hugetlbfs: export vma_kernel_pagsize to modules
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46
47 #include <asm/processor.h>
48 #include <asm/io.h>
49 #include <asm/uaccess.h>
50 #include <asm/pgtable.h>
51
52 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
53 #include "coalesced_mmio.h"
54 #endif
55
56 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
57 #include <linux/pci.h>
58 #include <linux/interrupt.h>
59 #include "irq.h"
60 #endif
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/kvm.h>
64
65 MODULE_AUTHOR("Qumranet");
66 MODULE_LICENSE("GPL");
67
68 /*
69 * Ordering of locks:
70 *
71 * kvm->lock --> kvm->irq_lock
72 */
73
74 DEFINE_SPINLOCK(kvm_lock);
75 LIST_HEAD(vm_list);
76
77 static cpumask_var_t cpus_hardware_enabled;
78
79 struct kmem_cache *kvm_vcpu_cache;
80 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
81
82 static __read_mostly struct preempt_ops kvm_preempt_ops;
83
84 struct dentry *kvm_debugfs_dir;
85
86 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
87 unsigned long arg);
88
89 static bool kvm_rebooting;
90
91 static bool largepages_enabled = true;
92
93 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
94 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
95 int assigned_dev_id)
96 {
97 struct list_head *ptr;
98 struct kvm_assigned_dev_kernel *match;
99
100 list_for_each(ptr, head) {
101 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
102 if (match->assigned_dev_id == assigned_dev_id)
103 return match;
104 }
105 return NULL;
106 }
107
108 static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
109 *assigned_dev, int irq)
110 {
111 int i, index;
112 struct msix_entry *host_msix_entries;
113
114 host_msix_entries = assigned_dev->host_msix_entries;
115
116 index = -1;
117 for (i = 0; i < assigned_dev->entries_nr; i++)
118 if (irq == host_msix_entries[i].vector) {
119 index = i;
120 break;
121 }
122 if (index < 0) {
123 printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
124 return 0;
125 }
126
127 return index;
128 }
129
130 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
131 {
132 struct kvm_assigned_dev_kernel *assigned_dev;
133 struct kvm *kvm;
134 int i;
135
136 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
137 interrupt_work);
138 kvm = assigned_dev->kvm;
139
140 mutex_lock(&kvm->irq_lock);
141 spin_lock_irq(&assigned_dev->assigned_dev_lock);
142 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
143 struct kvm_guest_msix_entry *guest_entries =
144 assigned_dev->guest_msix_entries;
145 for (i = 0; i < assigned_dev->entries_nr; i++) {
146 if (!(guest_entries[i].flags &
147 KVM_ASSIGNED_MSIX_PENDING))
148 continue;
149 guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
150 kvm_set_irq(assigned_dev->kvm,
151 assigned_dev->irq_source_id,
152 guest_entries[i].vector, 1);
153 }
154 } else
155 kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
156 assigned_dev->guest_irq, 1);
157
158 spin_unlock_irq(&assigned_dev->assigned_dev_lock);
159 mutex_unlock(&assigned_dev->kvm->irq_lock);
160 }
161
162 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
163 {
164 unsigned long flags;
165 struct kvm_assigned_dev_kernel *assigned_dev =
166 (struct kvm_assigned_dev_kernel *) dev_id;
167
168 spin_lock_irqsave(&assigned_dev->assigned_dev_lock, flags);
169 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
170 int index = find_index_from_host_irq(assigned_dev, irq);
171 if (index < 0)
172 goto out;
173 assigned_dev->guest_msix_entries[index].flags |=
174 KVM_ASSIGNED_MSIX_PENDING;
175 }
176
177 schedule_work(&assigned_dev->interrupt_work);
178
179 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_GUEST_INTX) {
180 disable_irq_nosync(irq);
181 assigned_dev->host_irq_disabled = true;
182 }
183
184 out:
185 spin_unlock_irqrestore(&assigned_dev->assigned_dev_lock, flags);
186 return IRQ_HANDLED;
187 }
188
189 /* Ack the irq line for an assigned device */
190 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
191 {
192 struct kvm_assigned_dev_kernel *dev;
193 unsigned long flags;
194
195 if (kian->gsi == -1)
196 return;
197
198 dev = container_of(kian, struct kvm_assigned_dev_kernel,
199 ack_notifier);
200
201 kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
202
203 /* The guest irq may be shared so this ack may be
204 * from another device.
205 */
206 spin_lock_irqsave(&dev->assigned_dev_lock, flags);
207 if (dev->host_irq_disabled) {
208 enable_irq(dev->host_irq);
209 dev->host_irq_disabled = false;
210 }
211 spin_unlock_irqrestore(&dev->assigned_dev_lock, flags);
212 }
213
214 static void deassign_guest_irq(struct kvm *kvm,
215 struct kvm_assigned_dev_kernel *assigned_dev)
216 {
217 kvm_unregister_irq_ack_notifier(kvm, &assigned_dev->ack_notifier);
218 assigned_dev->ack_notifier.gsi = -1;
219
220 if (assigned_dev->irq_source_id != -1)
221 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
222 assigned_dev->irq_source_id = -1;
223 assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
224 }
225
226 /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
227 static void deassign_host_irq(struct kvm *kvm,
228 struct kvm_assigned_dev_kernel *assigned_dev)
229 {
230 /*
231 * In kvm_free_device_irq, cancel_work_sync return true if:
232 * 1. work is scheduled, and then cancelled.
233 * 2. work callback is executed.
234 *
235 * The first one ensured that the irq is disabled and no more events
236 * would happen. But for the second one, the irq may be enabled (e.g.
237 * for MSI). So we disable irq here to prevent further events.
238 *
239 * Notice this maybe result in nested disable if the interrupt type is
240 * INTx, but it's OK for we are going to free it.
241 *
242 * If this function is a part of VM destroy, please ensure that till
243 * now, the kvm state is still legal for probably we also have to wait
244 * interrupt_work done.
245 */
246 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
247 int i;
248 for (i = 0; i < assigned_dev->entries_nr; i++)
249 disable_irq_nosync(assigned_dev->
250 host_msix_entries[i].vector);
251
252 cancel_work_sync(&assigned_dev->interrupt_work);
253
254 for (i = 0; i < assigned_dev->entries_nr; i++)
255 free_irq(assigned_dev->host_msix_entries[i].vector,
256 (void *)assigned_dev);
257
258 assigned_dev->entries_nr = 0;
259 kfree(assigned_dev->host_msix_entries);
260 kfree(assigned_dev->guest_msix_entries);
261 pci_disable_msix(assigned_dev->dev);
262 } else {
263 /* Deal with MSI and INTx */
264 disable_irq_nosync(assigned_dev->host_irq);
265 cancel_work_sync(&assigned_dev->interrupt_work);
266
267 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
268
269 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
270 pci_disable_msi(assigned_dev->dev);
271 }
272
273 assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
274 }
275
276 static int kvm_deassign_irq(struct kvm *kvm,
277 struct kvm_assigned_dev_kernel *assigned_dev,
278 unsigned long irq_requested_type)
279 {
280 unsigned long guest_irq_type, host_irq_type;
281
282 if (!irqchip_in_kernel(kvm))
283 return -EINVAL;
284 /* no irq assignment to deassign */
285 if (!assigned_dev->irq_requested_type)
286 return -ENXIO;
287
288 host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
289 guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
290
291 if (host_irq_type)
292 deassign_host_irq(kvm, assigned_dev);
293 if (guest_irq_type)
294 deassign_guest_irq(kvm, assigned_dev);
295
296 return 0;
297 }
298
299 static void kvm_free_assigned_irq(struct kvm *kvm,
300 struct kvm_assigned_dev_kernel *assigned_dev)
301 {
302 kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
303 }
304
305 static void kvm_free_assigned_device(struct kvm *kvm,
306 struct kvm_assigned_dev_kernel
307 *assigned_dev)
308 {
309 kvm_free_assigned_irq(kvm, assigned_dev);
310
311 pci_reset_function(assigned_dev->dev);
312
313 pci_release_regions(assigned_dev->dev);
314 pci_disable_device(assigned_dev->dev);
315 pci_dev_put(assigned_dev->dev);
316
317 list_del(&assigned_dev->list);
318 kfree(assigned_dev);
319 }
320
321 void kvm_free_all_assigned_devices(struct kvm *kvm)
322 {
323 struct list_head *ptr, *ptr2;
324 struct kvm_assigned_dev_kernel *assigned_dev;
325
326 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
327 assigned_dev = list_entry(ptr,
328 struct kvm_assigned_dev_kernel,
329 list);
330
331 kvm_free_assigned_device(kvm, assigned_dev);
332 }
333 }
334
335 static int assigned_device_enable_host_intx(struct kvm *kvm,
336 struct kvm_assigned_dev_kernel *dev)
337 {
338 dev->host_irq = dev->dev->irq;
339 /* Even though this is PCI, we don't want to use shared
340 * interrupts. Sharing host devices with guest-assigned devices
341 * on the same interrupt line is not a happy situation: there
342 * are going to be long delays in accepting, acking, etc.
343 */
344 if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
345 0, "kvm_assigned_intx_device", (void *)dev))
346 return -EIO;
347 return 0;
348 }
349
350 #ifdef __KVM_HAVE_MSI
351 static int assigned_device_enable_host_msi(struct kvm *kvm,
352 struct kvm_assigned_dev_kernel *dev)
353 {
354 int r;
355
356 if (!dev->dev->msi_enabled) {
357 r = pci_enable_msi(dev->dev);
358 if (r)
359 return r;
360 }
361
362 dev->host_irq = dev->dev->irq;
363 if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
364 "kvm_assigned_msi_device", (void *)dev)) {
365 pci_disable_msi(dev->dev);
366 return -EIO;
367 }
368
369 return 0;
370 }
371 #endif
372
373 #ifdef __KVM_HAVE_MSIX
374 static int assigned_device_enable_host_msix(struct kvm *kvm,
375 struct kvm_assigned_dev_kernel *dev)
376 {
377 int i, r = -EINVAL;
378
379 /* host_msix_entries and guest_msix_entries should have been
380 * initialized */
381 if (dev->entries_nr == 0)
382 return r;
383
384 r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
385 if (r)
386 return r;
387
388 for (i = 0; i < dev->entries_nr; i++) {
389 r = request_irq(dev->host_msix_entries[i].vector,
390 kvm_assigned_dev_intr, 0,
391 "kvm_assigned_msix_device",
392 (void *)dev);
393 /* FIXME: free requested_irq's on failure */
394 if (r)
395 return r;
396 }
397
398 return 0;
399 }
400
401 #endif
402
403 static int assigned_device_enable_guest_intx(struct kvm *kvm,
404 struct kvm_assigned_dev_kernel *dev,
405 struct kvm_assigned_irq *irq)
406 {
407 dev->guest_irq = irq->guest_irq;
408 dev->ack_notifier.gsi = irq->guest_irq;
409 return 0;
410 }
411
412 #ifdef __KVM_HAVE_MSI
413 static int assigned_device_enable_guest_msi(struct kvm *kvm,
414 struct kvm_assigned_dev_kernel *dev,
415 struct kvm_assigned_irq *irq)
416 {
417 dev->guest_irq = irq->guest_irq;
418 dev->ack_notifier.gsi = -1;
419 dev->host_irq_disabled = false;
420 return 0;
421 }
422 #endif
423 #ifdef __KVM_HAVE_MSIX
424 static int assigned_device_enable_guest_msix(struct kvm *kvm,
425 struct kvm_assigned_dev_kernel *dev,
426 struct kvm_assigned_irq *irq)
427 {
428 dev->guest_irq = irq->guest_irq;
429 dev->ack_notifier.gsi = -1;
430 dev->host_irq_disabled = false;
431 return 0;
432 }
433 #endif
434
435 static int assign_host_irq(struct kvm *kvm,
436 struct kvm_assigned_dev_kernel *dev,
437 __u32 host_irq_type)
438 {
439 int r = -EEXIST;
440
441 if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
442 return r;
443
444 switch (host_irq_type) {
445 case KVM_DEV_IRQ_HOST_INTX:
446 r = assigned_device_enable_host_intx(kvm, dev);
447 break;
448 #ifdef __KVM_HAVE_MSI
449 case KVM_DEV_IRQ_HOST_MSI:
450 r = assigned_device_enable_host_msi(kvm, dev);
451 break;
452 #endif
453 #ifdef __KVM_HAVE_MSIX
454 case KVM_DEV_IRQ_HOST_MSIX:
455 r = assigned_device_enable_host_msix(kvm, dev);
456 break;
457 #endif
458 default:
459 r = -EINVAL;
460 }
461
462 if (!r)
463 dev->irq_requested_type |= host_irq_type;
464
465 return r;
466 }
467
468 static int assign_guest_irq(struct kvm *kvm,
469 struct kvm_assigned_dev_kernel *dev,
470 struct kvm_assigned_irq *irq,
471 unsigned long guest_irq_type)
472 {
473 int id;
474 int r = -EEXIST;
475
476 if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
477 return r;
478
479 id = kvm_request_irq_source_id(kvm);
480 if (id < 0)
481 return id;
482
483 dev->irq_source_id = id;
484
485 switch (guest_irq_type) {
486 case KVM_DEV_IRQ_GUEST_INTX:
487 r = assigned_device_enable_guest_intx(kvm, dev, irq);
488 break;
489 #ifdef __KVM_HAVE_MSI
490 case KVM_DEV_IRQ_GUEST_MSI:
491 r = assigned_device_enable_guest_msi(kvm, dev, irq);
492 break;
493 #endif
494 #ifdef __KVM_HAVE_MSIX
495 case KVM_DEV_IRQ_GUEST_MSIX:
496 r = assigned_device_enable_guest_msix(kvm, dev, irq);
497 break;
498 #endif
499 default:
500 r = -EINVAL;
501 }
502
503 if (!r) {
504 dev->irq_requested_type |= guest_irq_type;
505 kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
506 } else
507 kvm_free_irq_source_id(kvm, dev->irq_source_id);
508
509 return r;
510 }
511
512 /* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
513 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
514 struct kvm_assigned_irq *assigned_irq)
515 {
516 int r = -EINVAL;
517 struct kvm_assigned_dev_kernel *match;
518 unsigned long host_irq_type, guest_irq_type;
519
520 if (!capable(CAP_SYS_RAWIO))
521 return -EPERM;
522
523 if (!irqchip_in_kernel(kvm))
524 return r;
525
526 mutex_lock(&kvm->lock);
527 r = -ENODEV;
528 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
529 assigned_irq->assigned_dev_id);
530 if (!match)
531 goto out;
532
533 host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
534 guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
535
536 r = -EINVAL;
537 /* can only assign one type at a time */
538 if (hweight_long(host_irq_type) > 1)
539 goto out;
540 if (hweight_long(guest_irq_type) > 1)
541 goto out;
542 if (host_irq_type == 0 && guest_irq_type == 0)
543 goto out;
544
545 r = 0;
546 if (host_irq_type)
547 r = assign_host_irq(kvm, match, host_irq_type);
548 if (r)
549 goto out;
550
551 if (guest_irq_type)
552 r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
553 out:
554 mutex_unlock(&kvm->lock);
555 return r;
556 }
557
558 static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
559 struct kvm_assigned_irq
560 *assigned_irq)
561 {
562 int r = -ENODEV;
563 struct kvm_assigned_dev_kernel *match;
564
565 mutex_lock(&kvm->lock);
566
567 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
568 assigned_irq->assigned_dev_id);
569 if (!match)
570 goto out;
571
572 r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
573 out:
574 mutex_unlock(&kvm->lock);
575 return r;
576 }
577
578 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
579 struct kvm_assigned_pci_dev *assigned_dev)
580 {
581 int r = 0;
582 struct kvm_assigned_dev_kernel *match;
583 struct pci_dev *dev;
584
585 down_read(&kvm->slots_lock);
586 mutex_lock(&kvm->lock);
587
588 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
589 assigned_dev->assigned_dev_id);
590 if (match) {
591 /* device already assigned */
592 r = -EEXIST;
593 goto out;
594 }
595
596 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
597 if (match == NULL) {
598 printk(KERN_INFO "%s: Couldn't allocate memory\n",
599 __func__);
600 r = -ENOMEM;
601 goto out;
602 }
603 dev = pci_get_bus_and_slot(assigned_dev->busnr,
604 assigned_dev->devfn);
605 if (!dev) {
606 printk(KERN_INFO "%s: host device not found\n", __func__);
607 r = -EINVAL;
608 goto out_free;
609 }
610 if (pci_enable_device(dev)) {
611 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
612 r = -EBUSY;
613 goto out_put;
614 }
615 r = pci_request_regions(dev, "kvm_assigned_device");
616 if (r) {
617 printk(KERN_INFO "%s: Could not get access to device regions\n",
618 __func__);
619 goto out_disable;
620 }
621
622 pci_reset_function(dev);
623
624 match->assigned_dev_id = assigned_dev->assigned_dev_id;
625 match->host_busnr = assigned_dev->busnr;
626 match->host_devfn = assigned_dev->devfn;
627 match->flags = assigned_dev->flags;
628 match->dev = dev;
629 spin_lock_init(&match->assigned_dev_lock);
630 match->irq_source_id = -1;
631 match->kvm = kvm;
632 match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
633 INIT_WORK(&match->interrupt_work,
634 kvm_assigned_dev_interrupt_work_handler);
635
636 list_add(&match->list, &kvm->arch.assigned_dev_head);
637
638 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
639 if (!kvm->arch.iommu_domain) {
640 r = kvm_iommu_map_guest(kvm);
641 if (r)
642 goto out_list_del;
643 }
644 r = kvm_assign_device(kvm, match);
645 if (r)
646 goto out_list_del;
647 }
648
649 out:
650 mutex_unlock(&kvm->lock);
651 up_read(&kvm->slots_lock);
652 return r;
653 out_list_del:
654 list_del(&match->list);
655 pci_release_regions(dev);
656 out_disable:
657 pci_disable_device(dev);
658 out_put:
659 pci_dev_put(dev);
660 out_free:
661 kfree(match);
662 mutex_unlock(&kvm->lock);
663 up_read(&kvm->slots_lock);
664 return r;
665 }
666 #endif
667
668 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
669 static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
670 struct kvm_assigned_pci_dev *assigned_dev)
671 {
672 int r = 0;
673 struct kvm_assigned_dev_kernel *match;
674
675 mutex_lock(&kvm->lock);
676
677 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
678 assigned_dev->assigned_dev_id);
679 if (!match) {
680 printk(KERN_INFO "%s: device hasn't been assigned before, "
681 "so cannot be deassigned\n", __func__);
682 r = -EINVAL;
683 goto out;
684 }
685
686 if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
687 kvm_deassign_device(kvm, match);
688
689 kvm_free_assigned_device(kvm, match);
690
691 out:
692 mutex_unlock(&kvm->lock);
693 return r;
694 }
695 #endif
696
697 inline int kvm_is_mmio_pfn(pfn_t pfn)
698 {
699 if (pfn_valid(pfn)) {
700 struct page *page = compound_head(pfn_to_page(pfn));
701 return PageReserved(page);
702 }
703
704 return true;
705 }
706
707 /*
708 * Switches to specified vcpu, until a matching vcpu_put()
709 */
710 void vcpu_load(struct kvm_vcpu *vcpu)
711 {
712 int cpu;
713
714 mutex_lock(&vcpu->mutex);
715 cpu = get_cpu();
716 preempt_notifier_register(&vcpu->preempt_notifier);
717 kvm_arch_vcpu_load(vcpu, cpu);
718 put_cpu();
719 }
720
721 void vcpu_put(struct kvm_vcpu *vcpu)
722 {
723 preempt_disable();
724 kvm_arch_vcpu_put(vcpu);
725 preempt_notifier_unregister(&vcpu->preempt_notifier);
726 preempt_enable();
727 mutex_unlock(&vcpu->mutex);
728 }
729
730 static void ack_flush(void *_completed)
731 {
732 }
733
734 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
735 {
736 int i, cpu, me;
737 cpumask_var_t cpus;
738 bool called = true;
739 struct kvm_vcpu *vcpu;
740
741 if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
742 cpumask_clear(cpus);
743
744 me = get_cpu();
745 spin_lock(&kvm->requests_lock);
746 kvm_for_each_vcpu(i, vcpu, kvm) {
747 if (test_and_set_bit(req, &vcpu->requests))
748 continue;
749 cpu = vcpu->cpu;
750 if (cpus != NULL && cpu != -1 && cpu != me)
751 cpumask_set_cpu(cpu, cpus);
752 }
753 if (unlikely(cpus == NULL))
754 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
755 else if (!cpumask_empty(cpus))
756 smp_call_function_many(cpus, ack_flush, NULL, 1);
757 else
758 called = false;
759 spin_unlock(&kvm->requests_lock);
760 put_cpu();
761 free_cpumask_var(cpus);
762 return called;
763 }
764
765 void kvm_flush_remote_tlbs(struct kvm *kvm)
766 {
767 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
768 ++kvm->stat.remote_tlb_flush;
769 }
770
771 void kvm_reload_remote_mmus(struct kvm *kvm)
772 {
773 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
774 }
775
776 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
777 {
778 struct page *page;
779 int r;
780
781 mutex_init(&vcpu->mutex);
782 vcpu->cpu = -1;
783 vcpu->kvm = kvm;
784 vcpu->vcpu_id = id;
785 init_waitqueue_head(&vcpu->wq);
786
787 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
788 if (!page) {
789 r = -ENOMEM;
790 goto fail;
791 }
792 vcpu->run = page_address(page);
793
794 r = kvm_arch_vcpu_init(vcpu);
795 if (r < 0)
796 goto fail_free_run;
797 return 0;
798
799 fail_free_run:
800 free_page((unsigned long)vcpu->run);
801 fail:
802 return r;
803 }
804 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
805
806 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
807 {
808 kvm_arch_vcpu_uninit(vcpu);
809 free_page((unsigned long)vcpu->run);
810 }
811 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
812
813 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
814 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
815 {
816 return container_of(mn, struct kvm, mmu_notifier);
817 }
818
819 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
820 struct mm_struct *mm,
821 unsigned long address)
822 {
823 struct kvm *kvm = mmu_notifier_to_kvm(mn);
824 int need_tlb_flush;
825
826 /*
827 * When ->invalidate_page runs, the linux pte has been zapped
828 * already but the page is still allocated until
829 * ->invalidate_page returns. So if we increase the sequence
830 * here the kvm page fault will notice if the spte can't be
831 * established because the page is going to be freed. If
832 * instead the kvm page fault establishes the spte before
833 * ->invalidate_page runs, kvm_unmap_hva will release it
834 * before returning.
835 *
836 * The sequence increase only need to be seen at spin_unlock
837 * time, and not at spin_lock time.
838 *
839 * Increasing the sequence after the spin_unlock would be
840 * unsafe because the kvm page fault could then establish the
841 * pte after kvm_unmap_hva returned, without noticing the page
842 * is going to be freed.
843 */
844 spin_lock(&kvm->mmu_lock);
845 kvm->mmu_notifier_seq++;
846 need_tlb_flush = kvm_unmap_hva(kvm, address);
847 spin_unlock(&kvm->mmu_lock);
848
849 /* we've to flush the tlb before the pages can be freed */
850 if (need_tlb_flush)
851 kvm_flush_remote_tlbs(kvm);
852
853 }
854
855 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
856 struct mm_struct *mm,
857 unsigned long start,
858 unsigned long end)
859 {
860 struct kvm *kvm = mmu_notifier_to_kvm(mn);
861 int need_tlb_flush = 0;
862
863 spin_lock(&kvm->mmu_lock);
864 /*
865 * The count increase must become visible at unlock time as no
866 * spte can be established without taking the mmu_lock and
867 * count is also read inside the mmu_lock critical section.
868 */
869 kvm->mmu_notifier_count++;
870 for (; start < end; start += PAGE_SIZE)
871 need_tlb_flush |= kvm_unmap_hva(kvm, start);
872 spin_unlock(&kvm->mmu_lock);
873
874 /* we've to flush the tlb before the pages can be freed */
875 if (need_tlb_flush)
876 kvm_flush_remote_tlbs(kvm);
877 }
878
879 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
880 struct mm_struct *mm,
881 unsigned long start,
882 unsigned long end)
883 {
884 struct kvm *kvm = mmu_notifier_to_kvm(mn);
885
886 spin_lock(&kvm->mmu_lock);
887 /*
888 * This sequence increase will notify the kvm page fault that
889 * the page that is going to be mapped in the spte could have
890 * been freed.
891 */
892 kvm->mmu_notifier_seq++;
893 /*
894 * The above sequence increase must be visible before the
895 * below count decrease but both values are read by the kvm
896 * page fault under mmu_lock spinlock so we don't need to add
897 * a smb_wmb() here in between the two.
898 */
899 kvm->mmu_notifier_count--;
900 spin_unlock(&kvm->mmu_lock);
901
902 BUG_ON(kvm->mmu_notifier_count < 0);
903 }
904
905 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
906 struct mm_struct *mm,
907 unsigned long address)
908 {
909 struct kvm *kvm = mmu_notifier_to_kvm(mn);
910 int young;
911
912 spin_lock(&kvm->mmu_lock);
913 young = kvm_age_hva(kvm, address);
914 spin_unlock(&kvm->mmu_lock);
915
916 if (young)
917 kvm_flush_remote_tlbs(kvm);
918
919 return young;
920 }
921
922 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
923 struct mm_struct *mm)
924 {
925 struct kvm *kvm = mmu_notifier_to_kvm(mn);
926 kvm_arch_flush_shadow(kvm);
927 }
928
929 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
930 .invalidate_page = kvm_mmu_notifier_invalidate_page,
931 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
932 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
933 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
934 .release = kvm_mmu_notifier_release,
935 };
936 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
937
938 static struct kvm *kvm_create_vm(void)
939 {
940 struct kvm *kvm = kvm_arch_create_vm();
941 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
942 struct page *page;
943 #endif
944
945 if (IS_ERR(kvm))
946 goto out;
947 #ifdef CONFIG_HAVE_KVM_IRQCHIP
948 INIT_LIST_HEAD(&kvm->irq_routing);
949 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
950 #endif
951
952 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
953 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
954 if (!page) {
955 kfree(kvm);
956 return ERR_PTR(-ENOMEM);
957 }
958 kvm->coalesced_mmio_ring =
959 (struct kvm_coalesced_mmio_ring *)page_address(page);
960 #endif
961
962 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
963 {
964 int err;
965 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
966 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
967 if (err) {
968 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
969 put_page(page);
970 #endif
971 kfree(kvm);
972 return ERR_PTR(err);
973 }
974 }
975 #endif
976
977 kvm->mm = current->mm;
978 atomic_inc(&kvm->mm->mm_count);
979 spin_lock_init(&kvm->mmu_lock);
980 spin_lock_init(&kvm->requests_lock);
981 kvm_io_bus_init(&kvm->pio_bus);
982 kvm_irqfd_init(kvm);
983 mutex_init(&kvm->lock);
984 mutex_init(&kvm->irq_lock);
985 kvm_io_bus_init(&kvm->mmio_bus);
986 init_rwsem(&kvm->slots_lock);
987 atomic_set(&kvm->users_count, 1);
988 spin_lock(&kvm_lock);
989 list_add(&kvm->vm_list, &vm_list);
990 spin_unlock(&kvm_lock);
991 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
992 kvm_coalesced_mmio_init(kvm);
993 #endif
994 out:
995 return kvm;
996 }
997
998 /*
999 * Free any memory in @free but not in @dont.
1000 */
1001 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
1002 struct kvm_memory_slot *dont)
1003 {
1004 if (!dont || free->rmap != dont->rmap)
1005 vfree(free->rmap);
1006
1007 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
1008 vfree(free->dirty_bitmap);
1009
1010 if (!dont || free->lpage_info != dont->lpage_info)
1011 vfree(free->lpage_info);
1012
1013 free->npages = 0;
1014 free->dirty_bitmap = NULL;
1015 free->rmap = NULL;
1016 free->lpage_info = NULL;
1017 }
1018
1019 void kvm_free_physmem(struct kvm *kvm)
1020 {
1021 int i;
1022
1023 for (i = 0; i < kvm->nmemslots; ++i)
1024 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
1025 }
1026
1027 static void kvm_destroy_vm(struct kvm *kvm)
1028 {
1029 struct mm_struct *mm = kvm->mm;
1030
1031 kvm_arch_sync_events(kvm);
1032 spin_lock(&kvm_lock);
1033 list_del(&kvm->vm_list);
1034 spin_unlock(&kvm_lock);
1035 kvm_free_irq_routing(kvm);
1036 kvm_io_bus_destroy(&kvm->pio_bus);
1037 kvm_io_bus_destroy(&kvm->mmio_bus);
1038 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1039 if (kvm->coalesced_mmio_ring != NULL)
1040 free_page((unsigned long)kvm->coalesced_mmio_ring);
1041 #endif
1042 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1043 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1044 #else
1045 kvm_arch_flush_shadow(kvm);
1046 #endif
1047 kvm_arch_destroy_vm(kvm);
1048 mmdrop(mm);
1049 }
1050
1051 void kvm_get_kvm(struct kvm *kvm)
1052 {
1053 atomic_inc(&kvm->users_count);
1054 }
1055 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1056
1057 void kvm_put_kvm(struct kvm *kvm)
1058 {
1059 if (atomic_dec_and_test(&kvm->users_count))
1060 kvm_destroy_vm(kvm);
1061 }
1062 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1063
1064
1065 static int kvm_vm_release(struct inode *inode, struct file *filp)
1066 {
1067 struct kvm *kvm = filp->private_data;
1068
1069 kvm_irqfd_release(kvm);
1070
1071 kvm_put_kvm(kvm);
1072 return 0;
1073 }
1074
1075 /*
1076 * Allocate some memory and give it an address in the guest physical address
1077 * space.
1078 *
1079 * Discontiguous memory is allowed, mostly for framebuffers.
1080 *
1081 * Must be called holding mmap_sem for write.
1082 */
1083 int __kvm_set_memory_region(struct kvm *kvm,
1084 struct kvm_userspace_memory_region *mem,
1085 int user_alloc)
1086 {
1087 int r;
1088 gfn_t base_gfn;
1089 unsigned long npages, ugfn;
1090 unsigned long largepages, i;
1091 struct kvm_memory_slot *memslot;
1092 struct kvm_memory_slot old, new;
1093
1094 r = -EINVAL;
1095 /* General sanity checks */
1096 if (mem->memory_size & (PAGE_SIZE - 1))
1097 goto out;
1098 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1099 goto out;
1100 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
1101 goto out;
1102 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
1103 goto out;
1104 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1105 goto out;
1106
1107 memslot = &kvm->memslots[mem->slot];
1108 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1109 npages = mem->memory_size >> PAGE_SHIFT;
1110
1111 if (!npages)
1112 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1113
1114 new = old = *memslot;
1115
1116 new.base_gfn = base_gfn;
1117 new.npages = npages;
1118 new.flags = mem->flags;
1119
1120 /* Disallow changing a memory slot's size. */
1121 r = -EINVAL;
1122 if (npages && old.npages && npages != old.npages)
1123 goto out_free;
1124
1125 /* Check for overlaps */
1126 r = -EEXIST;
1127 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1128 struct kvm_memory_slot *s = &kvm->memslots[i];
1129
1130 if (s == memslot || !s->npages)
1131 continue;
1132 if (!((base_gfn + npages <= s->base_gfn) ||
1133 (base_gfn >= s->base_gfn + s->npages)))
1134 goto out_free;
1135 }
1136
1137 /* Free page dirty bitmap if unneeded */
1138 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1139 new.dirty_bitmap = NULL;
1140
1141 r = -ENOMEM;
1142
1143 /* Allocate if a slot is being created */
1144 #ifndef CONFIG_S390
1145 if (npages && !new.rmap) {
1146 new.rmap = vmalloc(npages * sizeof(struct page *));
1147
1148 if (!new.rmap)
1149 goto out_free;
1150
1151 memset(new.rmap, 0, npages * sizeof(*new.rmap));
1152
1153 new.user_alloc = user_alloc;
1154 /*
1155 * hva_to_rmmap() serialzies with the mmu_lock and to be
1156 * safe it has to ignore memslots with !user_alloc &&
1157 * !userspace_addr.
1158 */
1159 if (user_alloc)
1160 new.userspace_addr = mem->userspace_addr;
1161 else
1162 new.userspace_addr = 0;
1163 }
1164 if (npages && !new.lpage_info) {
1165 largepages = 1 + (base_gfn + npages - 1) / KVM_PAGES_PER_HPAGE;
1166 largepages -= base_gfn / KVM_PAGES_PER_HPAGE;
1167
1168 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
1169
1170 if (!new.lpage_info)
1171 goto out_free;
1172
1173 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
1174
1175 if (base_gfn % KVM_PAGES_PER_HPAGE)
1176 new.lpage_info[0].write_count = 1;
1177 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
1178 new.lpage_info[largepages-1].write_count = 1;
1179 ugfn = new.userspace_addr >> PAGE_SHIFT;
1180 /*
1181 * If the gfn and userspace address are not aligned wrt each
1182 * other, or if explicitly asked to, disable large page
1183 * support for this slot
1184 */
1185 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE - 1) ||
1186 !largepages_enabled)
1187 for (i = 0; i < largepages; ++i)
1188 new.lpage_info[i].write_count = 1;
1189 }
1190
1191 /* Allocate page dirty bitmap if needed */
1192 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1193 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
1194
1195 new.dirty_bitmap = vmalloc(dirty_bytes);
1196 if (!new.dirty_bitmap)
1197 goto out_free;
1198 memset(new.dirty_bitmap, 0, dirty_bytes);
1199 if (old.npages)
1200 kvm_arch_flush_shadow(kvm);
1201 }
1202 #else /* not defined CONFIG_S390 */
1203 new.user_alloc = user_alloc;
1204 if (user_alloc)
1205 new.userspace_addr = mem->userspace_addr;
1206 #endif /* not defined CONFIG_S390 */
1207
1208 if (!npages)
1209 kvm_arch_flush_shadow(kvm);
1210
1211 spin_lock(&kvm->mmu_lock);
1212 if (mem->slot >= kvm->nmemslots)
1213 kvm->nmemslots = mem->slot + 1;
1214
1215 *memslot = new;
1216 spin_unlock(&kvm->mmu_lock);
1217
1218 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1219 if (r) {
1220 spin_lock(&kvm->mmu_lock);
1221 *memslot = old;
1222 spin_unlock(&kvm->mmu_lock);
1223 goto out_free;
1224 }
1225
1226 kvm_free_physmem_slot(&old, npages ? &new : NULL);
1227 /* Slot deletion case: we have to update the current slot */
1228 spin_lock(&kvm->mmu_lock);
1229 if (!npages)
1230 *memslot = old;
1231 spin_unlock(&kvm->mmu_lock);
1232 #ifdef CONFIG_DMAR
1233 /* map the pages in iommu page table */
1234 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1235 if (r)
1236 goto out;
1237 #endif
1238 return 0;
1239
1240 out_free:
1241 kvm_free_physmem_slot(&new, &old);
1242 out:
1243 return r;
1244
1245 }
1246 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1247
1248 int kvm_set_memory_region(struct kvm *kvm,
1249 struct kvm_userspace_memory_region *mem,
1250 int user_alloc)
1251 {
1252 int r;
1253
1254 down_write(&kvm->slots_lock);
1255 r = __kvm_set_memory_region(kvm, mem, user_alloc);
1256 up_write(&kvm->slots_lock);
1257 return r;
1258 }
1259 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1260
1261 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1262 struct
1263 kvm_userspace_memory_region *mem,
1264 int user_alloc)
1265 {
1266 if (mem->slot >= KVM_MEMORY_SLOTS)
1267 return -EINVAL;
1268 return kvm_set_memory_region(kvm, mem, user_alloc);
1269 }
1270
1271 int kvm_get_dirty_log(struct kvm *kvm,
1272 struct kvm_dirty_log *log, int *is_dirty)
1273 {
1274 struct kvm_memory_slot *memslot;
1275 int r, i;
1276 int n;
1277 unsigned long any = 0;
1278
1279 r = -EINVAL;
1280 if (log->slot >= KVM_MEMORY_SLOTS)
1281 goto out;
1282
1283 memslot = &kvm->memslots[log->slot];
1284 r = -ENOENT;
1285 if (!memslot->dirty_bitmap)
1286 goto out;
1287
1288 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1289
1290 for (i = 0; !any && i < n/sizeof(long); ++i)
1291 any = memslot->dirty_bitmap[i];
1292
1293 r = -EFAULT;
1294 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1295 goto out;
1296
1297 if (any)
1298 *is_dirty = 1;
1299
1300 r = 0;
1301 out:
1302 return r;
1303 }
1304
1305 void kvm_disable_largepages(void)
1306 {
1307 largepages_enabled = false;
1308 }
1309 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1310
1311 int is_error_page(struct page *page)
1312 {
1313 return page == bad_page;
1314 }
1315 EXPORT_SYMBOL_GPL(is_error_page);
1316
1317 int is_error_pfn(pfn_t pfn)
1318 {
1319 return pfn == bad_pfn;
1320 }
1321 EXPORT_SYMBOL_GPL(is_error_pfn);
1322
1323 static inline unsigned long bad_hva(void)
1324 {
1325 return PAGE_OFFSET;
1326 }
1327
1328 int kvm_is_error_hva(unsigned long addr)
1329 {
1330 return addr == bad_hva();
1331 }
1332 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1333
1334 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1335 {
1336 int i;
1337
1338 for (i = 0; i < kvm->nmemslots; ++i) {
1339 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1340
1341 if (gfn >= memslot->base_gfn
1342 && gfn < memslot->base_gfn + memslot->npages)
1343 return memslot;
1344 }
1345 return NULL;
1346 }
1347 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1348
1349 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1350 {
1351 gfn = unalias_gfn(kvm, gfn);
1352 return gfn_to_memslot_unaliased(kvm, gfn);
1353 }
1354
1355 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1356 {
1357 int i;
1358
1359 gfn = unalias_gfn(kvm, gfn);
1360 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1361 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1362
1363 if (gfn >= memslot->base_gfn
1364 && gfn < memslot->base_gfn + memslot->npages)
1365 return 1;
1366 }
1367 return 0;
1368 }
1369 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1370
1371 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1372 {
1373 struct kvm_memory_slot *slot;
1374
1375 gfn = unalias_gfn(kvm, gfn);
1376 slot = gfn_to_memslot_unaliased(kvm, gfn);
1377 if (!slot)
1378 return bad_hva();
1379 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1380 }
1381 EXPORT_SYMBOL_GPL(gfn_to_hva);
1382
1383 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1384 {
1385 struct page *page[1];
1386 unsigned long addr;
1387 int npages;
1388 pfn_t pfn;
1389
1390 might_sleep();
1391
1392 addr = gfn_to_hva(kvm, gfn);
1393 if (kvm_is_error_hva(addr)) {
1394 get_page(bad_page);
1395 return page_to_pfn(bad_page);
1396 }
1397
1398 npages = get_user_pages_fast(addr, 1, 1, page);
1399
1400 if (unlikely(npages != 1)) {
1401 struct vm_area_struct *vma;
1402
1403 down_read(&current->mm->mmap_sem);
1404 vma = find_vma(current->mm, addr);
1405
1406 if (vma == NULL || addr < vma->vm_start ||
1407 !(vma->vm_flags & VM_PFNMAP)) {
1408 up_read(&current->mm->mmap_sem);
1409 get_page(bad_page);
1410 return page_to_pfn(bad_page);
1411 }
1412
1413 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1414 up_read(&current->mm->mmap_sem);
1415 BUG_ON(!kvm_is_mmio_pfn(pfn));
1416 } else
1417 pfn = page_to_pfn(page[0]);
1418
1419 return pfn;
1420 }
1421
1422 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1423
1424 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1425 {
1426 pfn_t pfn;
1427
1428 pfn = gfn_to_pfn(kvm, gfn);
1429 if (!kvm_is_mmio_pfn(pfn))
1430 return pfn_to_page(pfn);
1431
1432 WARN_ON(kvm_is_mmio_pfn(pfn));
1433
1434 get_page(bad_page);
1435 return bad_page;
1436 }
1437
1438 EXPORT_SYMBOL_GPL(gfn_to_page);
1439
1440 void kvm_release_page_clean(struct page *page)
1441 {
1442 kvm_release_pfn_clean(page_to_pfn(page));
1443 }
1444 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1445
1446 void kvm_release_pfn_clean(pfn_t pfn)
1447 {
1448 if (!kvm_is_mmio_pfn(pfn))
1449 put_page(pfn_to_page(pfn));
1450 }
1451 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1452
1453 void kvm_release_page_dirty(struct page *page)
1454 {
1455 kvm_release_pfn_dirty(page_to_pfn(page));
1456 }
1457 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1458
1459 void kvm_release_pfn_dirty(pfn_t pfn)
1460 {
1461 kvm_set_pfn_dirty(pfn);
1462 kvm_release_pfn_clean(pfn);
1463 }
1464 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1465
1466 void kvm_set_page_dirty(struct page *page)
1467 {
1468 kvm_set_pfn_dirty(page_to_pfn(page));
1469 }
1470 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1471
1472 void kvm_set_pfn_dirty(pfn_t pfn)
1473 {
1474 if (!kvm_is_mmio_pfn(pfn)) {
1475 struct page *page = pfn_to_page(pfn);
1476 if (!PageReserved(page))
1477 SetPageDirty(page);
1478 }
1479 }
1480 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1481
1482 void kvm_set_pfn_accessed(pfn_t pfn)
1483 {
1484 if (!kvm_is_mmio_pfn(pfn))
1485 mark_page_accessed(pfn_to_page(pfn));
1486 }
1487 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1488
1489 void kvm_get_pfn(pfn_t pfn)
1490 {
1491 if (!kvm_is_mmio_pfn(pfn))
1492 get_page(pfn_to_page(pfn));
1493 }
1494 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1495
1496 static int next_segment(unsigned long len, int offset)
1497 {
1498 if (len > PAGE_SIZE - offset)
1499 return PAGE_SIZE - offset;
1500 else
1501 return len;
1502 }
1503
1504 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1505 int len)
1506 {
1507 int r;
1508 unsigned long addr;
1509
1510 addr = gfn_to_hva(kvm, gfn);
1511 if (kvm_is_error_hva(addr))
1512 return -EFAULT;
1513 r = copy_from_user(data, (void __user *)addr + offset, len);
1514 if (r)
1515 return -EFAULT;
1516 return 0;
1517 }
1518 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1519
1520 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1521 {
1522 gfn_t gfn = gpa >> PAGE_SHIFT;
1523 int seg;
1524 int offset = offset_in_page(gpa);
1525 int ret;
1526
1527 while ((seg = next_segment(len, offset)) != 0) {
1528 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1529 if (ret < 0)
1530 return ret;
1531 offset = 0;
1532 len -= seg;
1533 data += seg;
1534 ++gfn;
1535 }
1536 return 0;
1537 }
1538 EXPORT_SYMBOL_GPL(kvm_read_guest);
1539
1540 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1541 unsigned long len)
1542 {
1543 int r;
1544 unsigned long addr;
1545 gfn_t gfn = gpa >> PAGE_SHIFT;
1546 int offset = offset_in_page(gpa);
1547
1548 addr = gfn_to_hva(kvm, gfn);
1549 if (kvm_is_error_hva(addr))
1550 return -EFAULT;
1551 pagefault_disable();
1552 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1553 pagefault_enable();
1554 if (r)
1555 return -EFAULT;
1556 return 0;
1557 }
1558 EXPORT_SYMBOL(kvm_read_guest_atomic);
1559
1560 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1561 int offset, int len)
1562 {
1563 int r;
1564 unsigned long addr;
1565
1566 addr = gfn_to_hva(kvm, gfn);
1567 if (kvm_is_error_hva(addr))
1568 return -EFAULT;
1569 r = copy_to_user((void __user *)addr + offset, data, len);
1570 if (r)
1571 return -EFAULT;
1572 mark_page_dirty(kvm, gfn);
1573 return 0;
1574 }
1575 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1576
1577 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1578 unsigned long len)
1579 {
1580 gfn_t gfn = gpa >> PAGE_SHIFT;
1581 int seg;
1582 int offset = offset_in_page(gpa);
1583 int ret;
1584
1585 while ((seg = next_segment(len, offset)) != 0) {
1586 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1587 if (ret < 0)
1588 return ret;
1589 offset = 0;
1590 len -= seg;
1591 data += seg;
1592 ++gfn;
1593 }
1594 return 0;
1595 }
1596
1597 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1598 {
1599 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1600 }
1601 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1602
1603 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1604 {
1605 gfn_t gfn = gpa >> PAGE_SHIFT;
1606 int seg;
1607 int offset = offset_in_page(gpa);
1608 int ret;
1609
1610 while ((seg = next_segment(len, offset)) != 0) {
1611 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1612 if (ret < 0)
1613 return ret;
1614 offset = 0;
1615 len -= seg;
1616 ++gfn;
1617 }
1618 return 0;
1619 }
1620 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1621
1622 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1623 {
1624 struct kvm_memory_slot *memslot;
1625
1626 gfn = unalias_gfn(kvm, gfn);
1627 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1628 if (memslot && memslot->dirty_bitmap) {
1629 unsigned long rel_gfn = gfn - memslot->base_gfn;
1630
1631 /* avoid RMW */
1632 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1633 set_bit(rel_gfn, memslot->dirty_bitmap);
1634 }
1635 }
1636
1637 /*
1638 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1639 */
1640 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1641 {
1642 DEFINE_WAIT(wait);
1643
1644 for (;;) {
1645 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1646
1647 if ((kvm_arch_interrupt_allowed(vcpu) &&
1648 kvm_cpu_has_interrupt(vcpu)) ||
1649 kvm_arch_vcpu_runnable(vcpu)) {
1650 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1651 break;
1652 }
1653 if (kvm_cpu_has_pending_timer(vcpu))
1654 break;
1655 if (signal_pending(current))
1656 break;
1657
1658 vcpu_put(vcpu);
1659 schedule();
1660 vcpu_load(vcpu);
1661 }
1662
1663 finish_wait(&vcpu->wq, &wait);
1664 }
1665
1666 void kvm_resched(struct kvm_vcpu *vcpu)
1667 {
1668 if (!need_resched())
1669 return;
1670 cond_resched();
1671 }
1672 EXPORT_SYMBOL_GPL(kvm_resched);
1673
1674 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1675 {
1676 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1677 struct page *page;
1678
1679 if (vmf->pgoff == 0)
1680 page = virt_to_page(vcpu->run);
1681 #ifdef CONFIG_X86
1682 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1683 page = virt_to_page(vcpu->arch.pio_data);
1684 #endif
1685 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1686 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1687 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1688 #endif
1689 else
1690 return VM_FAULT_SIGBUS;
1691 get_page(page);
1692 vmf->page = page;
1693 return 0;
1694 }
1695
1696 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1697 .fault = kvm_vcpu_fault,
1698 };
1699
1700 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1701 {
1702 vma->vm_ops = &kvm_vcpu_vm_ops;
1703 return 0;
1704 }
1705
1706 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1707 {
1708 struct kvm_vcpu *vcpu = filp->private_data;
1709
1710 kvm_put_kvm(vcpu->kvm);
1711 return 0;
1712 }
1713
1714 static struct file_operations kvm_vcpu_fops = {
1715 .release = kvm_vcpu_release,
1716 .unlocked_ioctl = kvm_vcpu_ioctl,
1717 .compat_ioctl = kvm_vcpu_ioctl,
1718 .mmap = kvm_vcpu_mmap,
1719 };
1720
1721 /*
1722 * Allocates an inode for the vcpu.
1723 */
1724 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1725 {
1726 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1727 }
1728
1729 /*
1730 * Creates some virtual cpus. Good luck creating more than one.
1731 */
1732 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1733 {
1734 int r;
1735 struct kvm_vcpu *vcpu, *v;
1736
1737 vcpu = kvm_arch_vcpu_create(kvm, id);
1738 if (IS_ERR(vcpu))
1739 return PTR_ERR(vcpu);
1740
1741 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1742
1743 r = kvm_arch_vcpu_setup(vcpu);
1744 if (r)
1745 return r;
1746
1747 mutex_lock(&kvm->lock);
1748 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1749 r = -EINVAL;
1750 goto vcpu_destroy;
1751 }
1752
1753 kvm_for_each_vcpu(r, v, kvm)
1754 if (v->vcpu_id == id) {
1755 r = -EEXIST;
1756 goto vcpu_destroy;
1757 }
1758
1759 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1760
1761 /* Now it's all set up, let userspace reach it */
1762 kvm_get_kvm(kvm);
1763 r = create_vcpu_fd(vcpu);
1764 if (r < 0) {
1765 kvm_put_kvm(kvm);
1766 goto vcpu_destroy;
1767 }
1768
1769 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1770 smp_wmb();
1771 atomic_inc(&kvm->online_vcpus);
1772
1773 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1774 if (kvm->bsp_vcpu_id == id)
1775 kvm->bsp_vcpu = vcpu;
1776 #endif
1777 mutex_unlock(&kvm->lock);
1778 return r;
1779
1780 vcpu_destroy:
1781 mutex_unlock(&kvm->lock);
1782 kvm_arch_vcpu_destroy(vcpu);
1783 return r;
1784 }
1785
1786 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1787 {
1788 if (sigset) {
1789 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1790 vcpu->sigset_active = 1;
1791 vcpu->sigset = *sigset;
1792 } else
1793 vcpu->sigset_active = 0;
1794 return 0;
1795 }
1796
1797 #ifdef __KVM_HAVE_MSIX
1798 static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
1799 struct kvm_assigned_msix_nr *entry_nr)
1800 {
1801 int r = 0;
1802 struct kvm_assigned_dev_kernel *adev;
1803
1804 mutex_lock(&kvm->lock);
1805
1806 adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1807 entry_nr->assigned_dev_id);
1808 if (!adev) {
1809 r = -EINVAL;
1810 goto msix_nr_out;
1811 }
1812
1813 if (adev->entries_nr == 0) {
1814 adev->entries_nr = entry_nr->entry_nr;
1815 if (adev->entries_nr == 0 ||
1816 adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
1817 r = -EINVAL;
1818 goto msix_nr_out;
1819 }
1820
1821 adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
1822 entry_nr->entry_nr,
1823 GFP_KERNEL);
1824 if (!adev->host_msix_entries) {
1825 r = -ENOMEM;
1826 goto msix_nr_out;
1827 }
1828 adev->guest_msix_entries = kzalloc(
1829 sizeof(struct kvm_guest_msix_entry) *
1830 entry_nr->entry_nr, GFP_KERNEL);
1831 if (!adev->guest_msix_entries) {
1832 kfree(adev->host_msix_entries);
1833 r = -ENOMEM;
1834 goto msix_nr_out;
1835 }
1836 } else /* Not allowed set MSI-X number twice */
1837 r = -EINVAL;
1838 msix_nr_out:
1839 mutex_unlock(&kvm->lock);
1840 return r;
1841 }
1842
1843 static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
1844 struct kvm_assigned_msix_entry *entry)
1845 {
1846 int r = 0, i;
1847 struct kvm_assigned_dev_kernel *adev;
1848
1849 mutex_lock(&kvm->lock);
1850
1851 adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1852 entry->assigned_dev_id);
1853
1854 if (!adev) {
1855 r = -EINVAL;
1856 goto msix_entry_out;
1857 }
1858
1859 for (i = 0; i < adev->entries_nr; i++)
1860 if (adev->guest_msix_entries[i].vector == 0 ||
1861 adev->guest_msix_entries[i].entry == entry->entry) {
1862 adev->guest_msix_entries[i].entry = entry->entry;
1863 adev->guest_msix_entries[i].vector = entry->gsi;
1864 adev->host_msix_entries[i].entry = entry->entry;
1865 break;
1866 }
1867 if (i == adev->entries_nr) {
1868 r = -ENOSPC;
1869 goto msix_entry_out;
1870 }
1871
1872 msix_entry_out:
1873 mutex_unlock(&kvm->lock);
1874
1875 return r;
1876 }
1877 #endif
1878
1879 static long kvm_vcpu_ioctl(struct file *filp,
1880 unsigned int ioctl, unsigned long arg)
1881 {
1882 struct kvm_vcpu *vcpu = filp->private_data;
1883 void __user *argp = (void __user *)arg;
1884 int r;
1885 struct kvm_fpu *fpu = NULL;
1886 struct kvm_sregs *kvm_sregs = NULL;
1887
1888 if (vcpu->kvm->mm != current->mm)
1889 return -EIO;
1890 switch (ioctl) {
1891 case KVM_RUN:
1892 r = -EINVAL;
1893 if (arg)
1894 goto out;
1895 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1896 break;
1897 case KVM_GET_REGS: {
1898 struct kvm_regs *kvm_regs;
1899
1900 r = -ENOMEM;
1901 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1902 if (!kvm_regs)
1903 goto out;
1904 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1905 if (r)
1906 goto out_free1;
1907 r = -EFAULT;
1908 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1909 goto out_free1;
1910 r = 0;
1911 out_free1:
1912 kfree(kvm_regs);
1913 break;
1914 }
1915 case KVM_SET_REGS: {
1916 struct kvm_regs *kvm_regs;
1917
1918 r = -ENOMEM;
1919 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1920 if (!kvm_regs)
1921 goto out;
1922 r = -EFAULT;
1923 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1924 goto out_free2;
1925 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1926 if (r)
1927 goto out_free2;
1928 r = 0;
1929 out_free2:
1930 kfree(kvm_regs);
1931 break;
1932 }
1933 case KVM_GET_SREGS: {
1934 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1935 r = -ENOMEM;
1936 if (!kvm_sregs)
1937 goto out;
1938 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1939 if (r)
1940 goto out;
1941 r = -EFAULT;
1942 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1943 goto out;
1944 r = 0;
1945 break;
1946 }
1947 case KVM_SET_SREGS: {
1948 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1949 r = -ENOMEM;
1950 if (!kvm_sregs)
1951 goto out;
1952 r = -EFAULT;
1953 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1954 goto out;
1955 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1956 if (r)
1957 goto out;
1958 r = 0;
1959 break;
1960 }
1961 case KVM_GET_MP_STATE: {
1962 struct kvm_mp_state mp_state;
1963
1964 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1965 if (r)
1966 goto out;
1967 r = -EFAULT;
1968 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1969 goto out;
1970 r = 0;
1971 break;
1972 }
1973 case KVM_SET_MP_STATE: {
1974 struct kvm_mp_state mp_state;
1975
1976 r = -EFAULT;
1977 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1978 goto out;
1979 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1980 if (r)
1981 goto out;
1982 r = 0;
1983 break;
1984 }
1985 case KVM_TRANSLATE: {
1986 struct kvm_translation tr;
1987
1988 r = -EFAULT;
1989 if (copy_from_user(&tr, argp, sizeof tr))
1990 goto out;
1991 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1992 if (r)
1993 goto out;
1994 r = -EFAULT;
1995 if (copy_to_user(argp, &tr, sizeof tr))
1996 goto out;
1997 r = 0;
1998 break;
1999 }
2000 case KVM_SET_GUEST_DEBUG: {
2001 struct kvm_guest_debug dbg;
2002
2003 r = -EFAULT;
2004 if (copy_from_user(&dbg, argp, sizeof dbg))
2005 goto out;
2006 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2007 if (r)
2008 goto out;
2009 r = 0;
2010 break;
2011 }
2012 case KVM_SET_SIGNAL_MASK: {
2013 struct kvm_signal_mask __user *sigmask_arg = argp;
2014 struct kvm_signal_mask kvm_sigmask;
2015 sigset_t sigset, *p;
2016
2017 p = NULL;
2018 if (argp) {
2019 r = -EFAULT;
2020 if (copy_from_user(&kvm_sigmask, argp,
2021 sizeof kvm_sigmask))
2022 goto out;
2023 r = -EINVAL;
2024 if (kvm_sigmask.len != sizeof sigset)
2025 goto out;
2026 r = -EFAULT;
2027 if (copy_from_user(&sigset, sigmask_arg->sigset,
2028 sizeof sigset))
2029 goto out;
2030 p = &sigset;
2031 }
2032 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2033 break;
2034 }
2035 case KVM_GET_FPU: {
2036 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2037 r = -ENOMEM;
2038 if (!fpu)
2039 goto out;
2040 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2041 if (r)
2042 goto out;
2043 r = -EFAULT;
2044 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2045 goto out;
2046 r = 0;
2047 break;
2048 }
2049 case KVM_SET_FPU: {
2050 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2051 r = -ENOMEM;
2052 if (!fpu)
2053 goto out;
2054 r = -EFAULT;
2055 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
2056 goto out;
2057 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2058 if (r)
2059 goto out;
2060 r = 0;
2061 break;
2062 }
2063 default:
2064 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2065 }
2066 out:
2067 kfree(fpu);
2068 kfree(kvm_sregs);
2069 return r;
2070 }
2071
2072 static long kvm_vm_ioctl(struct file *filp,
2073 unsigned int ioctl, unsigned long arg)
2074 {
2075 struct kvm *kvm = filp->private_data;
2076 void __user *argp = (void __user *)arg;
2077 int r;
2078
2079 if (kvm->mm != current->mm)
2080 return -EIO;
2081 switch (ioctl) {
2082 case KVM_CREATE_VCPU:
2083 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2084 if (r < 0)
2085 goto out;
2086 break;
2087 case KVM_SET_USER_MEMORY_REGION: {
2088 struct kvm_userspace_memory_region kvm_userspace_mem;
2089
2090 r = -EFAULT;
2091 if (copy_from_user(&kvm_userspace_mem, argp,
2092 sizeof kvm_userspace_mem))
2093 goto out;
2094
2095 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2096 if (r)
2097 goto out;
2098 break;
2099 }
2100 case KVM_GET_DIRTY_LOG: {
2101 struct kvm_dirty_log log;
2102
2103 r = -EFAULT;
2104 if (copy_from_user(&log, argp, sizeof log))
2105 goto out;
2106 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2107 if (r)
2108 goto out;
2109 break;
2110 }
2111 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2112 case KVM_REGISTER_COALESCED_MMIO: {
2113 struct kvm_coalesced_mmio_zone zone;
2114 r = -EFAULT;
2115 if (copy_from_user(&zone, argp, sizeof zone))
2116 goto out;
2117 r = -ENXIO;
2118 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2119 if (r)
2120 goto out;
2121 r = 0;
2122 break;
2123 }
2124 case KVM_UNREGISTER_COALESCED_MMIO: {
2125 struct kvm_coalesced_mmio_zone zone;
2126 r = -EFAULT;
2127 if (copy_from_user(&zone, argp, sizeof zone))
2128 goto out;
2129 r = -ENXIO;
2130 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2131 if (r)
2132 goto out;
2133 r = 0;
2134 break;
2135 }
2136 #endif
2137 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
2138 case KVM_ASSIGN_PCI_DEVICE: {
2139 struct kvm_assigned_pci_dev assigned_dev;
2140
2141 r = -EFAULT;
2142 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2143 goto out;
2144 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
2145 if (r)
2146 goto out;
2147 break;
2148 }
2149 case KVM_ASSIGN_IRQ: {
2150 r = -EOPNOTSUPP;
2151 break;
2152 }
2153 #ifdef KVM_CAP_ASSIGN_DEV_IRQ
2154 case KVM_ASSIGN_DEV_IRQ: {
2155 struct kvm_assigned_irq assigned_irq;
2156
2157 r = -EFAULT;
2158 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2159 goto out;
2160 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
2161 if (r)
2162 goto out;
2163 break;
2164 }
2165 case KVM_DEASSIGN_DEV_IRQ: {
2166 struct kvm_assigned_irq assigned_irq;
2167
2168 r = -EFAULT;
2169 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2170 goto out;
2171 r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
2172 if (r)
2173 goto out;
2174 break;
2175 }
2176 #endif
2177 #endif
2178 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
2179 case KVM_DEASSIGN_PCI_DEVICE: {
2180 struct kvm_assigned_pci_dev assigned_dev;
2181
2182 r = -EFAULT;
2183 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2184 goto out;
2185 r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
2186 if (r)
2187 goto out;
2188 break;
2189 }
2190 #endif
2191 #ifdef KVM_CAP_IRQ_ROUTING
2192 case KVM_SET_GSI_ROUTING: {
2193 struct kvm_irq_routing routing;
2194 struct kvm_irq_routing __user *urouting;
2195 struct kvm_irq_routing_entry *entries;
2196
2197 r = -EFAULT;
2198 if (copy_from_user(&routing, argp, sizeof(routing)))
2199 goto out;
2200 r = -EINVAL;
2201 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2202 goto out;
2203 if (routing.flags)
2204 goto out;
2205 r = -ENOMEM;
2206 entries = vmalloc(routing.nr * sizeof(*entries));
2207 if (!entries)
2208 goto out;
2209 r = -EFAULT;
2210 urouting = argp;
2211 if (copy_from_user(entries, urouting->entries,
2212 routing.nr * sizeof(*entries)))
2213 goto out_free_irq_routing;
2214 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2215 routing.flags);
2216 out_free_irq_routing:
2217 vfree(entries);
2218 break;
2219 }
2220 #ifdef __KVM_HAVE_MSIX
2221 case KVM_ASSIGN_SET_MSIX_NR: {
2222 struct kvm_assigned_msix_nr entry_nr;
2223 r = -EFAULT;
2224 if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
2225 goto out;
2226 r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
2227 if (r)
2228 goto out;
2229 break;
2230 }
2231 case KVM_ASSIGN_SET_MSIX_ENTRY: {
2232 struct kvm_assigned_msix_entry entry;
2233 r = -EFAULT;
2234 if (copy_from_user(&entry, argp, sizeof entry))
2235 goto out;
2236 r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
2237 if (r)
2238 goto out;
2239 break;
2240 }
2241 #endif
2242 #endif /* KVM_CAP_IRQ_ROUTING */
2243 case KVM_IRQFD: {
2244 struct kvm_irqfd data;
2245
2246 r = -EFAULT;
2247 if (copy_from_user(&data, argp, sizeof data))
2248 goto out;
2249 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2250 break;
2251 }
2252 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2253 case KVM_SET_BOOT_CPU_ID:
2254 r = 0;
2255 if (atomic_read(&kvm->online_vcpus) != 0)
2256 r = -EBUSY;
2257 else
2258 kvm->bsp_vcpu_id = arg;
2259 break;
2260 #endif
2261 default:
2262 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2263 }
2264 out:
2265 return r;
2266 }
2267
2268 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2269 {
2270 struct page *page[1];
2271 unsigned long addr;
2272 int npages;
2273 gfn_t gfn = vmf->pgoff;
2274 struct kvm *kvm = vma->vm_file->private_data;
2275
2276 addr = gfn_to_hva(kvm, gfn);
2277 if (kvm_is_error_hva(addr))
2278 return VM_FAULT_SIGBUS;
2279
2280 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2281 NULL);
2282 if (unlikely(npages != 1))
2283 return VM_FAULT_SIGBUS;
2284
2285 vmf->page = page[0];
2286 return 0;
2287 }
2288
2289 static struct vm_operations_struct kvm_vm_vm_ops = {
2290 .fault = kvm_vm_fault,
2291 };
2292
2293 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2294 {
2295 vma->vm_ops = &kvm_vm_vm_ops;
2296 return 0;
2297 }
2298
2299 static struct file_operations kvm_vm_fops = {
2300 .release = kvm_vm_release,
2301 .unlocked_ioctl = kvm_vm_ioctl,
2302 .compat_ioctl = kvm_vm_ioctl,
2303 .mmap = kvm_vm_mmap,
2304 };
2305
2306 static int kvm_dev_ioctl_create_vm(void)
2307 {
2308 int fd;
2309 struct kvm *kvm;
2310
2311 kvm = kvm_create_vm();
2312 if (IS_ERR(kvm))
2313 return PTR_ERR(kvm);
2314 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
2315 if (fd < 0)
2316 kvm_put_kvm(kvm);
2317
2318 return fd;
2319 }
2320
2321 static long kvm_dev_ioctl_check_extension_generic(long arg)
2322 {
2323 switch (arg) {
2324 case KVM_CAP_USER_MEMORY:
2325 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2326 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2327 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2328 case KVM_CAP_SET_BOOT_CPU_ID:
2329 #endif
2330 return 1;
2331 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2332 case KVM_CAP_IRQ_ROUTING:
2333 return KVM_MAX_IRQ_ROUTES;
2334 #endif
2335 default:
2336 break;
2337 }
2338 return kvm_dev_ioctl_check_extension(arg);
2339 }
2340
2341 static long kvm_dev_ioctl(struct file *filp,
2342 unsigned int ioctl, unsigned long arg)
2343 {
2344 long r = -EINVAL;
2345
2346 switch (ioctl) {
2347 case KVM_GET_API_VERSION:
2348 r = -EINVAL;
2349 if (arg)
2350 goto out;
2351 r = KVM_API_VERSION;
2352 break;
2353 case KVM_CREATE_VM:
2354 r = -EINVAL;
2355 if (arg)
2356 goto out;
2357 r = kvm_dev_ioctl_create_vm();
2358 break;
2359 case KVM_CHECK_EXTENSION:
2360 r = kvm_dev_ioctl_check_extension_generic(arg);
2361 break;
2362 case KVM_GET_VCPU_MMAP_SIZE:
2363 r = -EINVAL;
2364 if (arg)
2365 goto out;
2366 r = PAGE_SIZE; /* struct kvm_run */
2367 #ifdef CONFIG_X86
2368 r += PAGE_SIZE; /* pio data page */
2369 #endif
2370 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2371 r += PAGE_SIZE; /* coalesced mmio ring page */
2372 #endif
2373 break;
2374 case KVM_TRACE_ENABLE:
2375 case KVM_TRACE_PAUSE:
2376 case KVM_TRACE_DISABLE:
2377 r = kvm_trace_ioctl(ioctl, arg);
2378 break;
2379 default:
2380 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2381 }
2382 out:
2383 return r;
2384 }
2385
2386 static struct file_operations kvm_chardev_ops = {
2387 .unlocked_ioctl = kvm_dev_ioctl,
2388 .compat_ioctl = kvm_dev_ioctl,
2389 };
2390
2391 static struct miscdevice kvm_dev = {
2392 KVM_MINOR,
2393 "kvm",
2394 &kvm_chardev_ops,
2395 };
2396
2397 static void hardware_enable(void *junk)
2398 {
2399 int cpu = raw_smp_processor_id();
2400
2401 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2402 return;
2403 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2404 kvm_arch_hardware_enable(NULL);
2405 }
2406
2407 static void hardware_disable(void *junk)
2408 {
2409 int cpu = raw_smp_processor_id();
2410
2411 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2412 return;
2413 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2414 kvm_arch_hardware_disable(NULL);
2415 }
2416
2417 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2418 void *v)
2419 {
2420 int cpu = (long)v;
2421
2422 val &= ~CPU_TASKS_FROZEN;
2423 switch (val) {
2424 case CPU_DYING:
2425 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2426 cpu);
2427 hardware_disable(NULL);
2428 break;
2429 case CPU_UP_CANCELED:
2430 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2431 cpu);
2432 smp_call_function_single(cpu, hardware_disable, NULL, 1);
2433 break;
2434 case CPU_ONLINE:
2435 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2436 cpu);
2437 smp_call_function_single(cpu, hardware_enable, NULL, 1);
2438 break;
2439 }
2440 return NOTIFY_OK;
2441 }
2442
2443
2444 asmlinkage void kvm_handle_fault_on_reboot(void)
2445 {
2446 if (kvm_rebooting)
2447 /* spin while reset goes on */
2448 while (true)
2449 ;
2450 /* Fault while not rebooting. We want the trace. */
2451 BUG();
2452 }
2453 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2454
2455 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2456 void *v)
2457 {
2458 /*
2459 * Some (well, at least mine) BIOSes hang on reboot if
2460 * in vmx root mode.
2461 *
2462 * And Intel TXT required VMX off for all cpu when system shutdown.
2463 */
2464 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2465 kvm_rebooting = true;
2466 on_each_cpu(hardware_disable, NULL, 1);
2467 return NOTIFY_OK;
2468 }
2469
2470 static struct notifier_block kvm_reboot_notifier = {
2471 .notifier_call = kvm_reboot,
2472 .priority = 0,
2473 };
2474
2475 void kvm_io_bus_init(struct kvm_io_bus *bus)
2476 {
2477 memset(bus, 0, sizeof(*bus));
2478 }
2479
2480 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2481 {
2482 int i;
2483
2484 for (i = 0; i < bus->dev_count; i++) {
2485 struct kvm_io_device *pos = bus->devs[i];
2486
2487 kvm_iodevice_destructor(pos);
2488 }
2489 }
2490
2491 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
2492 gpa_t addr, int len, int is_write)
2493 {
2494 int i;
2495
2496 for (i = 0; i < bus->dev_count; i++) {
2497 struct kvm_io_device *pos = bus->devs[i];
2498
2499 if (kvm_iodevice_in_range(pos, addr, len, is_write))
2500 return pos;
2501 }
2502
2503 return NULL;
2504 }
2505
2506 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2507 {
2508 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2509
2510 bus->devs[bus->dev_count++] = dev;
2511 }
2512
2513 static struct notifier_block kvm_cpu_notifier = {
2514 .notifier_call = kvm_cpu_hotplug,
2515 .priority = 20, /* must be > scheduler priority */
2516 };
2517
2518 static int vm_stat_get(void *_offset, u64 *val)
2519 {
2520 unsigned offset = (long)_offset;
2521 struct kvm *kvm;
2522
2523 *val = 0;
2524 spin_lock(&kvm_lock);
2525 list_for_each_entry(kvm, &vm_list, vm_list)
2526 *val += *(u32 *)((void *)kvm + offset);
2527 spin_unlock(&kvm_lock);
2528 return 0;
2529 }
2530
2531 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2532
2533 static int vcpu_stat_get(void *_offset, u64 *val)
2534 {
2535 unsigned offset = (long)_offset;
2536 struct kvm *kvm;
2537 struct kvm_vcpu *vcpu;
2538 int i;
2539
2540 *val = 0;
2541 spin_lock(&kvm_lock);
2542 list_for_each_entry(kvm, &vm_list, vm_list)
2543 kvm_for_each_vcpu(i, vcpu, kvm)
2544 *val += *(u32 *)((void *)vcpu + offset);
2545
2546 spin_unlock(&kvm_lock);
2547 return 0;
2548 }
2549
2550 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2551
2552 static struct file_operations *stat_fops[] = {
2553 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2554 [KVM_STAT_VM] = &vm_stat_fops,
2555 };
2556
2557 static void kvm_init_debug(void)
2558 {
2559 struct kvm_stats_debugfs_item *p;
2560
2561 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2562 for (p = debugfs_entries; p->name; ++p)
2563 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2564 (void *)(long)p->offset,
2565 stat_fops[p->kind]);
2566 }
2567
2568 static void kvm_exit_debug(void)
2569 {
2570 struct kvm_stats_debugfs_item *p;
2571
2572 for (p = debugfs_entries; p->name; ++p)
2573 debugfs_remove(p->dentry);
2574 debugfs_remove(kvm_debugfs_dir);
2575 }
2576
2577 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2578 {
2579 hardware_disable(NULL);
2580 return 0;
2581 }
2582
2583 static int kvm_resume(struct sys_device *dev)
2584 {
2585 hardware_enable(NULL);
2586 return 0;
2587 }
2588
2589 static struct sysdev_class kvm_sysdev_class = {
2590 .name = "kvm",
2591 .suspend = kvm_suspend,
2592 .resume = kvm_resume,
2593 };
2594
2595 static struct sys_device kvm_sysdev = {
2596 .id = 0,
2597 .cls = &kvm_sysdev_class,
2598 };
2599
2600 struct page *bad_page;
2601 pfn_t bad_pfn;
2602
2603 static inline
2604 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2605 {
2606 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2607 }
2608
2609 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2610 {
2611 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2612
2613 kvm_arch_vcpu_load(vcpu, cpu);
2614 }
2615
2616 static void kvm_sched_out(struct preempt_notifier *pn,
2617 struct task_struct *next)
2618 {
2619 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2620
2621 kvm_arch_vcpu_put(vcpu);
2622 }
2623
2624 int kvm_init(void *opaque, unsigned int vcpu_size,
2625 struct module *module)
2626 {
2627 int r;
2628 int cpu;
2629
2630 kvm_init_debug();
2631
2632 r = kvm_arch_init(opaque);
2633 if (r)
2634 goto out_fail;
2635
2636 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2637
2638 if (bad_page == NULL) {
2639 r = -ENOMEM;
2640 goto out;
2641 }
2642
2643 bad_pfn = page_to_pfn(bad_page);
2644
2645 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2646 r = -ENOMEM;
2647 goto out_free_0;
2648 }
2649
2650 r = kvm_arch_hardware_setup();
2651 if (r < 0)
2652 goto out_free_0a;
2653
2654 for_each_online_cpu(cpu) {
2655 smp_call_function_single(cpu,
2656 kvm_arch_check_processor_compat,
2657 &r, 1);
2658 if (r < 0)
2659 goto out_free_1;
2660 }
2661
2662 on_each_cpu(hardware_enable, NULL, 1);
2663 r = register_cpu_notifier(&kvm_cpu_notifier);
2664 if (r)
2665 goto out_free_2;
2666 register_reboot_notifier(&kvm_reboot_notifier);
2667
2668 r = sysdev_class_register(&kvm_sysdev_class);
2669 if (r)
2670 goto out_free_3;
2671
2672 r = sysdev_register(&kvm_sysdev);
2673 if (r)
2674 goto out_free_4;
2675
2676 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2677 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2678 __alignof__(struct kvm_vcpu),
2679 0, NULL);
2680 if (!kvm_vcpu_cache) {
2681 r = -ENOMEM;
2682 goto out_free_5;
2683 }
2684
2685 kvm_chardev_ops.owner = module;
2686 kvm_vm_fops.owner = module;
2687 kvm_vcpu_fops.owner = module;
2688
2689 r = misc_register(&kvm_dev);
2690 if (r) {
2691 printk(KERN_ERR "kvm: misc device register failed\n");
2692 goto out_free;
2693 }
2694
2695 kvm_preempt_ops.sched_in = kvm_sched_in;
2696 kvm_preempt_ops.sched_out = kvm_sched_out;
2697
2698 return 0;
2699
2700 out_free:
2701 kmem_cache_destroy(kvm_vcpu_cache);
2702 out_free_5:
2703 sysdev_unregister(&kvm_sysdev);
2704 out_free_4:
2705 sysdev_class_unregister(&kvm_sysdev_class);
2706 out_free_3:
2707 unregister_reboot_notifier(&kvm_reboot_notifier);
2708 unregister_cpu_notifier(&kvm_cpu_notifier);
2709 out_free_2:
2710 on_each_cpu(hardware_disable, NULL, 1);
2711 out_free_1:
2712 kvm_arch_hardware_unsetup();
2713 out_free_0a:
2714 free_cpumask_var(cpus_hardware_enabled);
2715 out_free_0:
2716 __free_page(bad_page);
2717 out:
2718 kvm_arch_exit();
2719 kvm_exit_debug();
2720 out_fail:
2721 return r;
2722 }
2723 EXPORT_SYMBOL_GPL(kvm_init);
2724
2725 void kvm_exit(void)
2726 {
2727 kvm_trace_cleanup();
2728 tracepoint_synchronize_unregister();
2729 misc_deregister(&kvm_dev);
2730 kmem_cache_destroy(kvm_vcpu_cache);
2731 sysdev_unregister(&kvm_sysdev);
2732 sysdev_class_unregister(&kvm_sysdev_class);
2733 unregister_reboot_notifier(&kvm_reboot_notifier);
2734 unregister_cpu_notifier(&kvm_cpu_notifier);
2735 on_each_cpu(hardware_disable, NULL, 1);
2736 kvm_arch_hardware_unsetup();
2737 kvm_arch_exit();
2738 kvm_exit_debug();
2739 free_cpumask_var(cpus_hardware_enabled);
2740 __free_page(bad_page);
2741 }
2742 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.094318 seconds and 5 git commands to generate.