35532c964710b2b4c72ad920608979e373e49679
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/mm.h>
26 #include <linux/miscdevice.h>
27 #include <linux/vmalloc.h>
28 #include <linux/reboot.h>
29 #include <linux/debugfs.h>
30 #include <linux/highmem.h>
31 #include <linux/file.h>
32 #include <linux/sysdev.h>
33 #include <linux/cpu.h>
34 #include <linux/sched.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49
50 #include <asm/processor.h>
51 #include <asm/io.h>
52 #include <asm/uaccess.h>
53 #include <asm/pgtable.h>
54 #include <asm-generic/bitops/le.h>
55
56 #include "coalesced_mmio.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/kvm.h>
60
61 MODULE_AUTHOR("Qumranet");
62 MODULE_LICENSE("GPL");
63
64 /*
65 * Ordering of locks:
66 *
67 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
68 */
69
70 DEFINE_SPINLOCK(kvm_lock);
71 LIST_HEAD(vm_list);
72
73 static cpumask_var_t cpus_hardware_enabled;
74 static int kvm_usage_count = 0;
75 static atomic_t hardware_enable_failed;
76
77 struct kmem_cache *kvm_vcpu_cache;
78 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
79
80 static __read_mostly struct preempt_ops kvm_preempt_ops;
81
82 struct dentry *kvm_debugfs_dir;
83
84 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
85 unsigned long arg);
86 static int hardware_enable_all(void);
87 static void hardware_disable_all(void);
88
89 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
90
91 static bool kvm_rebooting;
92
93 static bool largepages_enabled = true;
94
95 struct page *hwpoison_page;
96 pfn_t hwpoison_pfn;
97
98 inline int kvm_is_mmio_pfn(pfn_t pfn)
99 {
100 if (pfn_valid(pfn)) {
101 struct page *page = compound_head(pfn_to_page(pfn));
102 return PageReserved(page);
103 }
104
105 return true;
106 }
107
108 /*
109 * Switches to specified vcpu, until a matching vcpu_put()
110 */
111 void vcpu_load(struct kvm_vcpu *vcpu)
112 {
113 int cpu;
114
115 mutex_lock(&vcpu->mutex);
116 cpu = get_cpu();
117 preempt_notifier_register(&vcpu->preempt_notifier);
118 kvm_arch_vcpu_load(vcpu, cpu);
119 put_cpu();
120 }
121
122 void vcpu_put(struct kvm_vcpu *vcpu)
123 {
124 preempt_disable();
125 kvm_arch_vcpu_put(vcpu);
126 preempt_notifier_unregister(&vcpu->preempt_notifier);
127 preempt_enable();
128 mutex_unlock(&vcpu->mutex);
129 }
130
131 static void ack_flush(void *_completed)
132 {
133 }
134
135 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
136 {
137 int i, cpu, me;
138 cpumask_var_t cpus;
139 bool called = true;
140 struct kvm_vcpu *vcpu;
141
142 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
143
144 raw_spin_lock(&kvm->requests_lock);
145 me = smp_processor_id();
146 kvm_for_each_vcpu(i, vcpu, kvm) {
147 if (test_and_set_bit(req, &vcpu->requests))
148 continue;
149 cpu = vcpu->cpu;
150 if (cpus != NULL && cpu != -1 && cpu != me)
151 cpumask_set_cpu(cpu, cpus);
152 }
153 if (unlikely(cpus == NULL))
154 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
155 else if (!cpumask_empty(cpus))
156 smp_call_function_many(cpus, ack_flush, NULL, 1);
157 else
158 called = false;
159 raw_spin_unlock(&kvm->requests_lock);
160 free_cpumask_var(cpus);
161 return called;
162 }
163
164 void kvm_flush_remote_tlbs(struct kvm *kvm)
165 {
166 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
167 ++kvm->stat.remote_tlb_flush;
168 }
169
170 void kvm_reload_remote_mmus(struct kvm *kvm)
171 {
172 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
173 }
174
175 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
176 {
177 struct page *page;
178 int r;
179
180 mutex_init(&vcpu->mutex);
181 vcpu->cpu = -1;
182 vcpu->kvm = kvm;
183 vcpu->vcpu_id = id;
184 init_waitqueue_head(&vcpu->wq);
185
186 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
187 if (!page) {
188 r = -ENOMEM;
189 goto fail;
190 }
191 vcpu->run = page_address(page);
192
193 r = kvm_arch_vcpu_init(vcpu);
194 if (r < 0)
195 goto fail_free_run;
196 return 0;
197
198 fail_free_run:
199 free_page((unsigned long)vcpu->run);
200 fail:
201 return r;
202 }
203 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
204
205 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
206 {
207 kvm_arch_vcpu_uninit(vcpu);
208 free_page((unsigned long)vcpu->run);
209 }
210 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
211
212 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
213 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
214 {
215 return container_of(mn, struct kvm, mmu_notifier);
216 }
217
218 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
219 struct mm_struct *mm,
220 unsigned long address)
221 {
222 struct kvm *kvm = mmu_notifier_to_kvm(mn);
223 int need_tlb_flush, idx;
224
225 /*
226 * When ->invalidate_page runs, the linux pte has been zapped
227 * already but the page is still allocated until
228 * ->invalidate_page returns. So if we increase the sequence
229 * here the kvm page fault will notice if the spte can't be
230 * established because the page is going to be freed. If
231 * instead the kvm page fault establishes the spte before
232 * ->invalidate_page runs, kvm_unmap_hva will release it
233 * before returning.
234 *
235 * The sequence increase only need to be seen at spin_unlock
236 * time, and not at spin_lock time.
237 *
238 * Increasing the sequence after the spin_unlock would be
239 * unsafe because the kvm page fault could then establish the
240 * pte after kvm_unmap_hva returned, without noticing the page
241 * is going to be freed.
242 */
243 idx = srcu_read_lock(&kvm->srcu);
244 spin_lock(&kvm->mmu_lock);
245 kvm->mmu_notifier_seq++;
246 need_tlb_flush = kvm_unmap_hva(kvm, address);
247 spin_unlock(&kvm->mmu_lock);
248 srcu_read_unlock(&kvm->srcu, idx);
249
250 /* we've to flush the tlb before the pages can be freed */
251 if (need_tlb_flush)
252 kvm_flush_remote_tlbs(kvm);
253
254 }
255
256 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
257 struct mm_struct *mm,
258 unsigned long address,
259 pte_t pte)
260 {
261 struct kvm *kvm = mmu_notifier_to_kvm(mn);
262 int idx;
263
264 idx = srcu_read_lock(&kvm->srcu);
265 spin_lock(&kvm->mmu_lock);
266 kvm->mmu_notifier_seq++;
267 kvm_set_spte_hva(kvm, address, pte);
268 spin_unlock(&kvm->mmu_lock);
269 srcu_read_unlock(&kvm->srcu, idx);
270 }
271
272 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
273 struct mm_struct *mm,
274 unsigned long start,
275 unsigned long end)
276 {
277 struct kvm *kvm = mmu_notifier_to_kvm(mn);
278 int need_tlb_flush = 0, idx;
279
280 idx = srcu_read_lock(&kvm->srcu);
281 spin_lock(&kvm->mmu_lock);
282 /*
283 * The count increase must become visible at unlock time as no
284 * spte can be established without taking the mmu_lock and
285 * count is also read inside the mmu_lock critical section.
286 */
287 kvm->mmu_notifier_count++;
288 for (; start < end; start += PAGE_SIZE)
289 need_tlb_flush |= kvm_unmap_hva(kvm, start);
290 spin_unlock(&kvm->mmu_lock);
291 srcu_read_unlock(&kvm->srcu, idx);
292
293 /* we've to flush the tlb before the pages can be freed */
294 if (need_tlb_flush)
295 kvm_flush_remote_tlbs(kvm);
296 }
297
298 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
299 struct mm_struct *mm,
300 unsigned long start,
301 unsigned long end)
302 {
303 struct kvm *kvm = mmu_notifier_to_kvm(mn);
304
305 spin_lock(&kvm->mmu_lock);
306 /*
307 * This sequence increase will notify the kvm page fault that
308 * the page that is going to be mapped in the spte could have
309 * been freed.
310 */
311 kvm->mmu_notifier_seq++;
312 /*
313 * The above sequence increase must be visible before the
314 * below count decrease but both values are read by the kvm
315 * page fault under mmu_lock spinlock so we don't need to add
316 * a smb_wmb() here in between the two.
317 */
318 kvm->mmu_notifier_count--;
319 spin_unlock(&kvm->mmu_lock);
320
321 BUG_ON(kvm->mmu_notifier_count < 0);
322 }
323
324 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
325 struct mm_struct *mm,
326 unsigned long address)
327 {
328 struct kvm *kvm = mmu_notifier_to_kvm(mn);
329 int young, idx;
330
331 idx = srcu_read_lock(&kvm->srcu);
332 spin_lock(&kvm->mmu_lock);
333 young = kvm_age_hva(kvm, address);
334 spin_unlock(&kvm->mmu_lock);
335 srcu_read_unlock(&kvm->srcu, idx);
336
337 if (young)
338 kvm_flush_remote_tlbs(kvm);
339
340 return young;
341 }
342
343 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
344 struct mm_struct *mm)
345 {
346 struct kvm *kvm = mmu_notifier_to_kvm(mn);
347 int idx;
348
349 idx = srcu_read_lock(&kvm->srcu);
350 kvm_arch_flush_shadow(kvm);
351 srcu_read_unlock(&kvm->srcu, idx);
352 }
353
354 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
355 .invalidate_page = kvm_mmu_notifier_invalidate_page,
356 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
357 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
358 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
359 .change_pte = kvm_mmu_notifier_change_pte,
360 .release = kvm_mmu_notifier_release,
361 };
362
363 static int kvm_init_mmu_notifier(struct kvm *kvm)
364 {
365 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
366 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
367 }
368
369 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
370
371 static int kvm_init_mmu_notifier(struct kvm *kvm)
372 {
373 return 0;
374 }
375
376 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
377
378 static struct kvm *kvm_create_vm(void)
379 {
380 int r = 0, i;
381 struct kvm *kvm = kvm_arch_create_vm();
382
383 if (IS_ERR(kvm))
384 goto out;
385
386 r = hardware_enable_all();
387 if (r)
388 goto out_err_nodisable;
389
390 #ifdef CONFIG_HAVE_KVM_IRQCHIP
391 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
392 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
393 #endif
394
395 r = -ENOMEM;
396 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
397 if (!kvm->memslots)
398 goto out_err;
399 if (init_srcu_struct(&kvm->srcu))
400 goto out_err;
401 for (i = 0; i < KVM_NR_BUSES; i++) {
402 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
403 GFP_KERNEL);
404 if (!kvm->buses[i]) {
405 cleanup_srcu_struct(&kvm->srcu);
406 goto out_err;
407 }
408 }
409
410 r = kvm_init_mmu_notifier(kvm);
411 if (r) {
412 cleanup_srcu_struct(&kvm->srcu);
413 goto out_err;
414 }
415
416 kvm->mm = current->mm;
417 atomic_inc(&kvm->mm->mm_count);
418 spin_lock_init(&kvm->mmu_lock);
419 raw_spin_lock_init(&kvm->requests_lock);
420 kvm_eventfd_init(kvm);
421 mutex_init(&kvm->lock);
422 mutex_init(&kvm->irq_lock);
423 mutex_init(&kvm->slots_lock);
424 atomic_set(&kvm->users_count, 1);
425 spin_lock(&kvm_lock);
426 list_add(&kvm->vm_list, &vm_list);
427 spin_unlock(&kvm_lock);
428 out:
429 return kvm;
430
431 out_err:
432 hardware_disable_all();
433 out_err_nodisable:
434 for (i = 0; i < KVM_NR_BUSES; i++)
435 kfree(kvm->buses[i]);
436 kfree(kvm->memslots);
437 kfree(kvm);
438 return ERR_PTR(r);
439 }
440
441 /*
442 * Free any memory in @free but not in @dont.
443 */
444 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
445 struct kvm_memory_slot *dont)
446 {
447 int i;
448
449 if (!dont || free->rmap != dont->rmap)
450 vfree(free->rmap);
451
452 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
453 vfree(free->dirty_bitmap);
454
455
456 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
457 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
458 vfree(free->lpage_info[i]);
459 free->lpage_info[i] = NULL;
460 }
461 }
462
463 free->npages = 0;
464 free->dirty_bitmap = NULL;
465 free->rmap = NULL;
466 }
467
468 void kvm_free_physmem(struct kvm *kvm)
469 {
470 int i;
471 struct kvm_memslots *slots = kvm->memslots;
472
473 for (i = 0; i < slots->nmemslots; ++i)
474 kvm_free_physmem_slot(&slots->memslots[i], NULL);
475
476 kfree(kvm->memslots);
477 }
478
479 static void kvm_destroy_vm(struct kvm *kvm)
480 {
481 int i;
482 struct mm_struct *mm = kvm->mm;
483
484 kvm_arch_sync_events(kvm);
485 spin_lock(&kvm_lock);
486 list_del(&kvm->vm_list);
487 spin_unlock(&kvm_lock);
488 kvm_free_irq_routing(kvm);
489 for (i = 0; i < KVM_NR_BUSES; i++)
490 kvm_io_bus_destroy(kvm->buses[i]);
491 kvm_coalesced_mmio_free(kvm);
492 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
493 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
494 #else
495 kvm_arch_flush_shadow(kvm);
496 #endif
497 kvm_arch_destroy_vm(kvm);
498 hardware_disable_all();
499 mmdrop(mm);
500 }
501
502 void kvm_get_kvm(struct kvm *kvm)
503 {
504 atomic_inc(&kvm->users_count);
505 }
506 EXPORT_SYMBOL_GPL(kvm_get_kvm);
507
508 void kvm_put_kvm(struct kvm *kvm)
509 {
510 if (atomic_dec_and_test(&kvm->users_count))
511 kvm_destroy_vm(kvm);
512 }
513 EXPORT_SYMBOL_GPL(kvm_put_kvm);
514
515
516 static int kvm_vm_release(struct inode *inode, struct file *filp)
517 {
518 struct kvm *kvm = filp->private_data;
519
520 kvm_irqfd_release(kvm);
521
522 kvm_put_kvm(kvm);
523 return 0;
524 }
525
526 /*
527 * Allocate some memory and give it an address in the guest physical address
528 * space.
529 *
530 * Discontiguous memory is allowed, mostly for framebuffers.
531 *
532 * Must be called holding mmap_sem for write.
533 */
534 int __kvm_set_memory_region(struct kvm *kvm,
535 struct kvm_userspace_memory_region *mem,
536 int user_alloc)
537 {
538 int r, flush_shadow = 0;
539 gfn_t base_gfn;
540 unsigned long npages;
541 unsigned long i;
542 struct kvm_memory_slot *memslot;
543 struct kvm_memory_slot old, new;
544 struct kvm_memslots *slots, *old_memslots;
545
546 r = -EINVAL;
547 /* General sanity checks */
548 if (mem->memory_size & (PAGE_SIZE - 1))
549 goto out;
550 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
551 goto out;
552 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
553 goto out;
554 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
555 goto out;
556 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
557 goto out;
558
559 memslot = &kvm->memslots->memslots[mem->slot];
560 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
561 npages = mem->memory_size >> PAGE_SHIFT;
562
563 r = -EINVAL;
564 if (npages > KVM_MEM_MAX_NR_PAGES)
565 goto out;
566
567 if (!npages)
568 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
569
570 new = old = *memslot;
571
572 new.base_gfn = base_gfn;
573 new.npages = npages;
574 new.flags = mem->flags;
575
576 /* Disallow changing a memory slot's size. */
577 r = -EINVAL;
578 if (npages && old.npages && npages != old.npages)
579 goto out_free;
580
581 /* Check for overlaps */
582 r = -EEXIST;
583 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
584 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
585
586 if (s == memslot || !s->npages)
587 continue;
588 if (!((base_gfn + npages <= s->base_gfn) ||
589 (base_gfn >= s->base_gfn + s->npages)))
590 goto out_free;
591 }
592
593 /* Free page dirty bitmap if unneeded */
594 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
595 new.dirty_bitmap = NULL;
596
597 r = -ENOMEM;
598
599 /* Allocate if a slot is being created */
600 #ifndef CONFIG_S390
601 if (npages && !new.rmap) {
602 new.rmap = vmalloc(npages * sizeof(struct page *));
603
604 if (!new.rmap)
605 goto out_free;
606
607 memset(new.rmap, 0, npages * sizeof(*new.rmap));
608
609 new.user_alloc = user_alloc;
610 new.userspace_addr = mem->userspace_addr;
611 }
612 if (!npages)
613 goto skip_lpage;
614
615 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
616 unsigned long ugfn;
617 unsigned long j;
618 int lpages;
619 int level = i + 2;
620
621 /* Avoid unused variable warning if no large pages */
622 (void)level;
623
624 if (new.lpage_info[i])
625 continue;
626
627 lpages = 1 + (base_gfn + npages - 1) /
628 KVM_PAGES_PER_HPAGE(level);
629 lpages -= base_gfn / KVM_PAGES_PER_HPAGE(level);
630
631 new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
632
633 if (!new.lpage_info[i])
634 goto out_free;
635
636 memset(new.lpage_info[i], 0,
637 lpages * sizeof(*new.lpage_info[i]));
638
639 if (base_gfn % KVM_PAGES_PER_HPAGE(level))
640 new.lpage_info[i][0].write_count = 1;
641 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE(level))
642 new.lpage_info[i][lpages - 1].write_count = 1;
643 ugfn = new.userspace_addr >> PAGE_SHIFT;
644 /*
645 * If the gfn and userspace address are not aligned wrt each
646 * other, or if explicitly asked to, disable large page
647 * support for this slot
648 */
649 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
650 !largepages_enabled)
651 for (j = 0; j < lpages; ++j)
652 new.lpage_info[i][j].write_count = 1;
653 }
654
655 skip_lpage:
656
657 /* Allocate page dirty bitmap if needed */
658 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
659 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(&new);
660
661 new.dirty_bitmap = vmalloc(dirty_bytes);
662 if (!new.dirty_bitmap)
663 goto out_free;
664 memset(new.dirty_bitmap, 0, dirty_bytes);
665 /* destroy any largepage mappings for dirty tracking */
666 if (old.npages)
667 flush_shadow = 1;
668 }
669 #else /* not defined CONFIG_S390 */
670 new.user_alloc = user_alloc;
671 if (user_alloc)
672 new.userspace_addr = mem->userspace_addr;
673 #endif /* not defined CONFIG_S390 */
674
675 if (!npages) {
676 r = -ENOMEM;
677 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
678 if (!slots)
679 goto out_free;
680 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
681 if (mem->slot >= slots->nmemslots)
682 slots->nmemslots = mem->slot + 1;
683 slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
684
685 old_memslots = kvm->memslots;
686 rcu_assign_pointer(kvm->memslots, slots);
687 synchronize_srcu_expedited(&kvm->srcu);
688 /* From this point no new shadow pages pointing to a deleted
689 * memslot will be created.
690 *
691 * validation of sp->gfn happens in:
692 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
693 * - kvm_is_visible_gfn (mmu_check_roots)
694 */
695 kvm_arch_flush_shadow(kvm);
696 kfree(old_memslots);
697 }
698
699 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
700 if (r)
701 goto out_free;
702
703 #ifdef CONFIG_DMAR
704 /* map the pages in iommu page table */
705 if (npages) {
706 r = kvm_iommu_map_pages(kvm, &new);
707 if (r)
708 goto out_free;
709 }
710 #endif
711
712 r = -ENOMEM;
713 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
714 if (!slots)
715 goto out_free;
716 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
717 if (mem->slot >= slots->nmemslots)
718 slots->nmemslots = mem->slot + 1;
719
720 /* actual memory is freed via old in kvm_free_physmem_slot below */
721 if (!npages) {
722 new.rmap = NULL;
723 new.dirty_bitmap = NULL;
724 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
725 new.lpage_info[i] = NULL;
726 }
727
728 slots->memslots[mem->slot] = new;
729 old_memslots = kvm->memslots;
730 rcu_assign_pointer(kvm->memslots, slots);
731 synchronize_srcu_expedited(&kvm->srcu);
732
733 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
734
735 kvm_free_physmem_slot(&old, &new);
736 kfree(old_memslots);
737
738 if (flush_shadow)
739 kvm_arch_flush_shadow(kvm);
740
741 return 0;
742
743 out_free:
744 kvm_free_physmem_slot(&new, &old);
745 out:
746 return r;
747
748 }
749 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
750
751 int kvm_set_memory_region(struct kvm *kvm,
752 struct kvm_userspace_memory_region *mem,
753 int user_alloc)
754 {
755 int r;
756
757 mutex_lock(&kvm->slots_lock);
758 r = __kvm_set_memory_region(kvm, mem, user_alloc);
759 mutex_unlock(&kvm->slots_lock);
760 return r;
761 }
762 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
763
764 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
765 struct
766 kvm_userspace_memory_region *mem,
767 int user_alloc)
768 {
769 if (mem->slot >= KVM_MEMORY_SLOTS)
770 return -EINVAL;
771 return kvm_set_memory_region(kvm, mem, user_alloc);
772 }
773
774 int kvm_get_dirty_log(struct kvm *kvm,
775 struct kvm_dirty_log *log, int *is_dirty)
776 {
777 struct kvm_memory_slot *memslot;
778 int r, i;
779 unsigned long n;
780 unsigned long any = 0;
781
782 r = -EINVAL;
783 if (log->slot >= KVM_MEMORY_SLOTS)
784 goto out;
785
786 memslot = &kvm->memslots->memslots[log->slot];
787 r = -ENOENT;
788 if (!memslot->dirty_bitmap)
789 goto out;
790
791 n = kvm_dirty_bitmap_bytes(memslot);
792
793 for (i = 0; !any && i < n/sizeof(long); ++i)
794 any = memslot->dirty_bitmap[i];
795
796 r = -EFAULT;
797 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
798 goto out;
799
800 if (any)
801 *is_dirty = 1;
802
803 r = 0;
804 out:
805 return r;
806 }
807
808 void kvm_disable_largepages(void)
809 {
810 largepages_enabled = false;
811 }
812 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
813
814 int is_error_page(struct page *page)
815 {
816 return page == bad_page || page == hwpoison_page;
817 }
818 EXPORT_SYMBOL_GPL(is_error_page);
819
820 int is_error_pfn(pfn_t pfn)
821 {
822 return pfn == bad_pfn || pfn == hwpoison_pfn;
823 }
824 EXPORT_SYMBOL_GPL(is_error_pfn);
825
826 int is_hwpoison_pfn(pfn_t pfn)
827 {
828 return pfn == hwpoison_pfn;
829 }
830 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
831
832 static inline unsigned long bad_hva(void)
833 {
834 return PAGE_OFFSET;
835 }
836
837 int kvm_is_error_hva(unsigned long addr)
838 {
839 return addr == bad_hva();
840 }
841 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
842
843 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
844 {
845 int i;
846 struct kvm_memslots *slots = kvm_memslots(kvm);
847
848 for (i = 0; i < slots->nmemslots; ++i) {
849 struct kvm_memory_slot *memslot = &slots->memslots[i];
850
851 if (gfn >= memslot->base_gfn
852 && gfn < memslot->base_gfn + memslot->npages)
853 return memslot;
854 }
855 return NULL;
856 }
857 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
858
859 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
860 {
861 gfn = unalias_gfn(kvm, gfn);
862 return gfn_to_memslot_unaliased(kvm, gfn);
863 }
864
865 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
866 {
867 int i;
868 struct kvm_memslots *slots = kvm_memslots(kvm);
869
870 gfn = unalias_gfn_instantiation(kvm, gfn);
871 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
872 struct kvm_memory_slot *memslot = &slots->memslots[i];
873
874 if (memslot->flags & KVM_MEMSLOT_INVALID)
875 continue;
876
877 if (gfn >= memslot->base_gfn
878 && gfn < memslot->base_gfn + memslot->npages)
879 return 1;
880 }
881 return 0;
882 }
883 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
884
885 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
886 {
887 struct vm_area_struct *vma;
888 unsigned long addr, size;
889
890 size = PAGE_SIZE;
891
892 addr = gfn_to_hva(kvm, gfn);
893 if (kvm_is_error_hva(addr))
894 return PAGE_SIZE;
895
896 down_read(&current->mm->mmap_sem);
897 vma = find_vma(current->mm, addr);
898 if (!vma)
899 goto out;
900
901 size = vma_kernel_pagesize(vma);
902
903 out:
904 up_read(&current->mm->mmap_sem);
905
906 return size;
907 }
908
909 int memslot_id(struct kvm *kvm, gfn_t gfn)
910 {
911 int i;
912 struct kvm_memslots *slots = kvm_memslots(kvm);
913 struct kvm_memory_slot *memslot = NULL;
914
915 gfn = unalias_gfn(kvm, gfn);
916 for (i = 0; i < slots->nmemslots; ++i) {
917 memslot = &slots->memslots[i];
918
919 if (gfn >= memslot->base_gfn
920 && gfn < memslot->base_gfn + memslot->npages)
921 break;
922 }
923
924 return memslot - slots->memslots;
925 }
926
927 static unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
928 {
929 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
930 }
931
932 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
933 {
934 struct kvm_memory_slot *slot;
935
936 gfn = unalias_gfn_instantiation(kvm, gfn);
937 slot = gfn_to_memslot_unaliased(kvm, gfn);
938 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
939 return bad_hva();
940 return gfn_to_hva_memslot(slot, gfn);
941 }
942 EXPORT_SYMBOL_GPL(gfn_to_hva);
943
944 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr)
945 {
946 struct page *page[1];
947 int npages;
948 pfn_t pfn;
949
950 might_sleep();
951
952 npages = get_user_pages_fast(addr, 1, 1, page);
953
954 if (unlikely(npages != 1)) {
955 struct vm_area_struct *vma;
956
957 if (is_hwpoison_address(addr)) {
958 get_page(hwpoison_page);
959 return page_to_pfn(hwpoison_page);
960 }
961
962 down_read(&current->mm->mmap_sem);
963 vma = find_vma(current->mm, addr);
964
965 if (vma == NULL || addr < vma->vm_start ||
966 !(vma->vm_flags & VM_PFNMAP)) {
967 up_read(&current->mm->mmap_sem);
968 get_page(bad_page);
969 return page_to_pfn(bad_page);
970 }
971
972 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
973 up_read(&current->mm->mmap_sem);
974 BUG_ON(!kvm_is_mmio_pfn(pfn));
975 } else
976 pfn = page_to_pfn(page[0]);
977
978 return pfn;
979 }
980
981 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
982 {
983 unsigned long addr;
984
985 addr = gfn_to_hva(kvm, gfn);
986 if (kvm_is_error_hva(addr)) {
987 get_page(bad_page);
988 return page_to_pfn(bad_page);
989 }
990
991 return hva_to_pfn(kvm, addr);
992 }
993 EXPORT_SYMBOL_GPL(gfn_to_pfn);
994
995 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
996 struct kvm_memory_slot *slot, gfn_t gfn)
997 {
998 unsigned long addr = gfn_to_hva_memslot(slot, gfn);
999 return hva_to_pfn(kvm, addr);
1000 }
1001
1002 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1003 {
1004 pfn_t pfn;
1005
1006 pfn = gfn_to_pfn(kvm, gfn);
1007 if (!kvm_is_mmio_pfn(pfn))
1008 return pfn_to_page(pfn);
1009
1010 WARN_ON(kvm_is_mmio_pfn(pfn));
1011
1012 get_page(bad_page);
1013 return bad_page;
1014 }
1015
1016 EXPORT_SYMBOL_GPL(gfn_to_page);
1017
1018 void kvm_release_page_clean(struct page *page)
1019 {
1020 kvm_release_pfn_clean(page_to_pfn(page));
1021 }
1022 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1023
1024 void kvm_release_pfn_clean(pfn_t pfn)
1025 {
1026 if (!kvm_is_mmio_pfn(pfn))
1027 put_page(pfn_to_page(pfn));
1028 }
1029 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1030
1031 void kvm_release_page_dirty(struct page *page)
1032 {
1033 kvm_release_pfn_dirty(page_to_pfn(page));
1034 }
1035 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1036
1037 void kvm_release_pfn_dirty(pfn_t pfn)
1038 {
1039 kvm_set_pfn_dirty(pfn);
1040 kvm_release_pfn_clean(pfn);
1041 }
1042 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1043
1044 void kvm_set_page_dirty(struct page *page)
1045 {
1046 kvm_set_pfn_dirty(page_to_pfn(page));
1047 }
1048 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1049
1050 void kvm_set_pfn_dirty(pfn_t pfn)
1051 {
1052 if (!kvm_is_mmio_pfn(pfn)) {
1053 struct page *page = pfn_to_page(pfn);
1054 if (!PageReserved(page))
1055 SetPageDirty(page);
1056 }
1057 }
1058 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1059
1060 void kvm_set_pfn_accessed(pfn_t pfn)
1061 {
1062 if (!kvm_is_mmio_pfn(pfn))
1063 mark_page_accessed(pfn_to_page(pfn));
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1066
1067 void kvm_get_pfn(pfn_t pfn)
1068 {
1069 if (!kvm_is_mmio_pfn(pfn))
1070 get_page(pfn_to_page(pfn));
1071 }
1072 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1073
1074 static int next_segment(unsigned long len, int offset)
1075 {
1076 if (len > PAGE_SIZE - offset)
1077 return PAGE_SIZE - offset;
1078 else
1079 return len;
1080 }
1081
1082 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1083 int len)
1084 {
1085 int r;
1086 unsigned long addr;
1087
1088 addr = gfn_to_hva(kvm, gfn);
1089 if (kvm_is_error_hva(addr))
1090 return -EFAULT;
1091 r = copy_from_user(data, (void __user *)addr + offset, len);
1092 if (r)
1093 return -EFAULT;
1094 return 0;
1095 }
1096 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1097
1098 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1099 {
1100 gfn_t gfn = gpa >> PAGE_SHIFT;
1101 int seg;
1102 int offset = offset_in_page(gpa);
1103 int ret;
1104
1105 while ((seg = next_segment(len, offset)) != 0) {
1106 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1107 if (ret < 0)
1108 return ret;
1109 offset = 0;
1110 len -= seg;
1111 data += seg;
1112 ++gfn;
1113 }
1114 return 0;
1115 }
1116 EXPORT_SYMBOL_GPL(kvm_read_guest);
1117
1118 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1119 unsigned long len)
1120 {
1121 int r;
1122 unsigned long addr;
1123 gfn_t gfn = gpa >> PAGE_SHIFT;
1124 int offset = offset_in_page(gpa);
1125
1126 addr = gfn_to_hva(kvm, gfn);
1127 if (kvm_is_error_hva(addr))
1128 return -EFAULT;
1129 pagefault_disable();
1130 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1131 pagefault_enable();
1132 if (r)
1133 return -EFAULT;
1134 return 0;
1135 }
1136 EXPORT_SYMBOL(kvm_read_guest_atomic);
1137
1138 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1139 int offset, int len)
1140 {
1141 int r;
1142 unsigned long addr;
1143
1144 addr = gfn_to_hva(kvm, gfn);
1145 if (kvm_is_error_hva(addr))
1146 return -EFAULT;
1147 r = copy_to_user((void __user *)addr + offset, data, len);
1148 if (r)
1149 return -EFAULT;
1150 mark_page_dirty(kvm, gfn);
1151 return 0;
1152 }
1153 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1154
1155 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1156 unsigned long len)
1157 {
1158 gfn_t gfn = gpa >> PAGE_SHIFT;
1159 int seg;
1160 int offset = offset_in_page(gpa);
1161 int ret;
1162
1163 while ((seg = next_segment(len, offset)) != 0) {
1164 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1165 if (ret < 0)
1166 return ret;
1167 offset = 0;
1168 len -= seg;
1169 data += seg;
1170 ++gfn;
1171 }
1172 return 0;
1173 }
1174
1175 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1176 {
1177 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1178 }
1179 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1180
1181 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1182 {
1183 gfn_t gfn = gpa >> PAGE_SHIFT;
1184 int seg;
1185 int offset = offset_in_page(gpa);
1186 int ret;
1187
1188 while ((seg = next_segment(len, offset)) != 0) {
1189 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1190 if (ret < 0)
1191 return ret;
1192 offset = 0;
1193 len -= seg;
1194 ++gfn;
1195 }
1196 return 0;
1197 }
1198 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1199
1200 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1201 {
1202 struct kvm_memory_slot *memslot;
1203
1204 gfn = unalias_gfn(kvm, gfn);
1205 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1206 if (memslot && memslot->dirty_bitmap) {
1207 unsigned long rel_gfn = gfn - memslot->base_gfn;
1208
1209 generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
1210 }
1211 }
1212
1213 /*
1214 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1215 */
1216 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1217 {
1218 DEFINE_WAIT(wait);
1219
1220 for (;;) {
1221 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1222
1223 if (kvm_arch_vcpu_runnable(vcpu)) {
1224 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1225 break;
1226 }
1227 if (kvm_cpu_has_pending_timer(vcpu))
1228 break;
1229 if (signal_pending(current))
1230 break;
1231
1232 schedule();
1233 }
1234
1235 finish_wait(&vcpu->wq, &wait);
1236 }
1237
1238 void kvm_resched(struct kvm_vcpu *vcpu)
1239 {
1240 if (!need_resched())
1241 return;
1242 cond_resched();
1243 }
1244 EXPORT_SYMBOL_GPL(kvm_resched);
1245
1246 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
1247 {
1248 ktime_t expires;
1249 DEFINE_WAIT(wait);
1250
1251 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1252
1253 /* Sleep for 100 us, and hope lock-holder got scheduled */
1254 expires = ktime_add_ns(ktime_get(), 100000UL);
1255 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1256
1257 finish_wait(&vcpu->wq, &wait);
1258 }
1259 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1260
1261 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1262 {
1263 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1264 struct page *page;
1265
1266 if (vmf->pgoff == 0)
1267 page = virt_to_page(vcpu->run);
1268 #ifdef CONFIG_X86
1269 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1270 page = virt_to_page(vcpu->arch.pio_data);
1271 #endif
1272 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1273 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1274 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1275 #endif
1276 else
1277 return VM_FAULT_SIGBUS;
1278 get_page(page);
1279 vmf->page = page;
1280 return 0;
1281 }
1282
1283 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1284 .fault = kvm_vcpu_fault,
1285 };
1286
1287 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1288 {
1289 vma->vm_ops = &kvm_vcpu_vm_ops;
1290 return 0;
1291 }
1292
1293 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1294 {
1295 struct kvm_vcpu *vcpu = filp->private_data;
1296
1297 kvm_put_kvm(vcpu->kvm);
1298 return 0;
1299 }
1300
1301 static struct file_operations kvm_vcpu_fops = {
1302 .release = kvm_vcpu_release,
1303 .unlocked_ioctl = kvm_vcpu_ioctl,
1304 .compat_ioctl = kvm_vcpu_ioctl,
1305 .mmap = kvm_vcpu_mmap,
1306 };
1307
1308 /*
1309 * Allocates an inode for the vcpu.
1310 */
1311 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1312 {
1313 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1314 }
1315
1316 /*
1317 * Creates some virtual cpus. Good luck creating more than one.
1318 */
1319 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1320 {
1321 int r;
1322 struct kvm_vcpu *vcpu, *v;
1323
1324 vcpu = kvm_arch_vcpu_create(kvm, id);
1325 if (IS_ERR(vcpu))
1326 return PTR_ERR(vcpu);
1327
1328 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1329
1330 r = kvm_arch_vcpu_setup(vcpu);
1331 if (r)
1332 return r;
1333
1334 mutex_lock(&kvm->lock);
1335 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1336 r = -EINVAL;
1337 goto vcpu_destroy;
1338 }
1339
1340 kvm_for_each_vcpu(r, v, kvm)
1341 if (v->vcpu_id == id) {
1342 r = -EEXIST;
1343 goto vcpu_destroy;
1344 }
1345
1346 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1347
1348 /* Now it's all set up, let userspace reach it */
1349 kvm_get_kvm(kvm);
1350 r = create_vcpu_fd(vcpu);
1351 if (r < 0) {
1352 kvm_put_kvm(kvm);
1353 goto vcpu_destroy;
1354 }
1355
1356 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1357 smp_wmb();
1358 atomic_inc(&kvm->online_vcpus);
1359
1360 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1361 if (kvm->bsp_vcpu_id == id)
1362 kvm->bsp_vcpu = vcpu;
1363 #endif
1364 mutex_unlock(&kvm->lock);
1365 return r;
1366
1367 vcpu_destroy:
1368 mutex_unlock(&kvm->lock);
1369 kvm_arch_vcpu_destroy(vcpu);
1370 return r;
1371 }
1372
1373 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1374 {
1375 if (sigset) {
1376 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1377 vcpu->sigset_active = 1;
1378 vcpu->sigset = *sigset;
1379 } else
1380 vcpu->sigset_active = 0;
1381 return 0;
1382 }
1383
1384 static long kvm_vcpu_ioctl(struct file *filp,
1385 unsigned int ioctl, unsigned long arg)
1386 {
1387 struct kvm_vcpu *vcpu = filp->private_data;
1388 void __user *argp = (void __user *)arg;
1389 int r;
1390 struct kvm_fpu *fpu = NULL;
1391 struct kvm_sregs *kvm_sregs = NULL;
1392
1393 if (vcpu->kvm->mm != current->mm)
1394 return -EIO;
1395
1396 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1397 /*
1398 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1399 * so vcpu_load() would break it.
1400 */
1401 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1402 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1403 #endif
1404
1405
1406 vcpu_load(vcpu);
1407 switch (ioctl) {
1408 case KVM_RUN:
1409 r = -EINVAL;
1410 if (arg)
1411 goto out;
1412 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1413 break;
1414 case KVM_GET_REGS: {
1415 struct kvm_regs *kvm_regs;
1416
1417 r = -ENOMEM;
1418 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1419 if (!kvm_regs)
1420 goto out;
1421 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1422 if (r)
1423 goto out_free1;
1424 r = -EFAULT;
1425 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1426 goto out_free1;
1427 r = 0;
1428 out_free1:
1429 kfree(kvm_regs);
1430 break;
1431 }
1432 case KVM_SET_REGS: {
1433 struct kvm_regs *kvm_regs;
1434
1435 r = -ENOMEM;
1436 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1437 if (!kvm_regs)
1438 goto out;
1439 r = -EFAULT;
1440 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1441 goto out_free2;
1442 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1443 if (r)
1444 goto out_free2;
1445 r = 0;
1446 out_free2:
1447 kfree(kvm_regs);
1448 break;
1449 }
1450 case KVM_GET_SREGS: {
1451 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1452 r = -ENOMEM;
1453 if (!kvm_sregs)
1454 goto out;
1455 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1456 if (r)
1457 goto out;
1458 r = -EFAULT;
1459 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1460 goto out;
1461 r = 0;
1462 break;
1463 }
1464 case KVM_SET_SREGS: {
1465 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1466 r = -ENOMEM;
1467 if (!kvm_sregs)
1468 goto out;
1469 r = -EFAULT;
1470 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1471 goto out;
1472 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1473 if (r)
1474 goto out;
1475 r = 0;
1476 break;
1477 }
1478 case KVM_GET_MP_STATE: {
1479 struct kvm_mp_state mp_state;
1480
1481 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1482 if (r)
1483 goto out;
1484 r = -EFAULT;
1485 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1486 goto out;
1487 r = 0;
1488 break;
1489 }
1490 case KVM_SET_MP_STATE: {
1491 struct kvm_mp_state mp_state;
1492
1493 r = -EFAULT;
1494 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1495 goto out;
1496 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1497 if (r)
1498 goto out;
1499 r = 0;
1500 break;
1501 }
1502 case KVM_TRANSLATE: {
1503 struct kvm_translation tr;
1504
1505 r = -EFAULT;
1506 if (copy_from_user(&tr, argp, sizeof tr))
1507 goto out;
1508 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1509 if (r)
1510 goto out;
1511 r = -EFAULT;
1512 if (copy_to_user(argp, &tr, sizeof tr))
1513 goto out;
1514 r = 0;
1515 break;
1516 }
1517 case KVM_SET_GUEST_DEBUG: {
1518 struct kvm_guest_debug dbg;
1519
1520 r = -EFAULT;
1521 if (copy_from_user(&dbg, argp, sizeof dbg))
1522 goto out;
1523 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1524 if (r)
1525 goto out;
1526 r = 0;
1527 break;
1528 }
1529 case KVM_SET_SIGNAL_MASK: {
1530 struct kvm_signal_mask __user *sigmask_arg = argp;
1531 struct kvm_signal_mask kvm_sigmask;
1532 sigset_t sigset, *p;
1533
1534 p = NULL;
1535 if (argp) {
1536 r = -EFAULT;
1537 if (copy_from_user(&kvm_sigmask, argp,
1538 sizeof kvm_sigmask))
1539 goto out;
1540 r = -EINVAL;
1541 if (kvm_sigmask.len != sizeof sigset)
1542 goto out;
1543 r = -EFAULT;
1544 if (copy_from_user(&sigset, sigmask_arg->sigset,
1545 sizeof sigset))
1546 goto out;
1547 p = &sigset;
1548 }
1549 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1550 break;
1551 }
1552 case KVM_GET_FPU: {
1553 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1554 r = -ENOMEM;
1555 if (!fpu)
1556 goto out;
1557 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1558 if (r)
1559 goto out;
1560 r = -EFAULT;
1561 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1562 goto out;
1563 r = 0;
1564 break;
1565 }
1566 case KVM_SET_FPU: {
1567 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1568 r = -ENOMEM;
1569 if (!fpu)
1570 goto out;
1571 r = -EFAULT;
1572 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1573 goto out;
1574 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1575 if (r)
1576 goto out;
1577 r = 0;
1578 break;
1579 }
1580 default:
1581 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1582 }
1583 out:
1584 vcpu_put(vcpu);
1585 kfree(fpu);
1586 kfree(kvm_sregs);
1587 return r;
1588 }
1589
1590 static long kvm_vm_ioctl(struct file *filp,
1591 unsigned int ioctl, unsigned long arg)
1592 {
1593 struct kvm *kvm = filp->private_data;
1594 void __user *argp = (void __user *)arg;
1595 int r;
1596
1597 if (kvm->mm != current->mm)
1598 return -EIO;
1599 switch (ioctl) {
1600 case KVM_CREATE_VCPU:
1601 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1602 if (r < 0)
1603 goto out;
1604 break;
1605 case KVM_SET_USER_MEMORY_REGION: {
1606 struct kvm_userspace_memory_region kvm_userspace_mem;
1607
1608 r = -EFAULT;
1609 if (copy_from_user(&kvm_userspace_mem, argp,
1610 sizeof kvm_userspace_mem))
1611 goto out;
1612
1613 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1614 if (r)
1615 goto out;
1616 break;
1617 }
1618 case KVM_GET_DIRTY_LOG: {
1619 struct kvm_dirty_log log;
1620
1621 r = -EFAULT;
1622 if (copy_from_user(&log, argp, sizeof log))
1623 goto out;
1624 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1625 if (r)
1626 goto out;
1627 break;
1628 }
1629 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1630 case KVM_REGISTER_COALESCED_MMIO: {
1631 struct kvm_coalesced_mmio_zone zone;
1632 r = -EFAULT;
1633 if (copy_from_user(&zone, argp, sizeof zone))
1634 goto out;
1635 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1636 if (r)
1637 goto out;
1638 r = 0;
1639 break;
1640 }
1641 case KVM_UNREGISTER_COALESCED_MMIO: {
1642 struct kvm_coalesced_mmio_zone zone;
1643 r = -EFAULT;
1644 if (copy_from_user(&zone, argp, sizeof zone))
1645 goto out;
1646 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1647 if (r)
1648 goto out;
1649 r = 0;
1650 break;
1651 }
1652 #endif
1653 case KVM_IRQFD: {
1654 struct kvm_irqfd data;
1655
1656 r = -EFAULT;
1657 if (copy_from_user(&data, argp, sizeof data))
1658 goto out;
1659 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
1660 break;
1661 }
1662 case KVM_IOEVENTFD: {
1663 struct kvm_ioeventfd data;
1664
1665 r = -EFAULT;
1666 if (copy_from_user(&data, argp, sizeof data))
1667 goto out;
1668 r = kvm_ioeventfd(kvm, &data);
1669 break;
1670 }
1671 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1672 case KVM_SET_BOOT_CPU_ID:
1673 r = 0;
1674 mutex_lock(&kvm->lock);
1675 if (atomic_read(&kvm->online_vcpus) != 0)
1676 r = -EBUSY;
1677 else
1678 kvm->bsp_vcpu_id = arg;
1679 mutex_unlock(&kvm->lock);
1680 break;
1681 #endif
1682 default:
1683 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1684 if (r == -ENOTTY)
1685 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
1686 }
1687 out:
1688 return r;
1689 }
1690
1691 #ifdef CONFIG_COMPAT
1692 struct compat_kvm_dirty_log {
1693 __u32 slot;
1694 __u32 padding1;
1695 union {
1696 compat_uptr_t dirty_bitmap; /* one bit per page */
1697 __u64 padding2;
1698 };
1699 };
1700
1701 static long kvm_vm_compat_ioctl(struct file *filp,
1702 unsigned int ioctl, unsigned long arg)
1703 {
1704 struct kvm *kvm = filp->private_data;
1705 int r;
1706
1707 if (kvm->mm != current->mm)
1708 return -EIO;
1709 switch (ioctl) {
1710 case KVM_GET_DIRTY_LOG: {
1711 struct compat_kvm_dirty_log compat_log;
1712 struct kvm_dirty_log log;
1713
1714 r = -EFAULT;
1715 if (copy_from_user(&compat_log, (void __user *)arg,
1716 sizeof(compat_log)))
1717 goto out;
1718 log.slot = compat_log.slot;
1719 log.padding1 = compat_log.padding1;
1720 log.padding2 = compat_log.padding2;
1721 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
1722
1723 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1724 if (r)
1725 goto out;
1726 break;
1727 }
1728 default:
1729 r = kvm_vm_ioctl(filp, ioctl, arg);
1730 }
1731
1732 out:
1733 return r;
1734 }
1735 #endif
1736
1737 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1738 {
1739 struct page *page[1];
1740 unsigned long addr;
1741 int npages;
1742 gfn_t gfn = vmf->pgoff;
1743 struct kvm *kvm = vma->vm_file->private_data;
1744
1745 addr = gfn_to_hva(kvm, gfn);
1746 if (kvm_is_error_hva(addr))
1747 return VM_FAULT_SIGBUS;
1748
1749 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1750 NULL);
1751 if (unlikely(npages != 1))
1752 return VM_FAULT_SIGBUS;
1753
1754 vmf->page = page[0];
1755 return 0;
1756 }
1757
1758 static const struct vm_operations_struct kvm_vm_vm_ops = {
1759 .fault = kvm_vm_fault,
1760 };
1761
1762 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1763 {
1764 vma->vm_ops = &kvm_vm_vm_ops;
1765 return 0;
1766 }
1767
1768 static struct file_operations kvm_vm_fops = {
1769 .release = kvm_vm_release,
1770 .unlocked_ioctl = kvm_vm_ioctl,
1771 #ifdef CONFIG_COMPAT
1772 .compat_ioctl = kvm_vm_compat_ioctl,
1773 #endif
1774 .mmap = kvm_vm_mmap,
1775 };
1776
1777 static int kvm_dev_ioctl_create_vm(void)
1778 {
1779 int fd, r;
1780 struct kvm *kvm;
1781
1782 kvm = kvm_create_vm();
1783 if (IS_ERR(kvm))
1784 return PTR_ERR(kvm);
1785 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1786 r = kvm_coalesced_mmio_init(kvm);
1787 if (r < 0) {
1788 kvm_put_kvm(kvm);
1789 return r;
1790 }
1791 #endif
1792 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
1793 if (fd < 0)
1794 kvm_put_kvm(kvm);
1795
1796 return fd;
1797 }
1798
1799 static long kvm_dev_ioctl_check_extension_generic(long arg)
1800 {
1801 switch (arg) {
1802 case KVM_CAP_USER_MEMORY:
1803 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
1804 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
1805 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1806 case KVM_CAP_SET_BOOT_CPU_ID:
1807 #endif
1808 case KVM_CAP_INTERNAL_ERROR_DATA:
1809 return 1;
1810 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1811 case KVM_CAP_IRQ_ROUTING:
1812 return KVM_MAX_IRQ_ROUTES;
1813 #endif
1814 default:
1815 break;
1816 }
1817 return kvm_dev_ioctl_check_extension(arg);
1818 }
1819
1820 static long kvm_dev_ioctl(struct file *filp,
1821 unsigned int ioctl, unsigned long arg)
1822 {
1823 long r = -EINVAL;
1824
1825 switch (ioctl) {
1826 case KVM_GET_API_VERSION:
1827 r = -EINVAL;
1828 if (arg)
1829 goto out;
1830 r = KVM_API_VERSION;
1831 break;
1832 case KVM_CREATE_VM:
1833 r = -EINVAL;
1834 if (arg)
1835 goto out;
1836 r = kvm_dev_ioctl_create_vm();
1837 break;
1838 case KVM_CHECK_EXTENSION:
1839 r = kvm_dev_ioctl_check_extension_generic(arg);
1840 break;
1841 case KVM_GET_VCPU_MMAP_SIZE:
1842 r = -EINVAL;
1843 if (arg)
1844 goto out;
1845 r = PAGE_SIZE; /* struct kvm_run */
1846 #ifdef CONFIG_X86
1847 r += PAGE_SIZE; /* pio data page */
1848 #endif
1849 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1850 r += PAGE_SIZE; /* coalesced mmio ring page */
1851 #endif
1852 break;
1853 case KVM_TRACE_ENABLE:
1854 case KVM_TRACE_PAUSE:
1855 case KVM_TRACE_DISABLE:
1856 r = -EOPNOTSUPP;
1857 break;
1858 default:
1859 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1860 }
1861 out:
1862 return r;
1863 }
1864
1865 static struct file_operations kvm_chardev_ops = {
1866 .unlocked_ioctl = kvm_dev_ioctl,
1867 .compat_ioctl = kvm_dev_ioctl,
1868 };
1869
1870 static struct miscdevice kvm_dev = {
1871 KVM_MINOR,
1872 "kvm",
1873 &kvm_chardev_ops,
1874 };
1875
1876 static void hardware_enable(void *junk)
1877 {
1878 int cpu = raw_smp_processor_id();
1879 int r;
1880
1881 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1882 return;
1883
1884 cpumask_set_cpu(cpu, cpus_hardware_enabled);
1885
1886 r = kvm_arch_hardware_enable(NULL);
1887
1888 if (r) {
1889 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1890 atomic_inc(&hardware_enable_failed);
1891 printk(KERN_INFO "kvm: enabling virtualization on "
1892 "CPU%d failed\n", cpu);
1893 }
1894 }
1895
1896 static void hardware_disable(void *junk)
1897 {
1898 int cpu = raw_smp_processor_id();
1899
1900 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1901 return;
1902 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1903 kvm_arch_hardware_disable(NULL);
1904 }
1905
1906 static void hardware_disable_all_nolock(void)
1907 {
1908 BUG_ON(!kvm_usage_count);
1909
1910 kvm_usage_count--;
1911 if (!kvm_usage_count)
1912 on_each_cpu(hardware_disable, NULL, 1);
1913 }
1914
1915 static void hardware_disable_all(void)
1916 {
1917 spin_lock(&kvm_lock);
1918 hardware_disable_all_nolock();
1919 spin_unlock(&kvm_lock);
1920 }
1921
1922 static int hardware_enable_all(void)
1923 {
1924 int r = 0;
1925
1926 spin_lock(&kvm_lock);
1927
1928 kvm_usage_count++;
1929 if (kvm_usage_count == 1) {
1930 atomic_set(&hardware_enable_failed, 0);
1931 on_each_cpu(hardware_enable, NULL, 1);
1932
1933 if (atomic_read(&hardware_enable_failed)) {
1934 hardware_disable_all_nolock();
1935 r = -EBUSY;
1936 }
1937 }
1938
1939 spin_unlock(&kvm_lock);
1940
1941 return r;
1942 }
1943
1944 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1945 void *v)
1946 {
1947 int cpu = (long)v;
1948
1949 if (!kvm_usage_count)
1950 return NOTIFY_OK;
1951
1952 val &= ~CPU_TASKS_FROZEN;
1953 switch (val) {
1954 case CPU_DYING:
1955 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1956 cpu);
1957 hardware_disable(NULL);
1958 break;
1959 case CPU_ONLINE:
1960 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1961 cpu);
1962 smp_call_function_single(cpu, hardware_enable, NULL, 1);
1963 break;
1964 }
1965 return NOTIFY_OK;
1966 }
1967
1968
1969 asmlinkage void kvm_handle_fault_on_reboot(void)
1970 {
1971 if (kvm_rebooting)
1972 /* spin while reset goes on */
1973 while (true)
1974 ;
1975 /* Fault while not rebooting. We want the trace. */
1976 BUG();
1977 }
1978 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1979
1980 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1981 void *v)
1982 {
1983 /*
1984 * Some (well, at least mine) BIOSes hang on reboot if
1985 * in vmx root mode.
1986 *
1987 * And Intel TXT required VMX off for all cpu when system shutdown.
1988 */
1989 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1990 kvm_rebooting = true;
1991 on_each_cpu(hardware_disable, NULL, 1);
1992 return NOTIFY_OK;
1993 }
1994
1995 static struct notifier_block kvm_reboot_notifier = {
1996 .notifier_call = kvm_reboot,
1997 .priority = 0,
1998 };
1999
2000 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2001 {
2002 int i;
2003
2004 for (i = 0; i < bus->dev_count; i++) {
2005 struct kvm_io_device *pos = bus->devs[i];
2006
2007 kvm_iodevice_destructor(pos);
2008 }
2009 kfree(bus);
2010 }
2011
2012 /* kvm_io_bus_write - called under kvm->slots_lock */
2013 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2014 int len, const void *val)
2015 {
2016 int i;
2017 struct kvm_io_bus *bus;
2018
2019 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2020 for (i = 0; i < bus->dev_count; i++)
2021 if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
2022 return 0;
2023 return -EOPNOTSUPP;
2024 }
2025
2026 /* kvm_io_bus_read - called under kvm->slots_lock */
2027 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2028 int len, void *val)
2029 {
2030 int i;
2031 struct kvm_io_bus *bus;
2032
2033 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2034 for (i = 0; i < bus->dev_count; i++)
2035 if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2036 return 0;
2037 return -EOPNOTSUPP;
2038 }
2039
2040 /* Caller must hold slots_lock. */
2041 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2042 struct kvm_io_device *dev)
2043 {
2044 struct kvm_io_bus *new_bus, *bus;
2045
2046 bus = kvm->buses[bus_idx];
2047 if (bus->dev_count > NR_IOBUS_DEVS-1)
2048 return -ENOSPC;
2049
2050 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2051 if (!new_bus)
2052 return -ENOMEM;
2053 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2054 new_bus->devs[new_bus->dev_count++] = dev;
2055 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2056 synchronize_srcu_expedited(&kvm->srcu);
2057 kfree(bus);
2058
2059 return 0;
2060 }
2061
2062 /* Caller must hold slots_lock. */
2063 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2064 struct kvm_io_device *dev)
2065 {
2066 int i, r;
2067 struct kvm_io_bus *new_bus, *bus;
2068
2069 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2070 if (!new_bus)
2071 return -ENOMEM;
2072
2073 bus = kvm->buses[bus_idx];
2074 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2075
2076 r = -ENOENT;
2077 for (i = 0; i < new_bus->dev_count; i++)
2078 if (new_bus->devs[i] == dev) {
2079 r = 0;
2080 new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
2081 break;
2082 }
2083
2084 if (r) {
2085 kfree(new_bus);
2086 return r;
2087 }
2088
2089 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2090 synchronize_srcu_expedited(&kvm->srcu);
2091 kfree(bus);
2092 return r;
2093 }
2094
2095 static struct notifier_block kvm_cpu_notifier = {
2096 .notifier_call = kvm_cpu_hotplug,
2097 .priority = 20, /* must be > scheduler priority */
2098 };
2099
2100 static int vm_stat_get(void *_offset, u64 *val)
2101 {
2102 unsigned offset = (long)_offset;
2103 struct kvm *kvm;
2104
2105 *val = 0;
2106 spin_lock(&kvm_lock);
2107 list_for_each_entry(kvm, &vm_list, vm_list)
2108 *val += *(u32 *)((void *)kvm + offset);
2109 spin_unlock(&kvm_lock);
2110 return 0;
2111 }
2112
2113 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2114
2115 static int vcpu_stat_get(void *_offset, u64 *val)
2116 {
2117 unsigned offset = (long)_offset;
2118 struct kvm *kvm;
2119 struct kvm_vcpu *vcpu;
2120 int i;
2121
2122 *val = 0;
2123 spin_lock(&kvm_lock);
2124 list_for_each_entry(kvm, &vm_list, vm_list)
2125 kvm_for_each_vcpu(i, vcpu, kvm)
2126 *val += *(u32 *)((void *)vcpu + offset);
2127
2128 spin_unlock(&kvm_lock);
2129 return 0;
2130 }
2131
2132 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2133
2134 static const struct file_operations *stat_fops[] = {
2135 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2136 [KVM_STAT_VM] = &vm_stat_fops,
2137 };
2138
2139 static void kvm_init_debug(void)
2140 {
2141 struct kvm_stats_debugfs_item *p;
2142
2143 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2144 for (p = debugfs_entries; p->name; ++p)
2145 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2146 (void *)(long)p->offset,
2147 stat_fops[p->kind]);
2148 }
2149
2150 static void kvm_exit_debug(void)
2151 {
2152 struct kvm_stats_debugfs_item *p;
2153
2154 for (p = debugfs_entries; p->name; ++p)
2155 debugfs_remove(p->dentry);
2156 debugfs_remove(kvm_debugfs_dir);
2157 }
2158
2159 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2160 {
2161 if (kvm_usage_count)
2162 hardware_disable(NULL);
2163 return 0;
2164 }
2165
2166 static int kvm_resume(struct sys_device *dev)
2167 {
2168 if (kvm_usage_count)
2169 hardware_enable(NULL);
2170 return 0;
2171 }
2172
2173 static struct sysdev_class kvm_sysdev_class = {
2174 .name = "kvm",
2175 .suspend = kvm_suspend,
2176 .resume = kvm_resume,
2177 };
2178
2179 static struct sys_device kvm_sysdev = {
2180 .id = 0,
2181 .cls = &kvm_sysdev_class,
2182 };
2183
2184 struct page *bad_page;
2185 pfn_t bad_pfn;
2186
2187 static inline
2188 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2189 {
2190 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2191 }
2192
2193 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2194 {
2195 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2196
2197 kvm_arch_vcpu_load(vcpu, cpu);
2198 }
2199
2200 static void kvm_sched_out(struct preempt_notifier *pn,
2201 struct task_struct *next)
2202 {
2203 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2204
2205 kvm_arch_vcpu_put(vcpu);
2206 }
2207
2208 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2209 struct module *module)
2210 {
2211 int r;
2212 int cpu;
2213
2214 r = kvm_arch_init(opaque);
2215 if (r)
2216 goto out_fail;
2217
2218 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2219
2220 if (bad_page == NULL) {
2221 r = -ENOMEM;
2222 goto out;
2223 }
2224
2225 bad_pfn = page_to_pfn(bad_page);
2226
2227 hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2228
2229 if (hwpoison_page == NULL) {
2230 r = -ENOMEM;
2231 goto out_free_0;
2232 }
2233
2234 hwpoison_pfn = page_to_pfn(hwpoison_page);
2235
2236 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2237 r = -ENOMEM;
2238 goto out_free_0;
2239 }
2240
2241 r = kvm_arch_hardware_setup();
2242 if (r < 0)
2243 goto out_free_0a;
2244
2245 for_each_online_cpu(cpu) {
2246 smp_call_function_single(cpu,
2247 kvm_arch_check_processor_compat,
2248 &r, 1);
2249 if (r < 0)
2250 goto out_free_1;
2251 }
2252
2253 r = register_cpu_notifier(&kvm_cpu_notifier);
2254 if (r)
2255 goto out_free_2;
2256 register_reboot_notifier(&kvm_reboot_notifier);
2257
2258 r = sysdev_class_register(&kvm_sysdev_class);
2259 if (r)
2260 goto out_free_3;
2261
2262 r = sysdev_register(&kvm_sysdev);
2263 if (r)
2264 goto out_free_4;
2265
2266 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2267 if (!vcpu_align)
2268 vcpu_align = __alignof__(struct kvm_vcpu);
2269 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2270 0, NULL);
2271 if (!kvm_vcpu_cache) {
2272 r = -ENOMEM;
2273 goto out_free_5;
2274 }
2275
2276 kvm_chardev_ops.owner = module;
2277 kvm_vm_fops.owner = module;
2278 kvm_vcpu_fops.owner = module;
2279
2280 r = misc_register(&kvm_dev);
2281 if (r) {
2282 printk(KERN_ERR "kvm: misc device register failed\n");
2283 goto out_free;
2284 }
2285
2286 kvm_preempt_ops.sched_in = kvm_sched_in;
2287 kvm_preempt_ops.sched_out = kvm_sched_out;
2288
2289 kvm_init_debug();
2290
2291 return 0;
2292
2293 out_free:
2294 kmem_cache_destroy(kvm_vcpu_cache);
2295 out_free_5:
2296 sysdev_unregister(&kvm_sysdev);
2297 out_free_4:
2298 sysdev_class_unregister(&kvm_sysdev_class);
2299 out_free_3:
2300 unregister_reboot_notifier(&kvm_reboot_notifier);
2301 unregister_cpu_notifier(&kvm_cpu_notifier);
2302 out_free_2:
2303 out_free_1:
2304 kvm_arch_hardware_unsetup();
2305 out_free_0a:
2306 free_cpumask_var(cpus_hardware_enabled);
2307 out_free_0:
2308 if (hwpoison_page)
2309 __free_page(hwpoison_page);
2310 __free_page(bad_page);
2311 out:
2312 kvm_arch_exit();
2313 out_fail:
2314 return r;
2315 }
2316 EXPORT_SYMBOL_GPL(kvm_init);
2317
2318 void kvm_exit(void)
2319 {
2320 kvm_exit_debug();
2321 misc_deregister(&kvm_dev);
2322 kmem_cache_destroy(kvm_vcpu_cache);
2323 sysdev_unregister(&kvm_sysdev);
2324 sysdev_class_unregister(&kvm_sysdev_class);
2325 unregister_reboot_notifier(&kvm_reboot_notifier);
2326 unregister_cpu_notifier(&kvm_cpu_notifier);
2327 on_each_cpu(hardware_disable, NULL, 1);
2328 kvm_arch_hardware_unsetup();
2329 kvm_arch_exit();
2330 free_cpumask_var(cpus_hardware_enabled);
2331 __free_page(hwpoison_page);
2332 __free_page(bad_page);
2333 }
2334 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.073642 seconds and 4 git commands to generate.