KVM: Move gfn_to_memslot() to kvm_host.h
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68 * Ordering of locks:
69 *
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 */
72
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84
85 struct dentry *kvm_debugfs_dir;
86
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100
101 static bool largepages_enabled = true;
102
103 static struct page *hwpoison_page;
104 static pfn_t hwpoison_pfn;
105
106 struct page *fault_page;
107 pfn_t fault_pfn;
108
109 inline int kvm_is_mmio_pfn(pfn_t pfn)
110 {
111 if (pfn_valid(pfn)) {
112 int reserved;
113 struct page *tail = pfn_to_page(pfn);
114 struct page *head = compound_trans_head(tail);
115 reserved = PageReserved(head);
116 if (head != tail) {
117 /*
118 * "head" is not a dangling pointer
119 * (compound_trans_head takes care of that)
120 * but the hugepage may have been splitted
121 * from under us (and we may not hold a
122 * reference count on the head page so it can
123 * be reused before we run PageReferenced), so
124 * we've to check PageTail before returning
125 * what we just read.
126 */
127 smp_rmb();
128 if (PageTail(tail))
129 return reserved;
130 }
131 return PageReserved(tail);
132 }
133
134 return true;
135 }
136
137 /*
138 * Switches to specified vcpu, until a matching vcpu_put()
139 */
140 void vcpu_load(struct kvm_vcpu *vcpu)
141 {
142 int cpu;
143
144 mutex_lock(&vcpu->mutex);
145 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
146 /* The thread running this VCPU changed. */
147 struct pid *oldpid = vcpu->pid;
148 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
149 rcu_assign_pointer(vcpu->pid, newpid);
150 synchronize_rcu();
151 put_pid(oldpid);
152 }
153 cpu = get_cpu();
154 preempt_notifier_register(&vcpu->preempt_notifier);
155 kvm_arch_vcpu_load(vcpu, cpu);
156 put_cpu();
157 }
158
159 void vcpu_put(struct kvm_vcpu *vcpu)
160 {
161 preempt_disable();
162 kvm_arch_vcpu_put(vcpu);
163 preempt_notifier_unregister(&vcpu->preempt_notifier);
164 preempt_enable();
165 mutex_unlock(&vcpu->mutex);
166 }
167
168 static void ack_flush(void *_completed)
169 {
170 }
171
172 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
173 {
174 int i, cpu, me;
175 cpumask_var_t cpus;
176 bool called = true;
177 struct kvm_vcpu *vcpu;
178
179 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
180
181 me = get_cpu();
182 kvm_for_each_vcpu(i, vcpu, kvm) {
183 kvm_make_request(req, vcpu);
184 cpu = vcpu->cpu;
185
186 /* Set ->requests bit before we read ->mode */
187 smp_mb();
188
189 if (cpus != NULL && cpu != -1 && cpu != me &&
190 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
191 cpumask_set_cpu(cpu, cpus);
192 }
193 if (unlikely(cpus == NULL))
194 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
195 else if (!cpumask_empty(cpus))
196 smp_call_function_many(cpus, ack_flush, NULL, 1);
197 else
198 called = false;
199 put_cpu();
200 free_cpumask_var(cpus);
201 return called;
202 }
203
204 void kvm_flush_remote_tlbs(struct kvm *kvm)
205 {
206 int dirty_count = kvm->tlbs_dirty;
207
208 smp_mb();
209 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
210 ++kvm->stat.remote_tlb_flush;
211 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
212 }
213
214 void kvm_reload_remote_mmus(struct kvm *kvm)
215 {
216 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
217 }
218
219 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
220 {
221 struct page *page;
222 int r;
223
224 mutex_init(&vcpu->mutex);
225 vcpu->cpu = -1;
226 vcpu->kvm = kvm;
227 vcpu->vcpu_id = id;
228 vcpu->pid = NULL;
229 init_waitqueue_head(&vcpu->wq);
230 kvm_async_pf_vcpu_init(vcpu);
231
232 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
233 if (!page) {
234 r = -ENOMEM;
235 goto fail;
236 }
237 vcpu->run = page_address(page);
238
239 r = kvm_arch_vcpu_init(vcpu);
240 if (r < 0)
241 goto fail_free_run;
242 return 0;
243
244 fail_free_run:
245 free_page((unsigned long)vcpu->run);
246 fail:
247 return r;
248 }
249 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
250
251 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
252 {
253 put_pid(vcpu->pid);
254 kvm_arch_vcpu_uninit(vcpu);
255 free_page((unsigned long)vcpu->run);
256 }
257 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
258
259 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
260 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
261 {
262 return container_of(mn, struct kvm, mmu_notifier);
263 }
264
265 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
266 struct mm_struct *mm,
267 unsigned long address)
268 {
269 struct kvm *kvm = mmu_notifier_to_kvm(mn);
270 int need_tlb_flush, idx;
271
272 /*
273 * When ->invalidate_page runs, the linux pte has been zapped
274 * already but the page is still allocated until
275 * ->invalidate_page returns. So if we increase the sequence
276 * here the kvm page fault will notice if the spte can't be
277 * established because the page is going to be freed. If
278 * instead the kvm page fault establishes the spte before
279 * ->invalidate_page runs, kvm_unmap_hva will release it
280 * before returning.
281 *
282 * The sequence increase only need to be seen at spin_unlock
283 * time, and not at spin_lock time.
284 *
285 * Increasing the sequence after the spin_unlock would be
286 * unsafe because the kvm page fault could then establish the
287 * pte after kvm_unmap_hva returned, without noticing the page
288 * is going to be freed.
289 */
290 idx = srcu_read_lock(&kvm->srcu);
291 spin_lock(&kvm->mmu_lock);
292 kvm->mmu_notifier_seq++;
293 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
294 spin_unlock(&kvm->mmu_lock);
295 srcu_read_unlock(&kvm->srcu, idx);
296
297 /* we've to flush the tlb before the pages can be freed */
298 if (need_tlb_flush)
299 kvm_flush_remote_tlbs(kvm);
300
301 }
302
303 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
304 struct mm_struct *mm,
305 unsigned long address,
306 pte_t pte)
307 {
308 struct kvm *kvm = mmu_notifier_to_kvm(mn);
309 int idx;
310
311 idx = srcu_read_lock(&kvm->srcu);
312 spin_lock(&kvm->mmu_lock);
313 kvm->mmu_notifier_seq++;
314 kvm_set_spte_hva(kvm, address, pte);
315 spin_unlock(&kvm->mmu_lock);
316 srcu_read_unlock(&kvm->srcu, idx);
317 }
318
319 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
320 struct mm_struct *mm,
321 unsigned long start,
322 unsigned long end)
323 {
324 struct kvm *kvm = mmu_notifier_to_kvm(mn);
325 int need_tlb_flush = 0, idx;
326
327 idx = srcu_read_lock(&kvm->srcu);
328 spin_lock(&kvm->mmu_lock);
329 /*
330 * The count increase must become visible at unlock time as no
331 * spte can be established without taking the mmu_lock and
332 * count is also read inside the mmu_lock critical section.
333 */
334 kvm->mmu_notifier_count++;
335 for (; start < end; start += PAGE_SIZE)
336 need_tlb_flush |= kvm_unmap_hva(kvm, start);
337 need_tlb_flush |= kvm->tlbs_dirty;
338 spin_unlock(&kvm->mmu_lock);
339 srcu_read_unlock(&kvm->srcu, idx);
340
341 /* we've to flush the tlb before the pages can be freed */
342 if (need_tlb_flush)
343 kvm_flush_remote_tlbs(kvm);
344 }
345
346 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
347 struct mm_struct *mm,
348 unsigned long start,
349 unsigned long end)
350 {
351 struct kvm *kvm = mmu_notifier_to_kvm(mn);
352
353 spin_lock(&kvm->mmu_lock);
354 /*
355 * This sequence increase will notify the kvm page fault that
356 * the page that is going to be mapped in the spte could have
357 * been freed.
358 */
359 kvm->mmu_notifier_seq++;
360 smp_wmb();
361 /*
362 * The above sequence increase must be visible before the
363 * below count decrease, which is ensured by the smp_wmb above
364 * in conjunction with the smp_rmb in mmu_notifier_retry().
365 */
366 kvm->mmu_notifier_count--;
367 spin_unlock(&kvm->mmu_lock);
368
369 BUG_ON(kvm->mmu_notifier_count < 0);
370 }
371
372 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
373 struct mm_struct *mm,
374 unsigned long address)
375 {
376 struct kvm *kvm = mmu_notifier_to_kvm(mn);
377 int young, idx;
378
379 idx = srcu_read_lock(&kvm->srcu);
380 spin_lock(&kvm->mmu_lock);
381 young = kvm_age_hva(kvm, address);
382 spin_unlock(&kvm->mmu_lock);
383 srcu_read_unlock(&kvm->srcu, idx);
384
385 if (young)
386 kvm_flush_remote_tlbs(kvm);
387
388 return young;
389 }
390
391 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
392 struct mm_struct *mm,
393 unsigned long address)
394 {
395 struct kvm *kvm = mmu_notifier_to_kvm(mn);
396 int young, idx;
397
398 idx = srcu_read_lock(&kvm->srcu);
399 spin_lock(&kvm->mmu_lock);
400 young = kvm_test_age_hva(kvm, address);
401 spin_unlock(&kvm->mmu_lock);
402 srcu_read_unlock(&kvm->srcu, idx);
403
404 return young;
405 }
406
407 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
408 struct mm_struct *mm)
409 {
410 struct kvm *kvm = mmu_notifier_to_kvm(mn);
411 int idx;
412
413 idx = srcu_read_lock(&kvm->srcu);
414 kvm_arch_flush_shadow(kvm);
415 srcu_read_unlock(&kvm->srcu, idx);
416 }
417
418 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
419 .invalidate_page = kvm_mmu_notifier_invalidate_page,
420 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
421 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
422 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
423 .test_young = kvm_mmu_notifier_test_young,
424 .change_pte = kvm_mmu_notifier_change_pte,
425 .release = kvm_mmu_notifier_release,
426 };
427
428 static int kvm_init_mmu_notifier(struct kvm *kvm)
429 {
430 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
431 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
432 }
433
434 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
435
436 static int kvm_init_mmu_notifier(struct kvm *kvm)
437 {
438 return 0;
439 }
440
441 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
442
443 static void kvm_init_memslots_id(struct kvm *kvm)
444 {
445 int i;
446 struct kvm_memslots *slots = kvm->memslots;
447
448 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
449 slots->id_to_index[i] = slots->memslots[i].id = i;
450 }
451
452 static struct kvm *kvm_create_vm(unsigned long type)
453 {
454 int r, i;
455 struct kvm *kvm = kvm_arch_alloc_vm();
456
457 if (!kvm)
458 return ERR_PTR(-ENOMEM);
459
460 r = kvm_arch_init_vm(kvm, type);
461 if (r)
462 goto out_err_nodisable;
463
464 r = hardware_enable_all();
465 if (r)
466 goto out_err_nodisable;
467
468 #ifdef CONFIG_HAVE_KVM_IRQCHIP
469 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
470 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
471 #endif
472
473 r = -ENOMEM;
474 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
475 if (!kvm->memslots)
476 goto out_err_nosrcu;
477 kvm_init_memslots_id(kvm);
478 if (init_srcu_struct(&kvm->srcu))
479 goto out_err_nosrcu;
480 for (i = 0; i < KVM_NR_BUSES; i++) {
481 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
482 GFP_KERNEL);
483 if (!kvm->buses[i])
484 goto out_err;
485 }
486
487 spin_lock_init(&kvm->mmu_lock);
488 kvm->mm = current->mm;
489 atomic_inc(&kvm->mm->mm_count);
490 kvm_eventfd_init(kvm);
491 mutex_init(&kvm->lock);
492 mutex_init(&kvm->irq_lock);
493 mutex_init(&kvm->slots_lock);
494 atomic_set(&kvm->users_count, 1);
495
496 r = kvm_init_mmu_notifier(kvm);
497 if (r)
498 goto out_err;
499
500 raw_spin_lock(&kvm_lock);
501 list_add(&kvm->vm_list, &vm_list);
502 raw_spin_unlock(&kvm_lock);
503
504 return kvm;
505
506 out_err:
507 cleanup_srcu_struct(&kvm->srcu);
508 out_err_nosrcu:
509 hardware_disable_all();
510 out_err_nodisable:
511 for (i = 0; i < KVM_NR_BUSES; i++)
512 kfree(kvm->buses[i]);
513 kfree(kvm->memslots);
514 kvm_arch_free_vm(kvm);
515 return ERR_PTR(r);
516 }
517
518 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
519 {
520 if (!memslot->dirty_bitmap)
521 return;
522
523 if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
524 vfree(memslot->dirty_bitmap_head);
525 else
526 kfree(memslot->dirty_bitmap_head);
527
528 memslot->dirty_bitmap = NULL;
529 memslot->dirty_bitmap_head = NULL;
530 }
531
532 /*
533 * Free any memory in @free but not in @dont.
534 */
535 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
536 struct kvm_memory_slot *dont)
537 {
538 int i;
539
540 if (!dont || free->rmap != dont->rmap)
541 vfree(free->rmap);
542
543 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
544 kvm_destroy_dirty_bitmap(free);
545
546
547 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
548 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
549 vfree(free->lpage_info[i]);
550 free->lpage_info[i] = NULL;
551 }
552 }
553
554 free->npages = 0;
555 free->rmap = NULL;
556 }
557
558 void kvm_free_physmem(struct kvm *kvm)
559 {
560 struct kvm_memslots *slots = kvm->memslots;
561 struct kvm_memory_slot *memslot;
562
563 kvm_for_each_memslot(memslot, slots)
564 kvm_free_physmem_slot(memslot, NULL);
565
566 kfree(kvm->memslots);
567 }
568
569 static void kvm_destroy_vm(struct kvm *kvm)
570 {
571 int i;
572 struct mm_struct *mm = kvm->mm;
573
574 kvm_arch_sync_events(kvm);
575 raw_spin_lock(&kvm_lock);
576 list_del(&kvm->vm_list);
577 raw_spin_unlock(&kvm_lock);
578 kvm_free_irq_routing(kvm);
579 for (i = 0; i < KVM_NR_BUSES; i++)
580 kvm_io_bus_destroy(kvm->buses[i]);
581 kvm_coalesced_mmio_free(kvm);
582 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
583 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
584 #else
585 kvm_arch_flush_shadow(kvm);
586 #endif
587 kvm_arch_destroy_vm(kvm);
588 kvm_free_physmem(kvm);
589 cleanup_srcu_struct(&kvm->srcu);
590 kvm_arch_free_vm(kvm);
591 hardware_disable_all();
592 mmdrop(mm);
593 }
594
595 void kvm_get_kvm(struct kvm *kvm)
596 {
597 atomic_inc(&kvm->users_count);
598 }
599 EXPORT_SYMBOL_GPL(kvm_get_kvm);
600
601 void kvm_put_kvm(struct kvm *kvm)
602 {
603 if (atomic_dec_and_test(&kvm->users_count))
604 kvm_destroy_vm(kvm);
605 }
606 EXPORT_SYMBOL_GPL(kvm_put_kvm);
607
608
609 static int kvm_vm_release(struct inode *inode, struct file *filp)
610 {
611 struct kvm *kvm = filp->private_data;
612
613 kvm_irqfd_release(kvm);
614
615 kvm_put_kvm(kvm);
616 return 0;
617 }
618
619 #ifndef CONFIG_S390
620 /*
621 * Allocation size is twice as large as the actual dirty bitmap size.
622 * This makes it possible to do double buffering: see x86's
623 * kvm_vm_ioctl_get_dirty_log().
624 */
625 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
626 {
627 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
628
629 if (dirty_bytes > PAGE_SIZE)
630 memslot->dirty_bitmap = vzalloc(dirty_bytes);
631 else
632 memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
633
634 if (!memslot->dirty_bitmap)
635 return -ENOMEM;
636
637 memslot->dirty_bitmap_head = memslot->dirty_bitmap;
638 memslot->nr_dirty_pages = 0;
639 return 0;
640 }
641 #endif /* !CONFIG_S390 */
642
643 static int cmp_memslot(const void *slot1, const void *slot2)
644 {
645 struct kvm_memory_slot *s1, *s2;
646
647 s1 = (struct kvm_memory_slot *)slot1;
648 s2 = (struct kvm_memory_slot *)slot2;
649
650 if (s1->npages < s2->npages)
651 return 1;
652 if (s1->npages > s2->npages)
653 return -1;
654
655 return 0;
656 }
657
658 /*
659 * Sort the memslots base on its size, so the larger slots
660 * will get better fit.
661 */
662 static void sort_memslots(struct kvm_memslots *slots)
663 {
664 int i;
665
666 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
667 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
668
669 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
670 slots->id_to_index[slots->memslots[i].id] = i;
671 }
672
673 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
674 {
675 if (new) {
676 int id = new->id;
677 struct kvm_memory_slot *old = id_to_memslot(slots, id);
678 unsigned long npages = old->npages;
679
680 *old = *new;
681 if (new->npages != npages)
682 sort_memslots(slots);
683 }
684
685 slots->generation++;
686 }
687
688 /*
689 * Allocate some memory and give it an address in the guest physical address
690 * space.
691 *
692 * Discontiguous memory is allowed, mostly for framebuffers.
693 *
694 * Must be called holding mmap_sem for write.
695 */
696 int __kvm_set_memory_region(struct kvm *kvm,
697 struct kvm_userspace_memory_region *mem,
698 int user_alloc)
699 {
700 int r;
701 gfn_t base_gfn;
702 unsigned long npages;
703 unsigned long i;
704 struct kvm_memory_slot *memslot;
705 struct kvm_memory_slot old, new;
706 struct kvm_memslots *slots, *old_memslots;
707
708 r = -EINVAL;
709 /* General sanity checks */
710 if (mem->memory_size & (PAGE_SIZE - 1))
711 goto out;
712 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
713 goto out;
714 /* We can read the guest memory with __xxx_user() later on. */
715 if (user_alloc &&
716 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
717 !access_ok(VERIFY_WRITE,
718 (void __user *)(unsigned long)mem->userspace_addr,
719 mem->memory_size)))
720 goto out;
721 if (mem->slot >= KVM_MEM_SLOTS_NUM)
722 goto out;
723 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
724 goto out;
725
726 memslot = id_to_memslot(kvm->memslots, mem->slot);
727 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
728 npages = mem->memory_size >> PAGE_SHIFT;
729
730 r = -EINVAL;
731 if (npages > KVM_MEM_MAX_NR_PAGES)
732 goto out;
733
734 if (!npages)
735 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
736
737 new = old = *memslot;
738
739 new.id = mem->slot;
740 new.base_gfn = base_gfn;
741 new.npages = npages;
742 new.flags = mem->flags;
743
744 /* Disallow changing a memory slot's size. */
745 r = -EINVAL;
746 if (npages && old.npages && npages != old.npages)
747 goto out_free;
748
749 /* Check for overlaps */
750 r = -EEXIST;
751 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
752 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
753
754 if (s == memslot || !s->npages)
755 continue;
756 if (!((base_gfn + npages <= s->base_gfn) ||
757 (base_gfn >= s->base_gfn + s->npages)))
758 goto out_free;
759 }
760
761 /* Free page dirty bitmap if unneeded */
762 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
763 new.dirty_bitmap = NULL;
764
765 r = -ENOMEM;
766
767 /* Allocate if a slot is being created */
768 #ifndef CONFIG_S390
769 if (npages && !new.rmap) {
770 new.rmap = vzalloc(npages * sizeof(*new.rmap));
771
772 if (!new.rmap)
773 goto out_free;
774
775 new.user_alloc = user_alloc;
776 new.userspace_addr = mem->userspace_addr;
777 }
778 if (!npages)
779 goto skip_lpage;
780
781 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
782 unsigned long ugfn;
783 unsigned long j;
784 int lpages;
785 int level = i + 2;
786
787 /* Avoid unused variable warning if no large pages */
788 (void)level;
789
790 if (new.lpage_info[i])
791 continue;
792
793 lpages = 1 + ((base_gfn + npages - 1)
794 >> KVM_HPAGE_GFN_SHIFT(level));
795 lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
796
797 new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
798
799 if (!new.lpage_info[i])
800 goto out_free;
801
802 if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
803 new.lpage_info[i][0].write_count = 1;
804 if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
805 new.lpage_info[i][lpages - 1].write_count = 1;
806 ugfn = new.userspace_addr >> PAGE_SHIFT;
807 /*
808 * If the gfn and userspace address are not aligned wrt each
809 * other, or if explicitly asked to, disable large page
810 * support for this slot
811 */
812 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
813 !largepages_enabled)
814 for (j = 0; j < lpages; ++j)
815 new.lpage_info[i][j].write_count = 1;
816 }
817
818 skip_lpage:
819
820 /* Allocate page dirty bitmap if needed */
821 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
822 if (kvm_create_dirty_bitmap(&new) < 0)
823 goto out_free;
824 /* destroy any largepage mappings for dirty tracking */
825 }
826 #else /* not defined CONFIG_S390 */
827 new.user_alloc = user_alloc;
828 if (user_alloc)
829 new.userspace_addr = mem->userspace_addr;
830 #endif /* not defined CONFIG_S390 */
831
832 if (!npages) {
833 struct kvm_memory_slot *slot;
834
835 r = -ENOMEM;
836 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
837 GFP_KERNEL);
838 if (!slots)
839 goto out_free;
840 slot = id_to_memslot(slots, mem->slot);
841 slot->flags |= KVM_MEMSLOT_INVALID;
842
843 update_memslots(slots, NULL);
844
845 old_memslots = kvm->memslots;
846 rcu_assign_pointer(kvm->memslots, slots);
847 synchronize_srcu_expedited(&kvm->srcu);
848 /* From this point no new shadow pages pointing to a deleted
849 * memslot will be created.
850 *
851 * validation of sp->gfn happens in:
852 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
853 * - kvm_is_visible_gfn (mmu_check_roots)
854 */
855 kvm_arch_flush_shadow(kvm);
856 kfree(old_memslots);
857 }
858
859 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
860 if (r)
861 goto out_free;
862
863 /* map the pages in iommu page table */
864 if (npages) {
865 r = kvm_iommu_map_pages(kvm, &new);
866 if (r)
867 goto out_free;
868 }
869
870 r = -ENOMEM;
871 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
872 GFP_KERNEL);
873 if (!slots)
874 goto out_free;
875
876 /* actual memory is freed via old in kvm_free_physmem_slot below */
877 if (!npages) {
878 new.rmap = NULL;
879 new.dirty_bitmap = NULL;
880 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
881 new.lpage_info[i] = NULL;
882 }
883
884 update_memslots(slots, &new);
885 old_memslots = kvm->memslots;
886 rcu_assign_pointer(kvm->memslots, slots);
887 synchronize_srcu_expedited(&kvm->srcu);
888
889 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
890
891 /*
892 * If the new memory slot is created, we need to clear all
893 * mmio sptes.
894 */
895 if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
896 kvm_arch_flush_shadow(kvm);
897
898 kvm_free_physmem_slot(&old, &new);
899 kfree(old_memslots);
900
901 return 0;
902
903 out_free:
904 kvm_free_physmem_slot(&new, &old);
905 out:
906 return r;
907
908 }
909 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
910
911 int kvm_set_memory_region(struct kvm *kvm,
912 struct kvm_userspace_memory_region *mem,
913 int user_alloc)
914 {
915 int r;
916
917 mutex_lock(&kvm->slots_lock);
918 r = __kvm_set_memory_region(kvm, mem, user_alloc);
919 mutex_unlock(&kvm->slots_lock);
920 return r;
921 }
922 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
923
924 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
925 struct
926 kvm_userspace_memory_region *mem,
927 int user_alloc)
928 {
929 if (mem->slot >= KVM_MEMORY_SLOTS)
930 return -EINVAL;
931 return kvm_set_memory_region(kvm, mem, user_alloc);
932 }
933
934 int kvm_get_dirty_log(struct kvm *kvm,
935 struct kvm_dirty_log *log, int *is_dirty)
936 {
937 struct kvm_memory_slot *memslot;
938 int r, i;
939 unsigned long n;
940 unsigned long any = 0;
941
942 r = -EINVAL;
943 if (log->slot >= KVM_MEMORY_SLOTS)
944 goto out;
945
946 memslot = id_to_memslot(kvm->memslots, log->slot);
947 r = -ENOENT;
948 if (!memslot->dirty_bitmap)
949 goto out;
950
951 n = kvm_dirty_bitmap_bytes(memslot);
952
953 for (i = 0; !any && i < n/sizeof(long); ++i)
954 any = memslot->dirty_bitmap[i];
955
956 r = -EFAULT;
957 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
958 goto out;
959
960 if (any)
961 *is_dirty = 1;
962
963 r = 0;
964 out:
965 return r;
966 }
967
968 void kvm_disable_largepages(void)
969 {
970 largepages_enabled = false;
971 }
972 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
973
974 int is_error_page(struct page *page)
975 {
976 return page == bad_page || page == hwpoison_page || page == fault_page;
977 }
978 EXPORT_SYMBOL_GPL(is_error_page);
979
980 int is_error_pfn(pfn_t pfn)
981 {
982 return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
983 }
984 EXPORT_SYMBOL_GPL(is_error_pfn);
985
986 int is_hwpoison_pfn(pfn_t pfn)
987 {
988 return pfn == hwpoison_pfn;
989 }
990 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
991
992 int is_fault_pfn(pfn_t pfn)
993 {
994 return pfn == fault_pfn;
995 }
996 EXPORT_SYMBOL_GPL(is_fault_pfn);
997
998 int is_noslot_pfn(pfn_t pfn)
999 {
1000 return pfn == bad_pfn;
1001 }
1002 EXPORT_SYMBOL_GPL(is_noslot_pfn);
1003
1004 int is_invalid_pfn(pfn_t pfn)
1005 {
1006 return pfn == hwpoison_pfn || pfn == fault_pfn;
1007 }
1008 EXPORT_SYMBOL_GPL(is_invalid_pfn);
1009
1010 static inline unsigned long bad_hva(void)
1011 {
1012 return PAGE_OFFSET;
1013 }
1014
1015 int kvm_is_error_hva(unsigned long addr)
1016 {
1017 return addr == bad_hva();
1018 }
1019 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1020
1021 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1022 {
1023 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1024 }
1025 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1026
1027 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1028 {
1029 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1030
1031 if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
1032 memslot->flags & KVM_MEMSLOT_INVALID)
1033 return 0;
1034
1035 return 1;
1036 }
1037 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1038
1039 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1040 {
1041 struct vm_area_struct *vma;
1042 unsigned long addr, size;
1043
1044 size = PAGE_SIZE;
1045
1046 addr = gfn_to_hva(kvm, gfn);
1047 if (kvm_is_error_hva(addr))
1048 return PAGE_SIZE;
1049
1050 down_read(&current->mm->mmap_sem);
1051 vma = find_vma(current->mm, addr);
1052 if (!vma)
1053 goto out;
1054
1055 size = vma_kernel_pagesize(vma);
1056
1057 out:
1058 up_read(&current->mm->mmap_sem);
1059
1060 return size;
1061 }
1062
1063 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1064 gfn_t *nr_pages)
1065 {
1066 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1067 return bad_hva();
1068
1069 if (nr_pages)
1070 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1071
1072 return gfn_to_hva_memslot(slot, gfn);
1073 }
1074
1075 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1076 {
1077 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1078 }
1079 EXPORT_SYMBOL_GPL(gfn_to_hva);
1080
1081 static pfn_t get_fault_pfn(void)
1082 {
1083 get_page(fault_page);
1084 return fault_pfn;
1085 }
1086
1087 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1088 unsigned long start, int write, struct page **page)
1089 {
1090 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1091
1092 if (write)
1093 flags |= FOLL_WRITE;
1094
1095 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1096 }
1097
1098 static inline int check_user_page_hwpoison(unsigned long addr)
1099 {
1100 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1101
1102 rc = __get_user_pages(current, current->mm, addr, 1,
1103 flags, NULL, NULL, NULL);
1104 return rc == -EHWPOISON;
1105 }
1106
1107 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1108 bool *async, bool write_fault, bool *writable)
1109 {
1110 struct page *page[1];
1111 int npages = 0;
1112 pfn_t pfn;
1113
1114 /* we can do it either atomically or asynchronously, not both */
1115 BUG_ON(atomic && async);
1116
1117 BUG_ON(!write_fault && !writable);
1118
1119 if (writable)
1120 *writable = true;
1121
1122 if (atomic || async)
1123 npages = __get_user_pages_fast(addr, 1, 1, page);
1124
1125 if (unlikely(npages != 1) && !atomic) {
1126 might_sleep();
1127
1128 if (writable)
1129 *writable = write_fault;
1130
1131 if (async) {
1132 down_read(&current->mm->mmap_sem);
1133 npages = get_user_page_nowait(current, current->mm,
1134 addr, write_fault, page);
1135 up_read(&current->mm->mmap_sem);
1136 } else
1137 npages = get_user_pages_fast(addr, 1, write_fault,
1138 page);
1139
1140 /* map read fault as writable if possible */
1141 if (unlikely(!write_fault) && npages == 1) {
1142 struct page *wpage[1];
1143
1144 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1145 if (npages == 1) {
1146 *writable = true;
1147 put_page(page[0]);
1148 page[0] = wpage[0];
1149 }
1150 npages = 1;
1151 }
1152 }
1153
1154 if (unlikely(npages != 1)) {
1155 struct vm_area_struct *vma;
1156
1157 if (atomic)
1158 return get_fault_pfn();
1159
1160 down_read(&current->mm->mmap_sem);
1161 if (npages == -EHWPOISON ||
1162 (!async && check_user_page_hwpoison(addr))) {
1163 up_read(&current->mm->mmap_sem);
1164 get_page(hwpoison_page);
1165 return page_to_pfn(hwpoison_page);
1166 }
1167
1168 vma = find_vma_intersection(current->mm, addr, addr+1);
1169
1170 if (vma == NULL)
1171 pfn = get_fault_pfn();
1172 else if ((vma->vm_flags & VM_PFNMAP)) {
1173 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1174 vma->vm_pgoff;
1175 BUG_ON(!kvm_is_mmio_pfn(pfn));
1176 } else {
1177 if (async && (vma->vm_flags & VM_WRITE))
1178 *async = true;
1179 pfn = get_fault_pfn();
1180 }
1181 up_read(&current->mm->mmap_sem);
1182 } else
1183 pfn = page_to_pfn(page[0]);
1184
1185 return pfn;
1186 }
1187
1188 pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1189 {
1190 return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1191 }
1192 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1193
1194 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1195 bool write_fault, bool *writable)
1196 {
1197 unsigned long addr;
1198
1199 if (async)
1200 *async = false;
1201
1202 addr = gfn_to_hva(kvm, gfn);
1203 if (kvm_is_error_hva(addr)) {
1204 get_page(bad_page);
1205 return page_to_pfn(bad_page);
1206 }
1207
1208 return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1209 }
1210
1211 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1212 {
1213 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1214 }
1215 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1216
1217 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1218 bool write_fault, bool *writable)
1219 {
1220 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1221 }
1222 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1223
1224 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1225 {
1226 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1227 }
1228 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1229
1230 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1231 bool *writable)
1232 {
1233 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1234 }
1235 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1236
1237 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1238 struct kvm_memory_slot *slot, gfn_t gfn)
1239 {
1240 unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1241 return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1242 }
1243
1244 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1245 int nr_pages)
1246 {
1247 unsigned long addr;
1248 gfn_t entry;
1249
1250 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1251 if (kvm_is_error_hva(addr))
1252 return -1;
1253
1254 if (entry < nr_pages)
1255 return 0;
1256
1257 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1258 }
1259 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1260
1261 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1262 {
1263 pfn_t pfn;
1264
1265 pfn = gfn_to_pfn(kvm, gfn);
1266 if (!kvm_is_mmio_pfn(pfn))
1267 return pfn_to_page(pfn);
1268
1269 WARN_ON(kvm_is_mmio_pfn(pfn));
1270
1271 get_page(bad_page);
1272 return bad_page;
1273 }
1274
1275 EXPORT_SYMBOL_GPL(gfn_to_page);
1276
1277 void kvm_release_page_clean(struct page *page)
1278 {
1279 kvm_release_pfn_clean(page_to_pfn(page));
1280 }
1281 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1282
1283 void kvm_release_pfn_clean(pfn_t pfn)
1284 {
1285 if (!kvm_is_mmio_pfn(pfn))
1286 put_page(pfn_to_page(pfn));
1287 }
1288 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1289
1290 void kvm_release_page_dirty(struct page *page)
1291 {
1292 kvm_release_pfn_dirty(page_to_pfn(page));
1293 }
1294 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1295
1296 void kvm_release_pfn_dirty(pfn_t pfn)
1297 {
1298 kvm_set_pfn_dirty(pfn);
1299 kvm_release_pfn_clean(pfn);
1300 }
1301 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1302
1303 void kvm_set_page_dirty(struct page *page)
1304 {
1305 kvm_set_pfn_dirty(page_to_pfn(page));
1306 }
1307 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1308
1309 void kvm_set_pfn_dirty(pfn_t pfn)
1310 {
1311 if (!kvm_is_mmio_pfn(pfn)) {
1312 struct page *page = pfn_to_page(pfn);
1313 if (!PageReserved(page))
1314 SetPageDirty(page);
1315 }
1316 }
1317 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1318
1319 void kvm_set_pfn_accessed(pfn_t pfn)
1320 {
1321 if (!kvm_is_mmio_pfn(pfn))
1322 mark_page_accessed(pfn_to_page(pfn));
1323 }
1324 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1325
1326 void kvm_get_pfn(pfn_t pfn)
1327 {
1328 if (!kvm_is_mmio_pfn(pfn))
1329 get_page(pfn_to_page(pfn));
1330 }
1331 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1332
1333 static int next_segment(unsigned long len, int offset)
1334 {
1335 if (len > PAGE_SIZE - offset)
1336 return PAGE_SIZE - offset;
1337 else
1338 return len;
1339 }
1340
1341 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1342 int len)
1343 {
1344 int r;
1345 unsigned long addr;
1346
1347 addr = gfn_to_hva(kvm, gfn);
1348 if (kvm_is_error_hva(addr))
1349 return -EFAULT;
1350 r = __copy_from_user(data, (void __user *)addr + offset, len);
1351 if (r)
1352 return -EFAULT;
1353 return 0;
1354 }
1355 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1356
1357 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1358 {
1359 gfn_t gfn = gpa >> PAGE_SHIFT;
1360 int seg;
1361 int offset = offset_in_page(gpa);
1362 int ret;
1363
1364 while ((seg = next_segment(len, offset)) != 0) {
1365 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1366 if (ret < 0)
1367 return ret;
1368 offset = 0;
1369 len -= seg;
1370 data += seg;
1371 ++gfn;
1372 }
1373 return 0;
1374 }
1375 EXPORT_SYMBOL_GPL(kvm_read_guest);
1376
1377 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1378 unsigned long len)
1379 {
1380 int r;
1381 unsigned long addr;
1382 gfn_t gfn = gpa >> PAGE_SHIFT;
1383 int offset = offset_in_page(gpa);
1384
1385 addr = gfn_to_hva(kvm, gfn);
1386 if (kvm_is_error_hva(addr))
1387 return -EFAULT;
1388 pagefault_disable();
1389 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1390 pagefault_enable();
1391 if (r)
1392 return -EFAULT;
1393 return 0;
1394 }
1395 EXPORT_SYMBOL(kvm_read_guest_atomic);
1396
1397 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1398 int offset, int len)
1399 {
1400 int r;
1401 unsigned long addr;
1402
1403 addr = gfn_to_hva(kvm, gfn);
1404 if (kvm_is_error_hva(addr))
1405 return -EFAULT;
1406 r = __copy_to_user((void __user *)addr + offset, data, len);
1407 if (r)
1408 return -EFAULT;
1409 mark_page_dirty(kvm, gfn);
1410 return 0;
1411 }
1412 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1413
1414 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1415 unsigned long len)
1416 {
1417 gfn_t gfn = gpa >> PAGE_SHIFT;
1418 int seg;
1419 int offset = offset_in_page(gpa);
1420 int ret;
1421
1422 while ((seg = next_segment(len, offset)) != 0) {
1423 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1424 if (ret < 0)
1425 return ret;
1426 offset = 0;
1427 len -= seg;
1428 data += seg;
1429 ++gfn;
1430 }
1431 return 0;
1432 }
1433
1434 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1435 gpa_t gpa)
1436 {
1437 struct kvm_memslots *slots = kvm_memslots(kvm);
1438 int offset = offset_in_page(gpa);
1439 gfn_t gfn = gpa >> PAGE_SHIFT;
1440
1441 ghc->gpa = gpa;
1442 ghc->generation = slots->generation;
1443 ghc->memslot = gfn_to_memslot(kvm, gfn);
1444 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1445 if (!kvm_is_error_hva(ghc->hva))
1446 ghc->hva += offset;
1447 else
1448 return -EFAULT;
1449
1450 return 0;
1451 }
1452 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1453
1454 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1455 void *data, unsigned long len)
1456 {
1457 struct kvm_memslots *slots = kvm_memslots(kvm);
1458 int r;
1459
1460 if (slots->generation != ghc->generation)
1461 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1462
1463 if (kvm_is_error_hva(ghc->hva))
1464 return -EFAULT;
1465
1466 r = __copy_to_user((void __user *)ghc->hva, data, len);
1467 if (r)
1468 return -EFAULT;
1469 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1470
1471 return 0;
1472 }
1473 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1474
1475 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1476 void *data, unsigned long len)
1477 {
1478 struct kvm_memslots *slots = kvm_memslots(kvm);
1479 int r;
1480
1481 if (slots->generation != ghc->generation)
1482 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1483
1484 if (kvm_is_error_hva(ghc->hva))
1485 return -EFAULT;
1486
1487 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1488 if (r)
1489 return -EFAULT;
1490
1491 return 0;
1492 }
1493 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1494
1495 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1496 {
1497 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1498 offset, len);
1499 }
1500 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1501
1502 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1503 {
1504 gfn_t gfn = gpa >> PAGE_SHIFT;
1505 int seg;
1506 int offset = offset_in_page(gpa);
1507 int ret;
1508
1509 while ((seg = next_segment(len, offset)) != 0) {
1510 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1511 if (ret < 0)
1512 return ret;
1513 offset = 0;
1514 len -= seg;
1515 ++gfn;
1516 }
1517 return 0;
1518 }
1519 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1520
1521 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1522 gfn_t gfn)
1523 {
1524 if (memslot && memslot->dirty_bitmap) {
1525 unsigned long rel_gfn = gfn - memslot->base_gfn;
1526
1527 if (!test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap))
1528 memslot->nr_dirty_pages++;
1529 }
1530 }
1531
1532 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1533 {
1534 struct kvm_memory_slot *memslot;
1535
1536 memslot = gfn_to_memslot(kvm, gfn);
1537 mark_page_dirty_in_slot(kvm, memslot, gfn);
1538 }
1539
1540 /*
1541 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1542 */
1543 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1544 {
1545 DEFINE_WAIT(wait);
1546
1547 for (;;) {
1548 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1549
1550 if (kvm_arch_vcpu_runnable(vcpu)) {
1551 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1552 break;
1553 }
1554 if (kvm_cpu_has_pending_timer(vcpu))
1555 break;
1556 if (signal_pending(current))
1557 break;
1558
1559 schedule();
1560 }
1561
1562 finish_wait(&vcpu->wq, &wait);
1563 }
1564
1565 void kvm_resched(struct kvm_vcpu *vcpu)
1566 {
1567 if (!need_resched())
1568 return;
1569 cond_resched();
1570 }
1571 EXPORT_SYMBOL_GPL(kvm_resched);
1572
1573 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1574 {
1575 struct kvm *kvm = me->kvm;
1576 struct kvm_vcpu *vcpu;
1577 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1578 int yielded = 0;
1579 int pass;
1580 int i;
1581
1582 /*
1583 * We boost the priority of a VCPU that is runnable but not
1584 * currently running, because it got preempted by something
1585 * else and called schedule in __vcpu_run. Hopefully that
1586 * VCPU is holding the lock that we need and will release it.
1587 * We approximate round-robin by starting at the last boosted VCPU.
1588 */
1589 for (pass = 0; pass < 2 && !yielded; pass++) {
1590 kvm_for_each_vcpu(i, vcpu, kvm) {
1591 struct task_struct *task = NULL;
1592 struct pid *pid;
1593 if (!pass && i < last_boosted_vcpu) {
1594 i = last_boosted_vcpu;
1595 continue;
1596 } else if (pass && i > last_boosted_vcpu)
1597 break;
1598 if (vcpu == me)
1599 continue;
1600 if (waitqueue_active(&vcpu->wq))
1601 continue;
1602 rcu_read_lock();
1603 pid = rcu_dereference(vcpu->pid);
1604 if (pid)
1605 task = get_pid_task(vcpu->pid, PIDTYPE_PID);
1606 rcu_read_unlock();
1607 if (!task)
1608 continue;
1609 if (task->flags & PF_VCPU) {
1610 put_task_struct(task);
1611 continue;
1612 }
1613 if (yield_to(task, 1)) {
1614 put_task_struct(task);
1615 kvm->last_boosted_vcpu = i;
1616 yielded = 1;
1617 break;
1618 }
1619 put_task_struct(task);
1620 }
1621 }
1622 }
1623 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1624
1625 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1626 {
1627 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1628 struct page *page;
1629
1630 if (vmf->pgoff == 0)
1631 page = virt_to_page(vcpu->run);
1632 #ifdef CONFIG_X86
1633 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1634 page = virt_to_page(vcpu->arch.pio_data);
1635 #endif
1636 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1637 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1638 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1639 #endif
1640 else
1641 return kvm_arch_vcpu_fault(vcpu, vmf);
1642 get_page(page);
1643 vmf->page = page;
1644 return 0;
1645 }
1646
1647 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1648 .fault = kvm_vcpu_fault,
1649 };
1650
1651 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1652 {
1653 vma->vm_ops = &kvm_vcpu_vm_ops;
1654 return 0;
1655 }
1656
1657 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1658 {
1659 struct kvm_vcpu *vcpu = filp->private_data;
1660
1661 kvm_put_kvm(vcpu->kvm);
1662 return 0;
1663 }
1664
1665 static struct file_operations kvm_vcpu_fops = {
1666 .release = kvm_vcpu_release,
1667 .unlocked_ioctl = kvm_vcpu_ioctl,
1668 #ifdef CONFIG_COMPAT
1669 .compat_ioctl = kvm_vcpu_compat_ioctl,
1670 #endif
1671 .mmap = kvm_vcpu_mmap,
1672 .llseek = noop_llseek,
1673 };
1674
1675 /*
1676 * Allocates an inode for the vcpu.
1677 */
1678 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1679 {
1680 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1681 }
1682
1683 /*
1684 * Creates some virtual cpus. Good luck creating more than one.
1685 */
1686 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1687 {
1688 int r;
1689 struct kvm_vcpu *vcpu, *v;
1690
1691 vcpu = kvm_arch_vcpu_create(kvm, id);
1692 if (IS_ERR(vcpu))
1693 return PTR_ERR(vcpu);
1694
1695 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1696
1697 r = kvm_arch_vcpu_setup(vcpu);
1698 if (r)
1699 goto vcpu_destroy;
1700
1701 mutex_lock(&kvm->lock);
1702 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1703 r = -EINVAL;
1704 goto unlock_vcpu_destroy;
1705 }
1706
1707 kvm_for_each_vcpu(r, v, kvm)
1708 if (v->vcpu_id == id) {
1709 r = -EEXIST;
1710 goto unlock_vcpu_destroy;
1711 }
1712
1713 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1714
1715 /* Now it's all set up, let userspace reach it */
1716 kvm_get_kvm(kvm);
1717 r = create_vcpu_fd(vcpu);
1718 if (r < 0) {
1719 kvm_put_kvm(kvm);
1720 goto unlock_vcpu_destroy;
1721 }
1722
1723 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1724 smp_wmb();
1725 atomic_inc(&kvm->online_vcpus);
1726
1727 mutex_unlock(&kvm->lock);
1728 return r;
1729
1730 unlock_vcpu_destroy:
1731 mutex_unlock(&kvm->lock);
1732 vcpu_destroy:
1733 kvm_arch_vcpu_destroy(vcpu);
1734 return r;
1735 }
1736
1737 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1738 {
1739 if (sigset) {
1740 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1741 vcpu->sigset_active = 1;
1742 vcpu->sigset = *sigset;
1743 } else
1744 vcpu->sigset_active = 0;
1745 return 0;
1746 }
1747
1748 static long kvm_vcpu_ioctl(struct file *filp,
1749 unsigned int ioctl, unsigned long arg)
1750 {
1751 struct kvm_vcpu *vcpu = filp->private_data;
1752 void __user *argp = (void __user *)arg;
1753 int r;
1754 struct kvm_fpu *fpu = NULL;
1755 struct kvm_sregs *kvm_sregs = NULL;
1756
1757 if (vcpu->kvm->mm != current->mm)
1758 return -EIO;
1759
1760 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1761 /*
1762 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1763 * so vcpu_load() would break it.
1764 */
1765 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1766 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1767 #endif
1768
1769
1770 vcpu_load(vcpu);
1771 switch (ioctl) {
1772 case KVM_RUN:
1773 r = -EINVAL;
1774 if (arg)
1775 goto out;
1776 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1777 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1778 break;
1779 case KVM_GET_REGS: {
1780 struct kvm_regs *kvm_regs;
1781
1782 r = -ENOMEM;
1783 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1784 if (!kvm_regs)
1785 goto out;
1786 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1787 if (r)
1788 goto out_free1;
1789 r = -EFAULT;
1790 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1791 goto out_free1;
1792 r = 0;
1793 out_free1:
1794 kfree(kvm_regs);
1795 break;
1796 }
1797 case KVM_SET_REGS: {
1798 struct kvm_regs *kvm_regs;
1799
1800 r = -ENOMEM;
1801 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1802 if (IS_ERR(kvm_regs)) {
1803 r = PTR_ERR(kvm_regs);
1804 goto out;
1805 }
1806 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1807 if (r)
1808 goto out_free2;
1809 r = 0;
1810 out_free2:
1811 kfree(kvm_regs);
1812 break;
1813 }
1814 case KVM_GET_SREGS: {
1815 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1816 r = -ENOMEM;
1817 if (!kvm_sregs)
1818 goto out;
1819 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1820 if (r)
1821 goto out;
1822 r = -EFAULT;
1823 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1824 goto out;
1825 r = 0;
1826 break;
1827 }
1828 case KVM_SET_SREGS: {
1829 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
1830 if (IS_ERR(kvm_sregs)) {
1831 r = PTR_ERR(kvm_sregs);
1832 goto out;
1833 }
1834 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1835 if (r)
1836 goto out;
1837 r = 0;
1838 break;
1839 }
1840 case KVM_GET_MP_STATE: {
1841 struct kvm_mp_state mp_state;
1842
1843 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1844 if (r)
1845 goto out;
1846 r = -EFAULT;
1847 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1848 goto out;
1849 r = 0;
1850 break;
1851 }
1852 case KVM_SET_MP_STATE: {
1853 struct kvm_mp_state mp_state;
1854
1855 r = -EFAULT;
1856 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1857 goto out;
1858 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1859 if (r)
1860 goto out;
1861 r = 0;
1862 break;
1863 }
1864 case KVM_TRANSLATE: {
1865 struct kvm_translation tr;
1866
1867 r = -EFAULT;
1868 if (copy_from_user(&tr, argp, sizeof tr))
1869 goto out;
1870 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1871 if (r)
1872 goto out;
1873 r = -EFAULT;
1874 if (copy_to_user(argp, &tr, sizeof tr))
1875 goto out;
1876 r = 0;
1877 break;
1878 }
1879 case KVM_SET_GUEST_DEBUG: {
1880 struct kvm_guest_debug dbg;
1881
1882 r = -EFAULT;
1883 if (copy_from_user(&dbg, argp, sizeof dbg))
1884 goto out;
1885 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1886 if (r)
1887 goto out;
1888 r = 0;
1889 break;
1890 }
1891 case KVM_SET_SIGNAL_MASK: {
1892 struct kvm_signal_mask __user *sigmask_arg = argp;
1893 struct kvm_signal_mask kvm_sigmask;
1894 sigset_t sigset, *p;
1895
1896 p = NULL;
1897 if (argp) {
1898 r = -EFAULT;
1899 if (copy_from_user(&kvm_sigmask, argp,
1900 sizeof kvm_sigmask))
1901 goto out;
1902 r = -EINVAL;
1903 if (kvm_sigmask.len != sizeof sigset)
1904 goto out;
1905 r = -EFAULT;
1906 if (copy_from_user(&sigset, sigmask_arg->sigset,
1907 sizeof sigset))
1908 goto out;
1909 p = &sigset;
1910 }
1911 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1912 break;
1913 }
1914 case KVM_GET_FPU: {
1915 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1916 r = -ENOMEM;
1917 if (!fpu)
1918 goto out;
1919 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1920 if (r)
1921 goto out;
1922 r = -EFAULT;
1923 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1924 goto out;
1925 r = 0;
1926 break;
1927 }
1928 case KVM_SET_FPU: {
1929 fpu = memdup_user(argp, sizeof(*fpu));
1930 if (IS_ERR(fpu)) {
1931 r = PTR_ERR(fpu);
1932 goto out;
1933 }
1934 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1935 if (r)
1936 goto out;
1937 r = 0;
1938 break;
1939 }
1940 default:
1941 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1942 }
1943 out:
1944 vcpu_put(vcpu);
1945 kfree(fpu);
1946 kfree(kvm_sregs);
1947 return r;
1948 }
1949
1950 #ifdef CONFIG_COMPAT
1951 static long kvm_vcpu_compat_ioctl(struct file *filp,
1952 unsigned int ioctl, unsigned long arg)
1953 {
1954 struct kvm_vcpu *vcpu = filp->private_data;
1955 void __user *argp = compat_ptr(arg);
1956 int r;
1957
1958 if (vcpu->kvm->mm != current->mm)
1959 return -EIO;
1960
1961 switch (ioctl) {
1962 case KVM_SET_SIGNAL_MASK: {
1963 struct kvm_signal_mask __user *sigmask_arg = argp;
1964 struct kvm_signal_mask kvm_sigmask;
1965 compat_sigset_t csigset;
1966 sigset_t sigset;
1967
1968 if (argp) {
1969 r = -EFAULT;
1970 if (copy_from_user(&kvm_sigmask, argp,
1971 sizeof kvm_sigmask))
1972 goto out;
1973 r = -EINVAL;
1974 if (kvm_sigmask.len != sizeof csigset)
1975 goto out;
1976 r = -EFAULT;
1977 if (copy_from_user(&csigset, sigmask_arg->sigset,
1978 sizeof csigset))
1979 goto out;
1980 }
1981 sigset_from_compat(&sigset, &csigset);
1982 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1983 break;
1984 }
1985 default:
1986 r = kvm_vcpu_ioctl(filp, ioctl, arg);
1987 }
1988
1989 out:
1990 return r;
1991 }
1992 #endif
1993
1994 static long kvm_vm_ioctl(struct file *filp,
1995 unsigned int ioctl, unsigned long arg)
1996 {
1997 struct kvm *kvm = filp->private_data;
1998 void __user *argp = (void __user *)arg;
1999 int r;
2000
2001 if (kvm->mm != current->mm)
2002 return -EIO;
2003 switch (ioctl) {
2004 case KVM_CREATE_VCPU:
2005 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2006 if (r < 0)
2007 goto out;
2008 break;
2009 case KVM_SET_USER_MEMORY_REGION: {
2010 struct kvm_userspace_memory_region kvm_userspace_mem;
2011
2012 r = -EFAULT;
2013 if (copy_from_user(&kvm_userspace_mem, argp,
2014 sizeof kvm_userspace_mem))
2015 goto out;
2016
2017 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2018 if (r)
2019 goto out;
2020 break;
2021 }
2022 case KVM_GET_DIRTY_LOG: {
2023 struct kvm_dirty_log log;
2024
2025 r = -EFAULT;
2026 if (copy_from_user(&log, argp, sizeof log))
2027 goto out;
2028 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2029 if (r)
2030 goto out;
2031 break;
2032 }
2033 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2034 case KVM_REGISTER_COALESCED_MMIO: {
2035 struct kvm_coalesced_mmio_zone zone;
2036 r = -EFAULT;
2037 if (copy_from_user(&zone, argp, sizeof zone))
2038 goto out;
2039 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2040 if (r)
2041 goto out;
2042 r = 0;
2043 break;
2044 }
2045 case KVM_UNREGISTER_COALESCED_MMIO: {
2046 struct kvm_coalesced_mmio_zone zone;
2047 r = -EFAULT;
2048 if (copy_from_user(&zone, argp, sizeof zone))
2049 goto out;
2050 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2051 if (r)
2052 goto out;
2053 r = 0;
2054 break;
2055 }
2056 #endif
2057 case KVM_IRQFD: {
2058 struct kvm_irqfd data;
2059
2060 r = -EFAULT;
2061 if (copy_from_user(&data, argp, sizeof data))
2062 goto out;
2063 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2064 break;
2065 }
2066 case KVM_IOEVENTFD: {
2067 struct kvm_ioeventfd data;
2068
2069 r = -EFAULT;
2070 if (copy_from_user(&data, argp, sizeof data))
2071 goto out;
2072 r = kvm_ioeventfd(kvm, &data);
2073 break;
2074 }
2075 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2076 case KVM_SET_BOOT_CPU_ID:
2077 r = 0;
2078 mutex_lock(&kvm->lock);
2079 if (atomic_read(&kvm->online_vcpus) != 0)
2080 r = -EBUSY;
2081 else
2082 kvm->bsp_vcpu_id = arg;
2083 mutex_unlock(&kvm->lock);
2084 break;
2085 #endif
2086 default:
2087 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2088 if (r == -ENOTTY)
2089 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2090 }
2091 out:
2092 return r;
2093 }
2094
2095 #ifdef CONFIG_COMPAT
2096 struct compat_kvm_dirty_log {
2097 __u32 slot;
2098 __u32 padding1;
2099 union {
2100 compat_uptr_t dirty_bitmap; /* one bit per page */
2101 __u64 padding2;
2102 };
2103 };
2104
2105 static long kvm_vm_compat_ioctl(struct file *filp,
2106 unsigned int ioctl, unsigned long arg)
2107 {
2108 struct kvm *kvm = filp->private_data;
2109 int r;
2110
2111 if (kvm->mm != current->mm)
2112 return -EIO;
2113 switch (ioctl) {
2114 case KVM_GET_DIRTY_LOG: {
2115 struct compat_kvm_dirty_log compat_log;
2116 struct kvm_dirty_log log;
2117
2118 r = -EFAULT;
2119 if (copy_from_user(&compat_log, (void __user *)arg,
2120 sizeof(compat_log)))
2121 goto out;
2122 log.slot = compat_log.slot;
2123 log.padding1 = compat_log.padding1;
2124 log.padding2 = compat_log.padding2;
2125 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2126
2127 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2128 if (r)
2129 goto out;
2130 break;
2131 }
2132 default:
2133 r = kvm_vm_ioctl(filp, ioctl, arg);
2134 }
2135
2136 out:
2137 return r;
2138 }
2139 #endif
2140
2141 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2142 {
2143 struct page *page[1];
2144 unsigned long addr;
2145 int npages;
2146 gfn_t gfn = vmf->pgoff;
2147 struct kvm *kvm = vma->vm_file->private_data;
2148
2149 addr = gfn_to_hva(kvm, gfn);
2150 if (kvm_is_error_hva(addr))
2151 return VM_FAULT_SIGBUS;
2152
2153 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2154 NULL);
2155 if (unlikely(npages != 1))
2156 return VM_FAULT_SIGBUS;
2157
2158 vmf->page = page[0];
2159 return 0;
2160 }
2161
2162 static const struct vm_operations_struct kvm_vm_vm_ops = {
2163 .fault = kvm_vm_fault,
2164 };
2165
2166 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2167 {
2168 vma->vm_ops = &kvm_vm_vm_ops;
2169 return 0;
2170 }
2171
2172 static struct file_operations kvm_vm_fops = {
2173 .release = kvm_vm_release,
2174 .unlocked_ioctl = kvm_vm_ioctl,
2175 #ifdef CONFIG_COMPAT
2176 .compat_ioctl = kvm_vm_compat_ioctl,
2177 #endif
2178 .mmap = kvm_vm_mmap,
2179 .llseek = noop_llseek,
2180 };
2181
2182 static int kvm_dev_ioctl_create_vm(unsigned long type)
2183 {
2184 int r;
2185 struct kvm *kvm;
2186
2187 kvm = kvm_create_vm(type);
2188 if (IS_ERR(kvm))
2189 return PTR_ERR(kvm);
2190 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2191 r = kvm_coalesced_mmio_init(kvm);
2192 if (r < 0) {
2193 kvm_put_kvm(kvm);
2194 return r;
2195 }
2196 #endif
2197 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2198 if (r < 0)
2199 kvm_put_kvm(kvm);
2200
2201 return r;
2202 }
2203
2204 static long kvm_dev_ioctl_check_extension_generic(long arg)
2205 {
2206 switch (arg) {
2207 case KVM_CAP_USER_MEMORY:
2208 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2209 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2210 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2211 case KVM_CAP_SET_BOOT_CPU_ID:
2212 #endif
2213 case KVM_CAP_INTERNAL_ERROR_DATA:
2214 return 1;
2215 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2216 case KVM_CAP_IRQ_ROUTING:
2217 return KVM_MAX_IRQ_ROUTES;
2218 #endif
2219 default:
2220 break;
2221 }
2222 return kvm_dev_ioctl_check_extension(arg);
2223 }
2224
2225 static long kvm_dev_ioctl(struct file *filp,
2226 unsigned int ioctl, unsigned long arg)
2227 {
2228 long r = -EINVAL;
2229
2230 switch (ioctl) {
2231 case KVM_GET_API_VERSION:
2232 r = -EINVAL;
2233 if (arg)
2234 goto out;
2235 r = KVM_API_VERSION;
2236 break;
2237 case KVM_CREATE_VM:
2238 r = kvm_dev_ioctl_create_vm(arg);
2239 break;
2240 case KVM_CHECK_EXTENSION:
2241 r = kvm_dev_ioctl_check_extension_generic(arg);
2242 break;
2243 case KVM_GET_VCPU_MMAP_SIZE:
2244 r = -EINVAL;
2245 if (arg)
2246 goto out;
2247 r = PAGE_SIZE; /* struct kvm_run */
2248 #ifdef CONFIG_X86
2249 r += PAGE_SIZE; /* pio data page */
2250 #endif
2251 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2252 r += PAGE_SIZE; /* coalesced mmio ring page */
2253 #endif
2254 break;
2255 case KVM_TRACE_ENABLE:
2256 case KVM_TRACE_PAUSE:
2257 case KVM_TRACE_DISABLE:
2258 r = -EOPNOTSUPP;
2259 break;
2260 default:
2261 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2262 }
2263 out:
2264 return r;
2265 }
2266
2267 static struct file_operations kvm_chardev_ops = {
2268 .unlocked_ioctl = kvm_dev_ioctl,
2269 .compat_ioctl = kvm_dev_ioctl,
2270 .llseek = noop_llseek,
2271 };
2272
2273 static struct miscdevice kvm_dev = {
2274 KVM_MINOR,
2275 "kvm",
2276 &kvm_chardev_ops,
2277 };
2278
2279 static void hardware_enable_nolock(void *junk)
2280 {
2281 int cpu = raw_smp_processor_id();
2282 int r;
2283
2284 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2285 return;
2286
2287 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2288
2289 r = kvm_arch_hardware_enable(NULL);
2290
2291 if (r) {
2292 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2293 atomic_inc(&hardware_enable_failed);
2294 printk(KERN_INFO "kvm: enabling virtualization on "
2295 "CPU%d failed\n", cpu);
2296 }
2297 }
2298
2299 static void hardware_enable(void *junk)
2300 {
2301 raw_spin_lock(&kvm_lock);
2302 hardware_enable_nolock(junk);
2303 raw_spin_unlock(&kvm_lock);
2304 }
2305
2306 static void hardware_disable_nolock(void *junk)
2307 {
2308 int cpu = raw_smp_processor_id();
2309
2310 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2311 return;
2312 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2313 kvm_arch_hardware_disable(NULL);
2314 }
2315
2316 static void hardware_disable(void *junk)
2317 {
2318 raw_spin_lock(&kvm_lock);
2319 hardware_disable_nolock(junk);
2320 raw_spin_unlock(&kvm_lock);
2321 }
2322
2323 static void hardware_disable_all_nolock(void)
2324 {
2325 BUG_ON(!kvm_usage_count);
2326
2327 kvm_usage_count--;
2328 if (!kvm_usage_count)
2329 on_each_cpu(hardware_disable_nolock, NULL, 1);
2330 }
2331
2332 static void hardware_disable_all(void)
2333 {
2334 raw_spin_lock(&kvm_lock);
2335 hardware_disable_all_nolock();
2336 raw_spin_unlock(&kvm_lock);
2337 }
2338
2339 static int hardware_enable_all(void)
2340 {
2341 int r = 0;
2342
2343 raw_spin_lock(&kvm_lock);
2344
2345 kvm_usage_count++;
2346 if (kvm_usage_count == 1) {
2347 atomic_set(&hardware_enable_failed, 0);
2348 on_each_cpu(hardware_enable_nolock, NULL, 1);
2349
2350 if (atomic_read(&hardware_enable_failed)) {
2351 hardware_disable_all_nolock();
2352 r = -EBUSY;
2353 }
2354 }
2355
2356 raw_spin_unlock(&kvm_lock);
2357
2358 return r;
2359 }
2360
2361 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2362 void *v)
2363 {
2364 int cpu = (long)v;
2365
2366 if (!kvm_usage_count)
2367 return NOTIFY_OK;
2368
2369 val &= ~CPU_TASKS_FROZEN;
2370 switch (val) {
2371 case CPU_DYING:
2372 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2373 cpu);
2374 hardware_disable(NULL);
2375 break;
2376 case CPU_STARTING:
2377 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2378 cpu);
2379 hardware_enable(NULL);
2380 break;
2381 }
2382 return NOTIFY_OK;
2383 }
2384
2385
2386 asmlinkage void kvm_spurious_fault(void)
2387 {
2388 /* Fault while not rebooting. We want the trace. */
2389 BUG();
2390 }
2391 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2392
2393 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2394 void *v)
2395 {
2396 /*
2397 * Some (well, at least mine) BIOSes hang on reboot if
2398 * in vmx root mode.
2399 *
2400 * And Intel TXT required VMX off for all cpu when system shutdown.
2401 */
2402 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2403 kvm_rebooting = true;
2404 on_each_cpu(hardware_disable_nolock, NULL, 1);
2405 return NOTIFY_OK;
2406 }
2407
2408 static struct notifier_block kvm_reboot_notifier = {
2409 .notifier_call = kvm_reboot,
2410 .priority = 0,
2411 };
2412
2413 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2414 {
2415 int i;
2416
2417 for (i = 0; i < bus->dev_count; i++) {
2418 struct kvm_io_device *pos = bus->range[i].dev;
2419
2420 kvm_iodevice_destructor(pos);
2421 }
2422 kfree(bus);
2423 }
2424
2425 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2426 {
2427 const struct kvm_io_range *r1 = p1;
2428 const struct kvm_io_range *r2 = p2;
2429
2430 if (r1->addr < r2->addr)
2431 return -1;
2432 if (r1->addr + r1->len > r2->addr + r2->len)
2433 return 1;
2434 return 0;
2435 }
2436
2437 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2438 gpa_t addr, int len)
2439 {
2440 if (bus->dev_count == NR_IOBUS_DEVS)
2441 return -ENOSPC;
2442
2443 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2444 .addr = addr,
2445 .len = len,
2446 .dev = dev,
2447 };
2448
2449 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2450 kvm_io_bus_sort_cmp, NULL);
2451
2452 return 0;
2453 }
2454
2455 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2456 gpa_t addr, int len)
2457 {
2458 struct kvm_io_range *range, key;
2459 int off;
2460
2461 key = (struct kvm_io_range) {
2462 .addr = addr,
2463 .len = len,
2464 };
2465
2466 range = bsearch(&key, bus->range, bus->dev_count,
2467 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2468 if (range == NULL)
2469 return -ENOENT;
2470
2471 off = range - bus->range;
2472
2473 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2474 off--;
2475
2476 return off;
2477 }
2478
2479 /* kvm_io_bus_write - called under kvm->slots_lock */
2480 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2481 int len, const void *val)
2482 {
2483 int idx;
2484 struct kvm_io_bus *bus;
2485 struct kvm_io_range range;
2486
2487 range = (struct kvm_io_range) {
2488 .addr = addr,
2489 .len = len,
2490 };
2491
2492 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2493 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2494 if (idx < 0)
2495 return -EOPNOTSUPP;
2496
2497 while (idx < bus->dev_count &&
2498 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2499 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2500 return 0;
2501 idx++;
2502 }
2503
2504 return -EOPNOTSUPP;
2505 }
2506
2507 /* kvm_io_bus_read - called under kvm->slots_lock */
2508 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2509 int len, void *val)
2510 {
2511 int idx;
2512 struct kvm_io_bus *bus;
2513 struct kvm_io_range range;
2514
2515 range = (struct kvm_io_range) {
2516 .addr = addr,
2517 .len = len,
2518 };
2519
2520 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2521 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2522 if (idx < 0)
2523 return -EOPNOTSUPP;
2524
2525 while (idx < bus->dev_count &&
2526 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2527 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2528 return 0;
2529 idx++;
2530 }
2531
2532 return -EOPNOTSUPP;
2533 }
2534
2535 /* Caller must hold slots_lock. */
2536 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2537 int len, struct kvm_io_device *dev)
2538 {
2539 struct kvm_io_bus *new_bus, *bus;
2540
2541 bus = kvm->buses[bus_idx];
2542 if (bus->dev_count > NR_IOBUS_DEVS-1)
2543 return -ENOSPC;
2544
2545 new_bus = kmemdup(bus, sizeof(struct kvm_io_bus), GFP_KERNEL);
2546 if (!new_bus)
2547 return -ENOMEM;
2548 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2549 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2550 synchronize_srcu_expedited(&kvm->srcu);
2551 kfree(bus);
2552
2553 return 0;
2554 }
2555
2556 /* Caller must hold slots_lock. */
2557 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2558 struct kvm_io_device *dev)
2559 {
2560 int i, r;
2561 struct kvm_io_bus *new_bus, *bus;
2562
2563 bus = kvm->buses[bus_idx];
2564
2565 new_bus = kmemdup(bus, sizeof(*bus), GFP_KERNEL);
2566 if (!new_bus)
2567 return -ENOMEM;
2568
2569 r = -ENOENT;
2570 for (i = 0; i < new_bus->dev_count; i++)
2571 if (new_bus->range[i].dev == dev) {
2572 r = 0;
2573 new_bus->dev_count--;
2574 new_bus->range[i] = new_bus->range[new_bus->dev_count];
2575 sort(new_bus->range, new_bus->dev_count,
2576 sizeof(struct kvm_io_range),
2577 kvm_io_bus_sort_cmp, NULL);
2578 break;
2579 }
2580
2581 if (r) {
2582 kfree(new_bus);
2583 return r;
2584 }
2585
2586 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2587 synchronize_srcu_expedited(&kvm->srcu);
2588 kfree(bus);
2589 return r;
2590 }
2591
2592 static struct notifier_block kvm_cpu_notifier = {
2593 .notifier_call = kvm_cpu_hotplug,
2594 };
2595
2596 static int vm_stat_get(void *_offset, u64 *val)
2597 {
2598 unsigned offset = (long)_offset;
2599 struct kvm *kvm;
2600
2601 *val = 0;
2602 raw_spin_lock(&kvm_lock);
2603 list_for_each_entry(kvm, &vm_list, vm_list)
2604 *val += *(u32 *)((void *)kvm + offset);
2605 raw_spin_unlock(&kvm_lock);
2606 return 0;
2607 }
2608
2609 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2610
2611 static int vcpu_stat_get(void *_offset, u64 *val)
2612 {
2613 unsigned offset = (long)_offset;
2614 struct kvm *kvm;
2615 struct kvm_vcpu *vcpu;
2616 int i;
2617
2618 *val = 0;
2619 raw_spin_lock(&kvm_lock);
2620 list_for_each_entry(kvm, &vm_list, vm_list)
2621 kvm_for_each_vcpu(i, vcpu, kvm)
2622 *val += *(u32 *)((void *)vcpu + offset);
2623
2624 raw_spin_unlock(&kvm_lock);
2625 return 0;
2626 }
2627
2628 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2629
2630 static const struct file_operations *stat_fops[] = {
2631 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2632 [KVM_STAT_VM] = &vm_stat_fops,
2633 };
2634
2635 static int kvm_init_debug(void)
2636 {
2637 int r = -EFAULT;
2638 struct kvm_stats_debugfs_item *p;
2639
2640 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2641 if (kvm_debugfs_dir == NULL)
2642 goto out;
2643
2644 for (p = debugfs_entries; p->name; ++p) {
2645 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2646 (void *)(long)p->offset,
2647 stat_fops[p->kind]);
2648 if (p->dentry == NULL)
2649 goto out_dir;
2650 }
2651
2652 return 0;
2653
2654 out_dir:
2655 debugfs_remove_recursive(kvm_debugfs_dir);
2656 out:
2657 return r;
2658 }
2659
2660 static void kvm_exit_debug(void)
2661 {
2662 struct kvm_stats_debugfs_item *p;
2663
2664 for (p = debugfs_entries; p->name; ++p)
2665 debugfs_remove(p->dentry);
2666 debugfs_remove(kvm_debugfs_dir);
2667 }
2668
2669 static int kvm_suspend(void)
2670 {
2671 if (kvm_usage_count)
2672 hardware_disable_nolock(NULL);
2673 return 0;
2674 }
2675
2676 static void kvm_resume(void)
2677 {
2678 if (kvm_usage_count) {
2679 WARN_ON(raw_spin_is_locked(&kvm_lock));
2680 hardware_enable_nolock(NULL);
2681 }
2682 }
2683
2684 static struct syscore_ops kvm_syscore_ops = {
2685 .suspend = kvm_suspend,
2686 .resume = kvm_resume,
2687 };
2688
2689 struct page *bad_page;
2690 pfn_t bad_pfn;
2691
2692 static inline
2693 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2694 {
2695 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2696 }
2697
2698 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2699 {
2700 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2701
2702 kvm_arch_vcpu_load(vcpu, cpu);
2703 }
2704
2705 static void kvm_sched_out(struct preempt_notifier *pn,
2706 struct task_struct *next)
2707 {
2708 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2709
2710 kvm_arch_vcpu_put(vcpu);
2711 }
2712
2713 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2714 struct module *module)
2715 {
2716 int r;
2717 int cpu;
2718
2719 r = kvm_arch_init(opaque);
2720 if (r)
2721 goto out_fail;
2722
2723 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2724
2725 if (bad_page == NULL) {
2726 r = -ENOMEM;
2727 goto out;
2728 }
2729
2730 bad_pfn = page_to_pfn(bad_page);
2731
2732 hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2733
2734 if (hwpoison_page == NULL) {
2735 r = -ENOMEM;
2736 goto out_free_0;
2737 }
2738
2739 hwpoison_pfn = page_to_pfn(hwpoison_page);
2740
2741 fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2742
2743 if (fault_page == NULL) {
2744 r = -ENOMEM;
2745 goto out_free_0;
2746 }
2747
2748 fault_pfn = page_to_pfn(fault_page);
2749
2750 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2751 r = -ENOMEM;
2752 goto out_free_0;
2753 }
2754
2755 r = kvm_arch_hardware_setup();
2756 if (r < 0)
2757 goto out_free_0a;
2758
2759 for_each_online_cpu(cpu) {
2760 smp_call_function_single(cpu,
2761 kvm_arch_check_processor_compat,
2762 &r, 1);
2763 if (r < 0)
2764 goto out_free_1;
2765 }
2766
2767 r = register_cpu_notifier(&kvm_cpu_notifier);
2768 if (r)
2769 goto out_free_2;
2770 register_reboot_notifier(&kvm_reboot_notifier);
2771
2772 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2773 if (!vcpu_align)
2774 vcpu_align = __alignof__(struct kvm_vcpu);
2775 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2776 0, NULL);
2777 if (!kvm_vcpu_cache) {
2778 r = -ENOMEM;
2779 goto out_free_3;
2780 }
2781
2782 r = kvm_async_pf_init();
2783 if (r)
2784 goto out_free;
2785
2786 kvm_chardev_ops.owner = module;
2787 kvm_vm_fops.owner = module;
2788 kvm_vcpu_fops.owner = module;
2789
2790 r = misc_register(&kvm_dev);
2791 if (r) {
2792 printk(KERN_ERR "kvm: misc device register failed\n");
2793 goto out_unreg;
2794 }
2795
2796 register_syscore_ops(&kvm_syscore_ops);
2797
2798 kvm_preempt_ops.sched_in = kvm_sched_in;
2799 kvm_preempt_ops.sched_out = kvm_sched_out;
2800
2801 r = kvm_init_debug();
2802 if (r) {
2803 printk(KERN_ERR "kvm: create debugfs files failed\n");
2804 goto out_undebugfs;
2805 }
2806
2807 return 0;
2808
2809 out_undebugfs:
2810 unregister_syscore_ops(&kvm_syscore_ops);
2811 out_unreg:
2812 kvm_async_pf_deinit();
2813 out_free:
2814 kmem_cache_destroy(kvm_vcpu_cache);
2815 out_free_3:
2816 unregister_reboot_notifier(&kvm_reboot_notifier);
2817 unregister_cpu_notifier(&kvm_cpu_notifier);
2818 out_free_2:
2819 out_free_1:
2820 kvm_arch_hardware_unsetup();
2821 out_free_0a:
2822 free_cpumask_var(cpus_hardware_enabled);
2823 out_free_0:
2824 if (fault_page)
2825 __free_page(fault_page);
2826 if (hwpoison_page)
2827 __free_page(hwpoison_page);
2828 __free_page(bad_page);
2829 out:
2830 kvm_arch_exit();
2831 out_fail:
2832 return r;
2833 }
2834 EXPORT_SYMBOL_GPL(kvm_init);
2835
2836 void kvm_exit(void)
2837 {
2838 kvm_exit_debug();
2839 misc_deregister(&kvm_dev);
2840 kmem_cache_destroy(kvm_vcpu_cache);
2841 kvm_async_pf_deinit();
2842 unregister_syscore_ops(&kvm_syscore_ops);
2843 unregister_reboot_notifier(&kvm_reboot_notifier);
2844 unregister_cpu_notifier(&kvm_cpu_notifier);
2845 on_each_cpu(hardware_disable_nolock, NULL, 1);
2846 kvm_arch_hardware_unsetup();
2847 kvm_arch_exit();
2848 free_cpumask_var(cpus_hardware_enabled);
2849 __free_page(hwpoison_page);
2850 __free_page(bad_page);
2851 }
2852 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.108105 seconds and 5 git commands to generate.