402590dfcf9b942293b76e646ec8a3f4c6b15f7d
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 /* Architectures should define their poll value according to the halt latency */
70 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
71 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
72
73 /* Default doubles per-vcpu halt_poll_ns. */
74 static unsigned int halt_poll_ns_grow = 2;
75 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
76
77 /* Default resets per-vcpu halt_poll_ns . */
78 static unsigned int halt_poll_ns_shrink;
79 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
80
81 /*
82 * Ordering of locks:
83 *
84 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
85 */
86
87 DEFINE_SPINLOCK(kvm_lock);
88 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
89 LIST_HEAD(vm_list);
90
91 static cpumask_var_t cpus_hardware_enabled;
92 static int kvm_usage_count;
93 static atomic_t hardware_enable_failed;
94
95 struct kmem_cache *kvm_vcpu_cache;
96 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
97
98 static __read_mostly struct preempt_ops kvm_preempt_ops;
99
100 struct dentry *kvm_debugfs_dir;
101 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
102
103 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
104 unsigned long arg);
105 #ifdef CONFIG_KVM_COMPAT
106 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
107 unsigned long arg);
108 #endif
109 static int hardware_enable_all(void);
110 static void hardware_disable_all(void);
111
112 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
113
114 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
115 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
116
117 __visible bool kvm_rebooting;
118 EXPORT_SYMBOL_GPL(kvm_rebooting);
119
120 static bool largepages_enabled = true;
121
122 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
123 {
124 if (pfn_valid(pfn))
125 return PageReserved(pfn_to_page(pfn));
126
127 return true;
128 }
129
130 /*
131 * Switches to specified vcpu, until a matching vcpu_put()
132 */
133 int vcpu_load(struct kvm_vcpu *vcpu)
134 {
135 int cpu;
136
137 if (mutex_lock_killable(&vcpu->mutex))
138 return -EINTR;
139 cpu = get_cpu();
140 preempt_notifier_register(&vcpu->preempt_notifier);
141 kvm_arch_vcpu_load(vcpu, cpu);
142 put_cpu();
143 return 0;
144 }
145
146 void vcpu_put(struct kvm_vcpu *vcpu)
147 {
148 preempt_disable();
149 kvm_arch_vcpu_put(vcpu);
150 preempt_notifier_unregister(&vcpu->preempt_notifier);
151 preempt_enable();
152 mutex_unlock(&vcpu->mutex);
153 }
154
155 static void ack_flush(void *_completed)
156 {
157 }
158
159 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
160 {
161 int i, cpu, me;
162 cpumask_var_t cpus;
163 bool called = true;
164 struct kvm_vcpu *vcpu;
165
166 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
167
168 me = get_cpu();
169 kvm_for_each_vcpu(i, vcpu, kvm) {
170 kvm_make_request(req, vcpu);
171 cpu = vcpu->cpu;
172
173 /* Set ->requests bit before we read ->mode. */
174 smp_mb__after_atomic();
175
176 if (cpus != NULL && cpu != -1 && cpu != me &&
177 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
178 cpumask_set_cpu(cpu, cpus);
179 }
180 if (unlikely(cpus == NULL))
181 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
182 else if (!cpumask_empty(cpus))
183 smp_call_function_many(cpus, ack_flush, NULL, 1);
184 else
185 called = false;
186 put_cpu();
187 free_cpumask_var(cpus);
188 return called;
189 }
190
191 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
192 void kvm_flush_remote_tlbs(struct kvm *kvm)
193 {
194 long dirty_count = kvm->tlbs_dirty;
195
196 smp_mb();
197 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
198 ++kvm->stat.remote_tlb_flush;
199 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
200 }
201 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
202 #endif
203
204 void kvm_reload_remote_mmus(struct kvm *kvm)
205 {
206 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
207 }
208
209 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
210 {
211 struct page *page;
212 int r;
213
214 mutex_init(&vcpu->mutex);
215 vcpu->cpu = -1;
216 vcpu->kvm = kvm;
217 vcpu->vcpu_id = id;
218 vcpu->pid = NULL;
219 init_swait_queue_head(&vcpu->wq);
220 kvm_async_pf_vcpu_init(vcpu);
221
222 vcpu->pre_pcpu = -1;
223 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
224
225 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
226 if (!page) {
227 r = -ENOMEM;
228 goto fail;
229 }
230 vcpu->run = page_address(page);
231
232 kvm_vcpu_set_in_spin_loop(vcpu, false);
233 kvm_vcpu_set_dy_eligible(vcpu, false);
234 vcpu->preempted = false;
235
236 r = kvm_arch_vcpu_init(vcpu);
237 if (r < 0)
238 goto fail_free_run;
239 return 0;
240
241 fail_free_run:
242 free_page((unsigned long)vcpu->run);
243 fail:
244 return r;
245 }
246 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
247
248 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
249 {
250 put_pid(vcpu->pid);
251 kvm_arch_vcpu_uninit(vcpu);
252 free_page((unsigned long)vcpu->run);
253 }
254 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
255
256 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
257 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
258 {
259 return container_of(mn, struct kvm, mmu_notifier);
260 }
261
262 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
263 struct mm_struct *mm,
264 unsigned long address)
265 {
266 struct kvm *kvm = mmu_notifier_to_kvm(mn);
267 int need_tlb_flush, idx;
268
269 /*
270 * When ->invalidate_page runs, the linux pte has been zapped
271 * already but the page is still allocated until
272 * ->invalidate_page returns. So if we increase the sequence
273 * here the kvm page fault will notice if the spte can't be
274 * established because the page is going to be freed. If
275 * instead the kvm page fault establishes the spte before
276 * ->invalidate_page runs, kvm_unmap_hva will release it
277 * before returning.
278 *
279 * The sequence increase only need to be seen at spin_unlock
280 * time, and not at spin_lock time.
281 *
282 * Increasing the sequence after the spin_unlock would be
283 * unsafe because the kvm page fault could then establish the
284 * pte after kvm_unmap_hva returned, without noticing the page
285 * is going to be freed.
286 */
287 idx = srcu_read_lock(&kvm->srcu);
288 spin_lock(&kvm->mmu_lock);
289
290 kvm->mmu_notifier_seq++;
291 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
292 /* we've to flush the tlb before the pages can be freed */
293 if (need_tlb_flush)
294 kvm_flush_remote_tlbs(kvm);
295
296 spin_unlock(&kvm->mmu_lock);
297
298 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
299
300 srcu_read_unlock(&kvm->srcu, idx);
301 }
302
303 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
304 struct mm_struct *mm,
305 unsigned long address,
306 pte_t pte)
307 {
308 struct kvm *kvm = mmu_notifier_to_kvm(mn);
309 int idx;
310
311 idx = srcu_read_lock(&kvm->srcu);
312 spin_lock(&kvm->mmu_lock);
313 kvm->mmu_notifier_seq++;
314 kvm_set_spte_hva(kvm, address, pte);
315 spin_unlock(&kvm->mmu_lock);
316 srcu_read_unlock(&kvm->srcu, idx);
317 }
318
319 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
320 struct mm_struct *mm,
321 unsigned long start,
322 unsigned long end)
323 {
324 struct kvm *kvm = mmu_notifier_to_kvm(mn);
325 int need_tlb_flush = 0, idx;
326
327 idx = srcu_read_lock(&kvm->srcu);
328 spin_lock(&kvm->mmu_lock);
329 /*
330 * The count increase must become visible at unlock time as no
331 * spte can be established without taking the mmu_lock and
332 * count is also read inside the mmu_lock critical section.
333 */
334 kvm->mmu_notifier_count++;
335 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
336 need_tlb_flush |= kvm->tlbs_dirty;
337 /* we've to flush the tlb before the pages can be freed */
338 if (need_tlb_flush)
339 kvm_flush_remote_tlbs(kvm);
340
341 spin_unlock(&kvm->mmu_lock);
342 srcu_read_unlock(&kvm->srcu, idx);
343 }
344
345 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
346 struct mm_struct *mm,
347 unsigned long start,
348 unsigned long end)
349 {
350 struct kvm *kvm = mmu_notifier_to_kvm(mn);
351
352 spin_lock(&kvm->mmu_lock);
353 /*
354 * This sequence increase will notify the kvm page fault that
355 * the page that is going to be mapped in the spte could have
356 * been freed.
357 */
358 kvm->mmu_notifier_seq++;
359 smp_wmb();
360 /*
361 * The above sequence increase must be visible before the
362 * below count decrease, which is ensured by the smp_wmb above
363 * in conjunction with the smp_rmb in mmu_notifier_retry().
364 */
365 kvm->mmu_notifier_count--;
366 spin_unlock(&kvm->mmu_lock);
367
368 BUG_ON(kvm->mmu_notifier_count < 0);
369 }
370
371 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
372 struct mm_struct *mm,
373 unsigned long start,
374 unsigned long end)
375 {
376 struct kvm *kvm = mmu_notifier_to_kvm(mn);
377 int young, idx;
378
379 idx = srcu_read_lock(&kvm->srcu);
380 spin_lock(&kvm->mmu_lock);
381
382 young = kvm_age_hva(kvm, start, end);
383 if (young)
384 kvm_flush_remote_tlbs(kvm);
385
386 spin_unlock(&kvm->mmu_lock);
387 srcu_read_unlock(&kvm->srcu, idx);
388
389 return young;
390 }
391
392 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
393 struct mm_struct *mm,
394 unsigned long start,
395 unsigned long end)
396 {
397 struct kvm *kvm = mmu_notifier_to_kvm(mn);
398 int young, idx;
399
400 idx = srcu_read_lock(&kvm->srcu);
401 spin_lock(&kvm->mmu_lock);
402 /*
403 * Even though we do not flush TLB, this will still adversely
404 * affect performance on pre-Haswell Intel EPT, where there is
405 * no EPT Access Bit to clear so that we have to tear down EPT
406 * tables instead. If we find this unacceptable, we can always
407 * add a parameter to kvm_age_hva so that it effectively doesn't
408 * do anything on clear_young.
409 *
410 * Also note that currently we never issue secondary TLB flushes
411 * from clear_young, leaving this job up to the regular system
412 * cadence. If we find this inaccurate, we might come up with a
413 * more sophisticated heuristic later.
414 */
415 young = kvm_age_hva(kvm, start, end);
416 spin_unlock(&kvm->mmu_lock);
417 srcu_read_unlock(&kvm->srcu, idx);
418
419 return young;
420 }
421
422 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
423 struct mm_struct *mm,
424 unsigned long address)
425 {
426 struct kvm *kvm = mmu_notifier_to_kvm(mn);
427 int young, idx;
428
429 idx = srcu_read_lock(&kvm->srcu);
430 spin_lock(&kvm->mmu_lock);
431 young = kvm_test_age_hva(kvm, address);
432 spin_unlock(&kvm->mmu_lock);
433 srcu_read_unlock(&kvm->srcu, idx);
434
435 return young;
436 }
437
438 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
439 struct mm_struct *mm)
440 {
441 struct kvm *kvm = mmu_notifier_to_kvm(mn);
442 int idx;
443
444 idx = srcu_read_lock(&kvm->srcu);
445 kvm_arch_flush_shadow_all(kvm);
446 srcu_read_unlock(&kvm->srcu, idx);
447 }
448
449 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
450 .invalidate_page = kvm_mmu_notifier_invalidate_page,
451 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
452 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
453 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
454 .clear_young = kvm_mmu_notifier_clear_young,
455 .test_young = kvm_mmu_notifier_test_young,
456 .change_pte = kvm_mmu_notifier_change_pte,
457 .release = kvm_mmu_notifier_release,
458 };
459
460 static int kvm_init_mmu_notifier(struct kvm *kvm)
461 {
462 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
463 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
464 }
465
466 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
467
468 static int kvm_init_mmu_notifier(struct kvm *kvm)
469 {
470 return 0;
471 }
472
473 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
474
475 static struct kvm_memslots *kvm_alloc_memslots(void)
476 {
477 int i;
478 struct kvm_memslots *slots;
479
480 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
481 if (!slots)
482 return NULL;
483
484 /*
485 * Init kvm generation close to the maximum to easily test the
486 * code of handling generation number wrap-around.
487 */
488 slots->generation = -150;
489 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
490 slots->id_to_index[i] = slots->memslots[i].id = i;
491
492 return slots;
493 }
494
495 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
496 {
497 if (!memslot->dirty_bitmap)
498 return;
499
500 kvfree(memslot->dirty_bitmap);
501 memslot->dirty_bitmap = NULL;
502 }
503
504 /*
505 * Free any memory in @free but not in @dont.
506 */
507 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
508 struct kvm_memory_slot *dont)
509 {
510 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
511 kvm_destroy_dirty_bitmap(free);
512
513 kvm_arch_free_memslot(kvm, free, dont);
514
515 free->npages = 0;
516 }
517
518 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
519 {
520 struct kvm_memory_slot *memslot;
521
522 if (!slots)
523 return;
524
525 kvm_for_each_memslot(memslot, slots)
526 kvm_free_memslot(kvm, memslot, NULL);
527
528 kvfree(slots);
529 }
530
531 static struct kvm *kvm_create_vm(unsigned long type)
532 {
533 int r, i;
534 struct kvm *kvm = kvm_arch_alloc_vm();
535
536 if (!kvm)
537 return ERR_PTR(-ENOMEM);
538
539 spin_lock_init(&kvm->mmu_lock);
540 atomic_inc(&current->mm->mm_count);
541 kvm->mm = current->mm;
542 kvm_eventfd_init(kvm);
543 mutex_init(&kvm->lock);
544 mutex_init(&kvm->irq_lock);
545 mutex_init(&kvm->slots_lock);
546 atomic_set(&kvm->users_count, 1);
547 INIT_LIST_HEAD(&kvm->devices);
548
549 r = kvm_arch_init_vm(kvm, type);
550 if (r)
551 goto out_err_no_disable;
552
553 r = hardware_enable_all();
554 if (r)
555 goto out_err_no_disable;
556
557 #ifdef CONFIG_HAVE_KVM_IRQFD
558 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
559 #endif
560
561 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
562
563 r = -ENOMEM;
564 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
565 kvm->memslots[i] = kvm_alloc_memslots();
566 if (!kvm->memslots[i])
567 goto out_err_no_srcu;
568 }
569
570 if (init_srcu_struct(&kvm->srcu))
571 goto out_err_no_srcu;
572 if (init_srcu_struct(&kvm->irq_srcu))
573 goto out_err_no_irq_srcu;
574 for (i = 0; i < KVM_NR_BUSES; i++) {
575 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
576 GFP_KERNEL);
577 if (!kvm->buses[i])
578 goto out_err;
579 }
580
581 r = kvm_init_mmu_notifier(kvm);
582 if (r)
583 goto out_err;
584
585 spin_lock(&kvm_lock);
586 list_add(&kvm->vm_list, &vm_list);
587 spin_unlock(&kvm_lock);
588
589 preempt_notifier_inc();
590
591 return kvm;
592
593 out_err:
594 cleanup_srcu_struct(&kvm->irq_srcu);
595 out_err_no_irq_srcu:
596 cleanup_srcu_struct(&kvm->srcu);
597 out_err_no_srcu:
598 hardware_disable_all();
599 out_err_no_disable:
600 for (i = 0; i < KVM_NR_BUSES; i++)
601 kfree(kvm->buses[i]);
602 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
603 kvm_free_memslots(kvm, kvm->memslots[i]);
604 kvm_arch_free_vm(kvm);
605 mmdrop(current->mm);
606 return ERR_PTR(r);
607 }
608
609 /*
610 * Avoid using vmalloc for a small buffer.
611 * Should not be used when the size is statically known.
612 */
613 void *kvm_kvzalloc(unsigned long size)
614 {
615 if (size > PAGE_SIZE)
616 return vzalloc(size);
617 else
618 return kzalloc(size, GFP_KERNEL);
619 }
620
621 static void kvm_destroy_devices(struct kvm *kvm)
622 {
623 struct kvm_device *dev, *tmp;
624
625 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
626 list_del(&dev->vm_node);
627 dev->ops->destroy(dev);
628 }
629 }
630
631 static void kvm_destroy_vm(struct kvm *kvm)
632 {
633 int i;
634 struct mm_struct *mm = kvm->mm;
635
636 kvm_arch_sync_events(kvm);
637 spin_lock(&kvm_lock);
638 list_del(&kvm->vm_list);
639 spin_unlock(&kvm_lock);
640 kvm_free_irq_routing(kvm);
641 for (i = 0; i < KVM_NR_BUSES; i++)
642 kvm_io_bus_destroy(kvm->buses[i]);
643 kvm_coalesced_mmio_free(kvm);
644 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
645 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
646 #else
647 kvm_arch_flush_shadow_all(kvm);
648 #endif
649 kvm_arch_destroy_vm(kvm);
650 kvm_destroy_devices(kvm);
651 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
652 kvm_free_memslots(kvm, kvm->memslots[i]);
653 cleanup_srcu_struct(&kvm->irq_srcu);
654 cleanup_srcu_struct(&kvm->srcu);
655 kvm_arch_free_vm(kvm);
656 preempt_notifier_dec();
657 hardware_disable_all();
658 mmdrop(mm);
659 }
660
661 void kvm_get_kvm(struct kvm *kvm)
662 {
663 atomic_inc(&kvm->users_count);
664 }
665 EXPORT_SYMBOL_GPL(kvm_get_kvm);
666
667 void kvm_put_kvm(struct kvm *kvm)
668 {
669 if (atomic_dec_and_test(&kvm->users_count))
670 kvm_destroy_vm(kvm);
671 }
672 EXPORT_SYMBOL_GPL(kvm_put_kvm);
673
674
675 static int kvm_vm_release(struct inode *inode, struct file *filp)
676 {
677 struct kvm *kvm = filp->private_data;
678
679 kvm_irqfd_release(kvm);
680
681 kvm_put_kvm(kvm);
682 return 0;
683 }
684
685 /*
686 * Allocation size is twice as large as the actual dirty bitmap size.
687 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
688 */
689 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
690 {
691 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
692
693 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
694 if (!memslot->dirty_bitmap)
695 return -ENOMEM;
696
697 return 0;
698 }
699
700 /*
701 * Insert memslot and re-sort memslots based on their GFN,
702 * so binary search could be used to lookup GFN.
703 * Sorting algorithm takes advantage of having initially
704 * sorted array and known changed memslot position.
705 */
706 static void update_memslots(struct kvm_memslots *slots,
707 struct kvm_memory_slot *new)
708 {
709 int id = new->id;
710 int i = slots->id_to_index[id];
711 struct kvm_memory_slot *mslots = slots->memslots;
712
713 WARN_ON(mslots[i].id != id);
714 if (!new->npages) {
715 WARN_ON(!mslots[i].npages);
716 if (mslots[i].npages)
717 slots->used_slots--;
718 } else {
719 if (!mslots[i].npages)
720 slots->used_slots++;
721 }
722
723 while (i < KVM_MEM_SLOTS_NUM - 1 &&
724 new->base_gfn <= mslots[i + 1].base_gfn) {
725 if (!mslots[i + 1].npages)
726 break;
727 mslots[i] = mslots[i + 1];
728 slots->id_to_index[mslots[i].id] = i;
729 i++;
730 }
731
732 /*
733 * The ">=" is needed when creating a slot with base_gfn == 0,
734 * so that it moves before all those with base_gfn == npages == 0.
735 *
736 * On the other hand, if new->npages is zero, the above loop has
737 * already left i pointing to the beginning of the empty part of
738 * mslots, and the ">=" would move the hole backwards in this
739 * case---which is wrong. So skip the loop when deleting a slot.
740 */
741 if (new->npages) {
742 while (i > 0 &&
743 new->base_gfn >= mslots[i - 1].base_gfn) {
744 mslots[i] = mslots[i - 1];
745 slots->id_to_index[mslots[i].id] = i;
746 i--;
747 }
748 } else
749 WARN_ON_ONCE(i != slots->used_slots);
750
751 mslots[i] = *new;
752 slots->id_to_index[mslots[i].id] = i;
753 }
754
755 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
756 {
757 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
758
759 #ifdef __KVM_HAVE_READONLY_MEM
760 valid_flags |= KVM_MEM_READONLY;
761 #endif
762
763 if (mem->flags & ~valid_flags)
764 return -EINVAL;
765
766 return 0;
767 }
768
769 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
770 int as_id, struct kvm_memslots *slots)
771 {
772 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
773
774 /*
775 * Set the low bit in the generation, which disables SPTE caching
776 * until the end of synchronize_srcu_expedited.
777 */
778 WARN_ON(old_memslots->generation & 1);
779 slots->generation = old_memslots->generation + 1;
780
781 rcu_assign_pointer(kvm->memslots[as_id], slots);
782 synchronize_srcu_expedited(&kvm->srcu);
783
784 /*
785 * Increment the new memslot generation a second time. This prevents
786 * vm exits that race with memslot updates from caching a memslot
787 * generation that will (potentially) be valid forever.
788 */
789 slots->generation++;
790
791 kvm_arch_memslots_updated(kvm, slots);
792
793 return old_memslots;
794 }
795
796 /*
797 * Allocate some memory and give it an address in the guest physical address
798 * space.
799 *
800 * Discontiguous memory is allowed, mostly for framebuffers.
801 *
802 * Must be called holding kvm->slots_lock for write.
803 */
804 int __kvm_set_memory_region(struct kvm *kvm,
805 const struct kvm_userspace_memory_region *mem)
806 {
807 int r;
808 gfn_t base_gfn;
809 unsigned long npages;
810 struct kvm_memory_slot *slot;
811 struct kvm_memory_slot old, new;
812 struct kvm_memslots *slots = NULL, *old_memslots;
813 int as_id, id;
814 enum kvm_mr_change change;
815
816 r = check_memory_region_flags(mem);
817 if (r)
818 goto out;
819
820 r = -EINVAL;
821 as_id = mem->slot >> 16;
822 id = (u16)mem->slot;
823
824 /* General sanity checks */
825 if (mem->memory_size & (PAGE_SIZE - 1))
826 goto out;
827 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
828 goto out;
829 /* We can read the guest memory with __xxx_user() later on. */
830 if ((id < KVM_USER_MEM_SLOTS) &&
831 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
832 !access_ok(VERIFY_WRITE,
833 (void __user *)(unsigned long)mem->userspace_addr,
834 mem->memory_size)))
835 goto out;
836 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
837 goto out;
838 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
839 goto out;
840
841 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
842 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
843 npages = mem->memory_size >> PAGE_SHIFT;
844
845 if (npages > KVM_MEM_MAX_NR_PAGES)
846 goto out;
847
848 new = old = *slot;
849
850 new.id = id;
851 new.base_gfn = base_gfn;
852 new.npages = npages;
853 new.flags = mem->flags;
854
855 if (npages) {
856 if (!old.npages)
857 change = KVM_MR_CREATE;
858 else { /* Modify an existing slot. */
859 if ((mem->userspace_addr != old.userspace_addr) ||
860 (npages != old.npages) ||
861 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
862 goto out;
863
864 if (base_gfn != old.base_gfn)
865 change = KVM_MR_MOVE;
866 else if (new.flags != old.flags)
867 change = KVM_MR_FLAGS_ONLY;
868 else { /* Nothing to change. */
869 r = 0;
870 goto out;
871 }
872 }
873 } else {
874 if (!old.npages)
875 goto out;
876
877 change = KVM_MR_DELETE;
878 new.base_gfn = 0;
879 new.flags = 0;
880 }
881
882 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
883 /* Check for overlaps */
884 r = -EEXIST;
885 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
886 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
887 (slot->id == id))
888 continue;
889 if (!((base_gfn + npages <= slot->base_gfn) ||
890 (base_gfn >= slot->base_gfn + slot->npages)))
891 goto out;
892 }
893 }
894
895 /* Free page dirty bitmap if unneeded */
896 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
897 new.dirty_bitmap = NULL;
898
899 r = -ENOMEM;
900 if (change == KVM_MR_CREATE) {
901 new.userspace_addr = mem->userspace_addr;
902
903 if (kvm_arch_create_memslot(kvm, &new, npages))
904 goto out_free;
905 }
906
907 /* Allocate page dirty bitmap if needed */
908 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
909 if (kvm_create_dirty_bitmap(&new) < 0)
910 goto out_free;
911 }
912
913 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
914 if (!slots)
915 goto out_free;
916 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
917
918 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
919 slot = id_to_memslot(slots, id);
920 slot->flags |= KVM_MEMSLOT_INVALID;
921
922 old_memslots = install_new_memslots(kvm, as_id, slots);
923
924 /* slot was deleted or moved, clear iommu mapping */
925 kvm_iommu_unmap_pages(kvm, &old);
926 /* From this point no new shadow pages pointing to a deleted,
927 * or moved, memslot will be created.
928 *
929 * validation of sp->gfn happens in:
930 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
931 * - kvm_is_visible_gfn (mmu_check_roots)
932 */
933 kvm_arch_flush_shadow_memslot(kvm, slot);
934
935 /*
936 * We can re-use the old_memslots from above, the only difference
937 * from the currently installed memslots is the invalid flag. This
938 * will get overwritten by update_memslots anyway.
939 */
940 slots = old_memslots;
941 }
942
943 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
944 if (r)
945 goto out_slots;
946
947 /* actual memory is freed via old in kvm_free_memslot below */
948 if (change == KVM_MR_DELETE) {
949 new.dirty_bitmap = NULL;
950 memset(&new.arch, 0, sizeof(new.arch));
951 }
952
953 update_memslots(slots, &new);
954 old_memslots = install_new_memslots(kvm, as_id, slots);
955
956 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
957
958 kvm_free_memslot(kvm, &old, &new);
959 kvfree(old_memslots);
960
961 /*
962 * IOMMU mapping: New slots need to be mapped. Old slots need to be
963 * un-mapped and re-mapped if their base changes. Since base change
964 * unmapping is handled above with slot deletion, mapping alone is
965 * needed here. Anything else the iommu might care about for existing
966 * slots (size changes, userspace addr changes and read-only flag
967 * changes) is disallowed above, so any other attribute changes getting
968 * here can be skipped.
969 */
970 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
971 r = kvm_iommu_map_pages(kvm, &new);
972 return r;
973 }
974
975 return 0;
976
977 out_slots:
978 kvfree(slots);
979 out_free:
980 kvm_free_memslot(kvm, &new, &old);
981 out:
982 return r;
983 }
984 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
985
986 int kvm_set_memory_region(struct kvm *kvm,
987 const struct kvm_userspace_memory_region *mem)
988 {
989 int r;
990
991 mutex_lock(&kvm->slots_lock);
992 r = __kvm_set_memory_region(kvm, mem);
993 mutex_unlock(&kvm->slots_lock);
994 return r;
995 }
996 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
997
998 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
999 struct kvm_userspace_memory_region *mem)
1000 {
1001 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1002 return -EINVAL;
1003
1004 return kvm_set_memory_region(kvm, mem);
1005 }
1006
1007 int kvm_get_dirty_log(struct kvm *kvm,
1008 struct kvm_dirty_log *log, int *is_dirty)
1009 {
1010 struct kvm_memslots *slots;
1011 struct kvm_memory_slot *memslot;
1012 int r, i, as_id, id;
1013 unsigned long n;
1014 unsigned long any = 0;
1015
1016 r = -EINVAL;
1017 as_id = log->slot >> 16;
1018 id = (u16)log->slot;
1019 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1020 goto out;
1021
1022 slots = __kvm_memslots(kvm, as_id);
1023 memslot = id_to_memslot(slots, id);
1024 r = -ENOENT;
1025 if (!memslot->dirty_bitmap)
1026 goto out;
1027
1028 n = kvm_dirty_bitmap_bytes(memslot);
1029
1030 for (i = 0; !any && i < n/sizeof(long); ++i)
1031 any = memslot->dirty_bitmap[i];
1032
1033 r = -EFAULT;
1034 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1035 goto out;
1036
1037 if (any)
1038 *is_dirty = 1;
1039
1040 r = 0;
1041 out:
1042 return r;
1043 }
1044 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1045
1046 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1047 /**
1048 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1049 * are dirty write protect them for next write.
1050 * @kvm: pointer to kvm instance
1051 * @log: slot id and address to which we copy the log
1052 * @is_dirty: flag set if any page is dirty
1053 *
1054 * We need to keep it in mind that VCPU threads can write to the bitmap
1055 * concurrently. So, to avoid losing track of dirty pages we keep the
1056 * following order:
1057 *
1058 * 1. Take a snapshot of the bit and clear it if needed.
1059 * 2. Write protect the corresponding page.
1060 * 3. Copy the snapshot to the userspace.
1061 * 4. Upon return caller flushes TLB's if needed.
1062 *
1063 * Between 2 and 4, the guest may write to the page using the remaining TLB
1064 * entry. This is not a problem because the page is reported dirty using
1065 * the snapshot taken before and step 4 ensures that writes done after
1066 * exiting to userspace will be logged for the next call.
1067 *
1068 */
1069 int kvm_get_dirty_log_protect(struct kvm *kvm,
1070 struct kvm_dirty_log *log, bool *is_dirty)
1071 {
1072 struct kvm_memslots *slots;
1073 struct kvm_memory_slot *memslot;
1074 int r, i, as_id, id;
1075 unsigned long n;
1076 unsigned long *dirty_bitmap;
1077 unsigned long *dirty_bitmap_buffer;
1078
1079 r = -EINVAL;
1080 as_id = log->slot >> 16;
1081 id = (u16)log->slot;
1082 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1083 goto out;
1084
1085 slots = __kvm_memslots(kvm, as_id);
1086 memslot = id_to_memslot(slots, id);
1087
1088 dirty_bitmap = memslot->dirty_bitmap;
1089 r = -ENOENT;
1090 if (!dirty_bitmap)
1091 goto out;
1092
1093 n = kvm_dirty_bitmap_bytes(memslot);
1094
1095 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1096 memset(dirty_bitmap_buffer, 0, n);
1097
1098 spin_lock(&kvm->mmu_lock);
1099 *is_dirty = false;
1100 for (i = 0; i < n / sizeof(long); i++) {
1101 unsigned long mask;
1102 gfn_t offset;
1103
1104 if (!dirty_bitmap[i])
1105 continue;
1106
1107 *is_dirty = true;
1108
1109 mask = xchg(&dirty_bitmap[i], 0);
1110 dirty_bitmap_buffer[i] = mask;
1111
1112 if (mask) {
1113 offset = i * BITS_PER_LONG;
1114 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1115 offset, mask);
1116 }
1117 }
1118
1119 spin_unlock(&kvm->mmu_lock);
1120
1121 r = -EFAULT;
1122 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1123 goto out;
1124
1125 r = 0;
1126 out:
1127 return r;
1128 }
1129 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1130 #endif
1131
1132 bool kvm_largepages_enabled(void)
1133 {
1134 return largepages_enabled;
1135 }
1136
1137 void kvm_disable_largepages(void)
1138 {
1139 largepages_enabled = false;
1140 }
1141 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1142
1143 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1144 {
1145 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1146 }
1147 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1148
1149 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1150 {
1151 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1152 }
1153
1154 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1155 {
1156 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1157
1158 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1159 memslot->flags & KVM_MEMSLOT_INVALID)
1160 return false;
1161
1162 return true;
1163 }
1164 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1165
1166 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1167 {
1168 struct vm_area_struct *vma;
1169 unsigned long addr, size;
1170
1171 size = PAGE_SIZE;
1172
1173 addr = gfn_to_hva(kvm, gfn);
1174 if (kvm_is_error_hva(addr))
1175 return PAGE_SIZE;
1176
1177 down_read(&current->mm->mmap_sem);
1178 vma = find_vma(current->mm, addr);
1179 if (!vma)
1180 goto out;
1181
1182 size = vma_kernel_pagesize(vma);
1183
1184 out:
1185 up_read(&current->mm->mmap_sem);
1186
1187 return size;
1188 }
1189
1190 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1191 {
1192 return slot->flags & KVM_MEM_READONLY;
1193 }
1194
1195 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1196 gfn_t *nr_pages, bool write)
1197 {
1198 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1199 return KVM_HVA_ERR_BAD;
1200
1201 if (memslot_is_readonly(slot) && write)
1202 return KVM_HVA_ERR_RO_BAD;
1203
1204 if (nr_pages)
1205 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1206
1207 return __gfn_to_hva_memslot(slot, gfn);
1208 }
1209
1210 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1211 gfn_t *nr_pages)
1212 {
1213 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1214 }
1215
1216 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1217 gfn_t gfn)
1218 {
1219 return gfn_to_hva_many(slot, gfn, NULL);
1220 }
1221 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1222
1223 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1224 {
1225 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1226 }
1227 EXPORT_SYMBOL_GPL(gfn_to_hva);
1228
1229 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1230 {
1231 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1232 }
1233 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1234
1235 /*
1236 * If writable is set to false, the hva returned by this function is only
1237 * allowed to be read.
1238 */
1239 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1240 gfn_t gfn, bool *writable)
1241 {
1242 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1243
1244 if (!kvm_is_error_hva(hva) && writable)
1245 *writable = !memslot_is_readonly(slot);
1246
1247 return hva;
1248 }
1249
1250 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1251 {
1252 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1253
1254 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1255 }
1256
1257 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1258 {
1259 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1260
1261 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1262 }
1263
1264 static int get_user_page_nowait(unsigned long start, int write,
1265 struct page **page)
1266 {
1267 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1268
1269 if (write)
1270 flags |= FOLL_WRITE;
1271
1272 return __get_user_pages(current, current->mm, start, 1, flags, page,
1273 NULL, NULL);
1274 }
1275
1276 static inline int check_user_page_hwpoison(unsigned long addr)
1277 {
1278 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1279
1280 rc = __get_user_pages(current, current->mm, addr, 1,
1281 flags, NULL, NULL, NULL);
1282 return rc == -EHWPOISON;
1283 }
1284
1285 /*
1286 * The atomic path to get the writable pfn which will be stored in @pfn,
1287 * true indicates success, otherwise false is returned.
1288 */
1289 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1290 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1291 {
1292 struct page *page[1];
1293 int npages;
1294
1295 if (!(async || atomic))
1296 return false;
1297
1298 /*
1299 * Fast pin a writable pfn only if it is a write fault request
1300 * or the caller allows to map a writable pfn for a read fault
1301 * request.
1302 */
1303 if (!(write_fault || writable))
1304 return false;
1305
1306 npages = __get_user_pages_fast(addr, 1, 1, page);
1307 if (npages == 1) {
1308 *pfn = page_to_pfn(page[0]);
1309
1310 if (writable)
1311 *writable = true;
1312 return true;
1313 }
1314
1315 return false;
1316 }
1317
1318 /*
1319 * The slow path to get the pfn of the specified host virtual address,
1320 * 1 indicates success, -errno is returned if error is detected.
1321 */
1322 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1323 bool *writable, kvm_pfn_t *pfn)
1324 {
1325 struct page *page[1];
1326 int npages = 0;
1327
1328 might_sleep();
1329
1330 if (writable)
1331 *writable = write_fault;
1332
1333 if (async) {
1334 down_read(&current->mm->mmap_sem);
1335 npages = get_user_page_nowait(addr, write_fault, page);
1336 up_read(&current->mm->mmap_sem);
1337 } else
1338 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1339 write_fault, 0, page,
1340 FOLL_TOUCH|FOLL_HWPOISON);
1341 if (npages != 1)
1342 return npages;
1343
1344 /* map read fault as writable if possible */
1345 if (unlikely(!write_fault) && writable) {
1346 struct page *wpage[1];
1347
1348 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1349 if (npages == 1) {
1350 *writable = true;
1351 put_page(page[0]);
1352 page[0] = wpage[0];
1353 }
1354
1355 npages = 1;
1356 }
1357 *pfn = page_to_pfn(page[0]);
1358 return npages;
1359 }
1360
1361 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1362 {
1363 if (unlikely(!(vma->vm_flags & VM_READ)))
1364 return false;
1365
1366 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1367 return false;
1368
1369 return true;
1370 }
1371
1372 /*
1373 * Pin guest page in memory and return its pfn.
1374 * @addr: host virtual address which maps memory to the guest
1375 * @atomic: whether this function can sleep
1376 * @async: whether this function need to wait IO complete if the
1377 * host page is not in the memory
1378 * @write_fault: whether we should get a writable host page
1379 * @writable: whether it allows to map a writable host page for !@write_fault
1380 *
1381 * The function will map a writable host page for these two cases:
1382 * 1): @write_fault = true
1383 * 2): @write_fault = false && @writable, @writable will tell the caller
1384 * whether the mapping is writable.
1385 */
1386 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1387 bool write_fault, bool *writable)
1388 {
1389 struct vm_area_struct *vma;
1390 kvm_pfn_t pfn = 0;
1391 int npages;
1392
1393 /* we can do it either atomically or asynchronously, not both */
1394 BUG_ON(atomic && async);
1395
1396 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1397 return pfn;
1398
1399 if (atomic)
1400 return KVM_PFN_ERR_FAULT;
1401
1402 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1403 if (npages == 1)
1404 return pfn;
1405
1406 down_read(&current->mm->mmap_sem);
1407 if (npages == -EHWPOISON ||
1408 (!async && check_user_page_hwpoison(addr))) {
1409 pfn = KVM_PFN_ERR_HWPOISON;
1410 goto exit;
1411 }
1412
1413 vma = find_vma_intersection(current->mm, addr, addr + 1);
1414
1415 if (vma == NULL)
1416 pfn = KVM_PFN_ERR_FAULT;
1417 else if ((vma->vm_flags & VM_PFNMAP)) {
1418 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1419 vma->vm_pgoff;
1420 BUG_ON(!kvm_is_reserved_pfn(pfn));
1421 } else {
1422 if (async && vma_is_valid(vma, write_fault))
1423 *async = true;
1424 pfn = KVM_PFN_ERR_FAULT;
1425 }
1426 exit:
1427 up_read(&current->mm->mmap_sem);
1428 return pfn;
1429 }
1430
1431 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1432 bool atomic, bool *async, bool write_fault,
1433 bool *writable)
1434 {
1435 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1436
1437 if (addr == KVM_HVA_ERR_RO_BAD) {
1438 if (writable)
1439 *writable = false;
1440 return KVM_PFN_ERR_RO_FAULT;
1441 }
1442
1443 if (kvm_is_error_hva(addr)) {
1444 if (writable)
1445 *writable = false;
1446 return KVM_PFN_NOSLOT;
1447 }
1448
1449 /* Do not map writable pfn in the readonly memslot. */
1450 if (writable && memslot_is_readonly(slot)) {
1451 *writable = false;
1452 writable = NULL;
1453 }
1454
1455 return hva_to_pfn(addr, atomic, async, write_fault,
1456 writable);
1457 }
1458 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1459
1460 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1461 bool *writable)
1462 {
1463 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1464 write_fault, writable);
1465 }
1466 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1467
1468 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1469 {
1470 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1471 }
1472 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1473
1474 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1475 {
1476 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1477 }
1478 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1479
1480 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1481 {
1482 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1483 }
1484 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1485
1486 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1487 {
1488 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1489 }
1490 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1491
1492 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1493 {
1494 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1495 }
1496 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1497
1498 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1499 {
1500 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1501 }
1502 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1503
1504 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1505 struct page **pages, int nr_pages)
1506 {
1507 unsigned long addr;
1508 gfn_t entry;
1509
1510 addr = gfn_to_hva_many(slot, gfn, &entry);
1511 if (kvm_is_error_hva(addr))
1512 return -1;
1513
1514 if (entry < nr_pages)
1515 return 0;
1516
1517 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1518 }
1519 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1520
1521 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1522 {
1523 if (is_error_noslot_pfn(pfn))
1524 return KVM_ERR_PTR_BAD_PAGE;
1525
1526 if (kvm_is_reserved_pfn(pfn)) {
1527 WARN_ON(1);
1528 return KVM_ERR_PTR_BAD_PAGE;
1529 }
1530
1531 return pfn_to_page(pfn);
1532 }
1533
1534 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1535 {
1536 kvm_pfn_t pfn;
1537
1538 pfn = gfn_to_pfn(kvm, gfn);
1539
1540 return kvm_pfn_to_page(pfn);
1541 }
1542 EXPORT_SYMBOL_GPL(gfn_to_page);
1543
1544 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1545 {
1546 kvm_pfn_t pfn;
1547
1548 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1549
1550 return kvm_pfn_to_page(pfn);
1551 }
1552 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1553
1554 void kvm_release_page_clean(struct page *page)
1555 {
1556 WARN_ON(is_error_page(page));
1557
1558 kvm_release_pfn_clean(page_to_pfn(page));
1559 }
1560 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1561
1562 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1563 {
1564 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1565 put_page(pfn_to_page(pfn));
1566 }
1567 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1568
1569 void kvm_release_page_dirty(struct page *page)
1570 {
1571 WARN_ON(is_error_page(page));
1572
1573 kvm_release_pfn_dirty(page_to_pfn(page));
1574 }
1575 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1576
1577 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1578 {
1579 kvm_set_pfn_dirty(pfn);
1580 kvm_release_pfn_clean(pfn);
1581 }
1582
1583 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1584 {
1585 if (!kvm_is_reserved_pfn(pfn)) {
1586 struct page *page = pfn_to_page(pfn);
1587
1588 if (!PageReserved(page))
1589 SetPageDirty(page);
1590 }
1591 }
1592 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1593
1594 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1595 {
1596 if (!kvm_is_reserved_pfn(pfn))
1597 mark_page_accessed(pfn_to_page(pfn));
1598 }
1599 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1600
1601 void kvm_get_pfn(kvm_pfn_t pfn)
1602 {
1603 if (!kvm_is_reserved_pfn(pfn))
1604 get_page(pfn_to_page(pfn));
1605 }
1606 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1607
1608 static int next_segment(unsigned long len, int offset)
1609 {
1610 if (len > PAGE_SIZE - offset)
1611 return PAGE_SIZE - offset;
1612 else
1613 return len;
1614 }
1615
1616 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1617 void *data, int offset, int len)
1618 {
1619 int r;
1620 unsigned long addr;
1621
1622 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1623 if (kvm_is_error_hva(addr))
1624 return -EFAULT;
1625 r = __copy_from_user(data, (void __user *)addr + offset, len);
1626 if (r)
1627 return -EFAULT;
1628 return 0;
1629 }
1630
1631 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1632 int len)
1633 {
1634 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1635
1636 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1637 }
1638 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1639
1640 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1641 int offset, int len)
1642 {
1643 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1644
1645 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1646 }
1647 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1648
1649 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1650 {
1651 gfn_t gfn = gpa >> PAGE_SHIFT;
1652 int seg;
1653 int offset = offset_in_page(gpa);
1654 int ret;
1655
1656 while ((seg = next_segment(len, offset)) != 0) {
1657 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1658 if (ret < 0)
1659 return ret;
1660 offset = 0;
1661 len -= seg;
1662 data += seg;
1663 ++gfn;
1664 }
1665 return 0;
1666 }
1667 EXPORT_SYMBOL_GPL(kvm_read_guest);
1668
1669 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1670 {
1671 gfn_t gfn = gpa >> PAGE_SHIFT;
1672 int seg;
1673 int offset = offset_in_page(gpa);
1674 int ret;
1675
1676 while ((seg = next_segment(len, offset)) != 0) {
1677 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1678 if (ret < 0)
1679 return ret;
1680 offset = 0;
1681 len -= seg;
1682 data += seg;
1683 ++gfn;
1684 }
1685 return 0;
1686 }
1687 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1688
1689 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1690 void *data, int offset, unsigned long len)
1691 {
1692 int r;
1693 unsigned long addr;
1694
1695 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1696 if (kvm_is_error_hva(addr))
1697 return -EFAULT;
1698 pagefault_disable();
1699 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1700 pagefault_enable();
1701 if (r)
1702 return -EFAULT;
1703 return 0;
1704 }
1705
1706 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1707 unsigned long len)
1708 {
1709 gfn_t gfn = gpa >> PAGE_SHIFT;
1710 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1711 int offset = offset_in_page(gpa);
1712
1713 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1714 }
1715 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1716
1717 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1718 void *data, unsigned long len)
1719 {
1720 gfn_t gfn = gpa >> PAGE_SHIFT;
1721 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1722 int offset = offset_in_page(gpa);
1723
1724 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1725 }
1726 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1727
1728 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1729 const void *data, int offset, int len)
1730 {
1731 int r;
1732 unsigned long addr;
1733
1734 addr = gfn_to_hva_memslot(memslot, gfn);
1735 if (kvm_is_error_hva(addr))
1736 return -EFAULT;
1737 r = __copy_to_user((void __user *)addr + offset, data, len);
1738 if (r)
1739 return -EFAULT;
1740 mark_page_dirty_in_slot(memslot, gfn);
1741 return 0;
1742 }
1743
1744 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1745 const void *data, int offset, int len)
1746 {
1747 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1748
1749 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1750 }
1751 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1752
1753 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1754 const void *data, int offset, int len)
1755 {
1756 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1757
1758 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1759 }
1760 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1761
1762 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1763 unsigned long len)
1764 {
1765 gfn_t gfn = gpa >> PAGE_SHIFT;
1766 int seg;
1767 int offset = offset_in_page(gpa);
1768 int ret;
1769
1770 while ((seg = next_segment(len, offset)) != 0) {
1771 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1772 if (ret < 0)
1773 return ret;
1774 offset = 0;
1775 len -= seg;
1776 data += seg;
1777 ++gfn;
1778 }
1779 return 0;
1780 }
1781 EXPORT_SYMBOL_GPL(kvm_write_guest);
1782
1783 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1784 unsigned long len)
1785 {
1786 gfn_t gfn = gpa >> PAGE_SHIFT;
1787 int seg;
1788 int offset = offset_in_page(gpa);
1789 int ret;
1790
1791 while ((seg = next_segment(len, offset)) != 0) {
1792 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1793 if (ret < 0)
1794 return ret;
1795 offset = 0;
1796 len -= seg;
1797 data += seg;
1798 ++gfn;
1799 }
1800 return 0;
1801 }
1802 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1803
1804 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1805 gpa_t gpa, unsigned long len)
1806 {
1807 struct kvm_memslots *slots = kvm_memslots(kvm);
1808 int offset = offset_in_page(gpa);
1809 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1810 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1811 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1812 gfn_t nr_pages_avail;
1813
1814 ghc->gpa = gpa;
1815 ghc->generation = slots->generation;
1816 ghc->len = len;
1817 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1818 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1819 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1820 ghc->hva += offset;
1821 } else {
1822 /*
1823 * If the requested region crosses two memslots, we still
1824 * verify that the entire region is valid here.
1825 */
1826 while (start_gfn <= end_gfn) {
1827 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1828 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1829 &nr_pages_avail);
1830 if (kvm_is_error_hva(ghc->hva))
1831 return -EFAULT;
1832 start_gfn += nr_pages_avail;
1833 }
1834 /* Use the slow path for cross page reads and writes. */
1835 ghc->memslot = NULL;
1836 }
1837 return 0;
1838 }
1839 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1840
1841 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1842 void *data, unsigned long len)
1843 {
1844 struct kvm_memslots *slots = kvm_memslots(kvm);
1845 int r;
1846
1847 BUG_ON(len > ghc->len);
1848
1849 if (slots->generation != ghc->generation)
1850 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1851
1852 if (unlikely(!ghc->memslot))
1853 return kvm_write_guest(kvm, ghc->gpa, data, len);
1854
1855 if (kvm_is_error_hva(ghc->hva))
1856 return -EFAULT;
1857
1858 r = __copy_to_user((void __user *)ghc->hva, data, len);
1859 if (r)
1860 return -EFAULT;
1861 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1862
1863 return 0;
1864 }
1865 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1866
1867 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1868 void *data, unsigned long len)
1869 {
1870 struct kvm_memslots *slots = kvm_memslots(kvm);
1871 int r;
1872
1873 BUG_ON(len > ghc->len);
1874
1875 if (slots->generation != ghc->generation)
1876 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1877
1878 if (unlikely(!ghc->memslot))
1879 return kvm_read_guest(kvm, ghc->gpa, data, len);
1880
1881 if (kvm_is_error_hva(ghc->hva))
1882 return -EFAULT;
1883
1884 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1885 if (r)
1886 return -EFAULT;
1887
1888 return 0;
1889 }
1890 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1891
1892 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1893 {
1894 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1895
1896 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1897 }
1898 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1899
1900 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1901 {
1902 gfn_t gfn = gpa >> PAGE_SHIFT;
1903 int seg;
1904 int offset = offset_in_page(gpa);
1905 int ret;
1906
1907 while ((seg = next_segment(len, offset)) != 0) {
1908 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1909 if (ret < 0)
1910 return ret;
1911 offset = 0;
1912 len -= seg;
1913 ++gfn;
1914 }
1915 return 0;
1916 }
1917 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1918
1919 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1920 gfn_t gfn)
1921 {
1922 if (memslot && memslot->dirty_bitmap) {
1923 unsigned long rel_gfn = gfn - memslot->base_gfn;
1924
1925 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1926 }
1927 }
1928
1929 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1930 {
1931 struct kvm_memory_slot *memslot;
1932
1933 memslot = gfn_to_memslot(kvm, gfn);
1934 mark_page_dirty_in_slot(memslot, gfn);
1935 }
1936 EXPORT_SYMBOL_GPL(mark_page_dirty);
1937
1938 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1939 {
1940 struct kvm_memory_slot *memslot;
1941
1942 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1943 mark_page_dirty_in_slot(memslot, gfn);
1944 }
1945 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1946
1947 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
1948 {
1949 unsigned int old, val, grow;
1950
1951 old = val = vcpu->halt_poll_ns;
1952 grow = READ_ONCE(halt_poll_ns_grow);
1953 /* 10us base */
1954 if (val == 0 && grow)
1955 val = 10000;
1956 else
1957 val *= grow;
1958
1959 if (val > halt_poll_ns)
1960 val = halt_poll_ns;
1961
1962 vcpu->halt_poll_ns = val;
1963 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
1964 }
1965
1966 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
1967 {
1968 unsigned int old, val, shrink;
1969
1970 old = val = vcpu->halt_poll_ns;
1971 shrink = READ_ONCE(halt_poll_ns_shrink);
1972 if (shrink == 0)
1973 val = 0;
1974 else
1975 val /= shrink;
1976
1977 vcpu->halt_poll_ns = val;
1978 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
1979 }
1980
1981 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1982 {
1983 if (kvm_arch_vcpu_runnable(vcpu)) {
1984 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1985 return -EINTR;
1986 }
1987 if (kvm_cpu_has_pending_timer(vcpu))
1988 return -EINTR;
1989 if (signal_pending(current))
1990 return -EINTR;
1991
1992 return 0;
1993 }
1994
1995 /*
1996 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1997 */
1998 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1999 {
2000 ktime_t start, cur;
2001 DECLARE_SWAITQUEUE(wait);
2002 bool waited = false;
2003 u64 block_ns;
2004
2005 start = cur = ktime_get();
2006 if (vcpu->halt_poll_ns) {
2007 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2008
2009 ++vcpu->stat.halt_attempted_poll;
2010 do {
2011 /*
2012 * This sets KVM_REQ_UNHALT if an interrupt
2013 * arrives.
2014 */
2015 if (kvm_vcpu_check_block(vcpu) < 0) {
2016 ++vcpu->stat.halt_successful_poll;
2017 goto out;
2018 }
2019 cur = ktime_get();
2020 } while (single_task_running() && ktime_before(cur, stop));
2021 }
2022
2023 kvm_arch_vcpu_blocking(vcpu);
2024
2025 for (;;) {
2026 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2027
2028 if (kvm_vcpu_check_block(vcpu) < 0)
2029 break;
2030
2031 waited = true;
2032 schedule();
2033 }
2034
2035 finish_swait(&vcpu->wq, &wait);
2036 cur = ktime_get();
2037
2038 kvm_arch_vcpu_unblocking(vcpu);
2039 out:
2040 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2041
2042 if (halt_poll_ns) {
2043 if (block_ns <= vcpu->halt_poll_ns)
2044 ;
2045 /* we had a long block, shrink polling */
2046 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2047 shrink_halt_poll_ns(vcpu);
2048 /* we had a short halt and our poll time is too small */
2049 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2050 block_ns < halt_poll_ns)
2051 grow_halt_poll_ns(vcpu);
2052 } else
2053 vcpu->halt_poll_ns = 0;
2054
2055 trace_kvm_vcpu_wakeup(block_ns, waited);
2056 }
2057 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2058
2059 #ifndef CONFIG_S390
2060 /*
2061 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2062 */
2063 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2064 {
2065 int me;
2066 int cpu = vcpu->cpu;
2067 struct swait_queue_head *wqp;
2068
2069 wqp = kvm_arch_vcpu_wq(vcpu);
2070 if (swait_active(wqp)) {
2071 swake_up(wqp);
2072 ++vcpu->stat.halt_wakeup;
2073 }
2074
2075 me = get_cpu();
2076 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2077 if (kvm_arch_vcpu_should_kick(vcpu))
2078 smp_send_reschedule(cpu);
2079 put_cpu();
2080 }
2081 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2082 #endif /* !CONFIG_S390 */
2083
2084 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2085 {
2086 struct pid *pid;
2087 struct task_struct *task = NULL;
2088 int ret = 0;
2089
2090 rcu_read_lock();
2091 pid = rcu_dereference(target->pid);
2092 if (pid)
2093 task = get_pid_task(pid, PIDTYPE_PID);
2094 rcu_read_unlock();
2095 if (!task)
2096 return ret;
2097 ret = yield_to(task, 1);
2098 put_task_struct(task);
2099
2100 return ret;
2101 }
2102 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2103
2104 /*
2105 * Helper that checks whether a VCPU is eligible for directed yield.
2106 * Most eligible candidate to yield is decided by following heuristics:
2107 *
2108 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2109 * (preempted lock holder), indicated by @in_spin_loop.
2110 * Set at the beiginning and cleared at the end of interception/PLE handler.
2111 *
2112 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2113 * chance last time (mostly it has become eligible now since we have probably
2114 * yielded to lockholder in last iteration. This is done by toggling
2115 * @dy_eligible each time a VCPU checked for eligibility.)
2116 *
2117 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2118 * to preempted lock-holder could result in wrong VCPU selection and CPU
2119 * burning. Giving priority for a potential lock-holder increases lock
2120 * progress.
2121 *
2122 * Since algorithm is based on heuristics, accessing another VCPU data without
2123 * locking does not harm. It may result in trying to yield to same VCPU, fail
2124 * and continue with next VCPU and so on.
2125 */
2126 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2127 {
2128 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2129 bool eligible;
2130
2131 eligible = !vcpu->spin_loop.in_spin_loop ||
2132 vcpu->spin_loop.dy_eligible;
2133
2134 if (vcpu->spin_loop.in_spin_loop)
2135 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2136
2137 return eligible;
2138 #else
2139 return true;
2140 #endif
2141 }
2142
2143 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2144 {
2145 struct kvm *kvm = me->kvm;
2146 struct kvm_vcpu *vcpu;
2147 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2148 int yielded = 0;
2149 int try = 3;
2150 int pass;
2151 int i;
2152
2153 kvm_vcpu_set_in_spin_loop(me, true);
2154 /*
2155 * We boost the priority of a VCPU that is runnable but not
2156 * currently running, because it got preempted by something
2157 * else and called schedule in __vcpu_run. Hopefully that
2158 * VCPU is holding the lock that we need and will release it.
2159 * We approximate round-robin by starting at the last boosted VCPU.
2160 */
2161 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2162 kvm_for_each_vcpu(i, vcpu, kvm) {
2163 if (!pass && i <= last_boosted_vcpu) {
2164 i = last_boosted_vcpu;
2165 continue;
2166 } else if (pass && i > last_boosted_vcpu)
2167 break;
2168 if (!ACCESS_ONCE(vcpu->preempted))
2169 continue;
2170 if (vcpu == me)
2171 continue;
2172 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2173 continue;
2174 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2175 continue;
2176
2177 yielded = kvm_vcpu_yield_to(vcpu);
2178 if (yielded > 0) {
2179 kvm->last_boosted_vcpu = i;
2180 break;
2181 } else if (yielded < 0) {
2182 try--;
2183 if (!try)
2184 break;
2185 }
2186 }
2187 }
2188 kvm_vcpu_set_in_spin_loop(me, false);
2189
2190 /* Ensure vcpu is not eligible during next spinloop */
2191 kvm_vcpu_set_dy_eligible(me, false);
2192 }
2193 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2194
2195 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2196 {
2197 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2198 struct page *page;
2199
2200 if (vmf->pgoff == 0)
2201 page = virt_to_page(vcpu->run);
2202 #ifdef CONFIG_X86
2203 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2204 page = virt_to_page(vcpu->arch.pio_data);
2205 #endif
2206 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2207 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2208 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2209 #endif
2210 else
2211 return kvm_arch_vcpu_fault(vcpu, vmf);
2212 get_page(page);
2213 vmf->page = page;
2214 return 0;
2215 }
2216
2217 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2218 .fault = kvm_vcpu_fault,
2219 };
2220
2221 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2222 {
2223 vma->vm_ops = &kvm_vcpu_vm_ops;
2224 return 0;
2225 }
2226
2227 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2228 {
2229 struct kvm_vcpu *vcpu = filp->private_data;
2230
2231 kvm_put_kvm(vcpu->kvm);
2232 return 0;
2233 }
2234
2235 static struct file_operations kvm_vcpu_fops = {
2236 .release = kvm_vcpu_release,
2237 .unlocked_ioctl = kvm_vcpu_ioctl,
2238 #ifdef CONFIG_KVM_COMPAT
2239 .compat_ioctl = kvm_vcpu_compat_ioctl,
2240 #endif
2241 .mmap = kvm_vcpu_mmap,
2242 .llseek = noop_llseek,
2243 };
2244
2245 /*
2246 * Allocates an inode for the vcpu.
2247 */
2248 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2249 {
2250 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2251 }
2252
2253 /*
2254 * Creates some virtual cpus. Good luck creating more than one.
2255 */
2256 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2257 {
2258 int r;
2259 struct kvm_vcpu *vcpu;
2260
2261 if (id >= KVM_MAX_VCPUS)
2262 return -EINVAL;
2263
2264 vcpu = kvm_arch_vcpu_create(kvm, id);
2265 if (IS_ERR(vcpu))
2266 return PTR_ERR(vcpu);
2267
2268 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2269
2270 r = kvm_arch_vcpu_setup(vcpu);
2271 if (r)
2272 goto vcpu_destroy;
2273
2274 mutex_lock(&kvm->lock);
2275 if (!kvm_vcpu_compatible(vcpu)) {
2276 r = -EINVAL;
2277 goto unlock_vcpu_destroy;
2278 }
2279 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2280 r = -EINVAL;
2281 goto unlock_vcpu_destroy;
2282 }
2283 if (kvm_get_vcpu_by_id(kvm, id)) {
2284 r = -EEXIST;
2285 goto unlock_vcpu_destroy;
2286 }
2287
2288 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2289
2290 /* Now it's all set up, let userspace reach it */
2291 kvm_get_kvm(kvm);
2292 r = create_vcpu_fd(vcpu);
2293 if (r < 0) {
2294 kvm_put_kvm(kvm);
2295 goto unlock_vcpu_destroy;
2296 }
2297
2298 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2299
2300 /*
2301 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2302 * before kvm->online_vcpu's incremented value.
2303 */
2304 smp_wmb();
2305 atomic_inc(&kvm->online_vcpus);
2306
2307 mutex_unlock(&kvm->lock);
2308 kvm_arch_vcpu_postcreate(vcpu);
2309 return r;
2310
2311 unlock_vcpu_destroy:
2312 mutex_unlock(&kvm->lock);
2313 vcpu_destroy:
2314 kvm_arch_vcpu_destroy(vcpu);
2315 return r;
2316 }
2317
2318 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2319 {
2320 if (sigset) {
2321 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2322 vcpu->sigset_active = 1;
2323 vcpu->sigset = *sigset;
2324 } else
2325 vcpu->sigset_active = 0;
2326 return 0;
2327 }
2328
2329 static long kvm_vcpu_ioctl(struct file *filp,
2330 unsigned int ioctl, unsigned long arg)
2331 {
2332 struct kvm_vcpu *vcpu = filp->private_data;
2333 void __user *argp = (void __user *)arg;
2334 int r;
2335 struct kvm_fpu *fpu = NULL;
2336 struct kvm_sregs *kvm_sregs = NULL;
2337
2338 if (vcpu->kvm->mm != current->mm)
2339 return -EIO;
2340
2341 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2342 return -EINVAL;
2343
2344 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2345 /*
2346 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2347 * so vcpu_load() would break it.
2348 */
2349 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2350 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2351 #endif
2352
2353
2354 r = vcpu_load(vcpu);
2355 if (r)
2356 return r;
2357 switch (ioctl) {
2358 case KVM_RUN:
2359 r = -EINVAL;
2360 if (arg)
2361 goto out;
2362 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2363 /* The thread running this VCPU changed. */
2364 struct pid *oldpid = vcpu->pid;
2365 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2366
2367 rcu_assign_pointer(vcpu->pid, newpid);
2368 if (oldpid)
2369 synchronize_rcu();
2370 put_pid(oldpid);
2371 }
2372 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2373 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2374 break;
2375 case KVM_GET_REGS: {
2376 struct kvm_regs *kvm_regs;
2377
2378 r = -ENOMEM;
2379 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2380 if (!kvm_regs)
2381 goto out;
2382 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2383 if (r)
2384 goto out_free1;
2385 r = -EFAULT;
2386 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2387 goto out_free1;
2388 r = 0;
2389 out_free1:
2390 kfree(kvm_regs);
2391 break;
2392 }
2393 case KVM_SET_REGS: {
2394 struct kvm_regs *kvm_regs;
2395
2396 r = -ENOMEM;
2397 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2398 if (IS_ERR(kvm_regs)) {
2399 r = PTR_ERR(kvm_regs);
2400 goto out;
2401 }
2402 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2403 kfree(kvm_regs);
2404 break;
2405 }
2406 case KVM_GET_SREGS: {
2407 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2408 r = -ENOMEM;
2409 if (!kvm_sregs)
2410 goto out;
2411 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2412 if (r)
2413 goto out;
2414 r = -EFAULT;
2415 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2416 goto out;
2417 r = 0;
2418 break;
2419 }
2420 case KVM_SET_SREGS: {
2421 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2422 if (IS_ERR(kvm_sregs)) {
2423 r = PTR_ERR(kvm_sregs);
2424 kvm_sregs = NULL;
2425 goto out;
2426 }
2427 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2428 break;
2429 }
2430 case KVM_GET_MP_STATE: {
2431 struct kvm_mp_state mp_state;
2432
2433 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2434 if (r)
2435 goto out;
2436 r = -EFAULT;
2437 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2438 goto out;
2439 r = 0;
2440 break;
2441 }
2442 case KVM_SET_MP_STATE: {
2443 struct kvm_mp_state mp_state;
2444
2445 r = -EFAULT;
2446 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2447 goto out;
2448 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2449 break;
2450 }
2451 case KVM_TRANSLATE: {
2452 struct kvm_translation tr;
2453
2454 r = -EFAULT;
2455 if (copy_from_user(&tr, argp, sizeof(tr)))
2456 goto out;
2457 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2458 if (r)
2459 goto out;
2460 r = -EFAULT;
2461 if (copy_to_user(argp, &tr, sizeof(tr)))
2462 goto out;
2463 r = 0;
2464 break;
2465 }
2466 case KVM_SET_GUEST_DEBUG: {
2467 struct kvm_guest_debug dbg;
2468
2469 r = -EFAULT;
2470 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2471 goto out;
2472 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2473 break;
2474 }
2475 case KVM_SET_SIGNAL_MASK: {
2476 struct kvm_signal_mask __user *sigmask_arg = argp;
2477 struct kvm_signal_mask kvm_sigmask;
2478 sigset_t sigset, *p;
2479
2480 p = NULL;
2481 if (argp) {
2482 r = -EFAULT;
2483 if (copy_from_user(&kvm_sigmask, argp,
2484 sizeof(kvm_sigmask)))
2485 goto out;
2486 r = -EINVAL;
2487 if (kvm_sigmask.len != sizeof(sigset))
2488 goto out;
2489 r = -EFAULT;
2490 if (copy_from_user(&sigset, sigmask_arg->sigset,
2491 sizeof(sigset)))
2492 goto out;
2493 p = &sigset;
2494 }
2495 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2496 break;
2497 }
2498 case KVM_GET_FPU: {
2499 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2500 r = -ENOMEM;
2501 if (!fpu)
2502 goto out;
2503 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2504 if (r)
2505 goto out;
2506 r = -EFAULT;
2507 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2508 goto out;
2509 r = 0;
2510 break;
2511 }
2512 case KVM_SET_FPU: {
2513 fpu = memdup_user(argp, sizeof(*fpu));
2514 if (IS_ERR(fpu)) {
2515 r = PTR_ERR(fpu);
2516 fpu = NULL;
2517 goto out;
2518 }
2519 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2520 break;
2521 }
2522 default:
2523 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2524 }
2525 out:
2526 vcpu_put(vcpu);
2527 kfree(fpu);
2528 kfree(kvm_sregs);
2529 return r;
2530 }
2531
2532 #ifdef CONFIG_KVM_COMPAT
2533 static long kvm_vcpu_compat_ioctl(struct file *filp,
2534 unsigned int ioctl, unsigned long arg)
2535 {
2536 struct kvm_vcpu *vcpu = filp->private_data;
2537 void __user *argp = compat_ptr(arg);
2538 int r;
2539
2540 if (vcpu->kvm->mm != current->mm)
2541 return -EIO;
2542
2543 switch (ioctl) {
2544 case KVM_SET_SIGNAL_MASK: {
2545 struct kvm_signal_mask __user *sigmask_arg = argp;
2546 struct kvm_signal_mask kvm_sigmask;
2547 compat_sigset_t csigset;
2548 sigset_t sigset;
2549
2550 if (argp) {
2551 r = -EFAULT;
2552 if (copy_from_user(&kvm_sigmask, argp,
2553 sizeof(kvm_sigmask)))
2554 goto out;
2555 r = -EINVAL;
2556 if (kvm_sigmask.len != sizeof(csigset))
2557 goto out;
2558 r = -EFAULT;
2559 if (copy_from_user(&csigset, sigmask_arg->sigset,
2560 sizeof(csigset)))
2561 goto out;
2562 sigset_from_compat(&sigset, &csigset);
2563 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2564 } else
2565 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2566 break;
2567 }
2568 default:
2569 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2570 }
2571
2572 out:
2573 return r;
2574 }
2575 #endif
2576
2577 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2578 int (*accessor)(struct kvm_device *dev,
2579 struct kvm_device_attr *attr),
2580 unsigned long arg)
2581 {
2582 struct kvm_device_attr attr;
2583
2584 if (!accessor)
2585 return -EPERM;
2586
2587 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2588 return -EFAULT;
2589
2590 return accessor(dev, &attr);
2591 }
2592
2593 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2594 unsigned long arg)
2595 {
2596 struct kvm_device *dev = filp->private_data;
2597
2598 switch (ioctl) {
2599 case KVM_SET_DEVICE_ATTR:
2600 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2601 case KVM_GET_DEVICE_ATTR:
2602 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2603 case KVM_HAS_DEVICE_ATTR:
2604 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2605 default:
2606 if (dev->ops->ioctl)
2607 return dev->ops->ioctl(dev, ioctl, arg);
2608
2609 return -ENOTTY;
2610 }
2611 }
2612
2613 static int kvm_device_release(struct inode *inode, struct file *filp)
2614 {
2615 struct kvm_device *dev = filp->private_data;
2616 struct kvm *kvm = dev->kvm;
2617
2618 kvm_put_kvm(kvm);
2619 return 0;
2620 }
2621
2622 static const struct file_operations kvm_device_fops = {
2623 .unlocked_ioctl = kvm_device_ioctl,
2624 #ifdef CONFIG_KVM_COMPAT
2625 .compat_ioctl = kvm_device_ioctl,
2626 #endif
2627 .release = kvm_device_release,
2628 };
2629
2630 struct kvm_device *kvm_device_from_filp(struct file *filp)
2631 {
2632 if (filp->f_op != &kvm_device_fops)
2633 return NULL;
2634
2635 return filp->private_data;
2636 }
2637
2638 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2639 #ifdef CONFIG_KVM_MPIC
2640 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2641 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2642 #endif
2643
2644 #ifdef CONFIG_KVM_XICS
2645 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2646 #endif
2647 };
2648
2649 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2650 {
2651 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2652 return -ENOSPC;
2653
2654 if (kvm_device_ops_table[type] != NULL)
2655 return -EEXIST;
2656
2657 kvm_device_ops_table[type] = ops;
2658 return 0;
2659 }
2660
2661 void kvm_unregister_device_ops(u32 type)
2662 {
2663 if (kvm_device_ops_table[type] != NULL)
2664 kvm_device_ops_table[type] = NULL;
2665 }
2666
2667 static int kvm_ioctl_create_device(struct kvm *kvm,
2668 struct kvm_create_device *cd)
2669 {
2670 struct kvm_device_ops *ops = NULL;
2671 struct kvm_device *dev;
2672 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2673 int ret;
2674
2675 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2676 return -ENODEV;
2677
2678 ops = kvm_device_ops_table[cd->type];
2679 if (ops == NULL)
2680 return -ENODEV;
2681
2682 if (test)
2683 return 0;
2684
2685 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2686 if (!dev)
2687 return -ENOMEM;
2688
2689 dev->ops = ops;
2690 dev->kvm = kvm;
2691
2692 ret = ops->create(dev, cd->type);
2693 if (ret < 0) {
2694 kfree(dev);
2695 return ret;
2696 }
2697
2698 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2699 if (ret < 0) {
2700 ops->destroy(dev);
2701 return ret;
2702 }
2703
2704 list_add(&dev->vm_node, &kvm->devices);
2705 kvm_get_kvm(kvm);
2706 cd->fd = ret;
2707 return 0;
2708 }
2709
2710 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2711 {
2712 switch (arg) {
2713 case KVM_CAP_USER_MEMORY:
2714 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2715 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2716 case KVM_CAP_INTERNAL_ERROR_DATA:
2717 #ifdef CONFIG_HAVE_KVM_MSI
2718 case KVM_CAP_SIGNAL_MSI:
2719 #endif
2720 #ifdef CONFIG_HAVE_KVM_IRQFD
2721 case KVM_CAP_IRQFD:
2722 case KVM_CAP_IRQFD_RESAMPLE:
2723 #endif
2724 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2725 case KVM_CAP_CHECK_EXTENSION_VM:
2726 return 1;
2727 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2728 case KVM_CAP_IRQ_ROUTING:
2729 return KVM_MAX_IRQ_ROUTES;
2730 #endif
2731 #if KVM_ADDRESS_SPACE_NUM > 1
2732 case KVM_CAP_MULTI_ADDRESS_SPACE:
2733 return KVM_ADDRESS_SPACE_NUM;
2734 #endif
2735 default:
2736 break;
2737 }
2738 return kvm_vm_ioctl_check_extension(kvm, arg);
2739 }
2740
2741 static long kvm_vm_ioctl(struct file *filp,
2742 unsigned int ioctl, unsigned long arg)
2743 {
2744 struct kvm *kvm = filp->private_data;
2745 void __user *argp = (void __user *)arg;
2746 int r;
2747
2748 if (kvm->mm != current->mm)
2749 return -EIO;
2750 switch (ioctl) {
2751 case KVM_CREATE_VCPU:
2752 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2753 break;
2754 case KVM_SET_USER_MEMORY_REGION: {
2755 struct kvm_userspace_memory_region kvm_userspace_mem;
2756
2757 r = -EFAULT;
2758 if (copy_from_user(&kvm_userspace_mem, argp,
2759 sizeof(kvm_userspace_mem)))
2760 goto out;
2761
2762 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2763 break;
2764 }
2765 case KVM_GET_DIRTY_LOG: {
2766 struct kvm_dirty_log log;
2767
2768 r = -EFAULT;
2769 if (copy_from_user(&log, argp, sizeof(log)))
2770 goto out;
2771 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2772 break;
2773 }
2774 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2775 case KVM_REGISTER_COALESCED_MMIO: {
2776 struct kvm_coalesced_mmio_zone zone;
2777
2778 r = -EFAULT;
2779 if (copy_from_user(&zone, argp, sizeof(zone)))
2780 goto out;
2781 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2782 break;
2783 }
2784 case KVM_UNREGISTER_COALESCED_MMIO: {
2785 struct kvm_coalesced_mmio_zone zone;
2786
2787 r = -EFAULT;
2788 if (copy_from_user(&zone, argp, sizeof(zone)))
2789 goto out;
2790 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2791 break;
2792 }
2793 #endif
2794 case KVM_IRQFD: {
2795 struct kvm_irqfd data;
2796
2797 r = -EFAULT;
2798 if (copy_from_user(&data, argp, sizeof(data)))
2799 goto out;
2800 r = kvm_irqfd(kvm, &data);
2801 break;
2802 }
2803 case KVM_IOEVENTFD: {
2804 struct kvm_ioeventfd data;
2805
2806 r = -EFAULT;
2807 if (copy_from_user(&data, argp, sizeof(data)))
2808 goto out;
2809 r = kvm_ioeventfd(kvm, &data);
2810 break;
2811 }
2812 #ifdef CONFIG_HAVE_KVM_MSI
2813 case KVM_SIGNAL_MSI: {
2814 struct kvm_msi msi;
2815
2816 r = -EFAULT;
2817 if (copy_from_user(&msi, argp, sizeof(msi)))
2818 goto out;
2819 r = kvm_send_userspace_msi(kvm, &msi);
2820 break;
2821 }
2822 #endif
2823 #ifdef __KVM_HAVE_IRQ_LINE
2824 case KVM_IRQ_LINE_STATUS:
2825 case KVM_IRQ_LINE: {
2826 struct kvm_irq_level irq_event;
2827
2828 r = -EFAULT;
2829 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2830 goto out;
2831
2832 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2833 ioctl == KVM_IRQ_LINE_STATUS);
2834 if (r)
2835 goto out;
2836
2837 r = -EFAULT;
2838 if (ioctl == KVM_IRQ_LINE_STATUS) {
2839 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2840 goto out;
2841 }
2842
2843 r = 0;
2844 break;
2845 }
2846 #endif
2847 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2848 case KVM_SET_GSI_ROUTING: {
2849 struct kvm_irq_routing routing;
2850 struct kvm_irq_routing __user *urouting;
2851 struct kvm_irq_routing_entry *entries;
2852
2853 r = -EFAULT;
2854 if (copy_from_user(&routing, argp, sizeof(routing)))
2855 goto out;
2856 r = -EINVAL;
2857 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2858 goto out;
2859 if (routing.flags)
2860 goto out;
2861 r = -ENOMEM;
2862 entries = vmalloc(routing.nr * sizeof(*entries));
2863 if (!entries)
2864 goto out;
2865 r = -EFAULT;
2866 urouting = argp;
2867 if (copy_from_user(entries, urouting->entries,
2868 routing.nr * sizeof(*entries)))
2869 goto out_free_irq_routing;
2870 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2871 routing.flags);
2872 out_free_irq_routing:
2873 vfree(entries);
2874 break;
2875 }
2876 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2877 case KVM_CREATE_DEVICE: {
2878 struct kvm_create_device cd;
2879
2880 r = -EFAULT;
2881 if (copy_from_user(&cd, argp, sizeof(cd)))
2882 goto out;
2883
2884 r = kvm_ioctl_create_device(kvm, &cd);
2885 if (r)
2886 goto out;
2887
2888 r = -EFAULT;
2889 if (copy_to_user(argp, &cd, sizeof(cd)))
2890 goto out;
2891
2892 r = 0;
2893 break;
2894 }
2895 case KVM_CHECK_EXTENSION:
2896 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2897 break;
2898 default:
2899 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2900 }
2901 out:
2902 return r;
2903 }
2904
2905 #ifdef CONFIG_KVM_COMPAT
2906 struct compat_kvm_dirty_log {
2907 __u32 slot;
2908 __u32 padding1;
2909 union {
2910 compat_uptr_t dirty_bitmap; /* one bit per page */
2911 __u64 padding2;
2912 };
2913 };
2914
2915 static long kvm_vm_compat_ioctl(struct file *filp,
2916 unsigned int ioctl, unsigned long arg)
2917 {
2918 struct kvm *kvm = filp->private_data;
2919 int r;
2920
2921 if (kvm->mm != current->mm)
2922 return -EIO;
2923 switch (ioctl) {
2924 case KVM_GET_DIRTY_LOG: {
2925 struct compat_kvm_dirty_log compat_log;
2926 struct kvm_dirty_log log;
2927
2928 r = -EFAULT;
2929 if (copy_from_user(&compat_log, (void __user *)arg,
2930 sizeof(compat_log)))
2931 goto out;
2932 log.slot = compat_log.slot;
2933 log.padding1 = compat_log.padding1;
2934 log.padding2 = compat_log.padding2;
2935 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2936
2937 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2938 break;
2939 }
2940 default:
2941 r = kvm_vm_ioctl(filp, ioctl, arg);
2942 }
2943
2944 out:
2945 return r;
2946 }
2947 #endif
2948
2949 static struct file_operations kvm_vm_fops = {
2950 .release = kvm_vm_release,
2951 .unlocked_ioctl = kvm_vm_ioctl,
2952 #ifdef CONFIG_KVM_COMPAT
2953 .compat_ioctl = kvm_vm_compat_ioctl,
2954 #endif
2955 .llseek = noop_llseek,
2956 };
2957
2958 static int kvm_dev_ioctl_create_vm(unsigned long type)
2959 {
2960 int r;
2961 struct kvm *kvm;
2962
2963 kvm = kvm_create_vm(type);
2964 if (IS_ERR(kvm))
2965 return PTR_ERR(kvm);
2966 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2967 r = kvm_coalesced_mmio_init(kvm);
2968 if (r < 0) {
2969 kvm_put_kvm(kvm);
2970 return r;
2971 }
2972 #endif
2973 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2974 if (r < 0)
2975 kvm_put_kvm(kvm);
2976
2977 return r;
2978 }
2979
2980 static long kvm_dev_ioctl(struct file *filp,
2981 unsigned int ioctl, unsigned long arg)
2982 {
2983 long r = -EINVAL;
2984
2985 switch (ioctl) {
2986 case KVM_GET_API_VERSION:
2987 if (arg)
2988 goto out;
2989 r = KVM_API_VERSION;
2990 break;
2991 case KVM_CREATE_VM:
2992 r = kvm_dev_ioctl_create_vm(arg);
2993 break;
2994 case KVM_CHECK_EXTENSION:
2995 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2996 break;
2997 case KVM_GET_VCPU_MMAP_SIZE:
2998 if (arg)
2999 goto out;
3000 r = PAGE_SIZE; /* struct kvm_run */
3001 #ifdef CONFIG_X86
3002 r += PAGE_SIZE; /* pio data page */
3003 #endif
3004 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3005 r += PAGE_SIZE; /* coalesced mmio ring page */
3006 #endif
3007 break;
3008 case KVM_TRACE_ENABLE:
3009 case KVM_TRACE_PAUSE:
3010 case KVM_TRACE_DISABLE:
3011 r = -EOPNOTSUPP;
3012 break;
3013 default:
3014 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3015 }
3016 out:
3017 return r;
3018 }
3019
3020 static struct file_operations kvm_chardev_ops = {
3021 .unlocked_ioctl = kvm_dev_ioctl,
3022 .compat_ioctl = kvm_dev_ioctl,
3023 .llseek = noop_llseek,
3024 };
3025
3026 static struct miscdevice kvm_dev = {
3027 KVM_MINOR,
3028 "kvm",
3029 &kvm_chardev_ops,
3030 };
3031
3032 static void hardware_enable_nolock(void *junk)
3033 {
3034 int cpu = raw_smp_processor_id();
3035 int r;
3036
3037 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3038 return;
3039
3040 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3041
3042 r = kvm_arch_hardware_enable();
3043
3044 if (r) {
3045 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3046 atomic_inc(&hardware_enable_failed);
3047 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3048 }
3049 }
3050
3051 static void hardware_enable(void)
3052 {
3053 raw_spin_lock(&kvm_count_lock);
3054 if (kvm_usage_count)
3055 hardware_enable_nolock(NULL);
3056 raw_spin_unlock(&kvm_count_lock);
3057 }
3058
3059 static void hardware_disable_nolock(void *junk)
3060 {
3061 int cpu = raw_smp_processor_id();
3062
3063 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3064 return;
3065 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3066 kvm_arch_hardware_disable();
3067 }
3068
3069 static void hardware_disable(void)
3070 {
3071 raw_spin_lock(&kvm_count_lock);
3072 if (kvm_usage_count)
3073 hardware_disable_nolock(NULL);
3074 raw_spin_unlock(&kvm_count_lock);
3075 }
3076
3077 static void hardware_disable_all_nolock(void)
3078 {
3079 BUG_ON(!kvm_usage_count);
3080
3081 kvm_usage_count--;
3082 if (!kvm_usage_count)
3083 on_each_cpu(hardware_disable_nolock, NULL, 1);
3084 }
3085
3086 static void hardware_disable_all(void)
3087 {
3088 raw_spin_lock(&kvm_count_lock);
3089 hardware_disable_all_nolock();
3090 raw_spin_unlock(&kvm_count_lock);
3091 }
3092
3093 static int hardware_enable_all(void)
3094 {
3095 int r = 0;
3096
3097 raw_spin_lock(&kvm_count_lock);
3098
3099 kvm_usage_count++;
3100 if (kvm_usage_count == 1) {
3101 atomic_set(&hardware_enable_failed, 0);
3102 on_each_cpu(hardware_enable_nolock, NULL, 1);
3103
3104 if (atomic_read(&hardware_enable_failed)) {
3105 hardware_disable_all_nolock();
3106 r = -EBUSY;
3107 }
3108 }
3109
3110 raw_spin_unlock(&kvm_count_lock);
3111
3112 return r;
3113 }
3114
3115 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3116 void *v)
3117 {
3118 val &= ~CPU_TASKS_FROZEN;
3119 switch (val) {
3120 case CPU_DYING:
3121 hardware_disable();
3122 break;
3123 case CPU_STARTING:
3124 hardware_enable();
3125 break;
3126 }
3127 return NOTIFY_OK;
3128 }
3129
3130 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3131 void *v)
3132 {
3133 /*
3134 * Some (well, at least mine) BIOSes hang on reboot if
3135 * in vmx root mode.
3136 *
3137 * And Intel TXT required VMX off for all cpu when system shutdown.
3138 */
3139 pr_info("kvm: exiting hardware virtualization\n");
3140 kvm_rebooting = true;
3141 on_each_cpu(hardware_disable_nolock, NULL, 1);
3142 return NOTIFY_OK;
3143 }
3144
3145 static struct notifier_block kvm_reboot_notifier = {
3146 .notifier_call = kvm_reboot,
3147 .priority = 0,
3148 };
3149
3150 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3151 {
3152 int i;
3153
3154 for (i = 0; i < bus->dev_count; i++) {
3155 struct kvm_io_device *pos = bus->range[i].dev;
3156
3157 kvm_iodevice_destructor(pos);
3158 }
3159 kfree(bus);
3160 }
3161
3162 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3163 const struct kvm_io_range *r2)
3164 {
3165 gpa_t addr1 = r1->addr;
3166 gpa_t addr2 = r2->addr;
3167
3168 if (addr1 < addr2)
3169 return -1;
3170
3171 /* If r2->len == 0, match the exact address. If r2->len != 0,
3172 * accept any overlapping write. Any order is acceptable for
3173 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3174 * we process all of them.
3175 */
3176 if (r2->len) {
3177 addr1 += r1->len;
3178 addr2 += r2->len;
3179 }
3180
3181 if (addr1 > addr2)
3182 return 1;
3183
3184 return 0;
3185 }
3186
3187 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3188 {
3189 return kvm_io_bus_cmp(p1, p2);
3190 }
3191
3192 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3193 gpa_t addr, int len)
3194 {
3195 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3196 .addr = addr,
3197 .len = len,
3198 .dev = dev,
3199 };
3200
3201 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3202 kvm_io_bus_sort_cmp, NULL);
3203
3204 return 0;
3205 }
3206
3207 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3208 gpa_t addr, int len)
3209 {
3210 struct kvm_io_range *range, key;
3211 int off;
3212
3213 key = (struct kvm_io_range) {
3214 .addr = addr,
3215 .len = len,
3216 };
3217
3218 range = bsearch(&key, bus->range, bus->dev_count,
3219 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3220 if (range == NULL)
3221 return -ENOENT;
3222
3223 off = range - bus->range;
3224
3225 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3226 off--;
3227
3228 return off;
3229 }
3230
3231 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3232 struct kvm_io_range *range, const void *val)
3233 {
3234 int idx;
3235
3236 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3237 if (idx < 0)
3238 return -EOPNOTSUPP;
3239
3240 while (idx < bus->dev_count &&
3241 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3242 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3243 range->len, val))
3244 return idx;
3245 idx++;
3246 }
3247
3248 return -EOPNOTSUPP;
3249 }
3250
3251 /* kvm_io_bus_write - called under kvm->slots_lock */
3252 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3253 int len, const void *val)
3254 {
3255 struct kvm_io_bus *bus;
3256 struct kvm_io_range range;
3257 int r;
3258
3259 range = (struct kvm_io_range) {
3260 .addr = addr,
3261 .len = len,
3262 };
3263
3264 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3265 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3266 return r < 0 ? r : 0;
3267 }
3268
3269 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3270 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3271 gpa_t addr, int len, const void *val, long cookie)
3272 {
3273 struct kvm_io_bus *bus;
3274 struct kvm_io_range range;
3275
3276 range = (struct kvm_io_range) {
3277 .addr = addr,
3278 .len = len,
3279 };
3280
3281 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3282
3283 /* First try the device referenced by cookie. */
3284 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3285 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3286 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3287 val))
3288 return cookie;
3289
3290 /*
3291 * cookie contained garbage; fall back to search and return the
3292 * correct cookie value.
3293 */
3294 return __kvm_io_bus_write(vcpu, bus, &range, val);
3295 }
3296
3297 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3298 struct kvm_io_range *range, void *val)
3299 {
3300 int idx;
3301
3302 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3303 if (idx < 0)
3304 return -EOPNOTSUPP;
3305
3306 while (idx < bus->dev_count &&
3307 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3308 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3309 range->len, val))
3310 return idx;
3311 idx++;
3312 }
3313
3314 return -EOPNOTSUPP;
3315 }
3316 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3317
3318 /* kvm_io_bus_read - called under kvm->slots_lock */
3319 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3320 int len, void *val)
3321 {
3322 struct kvm_io_bus *bus;
3323 struct kvm_io_range range;
3324 int r;
3325
3326 range = (struct kvm_io_range) {
3327 .addr = addr,
3328 .len = len,
3329 };
3330
3331 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3332 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3333 return r < 0 ? r : 0;
3334 }
3335
3336
3337 /* Caller must hold slots_lock. */
3338 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3339 int len, struct kvm_io_device *dev)
3340 {
3341 struct kvm_io_bus *new_bus, *bus;
3342
3343 bus = kvm->buses[bus_idx];
3344 /* exclude ioeventfd which is limited by maximum fd */
3345 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3346 return -ENOSPC;
3347
3348 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3349 sizeof(struct kvm_io_range)), GFP_KERNEL);
3350 if (!new_bus)
3351 return -ENOMEM;
3352 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3353 sizeof(struct kvm_io_range)));
3354 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3355 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3356 synchronize_srcu_expedited(&kvm->srcu);
3357 kfree(bus);
3358
3359 return 0;
3360 }
3361
3362 /* Caller must hold slots_lock. */
3363 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3364 struct kvm_io_device *dev)
3365 {
3366 int i, r;
3367 struct kvm_io_bus *new_bus, *bus;
3368
3369 bus = kvm->buses[bus_idx];
3370 r = -ENOENT;
3371 for (i = 0; i < bus->dev_count; i++)
3372 if (bus->range[i].dev == dev) {
3373 r = 0;
3374 break;
3375 }
3376
3377 if (r)
3378 return r;
3379
3380 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3381 sizeof(struct kvm_io_range)), GFP_KERNEL);
3382 if (!new_bus)
3383 return -ENOMEM;
3384
3385 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3386 new_bus->dev_count--;
3387 memcpy(new_bus->range + i, bus->range + i + 1,
3388 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3389
3390 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3391 synchronize_srcu_expedited(&kvm->srcu);
3392 kfree(bus);
3393 return r;
3394 }
3395
3396 static struct notifier_block kvm_cpu_notifier = {
3397 .notifier_call = kvm_cpu_hotplug,
3398 };
3399
3400 static int vm_stat_get(void *_offset, u64 *val)
3401 {
3402 unsigned offset = (long)_offset;
3403 struct kvm *kvm;
3404
3405 *val = 0;
3406 spin_lock(&kvm_lock);
3407 list_for_each_entry(kvm, &vm_list, vm_list)
3408 *val += *(u32 *)((void *)kvm + offset);
3409 spin_unlock(&kvm_lock);
3410 return 0;
3411 }
3412
3413 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3414
3415 static int vcpu_stat_get(void *_offset, u64 *val)
3416 {
3417 unsigned offset = (long)_offset;
3418 struct kvm *kvm;
3419 struct kvm_vcpu *vcpu;
3420 int i;
3421
3422 *val = 0;
3423 spin_lock(&kvm_lock);
3424 list_for_each_entry(kvm, &vm_list, vm_list)
3425 kvm_for_each_vcpu(i, vcpu, kvm)
3426 *val += *(u32 *)((void *)vcpu + offset);
3427
3428 spin_unlock(&kvm_lock);
3429 return 0;
3430 }
3431
3432 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3433
3434 static const struct file_operations *stat_fops[] = {
3435 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3436 [KVM_STAT_VM] = &vm_stat_fops,
3437 };
3438
3439 static int kvm_init_debug(void)
3440 {
3441 int r = -EEXIST;
3442 struct kvm_stats_debugfs_item *p;
3443
3444 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3445 if (kvm_debugfs_dir == NULL)
3446 goto out;
3447
3448 for (p = debugfs_entries; p->name; ++p) {
3449 if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3450 (void *)(long)p->offset,
3451 stat_fops[p->kind]))
3452 goto out_dir;
3453 }
3454
3455 return 0;
3456
3457 out_dir:
3458 debugfs_remove_recursive(kvm_debugfs_dir);
3459 out:
3460 return r;
3461 }
3462
3463 static int kvm_suspend(void)
3464 {
3465 if (kvm_usage_count)
3466 hardware_disable_nolock(NULL);
3467 return 0;
3468 }
3469
3470 static void kvm_resume(void)
3471 {
3472 if (kvm_usage_count) {
3473 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3474 hardware_enable_nolock(NULL);
3475 }
3476 }
3477
3478 static struct syscore_ops kvm_syscore_ops = {
3479 .suspend = kvm_suspend,
3480 .resume = kvm_resume,
3481 };
3482
3483 static inline
3484 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3485 {
3486 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3487 }
3488
3489 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3490 {
3491 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3492
3493 if (vcpu->preempted)
3494 vcpu->preempted = false;
3495
3496 kvm_arch_sched_in(vcpu, cpu);
3497
3498 kvm_arch_vcpu_load(vcpu, cpu);
3499 }
3500
3501 static void kvm_sched_out(struct preempt_notifier *pn,
3502 struct task_struct *next)
3503 {
3504 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3505
3506 if (current->state == TASK_RUNNING)
3507 vcpu->preempted = true;
3508 kvm_arch_vcpu_put(vcpu);
3509 }
3510
3511 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3512 struct module *module)
3513 {
3514 int r;
3515 int cpu;
3516
3517 r = kvm_arch_init(opaque);
3518 if (r)
3519 goto out_fail;
3520
3521 /*
3522 * kvm_arch_init makes sure there's at most one caller
3523 * for architectures that support multiple implementations,
3524 * like intel and amd on x86.
3525 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3526 * conflicts in case kvm is already setup for another implementation.
3527 */
3528 r = kvm_irqfd_init();
3529 if (r)
3530 goto out_irqfd;
3531
3532 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3533 r = -ENOMEM;
3534 goto out_free_0;
3535 }
3536
3537 r = kvm_arch_hardware_setup();
3538 if (r < 0)
3539 goto out_free_0a;
3540
3541 for_each_online_cpu(cpu) {
3542 smp_call_function_single(cpu,
3543 kvm_arch_check_processor_compat,
3544 &r, 1);
3545 if (r < 0)
3546 goto out_free_1;
3547 }
3548
3549 r = register_cpu_notifier(&kvm_cpu_notifier);
3550 if (r)
3551 goto out_free_2;
3552 register_reboot_notifier(&kvm_reboot_notifier);
3553
3554 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3555 if (!vcpu_align)
3556 vcpu_align = __alignof__(struct kvm_vcpu);
3557 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3558 0, NULL);
3559 if (!kvm_vcpu_cache) {
3560 r = -ENOMEM;
3561 goto out_free_3;
3562 }
3563
3564 r = kvm_async_pf_init();
3565 if (r)
3566 goto out_free;
3567
3568 kvm_chardev_ops.owner = module;
3569 kvm_vm_fops.owner = module;
3570 kvm_vcpu_fops.owner = module;
3571
3572 r = misc_register(&kvm_dev);
3573 if (r) {
3574 pr_err("kvm: misc device register failed\n");
3575 goto out_unreg;
3576 }
3577
3578 register_syscore_ops(&kvm_syscore_ops);
3579
3580 kvm_preempt_ops.sched_in = kvm_sched_in;
3581 kvm_preempt_ops.sched_out = kvm_sched_out;
3582
3583 r = kvm_init_debug();
3584 if (r) {
3585 pr_err("kvm: create debugfs files failed\n");
3586 goto out_undebugfs;
3587 }
3588
3589 r = kvm_vfio_ops_init();
3590 WARN_ON(r);
3591
3592 return 0;
3593
3594 out_undebugfs:
3595 unregister_syscore_ops(&kvm_syscore_ops);
3596 misc_deregister(&kvm_dev);
3597 out_unreg:
3598 kvm_async_pf_deinit();
3599 out_free:
3600 kmem_cache_destroy(kvm_vcpu_cache);
3601 out_free_3:
3602 unregister_reboot_notifier(&kvm_reboot_notifier);
3603 unregister_cpu_notifier(&kvm_cpu_notifier);
3604 out_free_2:
3605 out_free_1:
3606 kvm_arch_hardware_unsetup();
3607 out_free_0a:
3608 free_cpumask_var(cpus_hardware_enabled);
3609 out_free_0:
3610 kvm_irqfd_exit();
3611 out_irqfd:
3612 kvm_arch_exit();
3613 out_fail:
3614 return r;
3615 }
3616 EXPORT_SYMBOL_GPL(kvm_init);
3617
3618 void kvm_exit(void)
3619 {
3620 debugfs_remove_recursive(kvm_debugfs_dir);
3621 misc_deregister(&kvm_dev);
3622 kmem_cache_destroy(kvm_vcpu_cache);
3623 kvm_async_pf_deinit();
3624 unregister_syscore_ops(&kvm_syscore_ops);
3625 unregister_reboot_notifier(&kvm_reboot_notifier);
3626 unregister_cpu_notifier(&kvm_cpu_notifier);
3627 on_each_cpu(hardware_disable_nolock, NULL, 1);
3628 kvm_arch_hardware_unsetup();
3629 kvm_arch_exit();
3630 kvm_irqfd_exit();
3631 free_cpumask_var(cpus_hardware_enabled);
3632 kvm_vfio_ops_exit();
3633 }
3634 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.097691 seconds and 4 git commands to generate.