Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 /*
70 * Ordering of locks:
71 *
72 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
73 */
74
75 DEFINE_SPINLOCK(kvm_lock);
76 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
77 LIST_HEAD(vm_list);
78
79 static cpumask_var_t cpus_hardware_enabled;
80 static int kvm_usage_count = 0;
81 static atomic_t hardware_enable_failed;
82
83 struct kmem_cache *kvm_vcpu_cache;
84 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
85
86 static __read_mostly struct preempt_ops kvm_preempt_ops;
87
88 struct dentry *kvm_debugfs_dir;
89
90 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
91 unsigned long arg);
92 #ifdef CONFIG_COMPAT
93 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
94 unsigned long arg);
95 #endif
96 static int hardware_enable_all(void);
97 static void hardware_disable_all(void);
98
99 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
100
101 static void kvm_release_pfn_dirty(pfn_t pfn);
102 static void mark_page_dirty_in_slot(struct kvm *kvm,
103 struct kvm_memory_slot *memslot, gfn_t gfn);
104
105 __visible bool kvm_rebooting;
106 EXPORT_SYMBOL_GPL(kvm_rebooting);
107
108 static bool largepages_enabled = true;
109
110 bool kvm_is_reserved_pfn(pfn_t pfn)
111 {
112 if (pfn_valid(pfn))
113 return PageReserved(pfn_to_page(pfn));
114
115 return true;
116 }
117
118 /*
119 * Switches to specified vcpu, until a matching vcpu_put()
120 */
121 int vcpu_load(struct kvm_vcpu *vcpu)
122 {
123 int cpu;
124
125 if (mutex_lock_killable(&vcpu->mutex))
126 return -EINTR;
127 cpu = get_cpu();
128 preempt_notifier_register(&vcpu->preempt_notifier);
129 kvm_arch_vcpu_load(vcpu, cpu);
130 put_cpu();
131 return 0;
132 }
133
134 void vcpu_put(struct kvm_vcpu *vcpu)
135 {
136 preempt_disable();
137 kvm_arch_vcpu_put(vcpu);
138 preempt_notifier_unregister(&vcpu->preempt_notifier);
139 preempt_enable();
140 mutex_unlock(&vcpu->mutex);
141 }
142
143 static void ack_flush(void *_completed)
144 {
145 }
146
147 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
148 {
149 int i, cpu, me;
150 cpumask_var_t cpus;
151 bool called = true;
152 struct kvm_vcpu *vcpu;
153
154 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
155
156 me = get_cpu();
157 kvm_for_each_vcpu(i, vcpu, kvm) {
158 kvm_make_request(req, vcpu);
159 cpu = vcpu->cpu;
160
161 /* Set ->requests bit before we read ->mode */
162 smp_mb();
163
164 if (cpus != NULL && cpu != -1 && cpu != me &&
165 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
166 cpumask_set_cpu(cpu, cpus);
167 }
168 if (unlikely(cpus == NULL))
169 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
170 else if (!cpumask_empty(cpus))
171 smp_call_function_many(cpus, ack_flush, NULL, 1);
172 else
173 called = false;
174 put_cpu();
175 free_cpumask_var(cpus);
176 return called;
177 }
178
179 void kvm_flush_remote_tlbs(struct kvm *kvm)
180 {
181 long dirty_count = kvm->tlbs_dirty;
182
183 smp_mb();
184 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
185 ++kvm->stat.remote_tlb_flush;
186 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
187 }
188 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
189
190 void kvm_reload_remote_mmus(struct kvm *kvm)
191 {
192 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
193 }
194
195 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
196 {
197 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
198 }
199
200 void kvm_make_scan_ioapic_request(struct kvm *kvm)
201 {
202 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
203 }
204
205 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
206 {
207 struct page *page;
208 int r;
209
210 mutex_init(&vcpu->mutex);
211 vcpu->cpu = -1;
212 vcpu->kvm = kvm;
213 vcpu->vcpu_id = id;
214 vcpu->pid = NULL;
215 init_waitqueue_head(&vcpu->wq);
216 kvm_async_pf_vcpu_init(vcpu);
217
218 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
219 if (!page) {
220 r = -ENOMEM;
221 goto fail;
222 }
223 vcpu->run = page_address(page);
224
225 kvm_vcpu_set_in_spin_loop(vcpu, false);
226 kvm_vcpu_set_dy_eligible(vcpu, false);
227 vcpu->preempted = false;
228
229 r = kvm_arch_vcpu_init(vcpu);
230 if (r < 0)
231 goto fail_free_run;
232 return 0;
233
234 fail_free_run:
235 free_page((unsigned long)vcpu->run);
236 fail:
237 return r;
238 }
239 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
240
241 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
242 {
243 put_pid(vcpu->pid);
244 kvm_arch_vcpu_uninit(vcpu);
245 free_page((unsigned long)vcpu->run);
246 }
247 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
248
249 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
250 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
251 {
252 return container_of(mn, struct kvm, mmu_notifier);
253 }
254
255 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
256 struct mm_struct *mm,
257 unsigned long address)
258 {
259 struct kvm *kvm = mmu_notifier_to_kvm(mn);
260 int need_tlb_flush, idx;
261
262 /*
263 * When ->invalidate_page runs, the linux pte has been zapped
264 * already but the page is still allocated until
265 * ->invalidate_page returns. So if we increase the sequence
266 * here the kvm page fault will notice if the spte can't be
267 * established because the page is going to be freed. If
268 * instead the kvm page fault establishes the spte before
269 * ->invalidate_page runs, kvm_unmap_hva will release it
270 * before returning.
271 *
272 * The sequence increase only need to be seen at spin_unlock
273 * time, and not at spin_lock time.
274 *
275 * Increasing the sequence after the spin_unlock would be
276 * unsafe because the kvm page fault could then establish the
277 * pte after kvm_unmap_hva returned, without noticing the page
278 * is going to be freed.
279 */
280 idx = srcu_read_lock(&kvm->srcu);
281 spin_lock(&kvm->mmu_lock);
282
283 kvm->mmu_notifier_seq++;
284 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
285 /* we've to flush the tlb before the pages can be freed */
286 if (need_tlb_flush)
287 kvm_flush_remote_tlbs(kvm);
288
289 spin_unlock(&kvm->mmu_lock);
290
291 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
292
293 srcu_read_unlock(&kvm->srcu, idx);
294 }
295
296 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
297 struct mm_struct *mm,
298 unsigned long address,
299 pte_t pte)
300 {
301 struct kvm *kvm = mmu_notifier_to_kvm(mn);
302 int idx;
303
304 idx = srcu_read_lock(&kvm->srcu);
305 spin_lock(&kvm->mmu_lock);
306 kvm->mmu_notifier_seq++;
307 kvm_set_spte_hva(kvm, address, pte);
308 spin_unlock(&kvm->mmu_lock);
309 srcu_read_unlock(&kvm->srcu, idx);
310 }
311
312 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
313 struct mm_struct *mm,
314 unsigned long start,
315 unsigned long end)
316 {
317 struct kvm *kvm = mmu_notifier_to_kvm(mn);
318 int need_tlb_flush = 0, idx;
319
320 idx = srcu_read_lock(&kvm->srcu);
321 spin_lock(&kvm->mmu_lock);
322 /*
323 * The count increase must become visible at unlock time as no
324 * spte can be established without taking the mmu_lock and
325 * count is also read inside the mmu_lock critical section.
326 */
327 kvm->mmu_notifier_count++;
328 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
329 need_tlb_flush |= kvm->tlbs_dirty;
330 /* we've to flush the tlb before the pages can be freed */
331 if (need_tlb_flush)
332 kvm_flush_remote_tlbs(kvm);
333
334 spin_unlock(&kvm->mmu_lock);
335 srcu_read_unlock(&kvm->srcu, idx);
336 }
337
338 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
339 struct mm_struct *mm,
340 unsigned long start,
341 unsigned long end)
342 {
343 struct kvm *kvm = mmu_notifier_to_kvm(mn);
344
345 spin_lock(&kvm->mmu_lock);
346 /*
347 * This sequence increase will notify the kvm page fault that
348 * the page that is going to be mapped in the spte could have
349 * been freed.
350 */
351 kvm->mmu_notifier_seq++;
352 smp_wmb();
353 /*
354 * The above sequence increase must be visible before the
355 * below count decrease, which is ensured by the smp_wmb above
356 * in conjunction with the smp_rmb in mmu_notifier_retry().
357 */
358 kvm->mmu_notifier_count--;
359 spin_unlock(&kvm->mmu_lock);
360
361 BUG_ON(kvm->mmu_notifier_count < 0);
362 }
363
364 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
365 struct mm_struct *mm,
366 unsigned long start,
367 unsigned long end)
368 {
369 struct kvm *kvm = mmu_notifier_to_kvm(mn);
370 int young, idx;
371
372 idx = srcu_read_lock(&kvm->srcu);
373 spin_lock(&kvm->mmu_lock);
374
375 young = kvm_age_hva(kvm, start, end);
376 if (young)
377 kvm_flush_remote_tlbs(kvm);
378
379 spin_unlock(&kvm->mmu_lock);
380 srcu_read_unlock(&kvm->srcu, idx);
381
382 return young;
383 }
384
385 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
386 struct mm_struct *mm,
387 unsigned long address)
388 {
389 struct kvm *kvm = mmu_notifier_to_kvm(mn);
390 int young, idx;
391
392 idx = srcu_read_lock(&kvm->srcu);
393 spin_lock(&kvm->mmu_lock);
394 young = kvm_test_age_hva(kvm, address);
395 spin_unlock(&kvm->mmu_lock);
396 srcu_read_unlock(&kvm->srcu, idx);
397
398 return young;
399 }
400
401 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
402 struct mm_struct *mm)
403 {
404 struct kvm *kvm = mmu_notifier_to_kvm(mn);
405 int idx;
406
407 idx = srcu_read_lock(&kvm->srcu);
408 kvm_arch_flush_shadow_all(kvm);
409 srcu_read_unlock(&kvm->srcu, idx);
410 }
411
412 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
413 .invalidate_page = kvm_mmu_notifier_invalidate_page,
414 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
415 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
416 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
417 .test_young = kvm_mmu_notifier_test_young,
418 .change_pte = kvm_mmu_notifier_change_pte,
419 .release = kvm_mmu_notifier_release,
420 };
421
422 static int kvm_init_mmu_notifier(struct kvm *kvm)
423 {
424 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
425 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
426 }
427
428 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
429
430 static int kvm_init_mmu_notifier(struct kvm *kvm)
431 {
432 return 0;
433 }
434
435 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
436
437 static void kvm_init_memslots_id(struct kvm *kvm)
438 {
439 int i;
440 struct kvm_memslots *slots = kvm->memslots;
441
442 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
443 slots->id_to_index[i] = slots->memslots[i].id = i;
444 }
445
446 static struct kvm *kvm_create_vm(unsigned long type)
447 {
448 int r, i;
449 struct kvm *kvm = kvm_arch_alloc_vm();
450
451 if (!kvm)
452 return ERR_PTR(-ENOMEM);
453
454 r = kvm_arch_init_vm(kvm, type);
455 if (r)
456 goto out_err_no_disable;
457
458 r = hardware_enable_all();
459 if (r)
460 goto out_err_no_disable;
461
462 #ifdef CONFIG_HAVE_KVM_IRQFD
463 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
464 #endif
465
466 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
467
468 r = -ENOMEM;
469 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
470 if (!kvm->memslots)
471 goto out_err_no_srcu;
472
473 /*
474 * Init kvm generation close to the maximum to easily test the
475 * code of handling generation number wrap-around.
476 */
477 kvm->memslots->generation = -150;
478
479 kvm_init_memslots_id(kvm);
480 if (init_srcu_struct(&kvm->srcu))
481 goto out_err_no_srcu;
482 if (init_srcu_struct(&kvm->irq_srcu))
483 goto out_err_no_irq_srcu;
484 for (i = 0; i < KVM_NR_BUSES; i++) {
485 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
486 GFP_KERNEL);
487 if (!kvm->buses[i])
488 goto out_err;
489 }
490
491 spin_lock_init(&kvm->mmu_lock);
492 kvm->mm = current->mm;
493 atomic_inc(&kvm->mm->mm_count);
494 kvm_eventfd_init(kvm);
495 mutex_init(&kvm->lock);
496 mutex_init(&kvm->irq_lock);
497 mutex_init(&kvm->slots_lock);
498 atomic_set(&kvm->users_count, 1);
499 INIT_LIST_HEAD(&kvm->devices);
500
501 r = kvm_init_mmu_notifier(kvm);
502 if (r)
503 goto out_err;
504
505 spin_lock(&kvm_lock);
506 list_add(&kvm->vm_list, &vm_list);
507 spin_unlock(&kvm_lock);
508
509 return kvm;
510
511 out_err:
512 cleanup_srcu_struct(&kvm->irq_srcu);
513 out_err_no_irq_srcu:
514 cleanup_srcu_struct(&kvm->srcu);
515 out_err_no_srcu:
516 hardware_disable_all();
517 out_err_no_disable:
518 for (i = 0; i < KVM_NR_BUSES; i++)
519 kfree(kvm->buses[i]);
520 kfree(kvm->memslots);
521 kvm_arch_free_vm(kvm);
522 return ERR_PTR(r);
523 }
524
525 /*
526 * Avoid using vmalloc for a small buffer.
527 * Should not be used when the size is statically known.
528 */
529 void *kvm_kvzalloc(unsigned long size)
530 {
531 if (size > PAGE_SIZE)
532 return vzalloc(size);
533 else
534 return kzalloc(size, GFP_KERNEL);
535 }
536
537 void kvm_kvfree(const void *addr)
538 {
539 if (is_vmalloc_addr(addr))
540 vfree(addr);
541 else
542 kfree(addr);
543 }
544
545 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
546 {
547 if (!memslot->dirty_bitmap)
548 return;
549
550 kvm_kvfree(memslot->dirty_bitmap);
551 memslot->dirty_bitmap = NULL;
552 }
553
554 /*
555 * Free any memory in @free but not in @dont.
556 */
557 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
558 struct kvm_memory_slot *dont)
559 {
560 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
561 kvm_destroy_dirty_bitmap(free);
562
563 kvm_arch_free_memslot(kvm, free, dont);
564
565 free->npages = 0;
566 }
567
568 static void kvm_free_physmem(struct kvm *kvm)
569 {
570 struct kvm_memslots *slots = kvm->memslots;
571 struct kvm_memory_slot *memslot;
572
573 kvm_for_each_memslot(memslot, slots)
574 kvm_free_physmem_slot(kvm, memslot, NULL);
575
576 kfree(kvm->memslots);
577 }
578
579 static void kvm_destroy_devices(struct kvm *kvm)
580 {
581 struct list_head *node, *tmp;
582
583 list_for_each_safe(node, tmp, &kvm->devices) {
584 struct kvm_device *dev =
585 list_entry(node, struct kvm_device, vm_node);
586
587 list_del(node);
588 dev->ops->destroy(dev);
589 }
590 }
591
592 static void kvm_destroy_vm(struct kvm *kvm)
593 {
594 int i;
595 struct mm_struct *mm = kvm->mm;
596
597 kvm_arch_sync_events(kvm);
598 spin_lock(&kvm_lock);
599 list_del(&kvm->vm_list);
600 spin_unlock(&kvm_lock);
601 kvm_free_irq_routing(kvm);
602 for (i = 0; i < KVM_NR_BUSES; i++)
603 kvm_io_bus_destroy(kvm->buses[i]);
604 kvm_coalesced_mmio_free(kvm);
605 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
606 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
607 #else
608 kvm_arch_flush_shadow_all(kvm);
609 #endif
610 kvm_arch_destroy_vm(kvm);
611 kvm_destroy_devices(kvm);
612 kvm_free_physmem(kvm);
613 cleanup_srcu_struct(&kvm->irq_srcu);
614 cleanup_srcu_struct(&kvm->srcu);
615 kvm_arch_free_vm(kvm);
616 hardware_disable_all();
617 mmdrop(mm);
618 }
619
620 void kvm_get_kvm(struct kvm *kvm)
621 {
622 atomic_inc(&kvm->users_count);
623 }
624 EXPORT_SYMBOL_GPL(kvm_get_kvm);
625
626 void kvm_put_kvm(struct kvm *kvm)
627 {
628 if (atomic_dec_and_test(&kvm->users_count))
629 kvm_destroy_vm(kvm);
630 }
631 EXPORT_SYMBOL_GPL(kvm_put_kvm);
632
633
634 static int kvm_vm_release(struct inode *inode, struct file *filp)
635 {
636 struct kvm *kvm = filp->private_data;
637
638 kvm_irqfd_release(kvm);
639
640 kvm_put_kvm(kvm);
641 return 0;
642 }
643
644 /*
645 * Allocation size is twice as large as the actual dirty bitmap size.
646 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
647 */
648 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
649 {
650 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
651
652 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
653 if (!memslot->dirty_bitmap)
654 return -ENOMEM;
655
656 return 0;
657 }
658
659 /*
660 * Insert memslot and re-sort memslots based on their GFN,
661 * so binary search could be used to lookup GFN.
662 * Sorting algorithm takes advantage of having initially
663 * sorted array and known changed memslot position.
664 */
665 static void update_memslots(struct kvm_memslots *slots,
666 struct kvm_memory_slot *new)
667 {
668 int id = new->id;
669 int i = slots->id_to_index[id];
670 struct kvm_memory_slot *mslots = slots->memslots;
671
672 WARN_ON(mslots[i].id != id);
673 if (!new->npages) {
674 WARN_ON(!mslots[i].npages);
675 new->base_gfn = 0;
676 if (mslots[i].npages)
677 slots->used_slots--;
678 } else {
679 if (!mslots[i].npages)
680 slots->used_slots++;
681 }
682
683 while (i < KVM_MEM_SLOTS_NUM - 1 &&
684 new->base_gfn <= mslots[i + 1].base_gfn) {
685 if (!mslots[i + 1].npages)
686 break;
687 mslots[i] = mslots[i + 1];
688 slots->id_to_index[mslots[i].id] = i;
689 i++;
690 }
691
692 /*
693 * The ">=" is needed when creating a slot with base_gfn == 0,
694 * so that it moves before all those with base_gfn == npages == 0.
695 *
696 * On the other hand, if new->npages is zero, the above loop has
697 * already left i pointing to the beginning of the empty part of
698 * mslots, and the ">=" would move the hole backwards in this
699 * case---which is wrong. So skip the loop when deleting a slot.
700 */
701 if (new->npages) {
702 while (i > 0 &&
703 new->base_gfn >= mslots[i - 1].base_gfn) {
704 mslots[i] = mslots[i - 1];
705 slots->id_to_index[mslots[i].id] = i;
706 i--;
707 }
708 } else
709 WARN_ON_ONCE(i != slots->used_slots);
710
711 mslots[i] = *new;
712 slots->id_to_index[mslots[i].id] = i;
713 }
714
715 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
716 {
717 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
718
719 #ifdef __KVM_HAVE_READONLY_MEM
720 valid_flags |= KVM_MEM_READONLY;
721 #endif
722
723 if (mem->flags & ~valid_flags)
724 return -EINVAL;
725
726 return 0;
727 }
728
729 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
730 struct kvm_memslots *slots)
731 {
732 struct kvm_memslots *old_memslots = kvm->memslots;
733
734 /*
735 * Set the low bit in the generation, which disables SPTE caching
736 * until the end of synchronize_srcu_expedited.
737 */
738 WARN_ON(old_memslots->generation & 1);
739 slots->generation = old_memslots->generation + 1;
740
741 rcu_assign_pointer(kvm->memslots, slots);
742 synchronize_srcu_expedited(&kvm->srcu);
743
744 /*
745 * Increment the new memslot generation a second time. This prevents
746 * vm exits that race with memslot updates from caching a memslot
747 * generation that will (potentially) be valid forever.
748 */
749 slots->generation++;
750
751 kvm_arch_memslots_updated(kvm);
752
753 return old_memslots;
754 }
755
756 /*
757 * Allocate some memory and give it an address in the guest physical address
758 * space.
759 *
760 * Discontiguous memory is allowed, mostly for framebuffers.
761 *
762 * Must be called holding kvm->slots_lock for write.
763 */
764 int __kvm_set_memory_region(struct kvm *kvm,
765 struct kvm_userspace_memory_region *mem)
766 {
767 int r;
768 gfn_t base_gfn;
769 unsigned long npages;
770 struct kvm_memory_slot *slot;
771 struct kvm_memory_slot old, new;
772 struct kvm_memslots *slots = NULL, *old_memslots;
773 enum kvm_mr_change change;
774
775 r = check_memory_region_flags(mem);
776 if (r)
777 goto out;
778
779 r = -EINVAL;
780 /* General sanity checks */
781 if (mem->memory_size & (PAGE_SIZE - 1))
782 goto out;
783 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
784 goto out;
785 /* We can read the guest memory with __xxx_user() later on. */
786 if ((mem->slot < KVM_USER_MEM_SLOTS) &&
787 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
788 !access_ok(VERIFY_WRITE,
789 (void __user *)(unsigned long)mem->userspace_addr,
790 mem->memory_size)))
791 goto out;
792 if (mem->slot >= KVM_MEM_SLOTS_NUM)
793 goto out;
794 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
795 goto out;
796
797 slot = id_to_memslot(kvm->memslots, mem->slot);
798 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
799 npages = mem->memory_size >> PAGE_SHIFT;
800
801 if (npages > KVM_MEM_MAX_NR_PAGES)
802 goto out;
803
804 if (!npages)
805 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
806
807 new = old = *slot;
808
809 new.id = mem->slot;
810 new.base_gfn = base_gfn;
811 new.npages = npages;
812 new.flags = mem->flags;
813
814 if (npages) {
815 if (!old.npages)
816 change = KVM_MR_CREATE;
817 else { /* Modify an existing slot. */
818 if ((mem->userspace_addr != old.userspace_addr) ||
819 (npages != old.npages) ||
820 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
821 goto out;
822
823 if (base_gfn != old.base_gfn)
824 change = KVM_MR_MOVE;
825 else if (new.flags != old.flags)
826 change = KVM_MR_FLAGS_ONLY;
827 else { /* Nothing to change. */
828 r = 0;
829 goto out;
830 }
831 }
832 } else if (old.npages) {
833 change = KVM_MR_DELETE;
834 } else /* Modify a non-existent slot: disallowed. */
835 goto out;
836
837 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
838 /* Check for overlaps */
839 r = -EEXIST;
840 kvm_for_each_memslot(slot, kvm->memslots) {
841 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
842 (slot->id == mem->slot))
843 continue;
844 if (!((base_gfn + npages <= slot->base_gfn) ||
845 (base_gfn >= slot->base_gfn + slot->npages)))
846 goto out;
847 }
848 }
849
850 /* Free page dirty bitmap if unneeded */
851 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
852 new.dirty_bitmap = NULL;
853
854 r = -ENOMEM;
855 if (change == KVM_MR_CREATE) {
856 new.userspace_addr = mem->userspace_addr;
857
858 if (kvm_arch_create_memslot(kvm, &new, npages))
859 goto out_free;
860 }
861
862 /* Allocate page dirty bitmap if needed */
863 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
864 if (kvm_create_dirty_bitmap(&new) < 0)
865 goto out_free;
866 }
867
868 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
869 GFP_KERNEL);
870 if (!slots)
871 goto out_free;
872
873 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
874 slot = id_to_memslot(slots, mem->slot);
875 slot->flags |= KVM_MEMSLOT_INVALID;
876
877 old_memslots = install_new_memslots(kvm, slots);
878
879 /* slot was deleted or moved, clear iommu mapping */
880 kvm_iommu_unmap_pages(kvm, &old);
881 /* From this point no new shadow pages pointing to a deleted,
882 * or moved, memslot will be created.
883 *
884 * validation of sp->gfn happens in:
885 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
886 * - kvm_is_visible_gfn (mmu_check_roots)
887 */
888 kvm_arch_flush_shadow_memslot(kvm, slot);
889
890 /*
891 * We can re-use the old_memslots from above, the only difference
892 * from the currently installed memslots is the invalid flag. This
893 * will get overwritten by update_memslots anyway.
894 */
895 slots = old_memslots;
896 }
897
898 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
899 if (r)
900 goto out_slots;
901
902 /* actual memory is freed via old in kvm_free_physmem_slot below */
903 if (change == KVM_MR_DELETE) {
904 new.dirty_bitmap = NULL;
905 memset(&new.arch, 0, sizeof(new.arch));
906 }
907
908 update_memslots(slots, &new);
909 old_memslots = install_new_memslots(kvm, slots);
910
911 kvm_arch_commit_memory_region(kvm, mem, &old, change);
912
913 kvm_free_physmem_slot(kvm, &old, &new);
914 kfree(old_memslots);
915
916 /*
917 * IOMMU mapping: New slots need to be mapped. Old slots need to be
918 * un-mapped and re-mapped if their base changes. Since base change
919 * unmapping is handled above with slot deletion, mapping alone is
920 * needed here. Anything else the iommu might care about for existing
921 * slots (size changes, userspace addr changes and read-only flag
922 * changes) is disallowed above, so any other attribute changes getting
923 * here can be skipped.
924 */
925 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
926 r = kvm_iommu_map_pages(kvm, &new);
927 return r;
928 }
929
930 return 0;
931
932 out_slots:
933 kfree(slots);
934 out_free:
935 kvm_free_physmem_slot(kvm, &new, &old);
936 out:
937 return r;
938 }
939 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
940
941 int kvm_set_memory_region(struct kvm *kvm,
942 struct kvm_userspace_memory_region *mem)
943 {
944 int r;
945
946 mutex_lock(&kvm->slots_lock);
947 r = __kvm_set_memory_region(kvm, mem);
948 mutex_unlock(&kvm->slots_lock);
949 return r;
950 }
951 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
952
953 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
954 struct kvm_userspace_memory_region *mem)
955 {
956 if (mem->slot >= KVM_USER_MEM_SLOTS)
957 return -EINVAL;
958 return kvm_set_memory_region(kvm, mem);
959 }
960
961 int kvm_get_dirty_log(struct kvm *kvm,
962 struct kvm_dirty_log *log, int *is_dirty)
963 {
964 struct kvm_memory_slot *memslot;
965 int r, i;
966 unsigned long n;
967 unsigned long any = 0;
968
969 r = -EINVAL;
970 if (log->slot >= KVM_USER_MEM_SLOTS)
971 goto out;
972
973 memslot = id_to_memslot(kvm->memslots, log->slot);
974 r = -ENOENT;
975 if (!memslot->dirty_bitmap)
976 goto out;
977
978 n = kvm_dirty_bitmap_bytes(memslot);
979
980 for (i = 0; !any && i < n/sizeof(long); ++i)
981 any = memslot->dirty_bitmap[i];
982
983 r = -EFAULT;
984 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
985 goto out;
986
987 if (any)
988 *is_dirty = 1;
989
990 r = 0;
991 out:
992 return r;
993 }
994 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
995
996 bool kvm_largepages_enabled(void)
997 {
998 return largepages_enabled;
999 }
1000
1001 void kvm_disable_largepages(void)
1002 {
1003 largepages_enabled = false;
1004 }
1005 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1006
1007 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1008 {
1009 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1010 }
1011 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1012
1013 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1014 {
1015 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1016
1017 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1018 memslot->flags & KVM_MEMSLOT_INVALID)
1019 return 0;
1020
1021 return 1;
1022 }
1023 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1024
1025 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1026 {
1027 struct vm_area_struct *vma;
1028 unsigned long addr, size;
1029
1030 size = PAGE_SIZE;
1031
1032 addr = gfn_to_hva(kvm, gfn);
1033 if (kvm_is_error_hva(addr))
1034 return PAGE_SIZE;
1035
1036 down_read(&current->mm->mmap_sem);
1037 vma = find_vma(current->mm, addr);
1038 if (!vma)
1039 goto out;
1040
1041 size = vma_kernel_pagesize(vma);
1042
1043 out:
1044 up_read(&current->mm->mmap_sem);
1045
1046 return size;
1047 }
1048
1049 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1050 {
1051 return slot->flags & KVM_MEM_READONLY;
1052 }
1053
1054 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1055 gfn_t *nr_pages, bool write)
1056 {
1057 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1058 return KVM_HVA_ERR_BAD;
1059
1060 if (memslot_is_readonly(slot) && write)
1061 return KVM_HVA_ERR_RO_BAD;
1062
1063 if (nr_pages)
1064 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1065
1066 return __gfn_to_hva_memslot(slot, gfn);
1067 }
1068
1069 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1070 gfn_t *nr_pages)
1071 {
1072 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1073 }
1074
1075 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1076 gfn_t gfn)
1077 {
1078 return gfn_to_hva_many(slot, gfn, NULL);
1079 }
1080 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1081
1082 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1083 {
1084 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1085 }
1086 EXPORT_SYMBOL_GPL(gfn_to_hva);
1087
1088 /*
1089 * If writable is set to false, the hva returned by this function is only
1090 * allowed to be read.
1091 */
1092 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1093 gfn_t gfn, bool *writable)
1094 {
1095 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1096
1097 if (!kvm_is_error_hva(hva) && writable)
1098 *writable = !memslot_is_readonly(slot);
1099
1100 return hva;
1101 }
1102
1103 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1104 {
1105 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1106
1107 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1108 }
1109
1110 static int kvm_read_hva(void *data, void __user *hva, int len)
1111 {
1112 return __copy_from_user(data, hva, len);
1113 }
1114
1115 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1116 {
1117 return __copy_from_user_inatomic(data, hva, len);
1118 }
1119
1120 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1121 unsigned long start, int write, struct page **page)
1122 {
1123 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1124
1125 if (write)
1126 flags |= FOLL_WRITE;
1127
1128 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1129 }
1130
1131 int kvm_get_user_page_io(struct task_struct *tsk, struct mm_struct *mm,
1132 unsigned long addr, bool write_fault,
1133 struct page **pagep)
1134 {
1135 int npages;
1136 int locked = 1;
1137 int flags = FOLL_TOUCH | FOLL_HWPOISON |
1138 (pagep ? FOLL_GET : 0) |
1139 (write_fault ? FOLL_WRITE : 0);
1140
1141 /*
1142 * If retrying the fault, we get here *not* having allowed the filemap
1143 * to wait on the page lock. We should now allow waiting on the IO with
1144 * the mmap semaphore released.
1145 */
1146 down_read(&mm->mmap_sem);
1147 npages = __get_user_pages(tsk, mm, addr, 1, flags, pagep, NULL,
1148 &locked);
1149 if (!locked) {
1150 VM_BUG_ON(npages);
1151
1152 if (!pagep)
1153 return 0;
1154
1155 /*
1156 * The previous call has now waited on the IO. Now we can
1157 * retry and complete. Pass TRIED to ensure we do not re
1158 * schedule async IO (see e.g. filemap_fault).
1159 */
1160 down_read(&mm->mmap_sem);
1161 npages = __get_user_pages(tsk, mm, addr, 1, flags | FOLL_TRIED,
1162 pagep, NULL, NULL);
1163 }
1164 up_read(&mm->mmap_sem);
1165 return npages;
1166 }
1167
1168 static inline int check_user_page_hwpoison(unsigned long addr)
1169 {
1170 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1171
1172 rc = __get_user_pages(current, current->mm, addr, 1,
1173 flags, NULL, NULL, NULL);
1174 return rc == -EHWPOISON;
1175 }
1176
1177 /*
1178 * The atomic path to get the writable pfn which will be stored in @pfn,
1179 * true indicates success, otherwise false is returned.
1180 */
1181 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1182 bool write_fault, bool *writable, pfn_t *pfn)
1183 {
1184 struct page *page[1];
1185 int npages;
1186
1187 if (!(async || atomic))
1188 return false;
1189
1190 /*
1191 * Fast pin a writable pfn only if it is a write fault request
1192 * or the caller allows to map a writable pfn for a read fault
1193 * request.
1194 */
1195 if (!(write_fault || writable))
1196 return false;
1197
1198 npages = __get_user_pages_fast(addr, 1, 1, page);
1199 if (npages == 1) {
1200 *pfn = page_to_pfn(page[0]);
1201
1202 if (writable)
1203 *writable = true;
1204 return true;
1205 }
1206
1207 return false;
1208 }
1209
1210 /*
1211 * The slow path to get the pfn of the specified host virtual address,
1212 * 1 indicates success, -errno is returned if error is detected.
1213 */
1214 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1215 bool *writable, pfn_t *pfn)
1216 {
1217 struct page *page[1];
1218 int npages = 0;
1219
1220 might_sleep();
1221
1222 if (writable)
1223 *writable = write_fault;
1224
1225 if (async) {
1226 down_read(&current->mm->mmap_sem);
1227 npages = get_user_page_nowait(current, current->mm,
1228 addr, write_fault, page);
1229 up_read(&current->mm->mmap_sem);
1230 } else {
1231 /*
1232 * By now we have tried gup_fast, and possibly async_pf, and we
1233 * are certainly not atomic. Time to retry the gup, allowing
1234 * mmap semaphore to be relinquished in the case of IO.
1235 */
1236 npages = kvm_get_user_page_io(current, current->mm, addr,
1237 write_fault, page);
1238 }
1239 if (npages != 1)
1240 return npages;
1241
1242 /* map read fault as writable if possible */
1243 if (unlikely(!write_fault) && writable) {
1244 struct page *wpage[1];
1245
1246 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1247 if (npages == 1) {
1248 *writable = true;
1249 put_page(page[0]);
1250 page[0] = wpage[0];
1251 }
1252
1253 npages = 1;
1254 }
1255 *pfn = page_to_pfn(page[0]);
1256 return npages;
1257 }
1258
1259 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1260 {
1261 if (unlikely(!(vma->vm_flags & VM_READ)))
1262 return false;
1263
1264 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1265 return false;
1266
1267 return true;
1268 }
1269
1270 /*
1271 * Pin guest page in memory and return its pfn.
1272 * @addr: host virtual address which maps memory to the guest
1273 * @atomic: whether this function can sleep
1274 * @async: whether this function need to wait IO complete if the
1275 * host page is not in the memory
1276 * @write_fault: whether we should get a writable host page
1277 * @writable: whether it allows to map a writable host page for !@write_fault
1278 *
1279 * The function will map a writable host page for these two cases:
1280 * 1): @write_fault = true
1281 * 2): @write_fault = false && @writable, @writable will tell the caller
1282 * whether the mapping is writable.
1283 */
1284 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1285 bool write_fault, bool *writable)
1286 {
1287 struct vm_area_struct *vma;
1288 pfn_t pfn = 0;
1289 int npages;
1290
1291 /* we can do it either atomically or asynchronously, not both */
1292 BUG_ON(atomic && async);
1293
1294 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1295 return pfn;
1296
1297 if (atomic)
1298 return KVM_PFN_ERR_FAULT;
1299
1300 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1301 if (npages == 1)
1302 return pfn;
1303
1304 down_read(&current->mm->mmap_sem);
1305 if (npages == -EHWPOISON ||
1306 (!async && check_user_page_hwpoison(addr))) {
1307 pfn = KVM_PFN_ERR_HWPOISON;
1308 goto exit;
1309 }
1310
1311 vma = find_vma_intersection(current->mm, addr, addr + 1);
1312
1313 if (vma == NULL)
1314 pfn = KVM_PFN_ERR_FAULT;
1315 else if ((vma->vm_flags & VM_PFNMAP)) {
1316 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1317 vma->vm_pgoff;
1318 BUG_ON(!kvm_is_reserved_pfn(pfn));
1319 } else {
1320 if (async && vma_is_valid(vma, write_fault))
1321 *async = true;
1322 pfn = KVM_PFN_ERR_FAULT;
1323 }
1324 exit:
1325 up_read(&current->mm->mmap_sem);
1326 return pfn;
1327 }
1328
1329 static pfn_t
1330 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1331 bool *async, bool write_fault, bool *writable)
1332 {
1333 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1334
1335 if (addr == KVM_HVA_ERR_RO_BAD)
1336 return KVM_PFN_ERR_RO_FAULT;
1337
1338 if (kvm_is_error_hva(addr))
1339 return KVM_PFN_NOSLOT;
1340
1341 /* Do not map writable pfn in the readonly memslot. */
1342 if (writable && memslot_is_readonly(slot)) {
1343 *writable = false;
1344 writable = NULL;
1345 }
1346
1347 return hva_to_pfn(addr, atomic, async, write_fault,
1348 writable);
1349 }
1350
1351 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1352 bool write_fault, bool *writable)
1353 {
1354 struct kvm_memory_slot *slot;
1355
1356 if (async)
1357 *async = false;
1358
1359 slot = gfn_to_memslot(kvm, gfn);
1360
1361 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1362 writable);
1363 }
1364
1365 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1366 {
1367 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1368 }
1369 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1370
1371 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1372 bool write_fault, bool *writable)
1373 {
1374 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1375 }
1376 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1377
1378 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1379 {
1380 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1381 }
1382 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1383
1384 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1385 bool *writable)
1386 {
1387 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1388 }
1389 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1390
1391 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1392 {
1393 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1394 }
1395
1396 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1397 {
1398 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1399 }
1400 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1401
1402 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1403 int nr_pages)
1404 {
1405 unsigned long addr;
1406 gfn_t entry;
1407
1408 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1409 if (kvm_is_error_hva(addr))
1410 return -1;
1411
1412 if (entry < nr_pages)
1413 return 0;
1414
1415 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1416 }
1417 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1418
1419 static struct page *kvm_pfn_to_page(pfn_t pfn)
1420 {
1421 if (is_error_noslot_pfn(pfn))
1422 return KVM_ERR_PTR_BAD_PAGE;
1423
1424 if (kvm_is_reserved_pfn(pfn)) {
1425 WARN_ON(1);
1426 return KVM_ERR_PTR_BAD_PAGE;
1427 }
1428
1429 return pfn_to_page(pfn);
1430 }
1431
1432 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1433 {
1434 pfn_t pfn;
1435
1436 pfn = gfn_to_pfn(kvm, gfn);
1437
1438 return kvm_pfn_to_page(pfn);
1439 }
1440
1441 EXPORT_SYMBOL_GPL(gfn_to_page);
1442
1443 void kvm_release_page_clean(struct page *page)
1444 {
1445 WARN_ON(is_error_page(page));
1446
1447 kvm_release_pfn_clean(page_to_pfn(page));
1448 }
1449 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1450
1451 void kvm_release_pfn_clean(pfn_t pfn)
1452 {
1453 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1454 put_page(pfn_to_page(pfn));
1455 }
1456 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1457
1458 void kvm_release_page_dirty(struct page *page)
1459 {
1460 WARN_ON(is_error_page(page));
1461
1462 kvm_release_pfn_dirty(page_to_pfn(page));
1463 }
1464 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1465
1466 static void kvm_release_pfn_dirty(pfn_t pfn)
1467 {
1468 kvm_set_pfn_dirty(pfn);
1469 kvm_release_pfn_clean(pfn);
1470 }
1471
1472 void kvm_set_pfn_dirty(pfn_t pfn)
1473 {
1474 if (!kvm_is_reserved_pfn(pfn)) {
1475 struct page *page = pfn_to_page(pfn);
1476 if (!PageReserved(page))
1477 SetPageDirty(page);
1478 }
1479 }
1480 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1481
1482 void kvm_set_pfn_accessed(pfn_t pfn)
1483 {
1484 if (!kvm_is_reserved_pfn(pfn))
1485 mark_page_accessed(pfn_to_page(pfn));
1486 }
1487 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1488
1489 void kvm_get_pfn(pfn_t pfn)
1490 {
1491 if (!kvm_is_reserved_pfn(pfn))
1492 get_page(pfn_to_page(pfn));
1493 }
1494 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1495
1496 static int next_segment(unsigned long len, int offset)
1497 {
1498 if (len > PAGE_SIZE - offset)
1499 return PAGE_SIZE - offset;
1500 else
1501 return len;
1502 }
1503
1504 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1505 int len)
1506 {
1507 int r;
1508 unsigned long addr;
1509
1510 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1511 if (kvm_is_error_hva(addr))
1512 return -EFAULT;
1513 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1514 if (r)
1515 return -EFAULT;
1516 return 0;
1517 }
1518 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1519
1520 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1521 {
1522 gfn_t gfn = gpa >> PAGE_SHIFT;
1523 int seg;
1524 int offset = offset_in_page(gpa);
1525 int ret;
1526
1527 while ((seg = next_segment(len, offset)) != 0) {
1528 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1529 if (ret < 0)
1530 return ret;
1531 offset = 0;
1532 len -= seg;
1533 data += seg;
1534 ++gfn;
1535 }
1536 return 0;
1537 }
1538 EXPORT_SYMBOL_GPL(kvm_read_guest);
1539
1540 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1541 unsigned long len)
1542 {
1543 int r;
1544 unsigned long addr;
1545 gfn_t gfn = gpa >> PAGE_SHIFT;
1546 int offset = offset_in_page(gpa);
1547
1548 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1549 if (kvm_is_error_hva(addr))
1550 return -EFAULT;
1551 pagefault_disable();
1552 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1553 pagefault_enable();
1554 if (r)
1555 return -EFAULT;
1556 return 0;
1557 }
1558 EXPORT_SYMBOL(kvm_read_guest_atomic);
1559
1560 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1561 int offset, int len)
1562 {
1563 int r;
1564 unsigned long addr;
1565
1566 addr = gfn_to_hva(kvm, gfn);
1567 if (kvm_is_error_hva(addr))
1568 return -EFAULT;
1569 r = __copy_to_user((void __user *)addr + offset, data, len);
1570 if (r)
1571 return -EFAULT;
1572 mark_page_dirty(kvm, gfn);
1573 return 0;
1574 }
1575 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1576
1577 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1578 unsigned long len)
1579 {
1580 gfn_t gfn = gpa >> PAGE_SHIFT;
1581 int seg;
1582 int offset = offset_in_page(gpa);
1583 int ret;
1584
1585 while ((seg = next_segment(len, offset)) != 0) {
1586 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1587 if (ret < 0)
1588 return ret;
1589 offset = 0;
1590 len -= seg;
1591 data += seg;
1592 ++gfn;
1593 }
1594 return 0;
1595 }
1596
1597 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1598 gpa_t gpa, unsigned long len)
1599 {
1600 struct kvm_memslots *slots = kvm_memslots(kvm);
1601 int offset = offset_in_page(gpa);
1602 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1603 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1604 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1605 gfn_t nr_pages_avail;
1606
1607 ghc->gpa = gpa;
1608 ghc->generation = slots->generation;
1609 ghc->len = len;
1610 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1611 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1612 if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1613 ghc->hva += offset;
1614 } else {
1615 /*
1616 * If the requested region crosses two memslots, we still
1617 * verify that the entire region is valid here.
1618 */
1619 while (start_gfn <= end_gfn) {
1620 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1621 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1622 &nr_pages_avail);
1623 if (kvm_is_error_hva(ghc->hva))
1624 return -EFAULT;
1625 start_gfn += nr_pages_avail;
1626 }
1627 /* Use the slow path for cross page reads and writes. */
1628 ghc->memslot = NULL;
1629 }
1630 return 0;
1631 }
1632 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1633
1634 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1635 void *data, unsigned long len)
1636 {
1637 struct kvm_memslots *slots = kvm_memslots(kvm);
1638 int r;
1639
1640 BUG_ON(len > ghc->len);
1641
1642 if (slots->generation != ghc->generation)
1643 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1644
1645 if (unlikely(!ghc->memslot))
1646 return kvm_write_guest(kvm, ghc->gpa, data, len);
1647
1648 if (kvm_is_error_hva(ghc->hva))
1649 return -EFAULT;
1650
1651 r = __copy_to_user((void __user *)ghc->hva, data, len);
1652 if (r)
1653 return -EFAULT;
1654 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1655
1656 return 0;
1657 }
1658 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1659
1660 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1661 void *data, unsigned long len)
1662 {
1663 struct kvm_memslots *slots = kvm_memslots(kvm);
1664 int r;
1665
1666 BUG_ON(len > ghc->len);
1667
1668 if (slots->generation != ghc->generation)
1669 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1670
1671 if (unlikely(!ghc->memslot))
1672 return kvm_read_guest(kvm, ghc->gpa, data, len);
1673
1674 if (kvm_is_error_hva(ghc->hva))
1675 return -EFAULT;
1676
1677 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1678 if (r)
1679 return -EFAULT;
1680
1681 return 0;
1682 }
1683 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1684
1685 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1686 {
1687 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1688
1689 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1690 }
1691 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1692
1693 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1694 {
1695 gfn_t gfn = gpa >> PAGE_SHIFT;
1696 int seg;
1697 int offset = offset_in_page(gpa);
1698 int ret;
1699
1700 while ((seg = next_segment(len, offset)) != 0) {
1701 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1702 if (ret < 0)
1703 return ret;
1704 offset = 0;
1705 len -= seg;
1706 ++gfn;
1707 }
1708 return 0;
1709 }
1710 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1711
1712 static void mark_page_dirty_in_slot(struct kvm *kvm,
1713 struct kvm_memory_slot *memslot,
1714 gfn_t gfn)
1715 {
1716 if (memslot && memslot->dirty_bitmap) {
1717 unsigned long rel_gfn = gfn - memslot->base_gfn;
1718
1719 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1720 }
1721 }
1722
1723 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1724 {
1725 struct kvm_memory_slot *memslot;
1726
1727 memslot = gfn_to_memslot(kvm, gfn);
1728 mark_page_dirty_in_slot(kvm, memslot, gfn);
1729 }
1730 EXPORT_SYMBOL_GPL(mark_page_dirty);
1731
1732 /*
1733 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1734 */
1735 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1736 {
1737 DEFINE_WAIT(wait);
1738
1739 for (;;) {
1740 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1741
1742 if (kvm_arch_vcpu_runnable(vcpu)) {
1743 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1744 break;
1745 }
1746 if (kvm_cpu_has_pending_timer(vcpu))
1747 break;
1748 if (signal_pending(current))
1749 break;
1750
1751 schedule();
1752 }
1753
1754 finish_wait(&vcpu->wq, &wait);
1755 }
1756 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1757
1758 #ifndef CONFIG_S390
1759 /*
1760 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1761 */
1762 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1763 {
1764 int me;
1765 int cpu = vcpu->cpu;
1766 wait_queue_head_t *wqp;
1767
1768 wqp = kvm_arch_vcpu_wq(vcpu);
1769 if (waitqueue_active(wqp)) {
1770 wake_up_interruptible(wqp);
1771 ++vcpu->stat.halt_wakeup;
1772 }
1773
1774 me = get_cpu();
1775 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1776 if (kvm_arch_vcpu_should_kick(vcpu))
1777 smp_send_reschedule(cpu);
1778 put_cpu();
1779 }
1780 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1781 #endif /* !CONFIG_S390 */
1782
1783 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1784 {
1785 struct pid *pid;
1786 struct task_struct *task = NULL;
1787 int ret = 0;
1788
1789 rcu_read_lock();
1790 pid = rcu_dereference(target->pid);
1791 if (pid)
1792 task = get_pid_task(pid, PIDTYPE_PID);
1793 rcu_read_unlock();
1794 if (!task)
1795 return ret;
1796 ret = yield_to(task, 1);
1797 put_task_struct(task);
1798
1799 return ret;
1800 }
1801 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1802
1803 /*
1804 * Helper that checks whether a VCPU is eligible for directed yield.
1805 * Most eligible candidate to yield is decided by following heuristics:
1806 *
1807 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1808 * (preempted lock holder), indicated by @in_spin_loop.
1809 * Set at the beiginning and cleared at the end of interception/PLE handler.
1810 *
1811 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1812 * chance last time (mostly it has become eligible now since we have probably
1813 * yielded to lockholder in last iteration. This is done by toggling
1814 * @dy_eligible each time a VCPU checked for eligibility.)
1815 *
1816 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1817 * to preempted lock-holder could result in wrong VCPU selection and CPU
1818 * burning. Giving priority for a potential lock-holder increases lock
1819 * progress.
1820 *
1821 * Since algorithm is based on heuristics, accessing another VCPU data without
1822 * locking does not harm. It may result in trying to yield to same VCPU, fail
1823 * and continue with next VCPU and so on.
1824 */
1825 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1826 {
1827 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1828 bool eligible;
1829
1830 eligible = !vcpu->spin_loop.in_spin_loop ||
1831 vcpu->spin_loop.dy_eligible;
1832
1833 if (vcpu->spin_loop.in_spin_loop)
1834 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1835
1836 return eligible;
1837 #else
1838 return true;
1839 #endif
1840 }
1841
1842 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1843 {
1844 struct kvm *kvm = me->kvm;
1845 struct kvm_vcpu *vcpu;
1846 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1847 int yielded = 0;
1848 int try = 3;
1849 int pass;
1850 int i;
1851
1852 kvm_vcpu_set_in_spin_loop(me, true);
1853 /*
1854 * We boost the priority of a VCPU that is runnable but not
1855 * currently running, because it got preempted by something
1856 * else and called schedule in __vcpu_run. Hopefully that
1857 * VCPU is holding the lock that we need and will release it.
1858 * We approximate round-robin by starting at the last boosted VCPU.
1859 */
1860 for (pass = 0; pass < 2 && !yielded && try; pass++) {
1861 kvm_for_each_vcpu(i, vcpu, kvm) {
1862 if (!pass && i <= last_boosted_vcpu) {
1863 i = last_boosted_vcpu;
1864 continue;
1865 } else if (pass && i > last_boosted_vcpu)
1866 break;
1867 if (!ACCESS_ONCE(vcpu->preempted))
1868 continue;
1869 if (vcpu == me)
1870 continue;
1871 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1872 continue;
1873 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1874 continue;
1875
1876 yielded = kvm_vcpu_yield_to(vcpu);
1877 if (yielded > 0) {
1878 kvm->last_boosted_vcpu = i;
1879 break;
1880 } else if (yielded < 0) {
1881 try--;
1882 if (!try)
1883 break;
1884 }
1885 }
1886 }
1887 kvm_vcpu_set_in_spin_loop(me, false);
1888
1889 /* Ensure vcpu is not eligible during next spinloop */
1890 kvm_vcpu_set_dy_eligible(me, false);
1891 }
1892 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1893
1894 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1895 {
1896 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1897 struct page *page;
1898
1899 if (vmf->pgoff == 0)
1900 page = virt_to_page(vcpu->run);
1901 #ifdef CONFIG_X86
1902 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1903 page = virt_to_page(vcpu->arch.pio_data);
1904 #endif
1905 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1906 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1907 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1908 #endif
1909 else
1910 return kvm_arch_vcpu_fault(vcpu, vmf);
1911 get_page(page);
1912 vmf->page = page;
1913 return 0;
1914 }
1915
1916 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1917 .fault = kvm_vcpu_fault,
1918 };
1919
1920 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1921 {
1922 vma->vm_ops = &kvm_vcpu_vm_ops;
1923 return 0;
1924 }
1925
1926 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1927 {
1928 struct kvm_vcpu *vcpu = filp->private_data;
1929
1930 kvm_put_kvm(vcpu->kvm);
1931 return 0;
1932 }
1933
1934 static struct file_operations kvm_vcpu_fops = {
1935 .release = kvm_vcpu_release,
1936 .unlocked_ioctl = kvm_vcpu_ioctl,
1937 #ifdef CONFIG_COMPAT
1938 .compat_ioctl = kvm_vcpu_compat_ioctl,
1939 #endif
1940 .mmap = kvm_vcpu_mmap,
1941 .llseek = noop_llseek,
1942 };
1943
1944 /*
1945 * Allocates an inode for the vcpu.
1946 */
1947 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1948 {
1949 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1950 }
1951
1952 /*
1953 * Creates some virtual cpus. Good luck creating more than one.
1954 */
1955 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1956 {
1957 int r;
1958 struct kvm_vcpu *vcpu, *v;
1959
1960 if (id >= KVM_MAX_VCPUS)
1961 return -EINVAL;
1962
1963 vcpu = kvm_arch_vcpu_create(kvm, id);
1964 if (IS_ERR(vcpu))
1965 return PTR_ERR(vcpu);
1966
1967 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1968
1969 r = kvm_arch_vcpu_setup(vcpu);
1970 if (r)
1971 goto vcpu_destroy;
1972
1973 mutex_lock(&kvm->lock);
1974 if (!kvm_vcpu_compatible(vcpu)) {
1975 r = -EINVAL;
1976 goto unlock_vcpu_destroy;
1977 }
1978 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1979 r = -EINVAL;
1980 goto unlock_vcpu_destroy;
1981 }
1982
1983 kvm_for_each_vcpu(r, v, kvm)
1984 if (v->vcpu_id == id) {
1985 r = -EEXIST;
1986 goto unlock_vcpu_destroy;
1987 }
1988
1989 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1990
1991 /* Now it's all set up, let userspace reach it */
1992 kvm_get_kvm(kvm);
1993 r = create_vcpu_fd(vcpu);
1994 if (r < 0) {
1995 kvm_put_kvm(kvm);
1996 goto unlock_vcpu_destroy;
1997 }
1998
1999 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2000 smp_wmb();
2001 atomic_inc(&kvm->online_vcpus);
2002
2003 mutex_unlock(&kvm->lock);
2004 kvm_arch_vcpu_postcreate(vcpu);
2005 return r;
2006
2007 unlock_vcpu_destroy:
2008 mutex_unlock(&kvm->lock);
2009 vcpu_destroy:
2010 kvm_arch_vcpu_destroy(vcpu);
2011 return r;
2012 }
2013
2014 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2015 {
2016 if (sigset) {
2017 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2018 vcpu->sigset_active = 1;
2019 vcpu->sigset = *sigset;
2020 } else
2021 vcpu->sigset_active = 0;
2022 return 0;
2023 }
2024
2025 static long kvm_vcpu_ioctl(struct file *filp,
2026 unsigned int ioctl, unsigned long arg)
2027 {
2028 struct kvm_vcpu *vcpu = filp->private_data;
2029 void __user *argp = (void __user *)arg;
2030 int r;
2031 struct kvm_fpu *fpu = NULL;
2032 struct kvm_sregs *kvm_sregs = NULL;
2033
2034 if (vcpu->kvm->mm != current->mm)
2035 return -EIO;
2036
2037 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2038 return -EINVAL;
2039
2040 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2041 /*
2042 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2043 * so vcpu_load() would break it.
2044 */
2045 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
2046 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2047 #endif
2048
2049
2050 r = vcpu_load(vcpu);
2051 if (r)
2052 return r;
2053 switch (ioctl) {
2054 case KVM_RUN:
2055 r = -EINVAL;
2056 if (arg)
2057 goto out;
2058 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2059 /* The thread running this VCPU changed. */
2060 struct pid *oldpid = vcpu->pid;
2061 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2062 rcu_assign_pointer(vcpu->pid, newpid);
2063 if (oldpid)
2064 synchronize_rcu();
2065 put_pid(oldpid);
2066 }
2067 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2068 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2069 break;
2070 case KVM_GET_REGS: {
2071 struct kvm_regs *kvm_regs;
2072
2073 r = -ENOMEM;
2074 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2075 if (!kvm_regs)
2076 goto out;
2077 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2078 if (r)
2079 goto out_free1;
2080 r = -EFAULT;
2081 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2082 goto out_free1;
2083 r = 0;
2084 out_free1:
2085 kfree(kvm_regs);
2086 break;
2087 }
2088 case KVM_SET_REGS: {
2089 struct kvm_regs *kvm_regs;
2090
2091 r = -ENOMEM;
2092 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2093 if (IS_ERR(kvm_regs)) {
2094 r = PTR_ERR(kvm_regs);
2095 goto out;
2096 }
2097 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2098 kfree(kvm_regs);
2099 break;
2100 }
2101 case KVM_GET_SREGS: {
2102 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2103 r = -ENOMEM;
2104 if (!kvm_sregs)
2105 goto out;
2106 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2107 if (r)
2108 goto out;
2109 r = -EFAULT;
2110 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2111 goto out;
2112 r = 0;
2113 break;
2114 }
2115 case KVM_SET_SREGS: {
2116 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2117 if (IS_ERR(kvm_sregs)) {
2118 r = PTR_ERR(kvm_sregs);
2119 kvm_sregs = NULL;
2120 goto out;
2121 }
2122 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2123 break;
2124 }
2125 case KVM_GET_MP_STATE: {
2126 struct kvm_mp_state mp_state;
2127
2128 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2129 if (r)
2130 goto out;
2131 r = -EFAULT;
2132 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2133 goto out;
2134 r = 0;
2135 break;
2136 }
2137 case KVM_SET_MP_STATE: {
2138 struct kvm_mp_state mp_state;
2139
2140 r = -EFAULT;
2141 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2142 goto out;
2143 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2144 break;
2145 }
2146 case KVM_TRANSLATE: {
2147 struct kvm_translation tr;
2148
2149 r = -EFAULT;
2150 if (copy_from_user(&tr, argp, sizeof tr))
2151 goto out;
2152 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2153 if (r)
2154 goto out;
2155 r = -EFAULT;
2156 if (copy_to_user(argp, &tr, sizeof tr))
2157 goto out;
2158 r = 0;
2159 break;
2160 }
2161 case KVM_SET_GUEST_DEBUG: {
2162 struct kvm_guest_debug dbg;
2163
2164 r = -EFAULT;
2165 if (copy_from_user(&dbg, argp, sizeof dbg))
2166 goto out;
2167 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2168 break;
2169 }
2170 case KVM_SET_SIGNAL_MASK: {
2171 struct kvm_signal_mask __user *sigmask_arg = argp;
2172 struct kvm_signal_mask kvm_sigmask;
2173 sigset_t sigset, *p;
2174
2175 p = NULL;
2176 if (argp) {
2177 r = -EFAULT;
2178 if (copy_from_user(&kvm_sigmask, argp,
2179 sizeof kvm_sigmask))
2180 goto out;
2181 r = -EINVAL;
2182 if (kvm_sigmask.len != sizeof sigset)
2183 goto out;
2184 r = -EFAULT;
2185 if (copy_from_user(&sigset, sigmask_arg->sigset,
2186 sizeof sigset))
2187 goto out;
2188 p = &sigset;
2189 }
2190 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2191 break;
2192 }
2193 case KVM_GET_FPU: {
2194 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2195 r = -ENOMEM;
2196 if (!fpu)
2197 goto out;
2198 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2199 if (r)
2200 goto out;
2201 r = -EFAULT;
2202 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2203 goto out;
2204 r = 0;
2205 break;
2206 }
2207 case KVM_SET_FPU: {
2208 fpu = memdup_user(argp, sizeof(*fpu));
2209 if (IS_ERR(fpu)) {
2210 r = PTR_ERR(fpu);
2211 fpu = NULL;
2212 goto out;
2213 }
2214 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2215 break;
2216 }
2217 default:
2218 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2219 }
2220 out:
2221 vcpu_put(vcpu);
2222 kfree(fpu);
2223 kfree(kvm_sregs);
2224 return r;
2225 }
2226
2227 #ifdef CONFIG_COMPAT
2228 static long kvm_vcpu_compat_ioctl(struct file *filp,
2229 unsigned int ioctl, unsigned long arg)
2230 {
2231 struct kvm_vcpu *vcpu = filp->private_data;
2232 void __user *argp = compat_ptr(arg);
2233 int r;
2234
2235 if (vcpu->kvm->mm != current->mm)
2236 return -EIO;
2237
2238 switch (ioctl) {
2239 case KVM_SET_SIGNAL_MASK: {
2240 struct kvm_signal_mask __user *sigmask_arg = argp;
2241 struct kvm_signal_mask kvm_sigmask;
2242 compat_sigset_t csigset;
2243 sigset_t sigset;
2244
2245 if (argp) {
2246 r = -EFAULT;
2247 if (copy_from_user(&kvm_sigmask, argp,
2248 sizeof kvm_sigmask))
2249 goto out;
2250 r = -EINVAL;
2251 if (kvm_sigmask.len != sizeof csigset)
2252 goto out;
2253 r = -EFAULT;
2254 if (copy_from_user(&csigset, sigmask_arg->sigset,
2255 sizeof csigset))
2256 goto out;
2257 sigset_from_compat(&sigset, &csigset);
2258 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2259 } else
2260 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2261 break;
2262 }
2263 default:
2264 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2265 }
2266
2267 out:
2268 return r;
2269 }
2270 #endif
2271
2272 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2273 int (*accessor)(struct kvm_device *dev,
2274 struct kvm_device_attr *attr),
2275 unsigned long arg)
2276 {
2277 struct kvm_device_attr attr;
2278
2279 if (!accessor)
2280 return -EPERM;
2281
2282 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2283 return -EFAULT;
2284
2285 return accessor(dev, &attr);
2286 }
2287
2288 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2289 unsigned long arg)
2290 {
2291 struct kvm_device *dev = filp->private_data;
2292
2293 switch (ioctl) {
2294 case KVM_SET_DEVICE_ATTR:
2295 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2296 case KVM_GET_DEVICE_ATTR:
2297 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2298 case KVM_HAS_DEVICE_ATTR:
2299 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2300 default:
2301 if (dev->ops->ioctl)
2302 return dev->ops->ioctl(dev, ioctl, arg);
2303
2304 return -ENOTTY;
2305 }
2306 }
2307
2308 static int kvm_device_release(struct inode *inode, struct file *filp)
2309 {
2310 struct kvm_device *dev = filp->private_data;
2311 struct kvm *kvm = dev->kvm;
2312
2313 kvm_put_kvm(kvm);
2314 return 0;
2315 }
2316
2317 static const struct file_operations kvm_device_fops = {
2318 .unlocked_ioctl = kvm_device_ioctl,
2319 #ifdef CONFIG_COMPAT
2320 .compat_ioctl = kvm_device_ioctl,
2321 #endif
2322 .release = kvm_device_release,
2323 };
2324
2325 struct kvm_device *kvm_device_from_filp(struct file *filp)
2326 {
2327 if (filp->f_op != &kvm_device_fops)
2328 return NULL;
2329
2330 return filp->private_data;
2331 }
2332
2333 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2334 #ifdef CONFIG_KVM_MPIC
2335 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2336 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2337 #endif
2338
2339 #ifdef CONFIG_KVM_XICS
2340 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2341 #endif
2342 };
2343
2344 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2345 {
2346 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2347 return -ENOSPC;
2348
2349 if (kvm_device_ops_table[type] != NULL)
2350 return -EEXIST;
2351
2352 kvm_device_ops_table[type] = ops;
2353 return 0;
2354 }
2355
2356 void kvm_unregister_device_ops(u32 type)
2357 {
2358 if (kvm_device_ops_table[type] != NULL)
2359 kvm_device_ops_table[type] = NULL;
2360 }
2361
2362 static int kvm_ioctl_create_device(struct kvm *kvm,
2363 struct kvm_create_device *cd)
2364 {
2365 struct kvm_device_ops *ops = NULL;
2366 struct kvm_device *dev;
2367 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2368 int ret;
2369
2370 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2371 return -ENODEV;
2372
2373 ops = kvm_device_ops_table[cd->type];
2374 if (ops == NULL)
2375 return -ENODEV;
2376
2377 if (test)
2378 return 0;
2379
2380 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2381 if (!dev)
2382 return -ENOMEM;
2383
2384 dev->ops = ops;
2385 dev->kvm = kvm;
2386
2387 ret = ops->create(dev, cd->type);
2388 if (ret < 0) {
2389 kfree(dev);
2390 return ret;
2391 }
2392
2393 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2394 if (ret < 0) {
2395 ops->destroy(dev);
2396 return ret;
2397 }
2398
2399 list_add(&dev->vm_node, &kvm->devices);
2400 kvm_get_kvm(kvm);
2401 cd->fd = ret;
2402 return 0;
2403 }
2404
2405 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2406 {
2407 switch (arg) {
2408 case KVM_CAP_USER_MEMORY:
2409 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2410 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2411 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2412 case KVM_CAP_SET_BOOT_CPU_ID:
2413 #endif
2414 case KVM_CAP_INTERNAL_ERROR_DATA:
2415 #ifdef CONFIG_HAVE_KVM_MSI
2416 case KVM_CAP_SIGNAL_MSI:
2417 #endif
2418 #ifdef CONFIG_HAVE_KVM_IRQFD
2419 case KVM_CAP_IRQFD_RESAMPLE:
2420 #endif
2421 case KVM_CAP_CHECK_EXTENSION_VM:
2422 return 1;
2423 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2424 case KVM_CAP_IRQ_ROUTING:
2425 return KVM_MAX_IRQ_ROUTES;
2426 #endif
2427 default:
2428 break;
2429 }
2430 return kvm_vm_ioctl_check_extension(kvm, arg);
2431 }
2432
2433 static long kvm_vm_ioctl(struct file *filp,
2434 unsigned int ioctl, unsigned long arg)
2435 {
2436 struct kvm *kvm = filp->private_data;
2437 void __user *argp = (void __user *)arg;
2438 int r;
2439
2440 if (kvm->mm != current->mm)
2441 return -EIO;
2442 switch (ioctl) {
2443 case KVM_CREATE_VCPU:
2444 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2445 break;
2446 case KVM_SET_USER_MEMORY_REGION: {
2447 struct kvm_userspace_memory_region kvm_userspace_mem;
2448
2449 r = -EFAULT;
2450 if (copy_from_user(&kvm_userspace_mem, argp,
2451 sizeof kvm_userspace_mem))
2452 goto out;
2453
2454 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2455 break;
2456 }
2457 case KVM_GET_DIRTY_LOG: {
2458 struct kvm_dirty_log log;
2459
2460 r = -EFAULT;
2461 if (copy_from_user(&log, argp, sizeof log))
2462 goto out;
2463 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2464 break;
2465 }
2466 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2467 case KVM_REGISTER_COALESCED_MMIO: {
2468 struct kvm_coalesced_mmio_zone zone;
2469 r = -EFAULT;
2470 if (copy_from_user(&zone, argp, sizeof zone))
2471 goto out;
2472 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2473 break;
2474 }
2475 case KVM_UNREGISTER_COALESCED_MMIO: {
2476 struct kvm_coalesced_mmio_zone zone;
2477 r = -EFAULT;
2478 if (copy_from_user(&zone, argp, sizeof zone))
2479 goto out;
2480 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2481 break;
2482 }
2483 #endif
2484 case KVM_IRQFD: {
2485 struct kvm_irqfd data;
2486
2487 r = -EFAULT;
2488 if (copy_from_user(&data, argp, sizeof data))
2489 goto out;
2490 r = kvm_irqfd(kvm, &data);
2491 break;
2492 }
2493 case KVM_IOEVENTFD: {
2494 struct kvm_ioeventfd data;
2495
2496 r = -EFAULT;
2497 if (copy_from_user(&data, argp, sizeof data))
2498 goto out;
2499 r = kvm_ioeventfd(kvm, &data);
2500 break;
2501 }
2502 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2503 case KVM_SET_BOOT_CPU_ID:
2504 r = 0;
2505 mutex_lock(&kvm->lock);
2506 if (atomic_read(&kvm->online_vcpus) != 0)
2507 r = -EBUSY;
2508 else
2509 kvm->bsp_vcpu_id = arg;
2510 mutex_unlock(&kvm->lock);
2511 break;
2512 #endif
2513 #ifdef CONFIG_HAVE_KVM_MSI
2514 case KVM_SIGNAL_MSI: {
2515 struct kvm_msi msi;
2516
2517 r = -EFAULT;
2518 if (copy_from_user(&msi, argp, sizeof msi))
2519 goto out;
2520 r = kvm_send_userspace_msi(kvm, &msi);
2521 break;
2522 }
2523 #endif
2524 #ifdef __KVM_HAVE_IRQ_LINE
2525 case KVM_IRQ_LINE_STATUS:
2526 case KVM_IRQ_LINE: {
2527 struct kvm_irq_level irq_event;
2528
2529 r = -EFAULT;
2530 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2531 goto out;
2532
2533 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2534 ioctl == KVM_IRQ_LINE_STATUS);
2535 if (r)
2536 goto out;
2537
2538 r = -EFAULT;
2539 if (ioctl == KVM_IRQ_LINE_STATUS) {
2540 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2541 goto out;
2542 }
2543
2544 r = 0;
2545 break;
2546 }
2547 #endif
2548 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2549 case KVM_SET_GSI_ROUTING: {
2550 struct kvm_irq_routing routing;
2551 struct kvm_irq_routing __user *urouting;
2552 struct kvm_irq_routing_entry *entries;
2553
2554 r = -EFAULT;
2555 if (copy_from_user(&routing, argp, sizeof(routing)))
2556 goto out;
2557 r = -EINVAL;
2558 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2559 goto out;
2560 if (routing.flags)
2561 goto out;
2562 r = -ENOMEM;
2563 entries = vmalloc(routing.nr * sizeof(*entries));
2564 if (!entries)
2565 goto out;
2566 r = -EFAULT;
2567 urouting = argp;
2568 if (copy_from_user(entries, urouting->entries,
2569 routing.nr * sizeof(*entries)))
2570 goto out_free_irq_routing;
2571 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2572 routing.flags);
2573 out_free_irq_routing:
2574 vfree(entries);
2575 break;
2576 }
2577 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2578 case KVM_CREATE_DEVICE: {
2579 struct kvm_create_device cd;
2580
2581 r = -EFAULT;
2582 if (copy_from_user(&cd, argp, sizeof(cd)))
2583 goto out;
2584
2585 r = kvm_ioctl_create_device(kvm, &cd);
2586 if (r)
2587 goto out;
2588
2589 r = -EFAULT;
2590 if (copy_to_user(argp, &cd, sizeof(cd)))
2591 goto out;
2592
2593 r = 0;
2594 break;
2595 }
2596 case KVM_CHECK_EXTENSION:
2597 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2598 break;
2599 default:
2600 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2601 }
2602 out:
2603 return r;
2604 }
2605
2606 #ifdef CONFIG_COMPAT
2607 struct compat_kvm_dirty_log {
2608 __u32 slot;
2609 __u32 padding1;
2610 union {
2611 compat_uptr_t dirty_bitmap; /* one bit per page */
2612 __u64 padding2;
2613 };
2614 };
2615
2616 static long kvm_vm_compat_ioctl(struct file *filp,
2617 unsigned int ioctl, unsigned long arg)
2618 {
2619 struct kvm *kvm = filp->private_data;
2620 int r;
2621
2622 if (kvm->mm != current->mm)
2623 return -EIO;
2624 switch (ioctl) {
2625 case KVM_GET_DIRTY_LOG: {
2626 struct compat_kvm_dirty_log compat_log;
2627 struct kvm_dirty_log log;
2628
2629 r = -EFAULT;
2630 if (copy_from_user(&compat_log, (void __user *)arg,
2631 sizeof(compat_log)))
2632 goto out;
2633 log.slot = compat_log.slot;
2634 log.padding1 = compat_log.padding1;
2635 log.padding2 = compat_log.padding2;
2636 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2637
2638 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2639 break;
2640 }
2641 default:
2642 r = kvm_vm_ioctl(filp, ioctl, arg);
2643 }
2644
2645 out:
2646 return r;
2647 }
2648 #endif
2649
2650 static struct file_operations kvm_vm_fops = {
2651 .release = kvm_vm_release,
2652 .unlocked_ioctl = kvm_vm_ioctl,
2653 #ifdef CONFIG_COMPAT
2654 .compat_ioctl = kvm_vm_compat_ioctl,
2655 #endif
2656 .llseek = noop_llseek,
2657 };
2658
2659 static int kvm_dev_ioctl_create_vm(unsigned long type)
2660 {
2661 int r;
2662 struct kvm *kvm;
2663
2664 kvm = kvm_create_vm(type);
2665 if (IS_ERR(kvm))
2666 return PTR_ERR(kvm);
2667 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2668 r = kvm_coalesced_mmio_init(kvm);
2669 if (r < 0) {
2670 kvm_put_kvm(kvm);
2671 return r;
2672 }
2673 #endif
2674 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2675 if (r < 0)
2676 kvm_put_kvm(kvm);
2677
2678 return r;
2679 }
2680
2681 static long kvm_dev_ioctl(struct file *filp,
2682 unsigned int ioctl, unsigned long arg)
2683 {
2684 long r = -EINVAL;
2685
2686 switch (ioctl) {
2687 case KVM_GET_API_VERSION:
2688 if (arg)
2689 goto out;
2690 r = KVM_API_VERSION;
2691 break;
2692 case KVM_CREATE_VM:
2693 r = kvm_dev_ioctl_create_vm(arg);
2694 break;
2695 case KVM_CHECK_EXTENSION:
2696 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2697 break;
2698 case KVM_GET_VCPU_MMAP_SIZE:
2699 if (arg)
2700 goto out;
2701 r = PAGE_SIZE; /* struct kvm_run */
2702 #ifdef CONFIG_X86
2703 r += PAGE_SIZE; /* pio data page */
2704 #endif
2705 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2706 r += PAGE_SIZE; /* coalesced mmio ring page */
2707 #endif
2708 break;
2709 case KVM_TRACE_ENABLE:
2710 case KVM_TRACE_PAUSE:
2711 case KVM_TRACE_DISABLE:
2712 r = -EOPNOTSUPP;
2713 break;
2714 default:
2715 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2716 }
2717 out:
2718 return r;
2719 }
2720
2721 static struct file_operations kvm_chardev_ops = {
2722 .unlocked_ioctl = kvm_dev_ioctl,
2723 .compat_ioctl = kvm_dev_ioctl,
2724 .llseek = noop_llseek,
2725 };
2726
2727 static struct miscdevice kvm_dev = {
2728 KVM_MINOR,
2729 "kvm",
2730 &kvm_chardev_ops,
2731 };
2732
2733 static void hardware_enable_nolock(void *junk)
2734 {
2735 int cpu = raw_smp_processor_id();
2736 int r;
2737
2738 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2739 return;
2740
2741 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2742
2743 r = kvm_arch_hardware_enable();
2744
2745 if (r) {
2746 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2747 atomic_inc(&hardware_enable_failed);
2748 printk(KERN_INFO "kvm: enabling virtualization on "
2749 "CPU%d failed\n", cpu);
2750 }
2751 }
2752
2753 static void hardware_enable(void)
2754 {
2755 raw_spin_lock(&kvm_count_lock);
2756 if (kvm_usage_count)
2757 hardware_enable_nolock(NULL);
2758 raw_spin_unlock(&kvm_count_lock);
2759 }
2760
2761 static void hardware_disable_nolock(void *junk)
2762 {
2763 int cpu = raw_smp_processor_id();
2764
2765 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2766 return;
2767 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2768 kvm_arch_hardware_disable();
2769 }
2770
2771 static void hardware_disable(void)
2772 {
2773 raw_spin_lock(&kvm_count_lock);
2774 if (kvm_usage_count)
2775 hardware_disable_nolock(NULL);
2776 raw_spin_unlock(&kvm_count_lock);
2777 }
2778
2779 static void hardware_disable_all_nolock(void)
2780 {
2781 BUG_ON(!kvm_usage_count);
2782
2783 kvm_usage_count--;
2784 if (!kvm_usage_count)
2785 on_each_cpu(hardware_disable_nolock, NULL, 1);
2786 }
2787
2788 static void hardware_disable_all(void)
2789 {
2790 raw_spin_lock(&kvm_count_lock);
2791 hardware_disable_all_nolock();
2792 raw_spin_unlock(&kvm_count_lock);
2793 }
2794
2795 static int hardware_enable_all(void)
2796 {
2797 int r = 0;
2798
2799 raw_spin_lock(&kvm_count_lock);
2800
2801 kvm_usage_count++;
2802 if (kvm_usage_count == 1) {
2803 atomic_set(&hardware_enable_failed, 0);
2804 on_each_cpu(hardware_enable_nolock, NULL, 1);
2805
2806 if (atomic_read(&hardware_enable_failed)) {
2807 hardware_disable_all_nolock();
2808 r = -EBUSY;
2809 }
2810 }
2811
2812 raw_spin_unlock(&kvm_count_lock);
2813
2814 return r;
2815 }
2816
2817 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2818 void *v)
2819 {
2820 int cpu = (long)v;
2821
2822 val &= ~CPU_TASKS_FROZEN;
2823 switch (val) {
2824 case CPU_DYING:
2825 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2826 cpu);
2827 hardware_disable();
2828 break;
2829 case CPU_STARTING:
2830 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2831 cpu);
2832 hardware_enable();
2833 break;
2834 }
2835 return NOTIFY_OK;
2836 }
2837
2838 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2839 void *v)
2840 {
2841 /*
2842 * Some (well, at least mine) BIOSes hang on reboot if
2843 * in vmx root mode.
2844 *
2845 * And Intel TXT required VMX off for all cpu when system shutdown.
2846 */
2847 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2848 kvm_rebooting = true;
2849 on_each_cpu(hardware_disable_nolock, NULL, 1);
2850 return NOTIFY_OK;
2851 }
2852
2853 static struct notifier_block kvm_reboot_notifier = {
2854 .notifier_call = kvm_reboot,
2855 .priority = 0,
2856 };
2857
2858 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2859 {
2860 int i;
2861
2862 for (i = 0; i < bus->dev_count; i++) {
2863 struct kvm_io_device *pos = bus->range[i].dev;
2864
2865 kvm_iodevice_destructor(pos);
2866 }
2867 kfree(bus);
2868 }
2869
2870 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2871 const struct kvm_io_range *r2)
2872 {
2873 if (r1->addr < r2->addr)
2874 return -1;
2875 if (r1->addr + r1->len > r2->addr + r2->len)
2876 return 1;
2877 return 0;
2878 }
2879
2880 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2881 {
2882 return kvm_io_bus_cmp(p1, p2);
2883 }
2884
2885 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2886 gpa_t addr, int len)
2887 {
2888 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2889 .addr = addr,
2890 .len = len,
2891 .dev = dev,
2892 };
2893
2894 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2895 kvm_io_bus_sort_cmp, NULL);
2896
2897 return 0;
2898 }
2899
2900 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2901 gpa_t addr, int len)
2902 {
2903 struct kvm_io_range *range, key;
2904 int off;
2905
2906 key = (struct kvm_io_range) {
2907 .addr = addr,
2908 .len = len,
2909 };
2910
2911 range = bsearch(&key, bus->range, bus->dev_count,
2912 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2913 if (range == NULL)
2914 return -ENOENT;
2915
2916 off = range - bus->range;
2917
2918 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2919 off--;
2920
2921 return off;
2922 }
2923
2924 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2925 struct kvm_io_range *range, const void *val)
2926 {
2927 int idx;
2928
2929 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2930 if (idx < 0)
2931 return -EOPNOTSUPP;
2932
2933 while (idx < bus->dev_count &&
2934 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2935 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2936 range->len, val))
2937 return idx;
2938 idx++;
2939 }
2940
2941 return -EOPNOTSUPP;
2942 }
2943
2944 /* kvm_io_bus_write - called under kvm->slots_lock */
2945 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2946 int len, const void *val)
2947 {
2948 struct kvm_io_bus *bus;
2949 struct kvm_io_range range;
2950 int r;
2951
2952 range = (struct kvm_io_range) {
2953 .addr = addr,
2954 .len = len,
2955 };
2956
2957 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2958 r = __kvm_io_bus_write(bus, &range, val);
2959 return r < 0 ? r : 0;
2960 }
2961
2962 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2963 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2964 int len, const void *val, long cookie)
2965 {
2966 struct kvm_io_bus *bus;
2967 struct kvm_io_range range;
2968
2969 range = (struct kvm_io_range) {
2970 .addr = addr,
2971 .len = len,
2972 };
2973
2974 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2975
2976 /* First try the device referenced by cookie. */
2977 if ((cookie >= 0) && (cookie < bus->dev_count) &&
2978 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2979 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2980 val))
2981 return cookie;
2982
2983 /*
2984 * cookie contained garbage; fall back to search and return the
2985 * correct cookie value.
2986 */
2987 return __kvm_io_bus_write(bus, &range, val);
2988 }
2989
2990 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2991 void *val)
2992 {
2993 int idx;
2994
2995 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2996 if (idx < 0)
2997 return -EOPNOTSUPP;
2998
2999 while (idx < bus->dev_count &&
3000 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3001 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
3002 range->len, val))
3003 return idx;
3004 idx++;
3005 }
3006
3007 return -EOPNOTSUPP;
3008 }
3009 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3010
3011 /* kvm_io_bus_read - called under kvm->slots_lock */
3012 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3013 int len, void *val)
3014 {
3015 struct kvm_io_bus *bus;
3016 struct kvm_io_range range;
3017 int r;
3018
3019 range = (struct kvm_io_range) {
3020 .addr = addr,
3021 .len = len,
3022 };
3023
3024 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3025 r = __kvm_io_bus_read(bus, &range, val);
3026 return r < 0 ? r : 0;
3027 }
3028
3029
3030 /* Caller must hold slots_lock. */
3031 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3032 int len, struct kvm_io_device *dev)
3033 {
3034 struct kvm_io_bus *new_bus, *bus;
3035
3036 bus = kvm->buses[bus_idx];
3037 /* exclude ioeventfd which is limited by maximum fd */
3038 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3039 return -ENOSPC;
3040
3041 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3042 sizeof(struct kvm_io_range)), GFP_KERNEL);
3043 if (!new_bus)
3044 return -ENOMEM;
3045 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3046 sizeof(struct kvm_io_range)));
3047 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3048 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3049 synchronize_srcu_expedited(&kvm->srcu);
3050 kfree(bus);
3051
3052 return 0;
3053 }
3054
3055 /* Caller must hold slots_lock. */
3056 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3057 struct kvm_io_device *dev)
3058 {
3059 int i, r;
3060 struct kvm_io_bus *new_bus, *bus;
3061
3062 bus = kvm->buses[bus_idx];
3063 r = -ENOENT;
3064 for (i = 0; i < bus->dev_count; i++)
3065 if (bus->range[i].dev == dev) {
3066 r = 0;
3067 break;
3068 }
3069
3070 if (r)
3071 return r;
3072
3073 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3074 sizeof(struct kvm_io_range)), GFP_KERNEL);
3075 if (!new_bus)
3076 return -ENOMEM;
3077
3078 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3079 new_bus->dev_count--;
3080 memcpy(new_bus->range + i, bus->range + i + 1,
3081 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3082
3083 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3084 synchronize_srcu_expedited(&kvm->srcu);
3085 kfree(bus);
3086 return r;
3087 }
3088
3089 static struct notifier_block kvm_cpu_notifier = {
3090 .notifier_call = kvm_cpu_hotplug,
3091 };
3092
3093 static int vm_stat_get(void *_offset, u64 *val)
3094 {
3095 unsigned offset = (long)_offset;
3096 struct kvm *kvm;
3097
3098 *val = 0;
3099 spin_lock(&kvm_lock);
3100 list_for_each_entry(kvm, &vm_list, vm_list)
3101 *val += *(u32 *)((void *)kvm + offset);
3102 spin_unlock(&kvm_lock);
3103 return 0;
3104 }
3105
3106 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3107
3108 static int vcpu_stat_get(void *_offset, u64 *val)
3109 {
3110 unsigned offset = (long)_offset;
3111 struct kvm *kvm;
3112 struct kvm_vcpu *vcpu;
3113 int i;
3114
3115 *val = 0;
3116 spin_lock(&kvm_lock);
3117 list_for_each_entry(kvm, &vm_list, vm_list)
3118 kvm_for_each_vcpu(i, vcpu, kvm)
3119 *val += *(u32 *)((void *)vcpu + offset);
3120
3121 spin_unlock(&kvm_lock);
3122 return 0;
3123 }
3124
3125 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3126
3127 static const struct file_operations *stat_fops[] = {
3128 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3129 [KVM_STAT_VM] = &vm_stat_fops,
3130 };
3131
3132 static int kvm_init_debug(void)
3133 {
3134 int r = -EEXIST;
3135 struct kvm_stats_debugfs_item *p;
3136
3137 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3138 if (kvm_debugfs_dir == NULL)
3139 goto out;
3140
3141 for (p = debugfs_entries; p->name; ++p) {
3142 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3143 (void *)(long)p->offset,
3144 stat_fops[p->kind]);
3145 if (p->dentry == NULL)
3146 goto out_dir;
3147 }
3148
3149 return 0;
3150
3151 out_dir:
3152 debugfs_remove_recursive(kvm_debugfs_dir);
3153 out:
3154 return r;
3155 }
3156
3157 static void kvm_exit_debug(void)
3158 {
3159 struct kvm_stats_debugfs_item *p;
3160
3161 for (p = debugfs_entries; p->name; ++p)
3162 debugfs_remove(p->dentry);
3163 debugfs_remove(kvm_debugfs_dir);
3164 }
3165
3166 static int kvm_suspend(void)
3167 {
3168 if (kvm_usage_count)
3169 hardware_disable_nolock(NULL);
3170 return 0;
3171 }
3172
3173 static void kvm_resume(void)
3174 {
3175 if (kvm_usage_count) {
3176 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3177 hardware_enable_nolock(NULL);
3178 }
3179 }
3180
3181 static struct syscore_ops kvm_syscore_ops = {
3182 .suspend = kvm_suspend,
3183 .resume = kvm_resume,
3184 };
3185
3186 static inline
3187 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3188 {
3189 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3190 }
3191
3192 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3193 {
3194 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3195 if (vcpu->preempted)
3196 vcpu->preempted = false;
3197
3198 kvm_arch_sched_in(vcpu, cpu);
3199
3200 kvm_arch_vcpu_load(vcpu, cpu);
3201 }
3202
3203 static void kvm_sched_out(struct preempt_notifier *pn,
3204 struct task_struct *next)
3205 {
3206 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3207
3208 if (current->state == TASK_RUNNING)
3209 vcpu->preempted = true;
3210 kvm_arch_vcpu_put(vcpu);
3211 }
3212
3213 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3214 struct module *module)
3215 {
3216 int r;
3217 int cpu;
3218
3219 r = kvm_arch_init(opaque);
3220 if (r)
3221 goto out_fail;
3222
3223 /*
3224 * kvm_arch_init makes sure there's at most one caller
3225 * for architectures that support multiple implementations,
3226 * like intel and amd on x86.
3227 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3228 * conflicts in case kvm is already setup for another implementation.
3229 */
3230 r = kvm_irqfd_init();
3231 if (r)
3232 goto out_irqfd;
3233
3234 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3235 r = -ENOMEM;
3236 goto out_free_0;
3237 }
3238
3239 r = kvm_arch_hardware_setup();
3240 if (r < 0)
3241 goto out_free_0a;
3242
3243 for_each_online_cpu(cpu) {
3244 smp_call_function_single(cpu,
3245 kvm_arch_check_processor_compat,
3246 &r, 1);
3247 if (r < 0)
3248 goto out_free_1;
3249 }
3250
3251 r = register_cpu_notifier(&kvm_cpu_notifier);
3252 if (r)
3253 goto out_free_2;
3254 register_reboot_notifier(&kvm_reboot_notifier);
3255
3256 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3257 if (!vcpu_align)
3258 vcpu_align = __alignof__(struct kvm_vcpu);
3259 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3260 0, NULL);
3261 if (!kvm_vcpu_cache) {
3262 r = -ENOMEM;
3263 goto out_free_3;
3264 }
3265
3266 r = kvm_async_pf_init();
3267 if (r)
3268 goto out_free;
3269
3270 kvm_chardev_ops.owner = module;
3271 kvm_vm_fops.owner = module;
3272 kvm_vcpu_fops.owner = module;
3273
3274 r = misc_register(&kvm_dev);
3275 if (r) {
3276 printk(KERN_ERR "kvm: misc device register failed\n");
3277 goto out_unreg;
3278 }
3279
3280 register_syscore_ops(&kvm_syscore_ops);
3281
3282 kvm_preempt_ops.sched_in = kvm_sched_in;
3283 kvm_preempt_ops.sched_out = kvm_sched_out;
3284
3285 r = kvm_init_debug();
3286 if (r) {
3287 printk(KERN_ERR "kvm: create debugfs files failed\n");
3288 goto out_undebugfs;
3289 }
3290
3291 r = kvm_vfio_ops_init();
3292 WARN_ON(r);
3293
3294 return 0;
3295
3296 out_undebugfs:
3297 unregister_syscore_ops(&kvm_syscore_ops);
3298 misc_deregister(&kvm_dev);
3299 out_unreg:
3300 kvm_async_pf_deinit();
3301 out_free:
3302 kmem_cache_destroy(kvm_vcpu_cache);
3303 out_free_3:
3304 unregister_reboot_notifier(&kvm_reboot_notifier);
3305 unregister_cpu_notifier(&kvm_cpu_notifier);
3306 out_free_2:
3307 out_free_1:
3308 kvm_arch_hardware_unsetup();
3309 out_free_0a:
3310 free_cpumask_var(cpus_hardware_enabled);
3311 out_free_0:
3312 kvm_irqfd_exit();
3313 out_irqfd:
3314 kvm_arch_exit();
3315 out_fail:
3316 return r;
3317 }
3318 EXPORT_SYMBOL_GPL(kvm_init);
3319
3320 void kvm_exit(void)
3321 {
3322 kvm_exit_debug();
3323 misc_deregister(&kvm_dev);
3324 kmem_cache_destroy(kvm_vcpu_cache);
3325 kvm_async_pf_deinit();
3326 unregister_syscore_ops(&kvm_syscore_ops);
3327 unregister_reboot_notifier(&kvm_reboot_notifier);
3328 unregister_cpu_notifier(&kvm_cpu_notifier);
3329 on_each_cpu(hardware_disable_nolock, NULL, 1);
3330 kvm_arch_hardware_unsetup();
3331 kvm_arch_exit();
3332 kvm_irqfd_exit();
3333 free_cpumask_var(cpus_hardware_enabled);
3334 kvm_vfio_ops_exit();
3335 }
3336 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.09917 seconds and 5 git commands to generate.