access(mmio, reg, offset, mode);
521 if (mmio->is_write) {
522 /* Re-set level triggered level-active interrupts */
523 level_active = vgic_bitmap_get_reg(&dist->irq_level,
524 vcpu_id, offset);
525 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
526 *reg |= *level_active;
527
528 /* Ignore writes to SGIs */
529 if (offset < 2) {
530 *reg &= ~0xffff;
531 *reg |= orig & 0xffff;
532 }
533
534 /* Clear soft-pending flags */
535 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
536 vcpu_id, offset);
537 vgic_reg_access(mmio, reg, offset, mode);
538
539 vgic_update_state(kvm);
540 return true;
541 }
542 return false;
543 }
544
545 bool vgic_handle_set_active_reg(struct kvm *kvm,
546 struct kvm_exit_mmio *mmio,
547 phys_addr_t offset, int vcpu_id)
548 {
549 u32 *reg;
550 struct vgic_dist *dist = &kvm->arch.vgic;
551
552 reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
553 vgic_reg_access(mmio, reg, offset,
554 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
555
556 if (mmio->is_write) {
557 vgic_update_state(kvm);
558 return true;
559 }
560
561 return false;
562 }
563
564 bool vgic_handle_clear_active_reg(struct kvm *kvm,
565 struct kvm_exit_mmio *mmio,
566 phys_addr_t offset, int vcpu_id)
567 {
568 u32 *reg;
569 struct vgic_dist *dist = &kvm->arch.vgic;
570
571 reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
572 vgic_reg_access(mmio, reg, offset,
573 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
574
575 if (mmio->is_write) {
576 vgic_update_state(kvm);
577 return true;
578 }
579
580 return false;
581 }
582
583 static u32 vgic_cfg_expand(u16 val)
584 {
585 u32 res = 0;
586 int i;
587
588 /*
589 * Turn a 16bit value like abcd...mnop into a 32bit word
590 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
591 */
592 for (i = 0; i < 16; i++)
593 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
594
595 return res;
596 }
597
598 static u16 vgic_cfg_compress(u32 val)
599 {
600 u16 res = 0;
601 int i;
602
603 /*
604 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
605 * abcd...mnop which is what we really care about.
606 */
607 for (i = 0; i < 16; i++)
608 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
609
610 return res;
611 }
612
613 /*
614 * The distributor uses 2 bits per IRQ for the CFG register, but the
615 * LSB is always 0. As such, we only keep the upper bit, and use the
616 * two above functions to compress/expand the bits
617 */
618 bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
619 phys_addr_t offset)
620 {
621 u32 val;
622
623 if (offset & 4)
624 val = *reg >> 16;
625 else
626 val = *reg & 0xffff;
627
628 val = vgic_cfg_expand(val);
629 vgic_reg_access(mmio, &val, offset,
630 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
631 if (mmio->is_write) {
632 if (offset < 8) {
633 *reg = ~0U; /* Force PPIs/SGIs to 1 */
634 return false;
635 }
636
637 val = vgic_cfg_compress(val);
638 if (offset & 4) {
639 *reg &= 0xffff;
640 *reg |= val << 16;
641 } else {
642 *reg &= 0xffff << 16;
643 *reg |= val;
644 }
645 }
646
647 return false;
648 }
649
650 /**
651 * vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor
652 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
653 *
654 * Move any IRQs that have already been assigned to LRs back to the
655 * emulated distributor state so that the complete emulated state can be read
656 * from the main emulation structures without investigating the LRs.
657 */
658 void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
659 {
660 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
661 int i;
662
663 for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
664 struct vgic_lr lr = vgic_get_lr(vcpu, i);
665
666 /*
667 * There are three options for the state bits:
668 *
669 * 01: pending
670 * 10: active
671 * 11: pending and active
672 */
673 BUG_ON(!(lr.state & LR_STATE_MASK));
674
675 /* Reestablish SGI source for pending and active IRQs */
676 if (lr.irq < VGIC_NR_SGIS)
677 add_sgi_source(vcpu, lr.irq, lr.source);
678
679 /*
680 * If the LR holds an active (10) or a pending and active (11)
681 * interrupt then move the active state to the
682 * distributor tracking bit.
683 */
684 if (lr.state & LR_STATE_ACTIVE) {
685 vgic_irq_set_active(vcpu, lr.irq);
686 lr.state &= ~LR_STATE_ACTIVE;
687 }
688
689 /*
690 * Reestablish the pending state on the distributor and the
691 * CPU interface. It may have already been pending, but that
692 * is fine, then we are only setting a few bits that were
693 * already set.
694 */
695 if (lr.state & LR_STATE_PENDING) {
696 vgic_dist_irq_set_pending(vcpu, lr.irq);
697 lr.state &= ~LR_STATE_PENDING;
698 }
699
700 vgic_set_lr(vcpu, i, lr);
701
702 /*
703 * Mark the LR as free for other use.
704 */
705 BUG_ON(lr.state & LR_STATE_MASK);
706 vgic_retire_lr(i, lr.irq, vcpu);
707 vgic_irq_clear_queued(vcpu, lr.irq);
708
709 /* Finally update the VGIC state. */
710 vgic_update_state(vcpu->kvm);
711 }
712 }
713
714 const
715 struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges,
716 int len, gpa_t offset)
717 {
718 while (ranges->len) {
719 if (offset >= ranges->base &&
720 (offset + len) <= (ranges->base + ranges->len))
721 return ranges;
722 ranges++;
723 }
724
725 return NULL;
726 }
727
728 static bool vgic_validate_access(const struct vgic_dist *dist,
729 const struct vgic_io_range *range,
730 unsigned long offset)
731 {
732 int irq;
733
734 if (!range->bits_per_irq)
735 return true; /* Not an irq-based access */
736
737 irq = offset * 8 / range->bits_per_irq;
738 if (irq >= dist->nr_irqs)
739 return false;
740
741 return true;
742 }
743
744 /*
745 * Call the respective handler function for the given range.
746 * We split up any 64 bit accesses into two consecutive 32 bit
747 * handler calls and merge the result afterwards.
748 * We do this in a little endian fashion regardless of the host's
749 * or guest's endianness, because the GIC is always LE and the rest of
750 * the code (vgic_reg_access) also puts it in a LE fashion already.
751 * At this point we have already identified the handle function, so
752 * range points to that one entry and offset is relative to this.
753 */
754 static bool call_range_handler(struct kvm_vcpu *vcpu,
755 struct kvm_exit_mmio *mmio,
756 unsigned long offset,
757 const struct vgic_io_range *range)
758 {
759 struct kvm_exit_mmio mmio32;
760 bool ret;
761
762 if (likely(mmio->len <= 4))
763 return range->handle_mmio(vcpu, mmio, offset);
764
765 /*
766 * Any access bigger than 4 bytes (that we currently handle in KVM)
767 * is actually 8 bytes long, caused by a 64-bit access
768 */
769
770 mmio32.len = 4;
771 mmio32.is_write = mmio->is_write;
772 mmio32.private = mmio->private;
773
774 mmio32.phys_addr = mmio->phys_addr + 4;
775 mmio32.data = &((u32 *)mmio->data)[1];
776 ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
777
778 mmio32.phys_addr = mmio->phys_addr;
779 mmio32.data = &((u32 *)mmio->data)[0];
780 ret |= range->handle_mmio(vcpu, &mmio32, offset);
781
782 return ret;
783 }
784
785 /**
786 * vgic_handle_mmio_access - handle an in-kernel MMIO access
787 * This is called by the read/write KVM IO device wrappers below.
788 * @vcpu: pointer to the vcpu performing the access
789 * @this: pointer to the KVM IO device in charge
790 * @addr: guest physical address of the access
791 * @len: size of the access
792 * @val: pointer to the data region
793 * @is_write: read or write access
794 *
795 * returns true if the MMIO access could be performed
796 */
797 static int vgic_handle_mmio_access(struct kvm_vcpu *vcpu,
798 struct kvm_io_device *this, gpa_t addr,
799 int len, void *val, bool is_write)
800 {
801 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
802 struct vgic_io_device *iodev = container_of(this,
803 struct vgic_io_device, dev);
804 struct kvm_run *run = vcpu->run;
805 const struct vgic_io_range *range;
806 struct kvm_exit_mmio mmio;
807 bool updated_state;
808 gpa_t offset;
809
810 offset = addr - iodev->addr;
811 range = vgic_find_range(iodev->reg_ranges, len, offset);
812 if (unlikely(!range || !range->handle_mmio)) {
813 pr_warn("Unhandled access %d %08llx %d\n", is_write, addr, len);
814 return -ENXIO;
815 }
816
817 mmio.phys_addr = addr;
818 mmio.len = len;
819 mmio.is_write = is_write;
820 mmio.data = val;
821 mmio.private = iodev->redist_vcpu;
822
823 spin_lock(&dist->lock);
824 offset -= range->base;
825 if (vgic_validate_access(dist, range, offset)) {
826 updated_state = call_range_handler(vcpu, &mmio, offset, range);
827 } else {
828 if (!is_write)
829 memset(val, 0, len);
830 updated_state = false;
831 }
832 spin_unlock(&dist->lock);
833 run->mmio.is_write = is_write;
834 run->mmio.len = len;
835 run->mmio.phys_addr = addr;
836 memcpy(run->mmio.data, val, len);
837
838 kvm_handle_mmio_return(vcpu, run);
839
840 if (updated_state)
841 vgic_kick_vcpus(vcpu->kvm);
842
843 return 0;
844 }
845
846 static int vgic_handle_mmio_read(struct kvm_vcpu *vcpu,
847 struct kvm_io_device *this,
848 gpa_t addr, int len, void *val)
849 {
850 return vgic_handle_mmio_access(vcpu, this, addr, len, val, false);
851 }
852
853 static int vgic_handle_mmio_write(struct kvm_vcpu *vcpu,
854 struct kvm_io_device *this,
855 gpa_t addr, int len, const void *val)
856 {
857 return vgic_handle_mmio_access(vcpu, this, addr, len, (void *)val,
858 true);
859 }
860
861 struct kvm_io_device_ops vgic_io_ops = {
862 .read = vgic_handle_mmio_read,
863 .write = vgic_handle_mmio_write,
864 };
865
866 /**
867 * vgic_register_kvm_io_dev - register VGIC register frame on the KVM I/O bus
868 * @kvm: The VM structure pointer
869 * @base: The (guest) base address for the register frame
870 * @len: Length of the register frame window
871 * @ranges: Describing the handler functions for each register
872 * @redist_vcpu_id: The VCPU ID to pass on to the handlers on call
873 * @iodev: Points to memory to be passed on to the handler
874 *
875 * @iodev stores the parameters of this function to be usable by the handler
876 * respectively the dispatcher function (since the KVM I/O bus framework lacks
877 * an opaque parameter). Initialization is done in this function, but the
878 * reference should be valid and unique for the whole VGIC lifetime.
879 * If the register frame is not mapped for a specific VCPU, pass -1 to
880 * @redist_vcpu_id.
881 */
882 int vgic_register_kvm_io_dev(struct kvm *kvm, gpa_t base, int len,
883 const struct vgic_io_range *ranges,
884 int redist_vcpu_id,
885 struct vgic_io_device *iodev)
886 {
887 struct kvm_vcpu *vcpu = NULL;
888 int ret;
889
890 if (redist_vcpu_id >= 0)
891 vcpu = kvm_get_vcpu(kvm, redist_vcpu_id);
892
893 iodev->addr = base;
894 iodev->len = len;
895 iodev->reg_ranges = ranges;
896 iodev->redist_vcpu = vcpu;
897
898 kvm_iodevice_init(&iodev->dev, &vgic_io_ops);
899
900 mutex_lock(&kvm->slots_lock);
901
902 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, base, len,
903 &iodev->dev);
904 mutex_unlock(&kvm->slots_lock);
905
906 /* Mark the iodev as invalid if registration fails. */
907 if (ret)
908 iodev->dev.ops = NULL;
909
910 return ret;
911 }
912
913 static int vgic_nr_shared_irqs(struct vgic_dist *dist)
914 {
915 return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
916 }
917
918 static int compute_active_for_cpu(struct kvm_vcpu *vcpu)
919 {
920 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
921 unsigned long *active, *enabled, *act_percpu, *act_shared;
922 unsigned long active_private, active_shared;
923 int nr_shared = vgic_nr_shared_irqs(dist);
924 int vcpu_id;
925
926 vcpu_id = vcpu->vcpu_id;
927 act_percpu = vcpu->arch.vgic_cpu.active_percpu;
928 act_shared = vcpu->arch.vgic_cpu.active_shared;
929
930 active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id);
931 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
932 bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS);
933
934 active = vgic_bitmap_get_shared_map(&dist->irq_active);
935 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
936 bitmap_and(act_shared, active, enabled, nr_shared);
937 bitmap_and(act_shared, act_shared,
938 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
939 nr_shared);
940
941 active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS);
942 active_shared = find_first_bit(act_shared, nr_shared);
943
944 return (active_private < VGIC_NR_PRIVATE_IRQS ||
945 active_shared < nr_shared);
946 }
947
948 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
949 {
950 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
951 unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
952 unsigned long pending_private, pending_shared;
953 int nr_shared = vgic_nr_shared_irqs(dist);
954 int vcpu_id;
955
956 vcpu_id = vcpu->vcpu_id;
957 pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
958 pend_shared = vcpu->arch.vgic_cpu.pending_shared;
959
960 pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
961 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
962 bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
963
964 pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
965 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
966 bitmap_and(pend_shared, pending, enabled, nr_shared);
967 bitmap_and(pend_shared, pend_shared,
968 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
969 nr_shared);
970
971 pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
972 pending_shared = find_first_bit(pend_shared, nr_shared);
973 return (pending_private < VGIC_NR_PRIVATE_IRQS ||
974 pending_shared < vgic_nr_shared_irqs(dist));
975 }
976
977 /*
978 * Update the interrupt state and determine which CPUs have pending
979 * or active interrupts. Must be called with distributor lock held.
980 */
981 void vgic_update_state(struct kvm *kvm)
982 {
983 struct vgic_dist *dist = &kvm->arch.vgic;
984 struct kvm_vcpu *vcpu;
985 int c;
986
987 if (!dist->enabled) {
988 set_bit(0, dist->irq_pending_on_cpu);
989 return;
990 }
991
992 kvm_for_each_vcpu(c, vcpu, kvm) {
993 if (compute_pending_for_cpu(vcpu))
994 set_bit(c, dist->irq_pending_on_cpu);
995
996 if (compute_active_for_cpu(vcpu))
997 set_bit(c, dist->irq_active_on_cpu);
998 else
999 clear_bit(c, dist->irq_active_on_cpu);
1000 }
1001 }
1002
1003 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1004 {
1005 return vgic_ops->get_lr(vcpu, lr);
1006 }
1007
1008 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1009 struct vgic_lr vlr)
1010 {
1011 vgic_ops->set_lr(vcpu, lr, vlr);
1012 }
1013
1014 static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1015 struct vgic_lr vlr)
1016 {
1017 vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
1018 }
1019
1020 static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1021 {
1022 return vgic_ops->get_elrsr(vcpu);
1023 }
1024
1025 static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1026 {
1027 return vgic_ops->get_eisr(vcpu);
1028 }
1029
1030 static inline void vgic_clear_eisr(struct kvm_vcpu *vcpu)
1031 {
1032 vgic_ops->clear_eisr(vcpu);
1033 }
1034
1035 static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1036 {
1037 return vgic_ops->get_interrupt_status(vcpu);
1038 }
1039
1040 static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1041 {
1042 vgic_ops->enable_underflow(vcpu);
1043 }
1044
1045 static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1046 {
1047 vgic_ops->disable_underflow(vcpu);
1048 }
1049
1050 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1051 {
1052 vgic_ops->get_vmcr(vcpu, vmcr);
1053 }
1054
1055 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1056 {
1057 vgic_ops->set_vmcr(vcpu, vmcr);
1058 }
1059
1060 static inline void vgic_enable(struct kvm_vcpu *vcpu)
1061 {
1062 vgic_ops->enable(vcpu);
1063 }
1064
1065 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1066 {
1067 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1068 struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1069
1070 vlr.state = 0;
1071 vgic_set_lr(vcpu, lr_nr, vlr);
1072 clear_bit(lr_nr, vgic_cpu->lr_used);
1073 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1074 vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
1075 }
1076
1077 /*
1078 * An interrupt may have been disabled after being made pending on the
1079 * CPU interface (the classic case is a timer running while we're
1080 * rebooting the guest - the interrupt would kick as soon as the CPU
1081 * interface gets enabled, with deadly consequences).
1082 *
1083 * The solution is to examine already active LRs, and check the
1084 * interrupt is still enabled. If not, just retire it.
1085 */
1086 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1087 {
1088 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1089 int lr;
1090
1091 for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
1092 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1093
1094 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1095 vgic_retire_lr(lr, vlr.irq, vcpu);
1096 if (vgic_irq_is_queued(vcpu, vlr.irq))
1097 vgic_irq_clear_queued(vcpu, vlr.irq);
1098 }
1099 }
1100 }
1101
1102 static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq,
1103 int lr_nr, struct vgic_lr vlr)
1104 {
1105 if (vgic_irq_is_active(vcpu, irq)) {
1106 vlr.state |= LR_STATE_ACTIVE;
1107 kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state);
1108 vgic_irq_clear_active(vcpu, irq);
1109 vgic_update_state(vcpu->kvm);
1110 } else if (vgic_dist_irq_is_pending(vcpu, irq)) {
1111 vlr.state |= LR_STATE_PENDING;
1112 kvm_debug("Set pending: 0x%x\n", vlr.state);
1113 }
1114
1115 if (!vgic_irq_is_edge(vcpu, irq))
1116 vlr.state |= LR_EOI_INT;
1117
1118 vgic_set_lr(vcpu, lr_nr, vlr);
1119 vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
1120 }
1121
1122 /*
1123 * Queue an interrupt to a CPU virtual interface. Return true on success,
1124 * or false if it wasn't possible to queue it.
1125 * sgi_source must be zero for any non-SGI interrupts.
1126 */
1127 bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1128 {
1129 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1130 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1131 struct vgic_lr vlr;
1132 int lr;
1133
1134 /* Sanitize the input... */
1135 BUG_ON(sgi_source_id & ~7);
1136 BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1137 BUG_ON(irq >= dist->nr_irqs);
1138
1139 kvm_debug("Queue IRQ%d\n", irq);
1140
1141 lr = vgic_cpu->vgic_irq_lr_map[irq];
1142
1143 /* Do we have an active interrupt for the same CPUID? */
1144 if (lr != LR_EMPTY) {
1145 vlr = vgic_get_lr(vcpu, lr);
1146 if (vlr.source == sgi_source_id) {
1147 kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1148 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1149 vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1150 return true;
1151 }
1152 }
1153
1154 /* Try to use another LR for this interrupt */
1155 lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1156 vgic->nr_lr);
1157 if (lr >= vgic->nr_lr)
1158 return false;
1159
1160 kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1161 vgic_cpu->vgic_irq_lr_map[irq] = lr;
1162 set_bit(lr, vgic_cpu->lr_used);
1163
1164 vlr.irq = irq;
1165 vlr.source = sgi_source_id;
1166 vlr.state = 0;
1167 vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1168
1169 return true;
1170 }
1171
1172 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1173 {
1174 if (!vgic_can_sample_irq(vcpu, irq))
1175 return true; /* level interrupt, already queued */
1176
1177 if (vgic_queue_irq(vcpu, 0, irq)) {
1178 if (vgic_irq_is_edge(vcpu, irq)) {
1179 vgic_dist_irq_clear_pending(vcpu, irq);
1180 vgic_cpu_irq_clear(vcpu, irq);
1181 } else {
1182 vgic_irq_set_queued(vcpu, irq);
1183 }
1184
1185 return true;
1186 }
1187
1188 return false;
1189 }
1190
1191 /*
1192 * Fill the list registers with pending interrupts before running the
1193 * guest.
1194 */
1195 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1196 {
1197 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1198 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1199 unsigned long *pa_percpu, *pa_shared;
1200 int i, vcpu_id;
1201 int overflow = 0;
1202 int nr_shared = vgic_nr_shared_irqs(dist);
1203
1204 vcpu_id = vcpu->vcpu_id;
1205
1206 pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu;
1207 pa_shared = vcpu->arch.vgic_cpu.pend_act_shared;
1208
1209 bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu,
1210 VGIC_NR_PRIVATE_IRQS);
1211 bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared,
1212 nr_shared);
1213 /*
1214 * We may not have any pending interrupt, or the interrupts
1215 * may have been serviced from another vcpu. In all cases,
1216 * move along.
1217 */
1218 if (!kvm_vgic_vcpu_pending_irq(vcpu) && !kvm_vgic_vcpu_active_irq(vcpu))
1219 goto epilog;
1220
1221 /* SGIs */
1222 for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) {
1223 if (!queue_sgi(vcpu, i))
1224 overflow = 1;
1225 }
1226
1227 /* PPIs */
1228 for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) {
1229 if (!vgic_queue_hwirq(vcpu, i))
1230 overflow = 1;
1231 }
1232
1233 /* SPIs */
1234 for_each_set_bit(i, pa_shared, nr_shared) {
1235 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1236 overflow = 1;
1237 }
1238
1239
1240
1241
1242 epilog:
1243 if (overflow) {
1244 vgic_enable_underflow(vcpu);
1245 } else {
1246 vgic_disable_underflow(vcpu);
1247 /*
1248 * We're about to run this VCPU, and we've consumed
1249 * everything the distributor had in store for
1250 * us. Claim we don't have anything pending. We'll
1251 * adjust that if needed while exiting.
1252 */
1253 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
1254 }
1255 }
1256
1257 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1258 {
1259 u32 status = vgic_get_interrupt_status(vcpu);
1260 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1261 bool level_pending = false;
1262 struct kvm *kvm = vcpu->kvm;
1263
1264 kvm_debug("STATUS = %08x\n", status);
1265
1266 if (status & INT_STATUS_EOI) {
1267 /*
1268 * Some level interrupts have been EOIed. Clear their
1269 * active bit.
1270 */
1271 u64 eisr = vgic_get_eisr(vcpu);
1272 unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
1273 int lr;
1274
1275 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1276 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1277 WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1278
1279 spin_lock(&dist->lock);
1280 vgic_irq_clear_queued(vcpu, vlr.irq);
1281 WARN_ON(vlr.state & LR_STATE_MASK);
1282 vlr.state = 0;
1283 vgic_set_lr(vcpu, lr, vlr);
1284
1285 /*
1286 * If the IRQ was EOIed it was also ACKed and we we
1287 * therefore assume we can clear the soft pending
1288 * state (should it had been set) for this interrupt.
1289 *
1290 * Note: if the IRQ soft pending state was set after
1291 * the IRQ was acked, it actually shouldn't be
1292 * cleared, but we have no way of knowing that unless
1293 * we start trapping ACKs when the soft-pending state
1294 * is set.
1295 */
1296 vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1297
1298 /*
1299 * kvm_notify_acked_irq calls kvm_set_irq()
1300 * to reset the IRQ level. Need to release the
1301 * lock for kvm_set_irq to grab it.
1302 */
1303 spin_unlock(&dist->lock);
1304
1305 kvm_notify_acked_irq(kvm, 0,
1306 vlr.irq - VGIC_NR_PRIVATE_IRQS);
1307 spin_lock(&dist->lock);
1308
1309 /* Any additional pending interrupt? */
1310 if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1311 vgic_cpu_irq_set(vcpu, vlr.irq);
1312 level_pending = true;
1313 } else {
1314 vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1315 vgic_cpu_irq_clear(vcpu, vlr.irq);
1316 }
1317
1318 spin_unlock(&dist->lock);
1319
1320 /*
1321 * Despite being EOIed, the LR may not have
1322 * been marked as empty.
1323 */
1324 vgic_sync_lr_elrsr(vcpu, lr, vlr);
1325 }
1326 }
1327
1328 if (status & INT_STATUS_UNDERFLOW)
1329 vgic_disable_underflow(vcpu);
1330
1331 /*
1332 * In the next iterations of the vcpu loop, if we sync the vgic state
1333 * after flushing it, but before entering the guest (this happens for
1334 * pending signals and vmid rollovers), then make sure we don't pick
1335 * up any old maintenance interrupts here.
1336 */
1337 vgic_clear_eisr(vcpu);
1338
1339 return level_pending;
1340 }
1341
1342 /* Sync back the VGIC state after a guest run */
1343 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1344 {
1345 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1346 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1347 u64 elrsr;
1348 unsigned long *elrsr_ptr;
1349 int lr, pending;
1350 bool level_pending;
1351
1352 level_pending = vgic_process_maintenance(vcpu);
1353 elrsr = vgic_get_elrsr(vcpu);
1354 elrsr_ptr = u64_to_bitmask(&elrsr);
1355
1356 /* Clear mappings for empty LRs */
1357 for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
1358 struct vgic_lr vlr;
1359
1360 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1361 continue;
1362
1363 vlr = vgic_get_lr(vcpu, lr);
1364
1365 BUG_ON(vlr.irq >= dist->nr_irqs);
1366 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
1367 }
1368
1369 /* Check if we still have something up our sleeve... */
1370 pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1371 if (level_pending || pending < vgic->nr_lr)
1372 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1373 }
1374
1375 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1376 {
1377 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1378
1379 if (!irqchip_in_kernel(vcpu->kvm))
1380 return;
1381
1382 spin_lock(&dist->lock);
1383 __kvm_vgic_flush_hwstate(vcpu);
1384 spin_unlock(&dist->lock);
1385 }
1386
1387 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1388 {
1389 if (!irqchip_in_kernel(vcpu->kvm))
1390 return;
1391
1392 __kvm_vgic_sync_hwstate(vcpu);
1393 }
1394
1395 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1396 {
1397 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1398
1399 if (!irqchip_in_kernel(vcpu->kvm))
1400 return 0;
1401
1402 return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1403 }
1404
1405 int kvm_vgic_vcpu_active_irq(struct kvm_vcpu *vcpu)
1406 {
1407 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1408
1409 if (!irqchip_in_kernel(vcpu->kvm))
1410 return 0;
1411
1412 return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu);
1413 }
1414
1415
1416 void vgic_kick_vcpus(struct kvm *kvm)
1417 {
1418 struct kvm_vcpu *vcpu;
1419 int c;
1420
1421 /*
1422 * We've injected an interrupt, time to find out who deserves
1423 * a good kick...
1424 */
1425 kvm_for_each_vcpu(c, vcpu, kvm) {
1426 if (kvm_vgic_vcpu_pending_irq(vcpu))
1427 kvm_vcpu_kick(vcpu);
1428 }
1429 }
1430
1431 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1432 {
1433 int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1434
1435 /*
1436 * Only inject an interrupt if:
1437 * - edge triggered and we have a rising edge
1438 * - level triggered and we change level
1439 */
1440 if (edge_triggered) {
1441 int state = vgic_dist_irq_is_pending(vcpu, irq);
1442 return level > state;
1443 } else {
1444 int state = vgic_dist_irq_get_level(vcpu, irq);
1445 return level != state;
1446 }
1447 }
1448
1449 static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1450 unsigned int irq_num, bool level)
1451 {
1452 struct vgic_dist *dist = &kvm->arch.vgic;
1453 struct kvm_vcpu *vcpu;
1454 int edge_triggered, level_triggered;
1455 int enabled;
1456 bool ret = true, can_inject = true;
1457
1458 spin_lock(&dist->lock);
1459
1460 vcpu = kvm_get_vcpu(kvm, cpuid);
1461 edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1462 level_triggered = !edge_triggered;
1463
1464 if (!vgic_validate_injection(vcpu, irq_num, level)) {
1465 ret = false;
1466 goto out;
1467 }
1468
1469 if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1470 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1471 if (cpuid == VCPU_NOT_ALLOCATED) {
1472 /* Pretend we use CPU0, and prevent injection */
1473 cpuid = 0;
1474 can_inject = false;
1475 }
1476 vcpu = kvm_get_vcpu(kvm, cpuid);
1477 }
1478
1479 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1480
1481 if (level) {
1482 if (level_triggered)
1483 vgic_dist_irq_set_level(vcpu, irq_num);
1484 vgic_dist_irq_set_pending(vcpu, irq_num);
1485 } else {
1486 if (level_triggered) {
1487 vgic_dist_irq_clear_level(vcpu, irq_num);
1488 if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
1489 vgic_dist_irq_clear_pending(vcpu, irq_num);
1490 }
1491
1492 ret = false;
1493 goto out;
1494 }
1495
1496 enabled = vgic_irq_is_enabled(vcpu, irq_num);
1497
1498 if (!enabled || !can_inject) {
1499 ret = false;
1500 goto out;
1501 }
1502
1503 if (!vgic_can_sample_irq(vcpu, irq_num)) {
1504 /*
1505 * Level interrupt in progress, will be picked up
1506 * when EOId.
1507 */
1508 ret = false;
1509 goto out;
1510 }
1511
1512 if (level) {
1513 vgic_cpu_irq_set(vcpu, irq_num);
1514 set_bit(cpuid, dist->irq_pending_on_cpu);
1515 }
1516
1517 out:
1518 spin_unlock(&dist->lock);
1519
1520 return ret ? cpuid : -EINVAL;
1521 }
1522
1523 /**
1524 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1525 * @kvm: The VM structure pointer
1526 * @cpuid: The CPU for PPIs
1527 * @irq_num: The IRQ number that is assigned to the device
1528 * @level: Edge-triggered: true: to trigger the interrupt
1529 * false: to ignore the call
1530 * Level-sensitive true: activates an interrupt
1531 * false: deactivates an interrupt
1532 *
1533 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1534 * level-sensitive interrupts. You can think of the level parameter as 1
1535 * being HIGH and 0 being LOW and all devices being active-HIGH.
1536 */
1537 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1538 bool level)
1539 {
1540 int ret = 0;
1541 int vcpu_id;
1542
1543 if (unlikely(!vgic_initialized(kvm))) {
1544 /*
1545 * We only provide the automatic initialization of the VGIC
1546 * for the legacy case of a GICv2. Any other type must
1547 * be explicitly initialized once setup with the respective
1548 * KVM device call.
1549 */
1550 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) {
1551 ret = -EBUSY;
1552 goto out;
1553 }
1554 mutex_lock(&kvm->lock);
1555 ret = vgic_init(kvm);
1556 mutex_unlock(&kvm->lock);
1557
1558 if (ret)
1559 goto out;
1560 }
1561
1562 if (irq_num >= min(kvm->arch.vgic.nr_irqs, 1020))
1563 return -EINVAL;
1564
1565 vcpu_id = vgic_update_irq_pending(kvm, cpuid, irq_num, level);
1566 if (vcpu_id >= 0) {
1567 /* kick the specified vcpu */
1568 kvm_vcpu_kick(kvm_get_vcpu(kvm, vcpu_id));
1569 }
1570
1571 out:
1572 return ret;
1573 }
1574
1575 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1576 {
1577 /*
1578 * We cannot rely on the vgic maintenance interrupt to be
1579 * delivered synchronously. This means we can only use it to
1580 * exit the VM, and we perform the handling of EOIed
1581 * interrupts on the exit path (see vgic_process_maintenance).
1582 */
1583 return IRQ_HANDLED;
1584 }
1585
1586 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1587 {
1588 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1589
1590 kfree(vgic_cpu->pending_shared);
1591 kfree(vgic_cpu->active_shared);
1592 kfree(vgic_cpu->pend_act_shared);
1593 kfree(vgic_cpu->vgic_irq_lr_map);
1594 vgic_cpu->pending_shared = NULL;
1595 vgic_cpu->active_shared = NULL;
1596 vgic_cpu->pend_act_shared = NULL;
1597 vgic_cpu->vgic_irq_lr_map = NULL;
1598 }
1599
1600 static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1601 {
1602 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1603
1604 int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
1605 vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
1606 vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL);
1607 vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL);
1608 vgic_cpu->vgic_irq_lr_map = kmalloc(nr_irqs, GFP_KERNEL);
1609
1610 if (!vgic_cpu->pending_shared
1611 || !vgic_cpu->active_shared
1612 || !vgic_cpu->pend_act_shared
1613 || !vgic_cpu->vgic_irq_lr_map) {
1614 kvm_vgic_vcpu_destroy(vcpu);
1615 return -ENOMEM;
1616 }
1617
1618 memset(vgic_cpu->vgic_irq_lr_map, LR_EMPTY, nr_irqs);
1619
1620 /*
1621 * Store the number of LRs per vcpu, so we don't have to go
1622 * all the way to the distributor structure to find out. Only
1623 * assembly code should use this one.
1624 */
1625 vgic_cpu->nr_lr = vgic->nr_lr;
1626
1627 return 0;
1628 }
1629
1630 /**
1631 * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
1632 *
1633 * The host's GIC naturally limits the maximum amount of VCPUs a guest
1634 * can use.
1635 */
1636 int kvm_vgic_get_max_vcpus(void)
1637 {
1638 return vgic->max_gic_vcpus;
1639 }
1640
1641 void kvm_vgic_destroy(struct kvm *kvm)
1642 {
1643 struct vgic_dist *dist = &kvm->arch.vgic;
1644 struct kvm_vcpu *vcpu;
1645 int i;
1646
1647 kvm_for_each_vcpu(i, vcpu, kvm)
1648 kvm_vgic_vcpu_destroy(vcpu);
1649
1650 vgic_free_bitmap(&dist->irq_enabled);
1651 vgic_free_bitmap(&dist->irq_level);
1652 vgic_free_bitmap(&dist->irq_pending);
1653 vgic_free_bitmap(&dist->irq_soft_pend);
1654 vgic_free_bitmap(&dist->irq_queued);
1655 vgic_free_bitmap(&dist->irq_cfg);
1656 vgic_free_bytemap(&dist->irq_priority);
1657 if (dist->irq_spi_target) {
1658 for (i = 0; i < dist->nr_cpus; i++)
1659 vgic_free_bitmap(&dist->irq_spi_target[i]);
1660 }
1661 kfree(dist->irq_sgi_sources);
1662 kfree(dist->irq_spi_cpu);
1663 kfree(dist->irq_spi_mpidr);
1664 kfree(dist->irq_spi_target);
1665 kfree(dist->irq_pending_on_cpu);
1666 kfree(dist->irq_active_on_cpu);
1667 dist->irq_sgi_sources = NULL;
1668 dist->irq_spi_cpu = NULL;
1669 dist->irq_spi_target = NULL;
1670 dist->irq_pending_on_cpu = NULL;
1671 dist->irq_active_on_cpu = NULL;
1672 dist->nr_cpus = 0;
1673 }
1674
1675 /*
1676 * Allocate and initialize the various data structures. Must be called
1677 * with kvm->lock held!
1678 */
1679 int vgic_init(struct kvm *kvm)
1680 {
1681 struct vgic_dist *dist = &kvm->arch.vgic;
1682 struct kvm_vcpu *vcpu;
1683 int nr_cpus, nr_irqs;
1684 int ret, i, vcpu_id;
1685
1686 if (vgic_initialized(kvm))
1687 return 0;
1688
1689 nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
1690 if (!nr_cpus) /* No vcpus? Can't be good... */
1691 return -ENODEV;
1692
1693 /*
1694 * If nobody configured the number of interrupts, use the
1695 * legacy one.
1696 */
1697 if (!dist->nr_irqs)
1698 dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
1699
1700 nr_irqs = dist->nr_irqs;
1701
1702 ret = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
1703 ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
1704 ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
1705 ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
1706 ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
1707 ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs);
1708 ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
1709 ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
1710
1711 if (ret)
1712 goto out;
1713
1714 dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
1715 dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
1716 dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
1717 GFP_KERNEL);
1718 dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1719 GFP_KERNEL);
1720 dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1721 GFP_KERNEL);
1722 if (!dist->irq_sgi_sources ||
1723 !dist->irq_spi_cpu ||
1724 !dist->irq_spi_target ||
1725 !dist->irq_pending_on_cpu ||
1726 !dist->irq_active_on_cpu) {
1727 ret = -ENOMEM;
1728 goto out;
1729 }
1730
1731 for (i = 0; i < nr_cpus; i++)
1732 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
1733 nr_cpus, nr_irqs);
1734
1735 if (ret)
1736 goto out;
1737
1738 ret = kvm->arch.vgic.vm_ops.init_model(kvm);
1739 if (ret)
1740 goto out;
1741
1742 kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
1743 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
1744 if (ret) {
1745 kvm_err("VGIC: Failed to allocate vcpu memory\n");
1746 break;
1747 }
1748
1749 for (i = 0; i < dist->nr_irqs; i++) {
1750 if (i < VGIC_NR_PPIS)
1751 vgic_bitmap_set_irq_val(&dist->irq_enabled,
1752 vcpu->vcpu_id, i, 1);
1753 if (i < VGIC_NR_PRIVATE_IRQS)
1754 vgic_bitmap_set_irq_val(&dist->irq_cfg,
1755 vcpu->vcpu_id, i,
1756 VGIC_CFG_EDGE);
1757 }
1758
1759 vgic_enable(vcpu);
1760 }
1761
1762 out:
1763 if (ret)
1764 kvm_vgic_destroy(kvm);
1765
1766 return ret;
1767 }
1768
1769 static int init_vgic_model(struct kvm *kvm, int type)
1770 {
1771 switch (type) {
1772 case KVM_DEV_TYPE_ARM_VGIC_V2:
1773 vgic_v2_init_emulation(kvm);
1774 break;
1775 #ifdef CONFIG_ARM_GIC_V3
1776 case KVM_DEV_TYPE_ARM_VGIC_V3:
1777 vgic_v3_init_emulation(kvm);
1778 break;
1779 #endif
1780 default:
1781 return -ENODEV;
1782 }
1783
1784 if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
1785 return -E2BIG;
1786
1787 return 0;
1788 }
1789
1790 int kvm_vgic_create(struct kvm *kvm, u32 type)
1791 {
1792 int i, vcpu_lock_idx = -1, ret;
1793 struct kvm_vcpu *vcpu;
1794
1795 mutex_lock(&kvm->lock);
1796
1797 if (irqchip_in_kernel(kvm)) {
1798 ret = -EEXIST;
1799 goto out;
1800 }
1801
1802 /*
1803 * This function is also called by the KVM_CREATE_IRQCHIP handler,
1804 * which had no chance yet to check the availability of the GICv2
1805 * emulation. So check this here again. KVM_CREATE_DEVICE does
1806 * the proper checks already.
1807 */
1808 if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) {
1809 ret = -ENODEV;
1810 goto out;
1811 }
1812
1813 /*
1814 * Any time a vcpu is run, vcpu_load is called which tries to grab the
1815 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
1816 * that no other VCPUs are run while we create the vgic.
1817 */
1818 ret = -EBUSY;
1819 kvm_for_each_vcpu(i, vcpu, kvm) {
1820 if (!mutex_trylock(&vcpu->mutex))
1821 goto out_unlock;
1822 vcpu_lock_idx = i;
1823 }
1824
1825 kvm_for_each_vcpu(i, vcpu, kvm) {
1826 if (vcpu->arch.has_run_once)
1827 goto out_unlock;
1828 }
1829 ret = 0;
1830
1831 ret = init_vgic_model(kvm, type);
1832 if (ret)
1833 goto out_unlock;
1834
1835 spin_lock_init(&kvm->arch.vgic.lock);
1836 kvm->arch.vgic.in_kernel = true;
1837 kvm->arch.vgic.vgic_model = type;
1838 kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
1839 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1840 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1841 kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
1842
1843 out_unlock:
1844 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1845 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1846 mutex_unlock(&vcpu->mutex);
1847 }
1848
1849 out:
1850 mutex_unlock(&kvm->lock);
1851 return ret;
1852 }
1853
1854 static int vgic_ioaddr_overlap(struct kvm *kvm)
1855 {
1856 phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1857 phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1858
1859 if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1860 return 0;
1861 if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1862 (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1863 return -EBUSY;
1864 return 0;
1865 }
1866
1867 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1868 phys_addr_t addr, phys_addr_t size)
1869 {
1870 int ret;
1871
1872 if (addr & ~KVM_PHYS_MASK)
1873 return -E2BIG;
1874
1875 if (addr & (SZ_4K - 1))
1876 return -EINVAL;
1877
1878 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1879 return -EEXIST;
1880 if (addr + size < addr)
1881 return -EINVAL;
1882
1883 *ioaddr = addr;
1884 ret = vgic_ioaddr_overlap(kvm);
1885 if (ret)
1886 *ioaddr = VGIC_ADDR_UNDEF;
1887
1888 return ret;
1889 }
1890
1891 /**
1892 * kvm_vgic_addr - set or get vgic VM base addresses
1893 * @kvm: pointer to the vm struct
1894 * @type: the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
1895 * @addr: pointer to address value
1896 * @write: if true set the address in the VM address space, if false read the
1897 * address
1898 *
1899 * Set or get the vgic base addresses for the distributor and the virtual CPU
1900 * interface in the VM physical address space. These addresses are properties
1901 * of the emulated core/SoC and therefore user space initially knows this
1902 * information.
1903 */
1904 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
1905 {
1906 int r = 0;
1907 struct vgic_dist *vgic = &kvm->arch.vgic;
1908 int type_needed;
1909 phys_addr_t *addr_ptr, block_size;
1910 phys_addr_t alignment;
1911
1912 mutex_lock(&kvm->lock);
1913 switch (type) {
1914 case KVM_VGIC_V2_ADDR_TYPE_DIST:
1915 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
1916 addr_ptr = &vgic->vgic_dist_base;
1917 block_size = KVM_VGIC_V2_DIST_SIZE;
1918 alignment = SZ_4K;
1919 break;
1920 case KVM_VGIC_V2_ADDR_TYPE_CPU:
1921 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
1922 addr_ptr = &vgic->vgic_cpu_base;
1923 block_size = KVM_VGIC_V2_CPU_SIZE;
1924 alignment = SZ_4K;
1925 break;
1926 #ifdef CONFIG_ARM_GIC_V3
1927 case KVM_VGIC_V3_ADDR_TYPE_DIST:
1928 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
1929 addr_ptr = &vgic->vgic_dist_base;
1930 block_size = KVM_VGIC_V3_DIST_SIZE;
1931 alignment = SZ_64K;
1932 break;
1933 case KVM_VGIC_V3_ADDR_TYPE_REDIST:
1934 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
1935 addr_ptr = &vgic->vgic_redist_base;
1936 block_size = KVM_VGIC_V3_REDIST_SIZE;
1937 alignment = SZ_64K;
1938 break;
1939 #endif
1940 default:
1941 r = -ENODEV;
1942 goto out;
1943 }
1944
1945 if (vgic->vgic_model != type_needed) {
1946 r = -ENODEV;
1947 goto out;
1948 }
1949
1950 if (write) {
1951 if (!IS_ALIGNED(*addr, alignment))
1952 r = -EINVAL;
1953 else
1954 r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
1955 block_size);
1956 } else {
1957 *addr = *addr_ptr;
1958 }
1959
1960 out:
1961 mutex_unlock(&kvm->lock);
1962 return r;
1963 }
1964
1965 int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1966 {
1967 int r;
1968
1969 switch (attr->group) {
1970 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1971 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1972 u64 addr;
1973 unsigned long type = (unsigned long)attr->attr;
1974
1975 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1976 return -EFAULT;
1977
1978 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
1979 return (r == -ENODEV) ? -ENXIO : r;
1980 }
1981 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
1982 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1983 u32 val;
1984 int ret = 0;
1985
1986 if (get_user(val, uaddr))
1987 return -EFAULT;
1988
1989 /*
1990 * We require:
1991 * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
1992 * - at most 1024 interrupts
1993 * - a multiple of 32 interrupts
1994 */
1995 if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
1996 val > VGIC_MAX_IRQS ||
1997 (val & 31))
1998 return -EINVAL;
1999
2000 mutex_lock(&dev->kvm->lock);
2001
2002 if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
2003 ret = -EBUSY;
2004 else
2005 dev->kvm->arch.vgic.nr_irqs = val;
2006
2007 mutex_unlock(&dev->kvm->lock);
2008
2009 return ret;
2010 }
2011 case KVM_DEV_ARM_VGIC_GRP_CTRL: {
2012 switch (attr->attr) {
2013 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2014 r = vgic_init(dev->kvm);
2015 return r;
2016 }
2017 break;
2018 }
2019 }
2020
2021 return -ENXIO;
2022 }
2023
2024 int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2025 {
2026 int r = -ENXIO;
2027
2028 switch (attr->group) {
2029 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2030 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2031 u64 addr;
2032 unsigned long type = (unsigned long)attr->attr;
2033
2034 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2035 if (r)
2036 return (r == -ENODEV) ? -ENXIO : r;
2037
2038 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2039 return -EFAULT;
2040 break;
2041 }
2042 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2043 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2044
2045 r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
2046 break;
2047 }
2048
2049 }
2050
2051 return r;
2052 }
2053
2054 int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset)
2055 {
2056 if (vgic_find_range(ranges, 4, offset))
2057 return 0;
2058 else
2059 return -ENXIO;
2060 }
2061
2062 static void vgic_init_maintenance_interrupt(void *info)
2063 {
2064 enable_percpu_irq(vgic->maint_irq, 0);
2065 }
2066
2067 static int vgic_cpu_notify(struct notifier_block *self,
2068 unsigned long action, void *cpu)
2069 {
2070 switch (action) {
2071 case CPU_STARTING:
2072 case CPU_STARTING_FROZEN:
2073 vgic_init_maintenance_interrupt(NULL);
2074 break;
2075 case CPU_DYING:
2076 case CPU_DYING_FROZEN:
2077 disable_percpu_irq(vgic->maint_irq);
2078 break;
2079 }
2080
2081 return NOTIFY_OK;
2082 }
2083
2084 static struct notifier_block vgic_cpu_nb = {
2085 .notifier_call = vgic_cpu_notify,
2086 };
2087
2088 static const struct of_device_id vgic_ids[] = {
2089 { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
2090 { .compatible = "arm,cortex-a7-gic", .data = vgic_v2_probe, },
2091 { .compatible = "arm,gic-400", .data = vgic_v2_probe, },
2092 { .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
2093 {},
2094 };
2095
2096 int kvm_vgic_hyp_init(void)
2097 {
2098 const struct of_device_id *matched_id;
2099 const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2100 const struct vgic_params **);
2101 struct device_node *vgic_node;
2102 int ret;
2103
2104 vgic_node = of_find_matching_node_and_match(NULL,
2105 vgic_ids, &matched_id);
2106 if (!vgic_node) {
2107 kvm_err("error: no compatible GIC node found\n");
2108 return -ENODEV;
2109 }
2110
2111 vgic_probe = matched_id->data;
2112 ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2113 if (ret)
2114 return ret;
2115
2116 ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2117 "vgic", kvm_get_running_vcpus());
2118 if (ret) {
2119 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2120 return ret;
2121 }
2122
2123 ret = __register_cpu_notifier(&vgic_cpu_nb);
2124 if (ret) {
2125 kvm_err("Cannot register vgic CPU notifier\n");
2126 goto out_free_irq;
2127 }
2128
2129 on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2130
2131 return 0;
2132
2133 out_free_irq:
2134 free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2135 return ret;
2136 }
2137
2138 int kvm_irq_map_gsi(struct kvm *kvm,
2139 struct kvm_kernel_irq_routing_entry *entries,
2140 int gsi)
2141 {
2142 return 0;
2143 }
2144
2145 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
2146 {
2147 return pin;
2148 }
2149
2150 int kvm_set_irq(struct kvm *kvm, int irq_source_id,
2151 u32 irq, int level, bool line_status)
2152 {
2153 unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS;
2154
2155 trace_kvm_set_irq(irq, level, irq_source_id);
2156
2157 BUG_ON(!vgic_initialized(kvm));
2158
2159 return kvm_vgic_inject_irq(kvm, 0, spi, level);
2160 }
2161
2162 /* MSI not implemented yet */
2163 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
2164 struct kvm *kvm, int irq_source_id,
2165 int level, bool line_status)
2166 {
2167 return 0;
2168 }
This page took 0.10061 seconds and 6 git commands to generate.