Merge commit 'fixes.2015.02.23a' into core/rcu
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 /* Architectures should define their poll value according to the halt latency */
70 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
71 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
72
73 /* Default doubles per-vcpu halt_poll_ns. */
74 static unsigned int halt_poll_ns_grow = 2;
75 module_param(halt_poll_ns_grow, int, S_IRUGO);
76
77 /* Default resets per-vcpu halt_poll_ns . */
78 static unsigned int halt_poll_ns_shrink;
79 module_param(halt_poll_ns_shrink, int, S_IRUGO);
80
81 /*
82 * Ordering of locks:
83 *
84 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
85 */
86
87 DEFINE_SPINLOCK(kvm_lock);
88 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
89 LIST_HEAD(vm_list);
90
91 static cpumask_var_t cpus_hardware_enabled;
92 static int kvm_usage_count;
93 static atomic_t hardware_enable_failed;
94
95 struct kmem_cache *kvm_vcpu_cache;
96 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
97
98 static __read_mostly struct preempt_ops kvm_preempt_ops;
99
100 struct dentry *kvm_debugfs_dir;
101 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
102
103 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
104 unsigned long arg);
105 #ifdef CONFIG_KVM_COMPAT
106 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
107 unsigned long arg);
108 #endif
109 static int hardware_enable_all(void);
110 static void hardware_disable_all(void);
111
112 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
113
114 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
115 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
116
117 __visible bool kvm_rebooting;
118 EXPORT_SYMBOL_GPL(kvm_rebooting);
119
120 static bool largepages_enabled = true;
121
122 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
123 {
124 if (pfn_valid(pfn))
125 return PageReserved(pfn_to_page(pfn));
126
127 return true;
128 }
129
130 /*
131 * Switches to specified vcpu, until a matching vcpu_put()
132 */
133 int vcpu_load(struct kvm_vcpu *vcpu)
134 {
135 int cpu;
136
137 if (mutex_lock_killable(&vcpu->mutex))
138 return -EINTR;
139 cpu = get_cpu();
140 preempt_notifier_register(&vcpu->preempt_notifier);
141 kvm_arch_vcpu_load(vcpu, cpu);
142 put_cpu();
143 return 0;
144 }
145
146 void vcpu_put(struct kvm_vcpu *vcpu)
147 {
148 preempt_disable();
149 kvm_arch_vcpu_put(vcpu);
150 preempt_notifier_unregister(&vcpu->preempt_notifier);
151 preempt_enable();
152 mutex_unlock(&vcpu->mutex);
153 }
154
155 static void ack_flush(void *_completed)
156 {
157 }
158
159 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
160 {
161 int i, cpu, me;
162 cpumask_var_t cpus;
163 bool called = true;
164 struct kvm_vcpu *vcpu;
165
166 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
167
168 me = get_cpu();
169 kvm_for_each_vcpu(i, vcpu, kvm) {
170 kvm_make_request(req, vcpu);
171 cpu = vcpu->cpu;
172
173 /* Set ->requests bit before we read ->mode */
174 smp_mb();
175
176 if (cpus != NULL && cpu != -1 && cpu != me &&
177 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
178 cpumask_set_cpu(cpu, cpus);
179 }
180 if (unlikely(cpus == NULL))
181 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
182 else if (!cpumask_empty(cpus))
183 smp_call_function_many(cpus, ack_flush, NULL, 1);
184 else
185 called = false;
186 put_cpu();
187 free_cpumask_var(cpus);
188 return called;
189 }
190
191 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
192 void kvm_flush_remote_tlbs(struct kvm *kvm)
193 {
194 long dirty_count = kvm->tlbs_dirty;
195
196 smp_mb();
197 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
198 ++kvm->stat.remote_tlb_flush;
199 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
200 }
201 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
202 #endif
203
204 void kvm_reload_remote_mmus(struct kvm *kvm)
205 {
206 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
207 }
208
209 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
210 {
211 struct page *page;
212 int r;
213
214 mutex_init(&vcpu->mutex);
215 vcpu->cpu = -1;
216 vcpu->kvm = kvm;
217 vcpu->vcpu_id = id;
218 vcpu->pid = NULL;
219 init_swait_queue_head(&vcpu->wq);
220 kvm_async_pf_vcpu_init(vcpu);
221
222 vcpu->pre_pcpu = -1;
223 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
224
225 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
226 if (!page) {
227 r = -ENOMEM;
228 goto fail;
229 }
230 vcpu->run = page_address(page);
231
232 kvm_vcpu_set_in_spin_loop(vcpu, false);
233 kvm_vcpu_set_dy_eligible(vcpu, false);
234 vcpu->preempted = false;
235
236 r = kvm_arch_vcpu_init(vcpu);
237 if (r < 0)
238 goto fail_free_run;
239 return 0;
240
241 fail_free_run:
242 free_page((unsigned long)vcpu->run);
243 fail:
244 return r;
245 }
246 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
247
248 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
249 {
250 put_pid(vcpu->pid);
251 kvm_arch_vcpu_uninit(vcpu);
252 free_page((unsigned long)vcpu->run);
253 }
254 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
255
256 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
257 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
258 {
259 return container_of(mn, struct kvm, mmu_notifier);
260 }
261
262 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
263 struct mm_struct *mm,
264 unsigned long address)
265 {
266 struct kvm *kvm = mmu_notifier_to_kvm(mn);
267 int need_tlb_flush, idx;
268
269 /*
270 * When ->invalidate_page runs, the linux pte has been zapped
271 * already but the page is still allocated until
272 * ->invalidate_page returns. So if we increase the sequence
273 * here the kvm page fault will notice if the spte can't be
274 * established because the page is going to be freed. If
275 * instead the kvm page fault establishes the spte before
276 * ->invalidate_page runs, kvm_unmap_hva will release it
277 * before returning.
278 *
279 * The sequence increase only need to be seen at spin_unlock
280 * time, and not at spin_lock time.
281 *
282 * Increasing the sequence after the spin_unlock would be
283 * unsafe because the kvm page fault could then establish the
284 * pte after kvm_unmap_hva returned, without noticing the page
285 * is going to be freed.
286 */
287 idx = srcu_read_lock(&kvm->srcu);
288 spin_lock(&kvm->mmu_lock);
289
290 kvm->mmu_notifier_seq++;
291 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
292 /* we've to flush the tlb before the pages can be freed */
293 if (need_tlb_flush)
294 kvm_flush_remote_tlbs(kvm);
295
296 spin_unlock(&kvm->mmu_lock);
297
298 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
299
300 srcu_read_unlock(&kvm->srcu, idx);
301 }
302
303 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
304 struct mm_struct *mm,
305 unsigned long address,
306 pte_t pte)
307 {
308 struct kvm *kvm = mmu_notifier_to_kvm(mn);
309 int idx;
310
311 idx = srcu_read_lock(&kvm->srcu);
312 spin_lock(&kvm->mmu_lock);
313 kvm->mmu_notifier_seq++;
314 kvm_set_spte_hva(kvm, address, pte);
315 spin_unlock(&kvm->mmu_lock);
316 srcu_read_unlock(&kvm->srcu, idx);
317 }
318
319 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
320 struct mm_struct *mm,
321 unsigned long start,
322 unsigned long end)
323 {
324 struct kvm *kvm = mmu_notifier_to_kvm(mn);
325 int need_tlb_flush = 0, idx;
326
327 idx = srcu_read_lock(&kvm->srcu);
328 spin_lock(&kvm->mmu_lock);
329 /*
330 * The count increase must become visible at unlock time as no
331 * spte can be established without taking the mmu_lock and
332 * count is also read inside the mmu_lock critical section.
333 */
334 kvm->mmu_notifier_count++;
335 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
336 need_tlb_flush |= kvm->tlbs_dirty;
337 /* we've to flush the tlb before the pages can be freed */
338 if (need_tlb_flush)
339 kvm_flush_remote_tlbs(kvm);
340
341 spin_unlock(&kvm->mmu_lock);
342 srcu_read_unlock(&kvm->srcu, idx);
343 }
344
345 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
346 struct mm_struct *mm,
347 unsigned long start,
348 unsigned long end)
349 {
350 struct kvm *kvm = mmu_notifier_to_kvm(mn);
351
352 spin_lock(&kvm->mmu_lock);
353 /*
354 * This sequence increase will notify the kvm page fault that
355 * the page that is going to be mapped in the spte could have
356 * been freed.
357 */
358 kvm->mmu_notifier_seq++;
359 smp_wmb();
360 /*
361 * The above sequence increase must be visible before the
362 * below count decrease, which is ensured by the smp_wmb above
363 * in conjunction with the smp_rmb in mmu_notifier_retry().
364 */
365 kvm->mmu_notifier_count--;
366 spin_unlock(&kvm->mmu_lock);
367
368 BUG_ON(kvm->mmu_notifier_count < 0);
369 }
370
371 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
372 struct mm_struct *mm,
373 unsigned long start,
374 unsigned long end)
375 {
376 struct kvm *kvm = mmu_notifier_to_kvm(mn);
377 int young, idx;
378
379 idx = srcu_read_lock(&kvm->srcu);
380 spin_lock(&kvm->mmu_lock);
381
382 young = kvm_age_hva(kvm, start, end);
383 if (young)
384 kvm_flush_remote_tlbs(kvm);
385
386 spin_unlock(&kvm->mmu_lock);
387 srcu_read_unlock(&kvm->srcu, idx);
388
389 return young;
390 }
391
392 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
393 struct mm_struct *mm,
394 unsigned long start,
395 unsigned long end)
396 {
397 struct kvm *kvm = mmu_notifier_to_kvm(mn);
398 int young, idx;
399
400 idx = srcu_read_lock(&kvm->srcu);
401 spin_lock(&kvm->mmu_lock);
402 /*
403 * Even though we do not flush TLB, this will still adversely
404 * affect performance on pre-Haswell Intel EPT, where there is
405 * no EPT Access Bit to clear so that we have to tear down EPT
406 * tables instead. If we find this unacceptable, we can always
407 * add a parameter to kvm_age_hva so that it effectively doesn't
408 * do anything on clear_young.
409 *
410 * Also note that currently we never issue secondary TLB flushes
411 * from clear_young, leaving this job up to the regular system
412 * cadence. If we find this inaccurate, we might come up with a
413 * more sophisticated heuristic later.
414 */
415 young = kvm_age_hva(kvm, start, end);
416 spin_unlock(&kvm->mmu_lock);
417 srcu_read_unlock(&kvm->srcu, idx);
418
419 return young;
420 }
421
422 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
423 struct mm_struct *mm,
424 unsigned long address)
425 {
426 struct kvm *kvm = mmu_notifier_to_kvm(mn);
427 int young, idx;
428
429 idx = srcu_read_lock(&kvm->srcu);
430 spin_lock(&kvm->mmu_lock);
431 young = kvm_test_age_hva(kvm, address);
432 spin_unlock(&kvm->mmu_lock);
433 srcu_read_unlock(&kvm->srcu, idx);
434
435 return young;
436 }
437
438 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
439 struct mm_struct *mm)
440 {
441 struct kvm *kvm = mmu_notifier_to_kvm(mn);
442 int idx;
443
444 idx = srcu_read_lock(&kvm->srcu);
445 kvm_arch_flush_shadow_all(kvm);
446 srcu_read_unlock(&kvm->srcu, idx);
447 }
448
449 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
450 .invalidate_page = kvm_mmu_notifier_invalidate_page,
451 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
452 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
453 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
454 .clear_young = kvm_mmu_notifier_clear_young,
455 .test_young = kvm_mmu_notifier_test_young,
456 .change_pte = kvm_mmu_notifier_change_pte,
457 .release = kvm_mmu_notifier_release,
458 };
459
460 static int kvm_init_mmu_notifier(struct kvm *kvm)
461 {
462 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
463 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
464 }
465
466 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
467
468 static int kvm_init_mmu_notifier(struct kvm *kvm)
469 {
470 return 0;
471 }
472
473 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
474
475 static struct kvm_memslots *kvm_alloc_memslots(void)
476 {
477 int i;
478 struct kvm_memslots *slots;
479
480 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
481 if (!slots)
482 return NULL;
483
484 /*
485 * Init kvm generation close to the maximum to easily test the
486 * code of handling generation number wrap-around.
487 */
488 slots->generation = -150;
489 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
490 slots->id_to_index[i] = slots->memslots[i].id = i;
491
492 return slots;
493 }
494
495 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
496 {
497 if (!memslot->dirty_bitmap)
498 return;
499
500 kvfree(memslot->dirty_bitmap);
501 memslot->dirty_bitmap = NULL;
502 }
503
504 /*
505 * Free any memory in @free but not in @dont.
506 */
507 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
508 struct kvm_memory_slot *dont)
509 {
510 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
511 kvm_destroy_dirty_bitmap(free);
512
513 kvm_arch_free_memslot(kvm, free, dont);
514
515 free->npages = 0;
516 }
517
518 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
519 {
520 struct kvm_memory_slot *memslot;
521
522 if (!slots)
523 return;
524
525 kvm_for_each_memslot(memslot, slots)
526 kvm_free_memslot(kvm, memslot, NULL);
527
528 kvfree(slots);
529 }
530
531 static struct kvm *kvm_create_vm(unsigned long type)
532 {
533 int r, i;
534 struct kvm *kvm = kvm_arch_alloc_vm();
535
536 if (!kvm)
537 return ERR_PTR(-ENOMEM);
538
539 r = kvm_arch_init_vm(kvm, type);
540 if (r)
541 goto out_err_no_disable;
542
543 r = hardware_enable_all();
544 if (r)
545 goto out_err_no_disable;
546
547 #ifdef CONFIG_HAVE_KVM_IRQFD
548 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
549 #endif
550
551 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
552
553 r = -ENOMEM;
554 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
555 kvm->memslots[i] = kvm_alloc_memslots();
556 if (!kvm->memslots[i])
557 goto out_err_no_srcu;
558 }
559
560 if (init_srcu_struct(&kvm->srcu))
561 goto out_err_no_srcu;
562 if (init_srcu_struct(&kvm->irq_srcu))
563 goto out_err_no_irq_srcu;
564 for (i = 0; i < KVM_NR_BUSES; i++) {
565 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
566 GFP_KERNEL);
567 if (!kvm->buses[i])
568 goto out_err;
569 }
570
571 spin_lock_init(&kvm->mmu_lock);
572 kvm->mm = current->mm;
573 atomic_inc(&kvm->mm->mm_count);
574 kvm_eventfd_init(kvm);
575 mutex_init(&kvm->lock);
576 mutex_init(&kvm->irq_lock);
577 mutex_init(&kvm->slots_lock);
578 atomic_set(&kvm->users_count, 1);
579 INIT_LIST_HEAD(&kvm->devices);
580
581 r = kvm_init_mmu_notifier(kvm);
582 if (r)
583 goto out_err;
584
585 spin_lock(&kvm_lock);
586 list_add(&kvm->vm_list, &vm_list);
587 spin_unlock(&kvm_lock);
588
589 preempt_notifier_inc();
590
591 return kvm;
592
593 out_err:
594 cleanup_srcu_struct(&kvm->irq_srcu);
595 out_err_no_irq_srcu:
596 cleanup_srcu_struct(&kvm->srcu);
597 out_err_no_srcu:
598 hardware_disable_all();
599 out_err_no_disable:
600 for (i = 0; i < KVM_NR_BUSES; i++)
601 kfree(kvm->buses[i]);
602 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
603 kvm_free_memslots(kvm, kvm->memslots[i]);
604 kvm_arch_free_vm(kvm);
605 return ERR_PTR(r);
606 }
607
608 /*
609 * Avoid using vmalloc for a small buffer.
610 * Should not be used when the size is statically known.
611 */
612 void *kvm_kvzalloc(unsigned long size)
613 {
614 if (size > PAGE_SIZE)
615 return vzalloc(size);
616 else
617 return kzalloc(size, GFP_KERNEL);
618 }
619
620 static void kvm_destroy_devices(struct kvm *kvm)
621 {
622 struct list_head *node, *tmp;
623
624 list_for_each_safe(node, tmp, &kvm->devices) {
625 struct kvm_device *dev =
626 list_entry(node, struct kvm_device, vm_node);
627
628 list_del(node);
629 dev->ops->destroy(dev);
630 }
631 }
632
633 static void kvm_destroy_vm(struct kvm *kvm)
634 {
635 int i;
636 struct mm_struct *mm = kvm->mm;
637
638 kvm_arch_sync_events(kvm);
639 spin_lock(&kvm_lock);
640 list_del(&kvm->vm_list);
641 spin_unlock(&kvm_lock);
642 kvm_free_irq_routing(kvm);
643 for (i = 0; i < KVM_NR_BUSES; i++)
644 kvm_io_bus_destroy(kvm->buses[i]);
645 kvm_coalesced_mmio_free(kvm);
646 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
647 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
648 #else
649 kvm_arch_flush_shadow_all(kvm);
650 #endif
651 kvm_arch_destroy_vm(kvm);
652 kvm_destroy_devices(kvm);
653 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
654 kvm_free_memslots(kvm, kvm->memslots[i]);
655 cleanup_srcu_struct(&kvm->irq_srcu);
656 cleanup_srcu_struct(&kvm->srcu);
657 kvm_arch_free_vm(kvm);
658 preempt_notifier_dec();
659 hardware_disable_all();
660 mmdrop(mm);
661 }
662
663 void kvm_get_kvm(struct kvm *kvm)
664 {
665 atomic_inc(&kvm->users_count);
666 }
667 EXPORT_SYMBOL_GPL(kvm_get_kvm);
668
669 void kvm_put_kvm(struct kvm *kvm)
670 {
671 if (atomic_dec_and_test(&kvm->users_count))
672 kvm_destroy_vm(kvm);
673 }
674 EXPORT_SYMBOL_GPL(kvm_put_kvm);
675
676
677 static int kvm_vm_release(struct inode *inode, struct file *filp)
678 {
679 struct kvm *kvm = filp->private_data;
680
681 kvm_irqfd_release(kvm);
682
683 kvm_put_kvm(kvm);
684 return 0;
685 }
686
687 /*
688 * Allocation size is twice as large as the actual dirty bitmap size.
689 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
690 */
691 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
692 {
693 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
694
695 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
696 if (!memslot->dirty_bitmap)
697 return -ENOMEM;
698
699 return 0;
700 }
701
702 /*
703 * Insert memslot and re-sort memslots based on their GFN,
704 * so binary search could be used to lookup GFN.
705 * Sorting algorithm takes advantage of having initially
706 * sorted array and known changed memslot position.
707 */
708 static void update_memslots(struct kvm_memslots *slots,
709 struct kvm_memory_slot *new)
710 {
711 int id = new->id;
712 int i = slots->id_to_index[id];
713 struct kvm_memory_slot *mslots = slots->memslots;
714
715 WARN_ON(mslots[i].id != id);
716 if (!new->npages) {
717 WARN_ON(!mslots[i].npages);
718 if (mslots[i].npages)
719 slots->used_slots--;
720 } else {
721 if (!mslots[i].npages)
722 slots->used_slots++;
723 }
724
725 while (i < KVM_MEM_SLOTS_NUM - 1 &&
726 new->base_gfn <= mslots[i + 1].base_gfn) {
727 if (!mslots[i + 1].npages)
728 break;
729 mslots[i] = mslots[i + 1];
730 slots->id_to_index[mslots[i].id] = i;
731 i++;
732 }
733
734 /*
735 * The ">=" is needed when creating a slot with base_gfn == 0,
736 * so that it moves before all those with base_gfn == npages == 0.
737 *
738 * On the other hand, if new->npages is zero, the above loop has
739 * already left i pointing to the beginning of the empty part of
740 * mslots, and the ">=" would move the hole backwards in this
741 * case---which is wrong. So skip the loop when deleting a slot.
742 */
743 if (new->npages) {
744 while (i > 0 &&
745 new->base_gfn >= mslots[i - 1].base_gfn) {
746 mslots[i] = mslots[i - 1];
747 slots->id_to_index[mslots[i].id] = i;
748 i--;
749 }
750 } else
751 WARN_ON_ONCE(i != slots->used_slots);
752
753 mslots[i] = *new;
754 slots->id_to_index[mslots[i].id] = i;
755 }
756
757 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
758 {
759 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
760
761 #ifdef __KVM_HAVE_READONLY_MEM
762 valid_flags |= KVM_MEM_READONLY;
763 #endif
764
765 if (mem->flags & ~valid_flags)
766 return -EINVAL;
767
768 return 0;
769 }
770
771 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
772 int as_id, struct kvm_memslots *slots)
773 {
774 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
775
776 /*
777 * Set the low bit in the generation, which disables SPTE caching
778 * until the end of synchronize_srcu_expedited.
779 */
780 WARN_ON(old_memslots->generation & 1);
781 slots->generation = old_memslots->generation + 1;
782
783 rcu_assign_pointer(kvm->memslots[as_id], slots);
784 synchronize_srcu_expedited(&kvm->srcu);
785
786 /*
787 * Increment the new memslot generation a second time. This prevents
788 * vm exits that race with memslot updates from caching a memslot
789 * generation that will (potentially) be valid forever.
790 */
791 slots->generation++;
792
793 kvm_arch_memslots_updated(kvm, slots);
794
795 return old_memslots;
796 }
797
798 /*
799 * Allocate some memory and give it an address in the guest physical address
800 * space.
801 *
802 * Discontiguous memory is allowed, mostly for framebuffers.
803 *
804 * Must be called holding kvm->slots_lock for write.
805 */
806 int __kvm_set_memory_region(struct kvm *kvm,
807 const struct kvm_userspace_memory_region *mem)
808 {
809 int r;
810 gfn_t base_gfn;
811 unsigned long npages;
812 struct kvm_memory_slot *slot;
813 struct kvm_memory_slot old, new;
814 struct kvm_memslots *slots = NULL, *old_memslots;
815 int as_id, id;
816 enum kvm_mr_change change;
817
818 r = check_memory_region_flags(mem);
819 if (r)
820 goto out;
821
822 r = -EINVAL;
823 as_id = mem->slot >> 16;
824 id = (u16)mem->slot;
825
826 /* General sanity checks */
827 if (mem->memory_size & (PAGE_SIZE - 1))
828 goto out;
829 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
830 goto out;
831 /* We can read the guest memory with __xxx_user() later on. */
832 if ((id < KVM_USER_MEM_SLOTS) &&
833 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
834 !access_ok(VERIFY_WRITE,
835 (void __user *)(unsigned long)mem->userspace_addr,
836 mem->memory_size)))
837 goto out;
838 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
839 goto out;
840 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
841 goto out;
842
843 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
844 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
845 npages = mem->memory_size >> PAGE_SHIFT;
846
847 if (npages > KVM_MEM_MAX_NR_PAGES)
848 goto out;
849
850 new = old = *slot;
851
852 new.id = id;
853 new.base_gfn = base_gfn;
854 new.npages = npages;
855 new.flags = mem->flags;
856
857 if (npages) {
858 if (!old.npages)
859 change = KVM_MR_CREATE;
860 else { /* Modify an existing slot. */
861 if ((mem->userspace_addr != old.userspace_addr) ||
862 (npages != old.npages) ||
863 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
864 goto out;
865
866 if (base_gfn != old.base_gfn)
867 change = KVM_MR_MOVE;
868 else if (new.flags != old.flags)
869 change = KVM_MR_FLAGS_ONLY;
870 else { /* Nothing to change. */
871 r = 0;
872 goto out;
873 }
874 }
875 } else {
876 if (!old.npages)
877 goto out;
878
879 change = KVM_MR_DELETE;
880 new.base_gfn = 0;
881 new.flags = 0;
882 }
883
884 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
885 /* Check for overlaps */
886 r = -EEXIST;
887 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
888 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
889 (slot->id == id))
890 continue;
891 if (!((base_gfn + npages <= slot->base_gfn) ||
892 (base_gfn >= slot->base_gfn + slot->npages)))
893 goto out;
894 }
895 }
896
897 /* Free page dirty bitmap if unneeded */
898 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
899 new.dirty_bitmap = NULL;
900
901 r = -ENOMEM;
902 if (change == KVM_MR_CREATE) {
903 new.userspace_addr = mem->userspace_addr;
904
905 if (kvm_arch_create_memslot(kvm, &new, npages))
906 goto out_free;
907 }
908
909 /* Allocate page dirty bitmap if needed */
910 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
911 if (kvm_create_dirty_bitmap(&new) < 0)
912 goto out_free;
913 }
914
915 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
916 if (!slots)
917 goto out_free;
918 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
919
920 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
921 slot = id_to_memslot(slots, id);
922 slot->flags |= KVM_MEMSLOT_INVALID;
923
924 old_memslots = install_new_memslots(kvm, as_id, slots);
925
926 /* slot was deleted or moved, clear iommu mapping */
927 kvm_iommu_unmap_pages(kvm, &old);
928 /* From this point no new shadow pages pointing to a deleted,
929 * or moved, memslot will be created.
930 *
931 * validation of sp->gfn happens in:
932 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
933 * - kvm_is_visible_gfn (mmu_check_roots)
934 */
935 kvm_arch_flush_shadow_memslot(kvm, slot);
936
937 /*
938 * We can re-use the old_memslots from above, the only difference
939 * from the currently installed memslots is the invalid flag. This
940 * will get overwritten by update_memslots anyway.
941 */
942 slots = old_memslots;
943 }
944
945 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
946 if (r)
947 goto out_slots;
948
949 /* actual memory is freed via old in kvm_free_memslot below */
950 if (change == KVM_MR_DELETE) {
951 new.dirty_bitmap = NULL;
952 memset(&new.arch, 0, sizeof(new.arch));
953 }
954
955 update_memslots(slots, &new);
956 old_memslots = install_new_memslots(kvm, as_id, slots);
957
958 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
959
960 kvm_free_memslot(kvm, &old, &new);
961 kvfree(old_memslots);
962
963 /*
964 * IOMMU mapping: New slots need to be mapped. Old slots need to be
965 * un-mapped and re-mapped if their base changes. Since base change
966 * unmapping is handled above with slot deletion, mapping alone is
967 * needed here. Anything else the iommu might care about for existing
968 * slots (size changes, userspace addr changes and read-only flag
969 * changes) is disallowed above, so any other attribute changes getting
970 * here can be skipped.
971 */
972 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
973 r = kvm_iommu_map_pages(kvm, &new);
974 return r;
975 }
976
977 return 0;
978
979 out_slots:
980 kvfree(slots);
981 out_free:
982 kvm_free_memslot(kvm, &new, &old);
983 out:
984 return r;
985 }
986 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
987
988 int kvm_set_memory_region(struct kvm *kvm,
989 const struct kvm_userspace_memory_region *mem)
990 {
991 int r;
992
993 mutex_lock(&kvm->slots_lock);
994 r = __kvm_set_memory_region(kvm, mem);
995 mutex_unlock(&kvm->slots_lock);
996 return r;
997 }
998 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
999
1000 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1001 struct kvm_userspace_memory_region *mem)
1002 {
1003 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1004 return -EINVAL;
1005
1006 return kvm_set_memory_region(kvm, mem);
1007 }
1008
1009 int kvm_get_dirty_log(struct kvm *kvm,
1010 struct kvm_dirty_log *log, int *is_dirty)
1011 {
1012 struct kvm_memslots *slots;
1013 struct kvm_memory_slot *memslot;
1014 int r, i, as_id, id;
1015 unsigned long n;
1016 unsigned long any = 0;
1017
1018 r = -EINVAL;
1019 as_id = log->slot >> 16;
1020 id = (u16)log->slot;
1021 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1022 goto out;
1023
1024 slots = __kvm_memslots(kvm, as_id);
1025 memslot = id_to_memslot(slots, id);
1026 r = -ENOENT;
1027 if (!memslot->dirty_bitmap)
1028 goto out;
1029
1030 n = kvm_dirty_bitmap_bytes(memslot);
1031
1032 for (i = 0; !any && i < n/sizeof(long); ++i)
1033 any = memslot->dirty_bitmap[i];
1034
1035 r = -EFAULT;
1036 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1037 goto out;
1038
1039 if (any)
1040 *is_dirty = 1;
1041
1042 r = 0;
1043 out:
1044 return r;
1045 }
1046 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1047
1048 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1049 /**
1050 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1051 * are dirty write protect them for next write.
1052 * @kvm: pointer to kvm instance
1053 * @log: slot id and address to which we copy the log
1054 * @is_dirty: flag set if any page is dirty
1055 *
1056 * We need to keep it in mind that VCPU threads can write to the bitmap
1057 * concurrently. So, to avoid losing track of dirty pages we keep the
1058 * following order:
1059 *
1060 * 1. Take a snapshot of the bit and clear it if needed.
1061 * 2. Write protect the corresponding page.
1062 * 3. Copy the snapshot to the userspace.
1063 * 4. Upon return caller flushes TLB's if needed.
1064 *
1065 * Between 2 and 4, the guest may write to the page using the remaining TLB
1066 * entry. This is not a problem because the page is reported dirty using
1067 * the snapshot taken before and step 4 ensures that writes done after
1068 * exiting to userspace will be logged for the next call.
1069 *
1070 */
1071 int kvm_get_dirty_log_protect(struct kvm *kvm,
1072 struct kvm_dirty_log *log, bool *is_dirty)
1073 {
1074 struct kvm_memslots *slots;
1075 struct kvm_memory_slot *memslot;
1076 int r, i, as_id, id;
1077 unsigned long n;
1078 unsigned long *dirty_bitmap;
1079 unsigned long *dirty_bitmap_buffer;
1080
1081 r = -EINVAL;
1082 as_id = log->slot >> 16;
1083 id = (u16)log->slot;
1084 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1085 goto out;
1086
1087 slots = __kvm_memslots(kvm, as_id);
1088 memslot = id_to_memslot(slots, id);
1089
1090 dirty_bitmap = memslot->dirty_bitmap;
1091 r = -ENOENT;
1092 if (!dirty_bitmap)
1093 goto out;
1094
1095 n = kvm_dirty_bitmap_bytes(memslot);
1096
1097 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1098 memset(dirty_bitmap_buffer, 0, n);
1099
1100 spin_lock(&kvm->mmu_lock);
1101 *is_dirty = false;
1102 for (i = 0; i < n / sizeof(long); i++) {
1103 unsigned long mask;
1104 gfn_t offset;
1105
1106 if (!dirty_bitmap[i])
1107 continue;
1108
1109 *is_dirty = true;
1110
1111 mask = xchg(&dirty_bitmap[i], 0);
1112 dirty_bitmap_buffer[i] = mask;
1113
1114 if (mask) {
1115 offset = i * BITS_PER_LONG;
1116 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1117 offset, mask);
1118 }
1119 }
1120
1121 spin_unlock(&kvm->mmu_lock);
1122
1123 r = -EFAULT;
1124 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1125 goto out;
1126
1127 r = 0;
1128 out:
1129 return r;
1130 }
1131 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1132 #endif
1133
1134 bool kvm_largepages_enabled(void)
1135 {
1136 return largepages_enabled;
1137 }
1138
1139 void kvm_disable_largepages(void)
1140 {
1141 largepages_enabled = false;
1142 }
1143 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1144
1145 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1146 {
1147 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1148 }
1149 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1150
1151 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1152 {
1153 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1154 }
1155
1156 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1157 {
1158 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1159
1160 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1161 memslot->flags & KVM_MEMSLOT_INVALID)
1162 return false;
1163
1164 return true;
1165 }
1166 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1167
1168 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1169 {
1170 struct vm_area_struct *vma;
1171 unsigned long addr, size;
1172
1173 size = PAGE_SIZE;
1174
1175 addr = gfn_to_hva(kvm, gfn);
1176 if (kvm_is_error_hva(addr))
1177 return PAGE_SIZE;
1178
1179 down_read(&current->mm->mmap_sem);
1180 vma = find_vma(current->mm, addr);
1181 if (!vma)
1182 goto out;
1183
1184 size = vma_kernel_pagesize(vma);
1185
1186 out:
1187 up_read(&current->mm->mmap_sem);
1188
1189 return size;
1190 }
1191
1192 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1193 {
1194 return slot->flags & KVM_MEM_READONLY;
1195 }
1196
1197 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1198 gfn_t *nr_pages, bool write)
1199 {
1200 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1201 return KVM_HVA_ERR_BAD;
1202
1203 if (memslot_is_readonly(slot) && write)
1204 return KVM_HVA_ERR_RO_BAD;
1205
1206 if (nr_pages)
1207 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1208
1209 return __gfn_to_hva_memslot(slot, gfn);
1210 }
1211
1212 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1213 gfn_t *nr_pages)
1214 {
1215 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1216 }
1217
1218 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1219 gfn_t gfn)
1220 {
1221 return gfn_to_hva_many(slot, gfn, NULL);
1222 }
1223 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1224
1225 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1226 {
1227 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1228 }
1229 EXPORT_SYMBOL_GPL(gfn_to_hva);
1230
1231 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1232 {
1233 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1234 }
1235 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1236
1237 /*
1238 * If writable is set to false, the hva returned by this function is only
1239 * allowed to be read.
1240 */
1241 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1242 gfn_t gfn, bool *writable)
1243 {
1244 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1245
1246 if (!kvm_is_error_hva(hva) && writable)
1247 *writable = !memslot_is_readonly(slot);
1248
1249 return hva;
1250 }
1251
1252 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1253 {
1254 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1255
1256 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1257 }
1258
1259 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1260 {
1261 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1262
1263 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1264 }
1265
1266 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1267 unsigned long start, int write, struct page **page)
1268 {
1269 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1270
1271 if (write)
1272 flags |= FOLL_WRITE;
1273
1274 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1275 }
1276
1277 static inline int check_user_page_hwpoison(unsigned long addr)
1278 {
1279 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1280
1281 rc = __get_user_pages(current, current->mm, addr, 1,
1282 flags, NULL, NULL, NULL);
1283 return rc == -EHWPOISON;
1284 }
1285
1286 /*
1287 * The atomic path to get the writable pfn which will be stored in @pfn,
1288 * true indicates success, otherwise false is returned.
1289 */
1290 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1291 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1292 {
1293 struct page *page[1];
1294 int npages;
1295
1296 if (!(async || atomic))
1297 return false;
1298
1299 /*
1300 * Fast pin a writable pfn only if it is a write fault request
1301 * or the caller allows to map a writable pfn for a read fault
1302 * request.
1303 */
1304 if (!(write_fault || writable))
1305 return false;
1306
1307 npages = __get_user_pages_fast(addr, 1, 1, page);
1308 if (npages == 1) {
1309 *pfn = page_to_pfn(page[0]);
1310
1311 if (writable)
1312 *writable = true;
1313 return true;
1314 }
1315
1316 return false;
1317 }
1318
1319 /*
1320 * The slow path to get the pfn of the specified host virtual address,
1321 * 1 indicates success, -errno is returned if error is detected.
1322 */
1323 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1324 bool *writable, kvm_pfn_t *pfn)
1325 {
1326 struct page *page[1];
1327 int npages = 0;
1328
1329 might_sleep();
1330
1331 if (writable)
1332 *writable = write_fault;
1333
1334 if (async) {
1335 down_read(&current->mm->mmap_sem);
1336 npages = get_user_page_nowait(current, current->mm,
1337 addr, write_fault, page);
1338 up_read(&current->mm->mmap_sem);
1339 } else
1340 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1341 write_fault, 0, page,
1342 FOLL_TOUCH|FOLL_HWPOISON);
1343 if (npages != 1)
1344 return npages;
1345
1346 /* map read fault as writable if possible */
1347 if (unlikely(!write_fault) && writable) {
1348 struct page *wpage[1];
1349
1350 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1351 if (npages == 1) {
1352 *writable = true;
1353 put_page(page[0]);
1354 page[0] = wpage[0];
1355 }
1356
1357 npages = 1;
1358 }
1359 *pfn = page_to_pfn(page[0]);
1360 return npages;
1361 }
1362
1363 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1364 {
1365 if (unlikely(!(vma->vm_flags & VM_READ)))
1366 return false;
1367
1368 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1369 return false;
1370
1371 return true;
1372 }
1373
1374 /*
1375 * Pin guest page in memory and return its pfn.
1376 * @addr: host virtual address which maps memory to the guest
1377 * @atomic: whether this function can sleep
1378 * @async: whether this function need to wait IO complete if the
1379 * host page is not in the memory
1380 * @write_fault: whether we should get a writable host page
1381 * @writable: whether it allows to map a writable host page for !@write_fault
1382 *
1383 * The function will map a writable host page for these two cases:
1384 * 1): @write_fault = true
1385 * 2): @write_fault = false && @writable, @writable will tell the caller
1386 * whether the mapping is writable.
1387 */
1388 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1389 bool write_fault, bool *writable)
1390 {
1391 struct vm_area_struct *vma;
1392 kvm_pfn_t pfn = 0;
1393 int npages;
1394
1395 /* we can do it either atomically or asynchronously, not both */
1396 BUG_ON(atomic && async);
1397
1398 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1399 return pfn;
1400
1401 if (atomic)
1402 return KVM_PFN_ERR_FAULT;
1403
1404 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1405 if (npages == 1)
1406 return pfn;
1407
1408 down_read(&current->mm->mmap_sem);
1409 if (npages == -EHWPOISON ||
1410 (!async && check_user_page_hwpoison(addr))) {
1411 pfn = KVM_PFN_ERR_HWPOISON;
1412 goto exit;
1413 }
1414
1415 vma = find_vma_intersection(current->mm, addr, addr + 1);
1416
1417 if (vma == NULL)
1418 pfn = KVM_PFN_ERR_FAULT;
1419 else if ((vma->vm_flags & VM_PFNMAP)) {
1420 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1421 vma->vm_pgoff;
1422 BUG_ON(!kvm_is_reserved_pfn(pfn));
1423 } else {
1424 if (async && vma_is_valid(vma, write_fault))
1425 *async = true;
1426 pfn = KVM_PFN_ERR_FAULT;
1427 }
1428 exit:
1429 up_read(&current->mm->mmap_sem);
1430 return pfn;
1431 }
1432
1433 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1434 bool atomic, bool *async, bool write_fault,
1435 bool *writable)
1436 {
1437 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1438
1439 if (addr == KVM_HVA_ERR_RO_BAD)
1440 return KVM_PFN_ERR_RO_FAULT;
1441
1442 if (kvm_is_error_hva(addr))
1443 return KVM_PFN_NOSLOT;
1444
1445 /* Do not map writable pfn in the readonly memslot. */
1446 if (writable && memslot_is_readonly(slot)) {
1447 *writable = false;
1448 writable = NULL;
1449 }
1450
1451 return hva_to_pfn(addr, atomic, async, write_fault,
1452 writable);
1453 }
1454 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1455
1456 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1457 bool *writable)
1458 {
1459 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1460 write_fault, writable);
1461 }
1462 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1463
1464 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1465 {
1466 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1467 }
1468 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1469
1470 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1471 {
1472 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1473 }
1474 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1475
1476 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1477 {
1478 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1479 }
1480 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1481
1482 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1483 {
1484 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1485 }
1486 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1487
1488 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1489 {
1490 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1491 }
1492 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1493
1494 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1495 {
1496 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1497 }
1498 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1499
1500 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1501 struct page **pages, int nr_pages)
1502 {
1503 unsigned long addr;
1504 gfn_t entry;
1505
1506 addr = gfn_to_hva_many(slot, gfn, &entry);
1507 if (kvm_is_error_hva(addr))
1508 return -1;
1509
1510 if (entry < nr_pages)
1511 return 0;
1512
1513 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1514 }
1515 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1516
1517 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1518 {
1519 if (is_error_noslot_pfn(pfn))
1520 return KVM_ERR_PTR_BAD_PAGE;
1521
1522 if (kvm_is_reserved_pfn(pfn)) {
1523 WARN_ON(1);
1524 return KVM_ERR_PTR_BAD_PAGE;
1525 }
1526
1527 return pfn_to_page(pfn);
1528 }
1529
1530 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1531 {
1532 kvm_pfn_t pfn;
1533
1534 pfn = gfn_to_pfn(kvm, gfn);
1535
1536 return kvm_pfn_to_page(pfn);
1537 }
1538 EXPORT_SYMBOL_GPL(gfn_to_page);
1539
1540 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1541 {
1542 kvm_pfn_t pfn;
1543
1544 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1545
1546 return kvm_pfn_to_page(pfn);
1547 }
1548 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1549
1550 void kvm_release_page_clean(struct page *page)
1551 {
1552 WARN_ON(is_error_page(page));
1553
1554 kvm_release_pfn_clean(page_to_pfn(page));
1555 }
1556 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1557
1558 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1559 {
1560 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1561 put_page(pfn_to_page(pfn));
1562 }
1563 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1564
1565 void kvm_release_page_dirty(struct page *page)
1566 {
1567 WARN_ON(is_error_page(page));
1568
1569 kvm_release_pfn_dirty(page_to_pfn(page));
1570 }
1571 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1572
1573 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1574 {
1575 kvm_set_pfn_dirty(pfn);
1576 kvm_release_pfn_clean(pfn);
1577 }
1578
1579 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1580 {
1581 if (!kvm_is_reserved_pfn(pfn)) {
1582 struct page *page = pfn_to_page(pfn);
1583
1584 if (!PageReserved(page))
1585 SetPageDirty(page);
1586 }
1587 }
1588 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1589
1590 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1591 {
1592 if (!kvm_is_reserved_pfn(pfn))
1593 mark_page_accessed(pfn_to_page(pfn));
1594 }
1595 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1596
1597 void kvm_get_pfn(kvm_pfn_t pfn)
1598 {
1599 if (!kvm_is_reserved_pfn(pfn))
1600 get_page(pfn_to_page(pfn));
1601 }
1602 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1603
1604 static int next_segment(unsigned long len, int offset)
1605 {
1606 if (len > PAGE_SIZE - offset)
1607 return PAGE_SIZE - offset;
1608 else
1609 return len;
1610 }
1611
1612 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1613 void *data, int offset, int len)
1614 {
1615 int r;
1616 unsigned long addr;
1617
1618 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1619 if (kvm_is_error_hva(addr))
1620 return -EFAULT;
1621 r = __copy_from_user(data, (void __user *)addr + offset, len);
1622 if (r)
1623 return -EFAULT;
1624 return 0;
1625 }
1626
1627 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1628 int len)
1629 {
1630 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1631
1632 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1633 }
1634 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1635
1636 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1637 int offset, int len)
1638 {
1639 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1640
1641 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1642 }
1643 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1644
1645 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1646 {
1647 gfn_t gfn = gpa >> PAGE_SHIFT;
1648 int seg;
1649 int offset = offset_in_page(gpa);
1650 int ret;
1651
1652 while ((seg = next_segment(len, offset)) != 0) {
1653 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1654 if (ret < 0)
1655 return ret;
1656 offset = 0;
1657 len -= seg;
1658 data += seg;
1659 ++gfn;
1660 }
1661 return 0;
1662 }
1663 EXPORT_SYMBOL_GPL(kvm_read_guest);
1664
1665 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1666 {
1667 gfn_t gfn = gpa >> PAGE_SHIFT;
1668 int seg;
1669 int offset = offset_in_page(gpa);
1670 int ret;
1671
1672 while ((seg = next_segment(len, offset)) != 0) {
1673 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1674 if (ret < 0)
1675 return ret;
1676 offset = 0;
1677 len -= seg;
1678 data += seg;
1679 ++gfn;
1680 }
1681 return 0;
1682 }
1683 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1684
1685 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1686 void *data, int offset, unsigned long len)
1687 {
1688 int r;
1689 unsigned long addr;
1690
1691 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1692 if (kvm_is_error_hva(addr))
1693 return -EFAULT;
1694 pagefault_disable();
1695 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1696 pagefault_enable();
1697 if (r)
1698 return -EFAULT;
1699 return 0;
1700 }
1701
1702 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1703 unsigned long len)
1704 {
1705 gfn_t gfn = gpa >> PAGE_SHIFT;
1706 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1707 int offset = offset_in_page(gpa);
1708
1709 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1712
1713 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1714 void *data, unsigned long len)
1715 {
1716 gfn_t gfn = gpa >> PAGE_SHIFT;
1717 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1718 int offset = offset_in_page(gpa);
1719
1720 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1721 }
1722 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1723
1724 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1725 const void *data, int offset, int len)
1726 {
1727 int r;
1728 unsigned long addr;
1729
1730 addr = gfn_to_hva_memslot(memslot, gfn);
1731 if (kvm_is_error_hva(addr))
1732 return -EFAULT;
1733 r = __copy_to_user((void __user *)addr + offset, data, len);
1734 if (r)
1735 return -EFAULT;
1736 mark_page_dirty_in_slot(memslot, gfn);
1737 return 0;
1738 }
1739
1740 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1741 const void *data, int offset, int len)
1742 {
1743 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1744
1745 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1746 }
1747 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1748
1749 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1750 const void *data, int offset, int len)
1751 {
1752 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1753
1754 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1755 }
1756 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1757
1758 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1759 unsigned long len)
1760 {
1761 gfn_t gfn = gpa >> PAGE_SHIFT;
1762 int seg;
1763 int offset = offset_in_page(gpa);
1764 int ret;
1765
1766 while ((seg = next_segment(len, offset)) != 0) {
1767 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1768 if (ret < 0)
1769 return ret;
1770 offset = 0;
1771 len -= seg;
1772 data += seg;
1773 ++gfn;
1774 }
1775 return 0;
1776 }
1777 EXPORT_SYMBOL_GPL(kvm_write_guest);
1778
1779 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1780 unsigned long len)
1781 {
1782 gfn_t gfn = gpa >> PAGE_SHIFT;
1783 int seg;
1784 int offset = offset_in_page(gpa);
1785 int ret;
1786
1787 while ((seg = next_segment(len, offset)) != 0) {
1788 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1789 if (ret < 0)
1790 return ret;
1791 offset = 0;
1792 len -= seg;
1793 data += seg;
1794 ++gfn;
1795 }
1796 return 0;
1797 }
1798 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1799
1800 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1801 gpa_t gpa, unsigned long len)
1802 {
1803 struct kvm_memslots *slots = kvm_memslots(kvm);
1804 int offset = offset_in_page(gpa);
1805 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1806 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1807 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1808 gfn_t nr_pages_avail;
1809
1810 ghc->gpa = gpa;
1811 ghc->generation = slots->generation;
1812 ghc->len = len;
1813 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1814 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1815 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1816 ghc->hva += offset;
1817 } else {
1818 /*
1819 * If the requested region crosses two memslots, we still
1820 * verify that the entire region is valid here.
1821 */
1822 while (start_gfn <= end_gfn) {
1823 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1824 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1825 &nr_pages_avail);
1826 if (kvm_is_error_hva(ghc->hva))
1827 return -EFAULT;
1828 start_gfn += nr_pages_avail;
1829 }
1830 /* Use the slow path for cross page reads and writes. */
1831 ghc->memslot = NULL;
1832 }
1833 return 0;
1834 }
1835 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1836
1837 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1838 void *data, unsigned long len)
1839 {
1840 struct kvm_memslots *slots = kvm_memslots(kvm);
1841 int r;
1842
1843 BUG_ON(len > ghc->len);
1844
1845 if (slots->generation != ghc->generation)
1846 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1847
1848 if (unlikely(!ghc->memslot))
1849 return kvm_write_guest(kvm, ghc->gpa, data, len);
1850
1851 if (kvm_is_error_hva(ghc->hva))
1852 return -EFAULT;
1853
1854 r = __copy_to_user((void __user *)ghc->hva, data, len);
1855 if (r)
1856 return -EFAULT;
1857 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1858
1859 return 0;
1860 }
1861 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1862
1863 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1864 void *data, unsigned long len)
1865 {
1866 struct kvm_memslots *slots = kvm_memslots(kvm);
1867 int r;
1868
1869 BUG_ON(len > ghc->len);
1870
1871 if (slots->generation != ghc->generation)
1872 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1873
1874 if (unlikely(!ghc->memslot))
1875 return kvm_read_guest(kvm, ghc->gpa, data, len);
1876
1877 if (kvm_is_error_hva(ghc->hva))
1878 return -EFAULT;
1879
1880 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1881 if (r)
1882 return -EFAULT;
1883
1884 return 0;
1885 }
1886 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1887
1888 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1889 {
1890 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1891
1892 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1893 }
1894 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1895
1896 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1897 {
1898 gfn_t gfn = gpa >> PAGE_SHIFT;
1899 int seg;
1900 int offset = offset_in_page(gpa);
1901 int ret;
1902
1903 while ((seg = next_segment(len, offset)) != 0) {
1904 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1905 if (ret < 0)
1906 return ret;
1907 offset = 0;
1908 len -= seg;
1909 ++gfn;
1910 }
1911 return 0;
1912 }
1913 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1914
1915 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1916 gfn_t gfn)
1917 {
1918 if (memslot && memslot->dirty_bitmap) {
1919 unsigned long rel_gfn = gfn - memslot->base_gfn;
1920
1921 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1922 }
1923 }
1924
1925 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1926 {
1927 struct kvm_memory_slot *memslot;
1928
1929 memslot = gfn_to_memslot(kvm, gfn);
1930 mark_page_dirty_in_slot(memslot, gfn);
1931 }
1932 EXPORT_SYMBOL_GPL(mark_page_dirty);
1933
1934 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1935 {
1936 struct kvm_memory_slot *memslot;
1937
1938 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1939 mark_page_dirty_in_slot(memslot, gfn);
1940 }
1941 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1942
1943 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
1944 {
1945 int old, val;
1946
1947 old = val = vcpu->halt_poll_ns;
1948 /* 10us base */
1949 if (val == 0 && halt_poll_ns_grow)
1950 val = 10000;
1951 else
1952 val *= halt_poll_ns_grow;
1953
1954 if (val > halt_poll_ns)
1955 val = halt_poll_ns;
1956
1957 vcpu->halt_poll_ns = val;
1958 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
1959 }
1960
1961 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
1962 {
1963 int old, val;
1964
1965 old = val = vcpu->halt_poll_ns;
1966 if (halt_poll_ns_shrink == 0)
1967 val = 0;
1968 else
1969 val /= halt_poll_ns_shrink;
1970
1971 vcpu->halt_poll_ns = val;
1972 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
1973 }
1974
1975 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1976 {
1977 if (kvm_arch_vcpu_runnable(vcpu)) {
1978 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1979 return -EINTR;
1980 }
1981 if (kvm_cpu_has_pending_timer(vcpu))
1982 return -EINTR;
1983 if (signal_pending(current))
1984 return -EINTR;
1985
1986 return 0;
1987 }
1988
1989 /*
1990 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1991 */
1992 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1993 {
1994 ktime_t start, cur;
1995 DECLARE_SWAITQUEUE(wait);
1996 bool waited = false;
1997 u64 block_ns;
1998
1999 start = cur = ktime_get();
2000 if (vcpu->halt_poll_ns) {
2001 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2002
2003 ++vcpu->stat.halt_attempted_poll;
2004 do {
2005 /*
2006 * This sets KVM_REQ_UNHALT if an interrupt
2007 * arrives.
2008 */
2009 if (kvm_vcpu_check_block(vcpu) < 0) {
2010 ++vcpu->stat.halt_successful_poll;
2011 goto out;
2012 }
2013 cur = ktime_get();
2014 } while (single_task_running() && ktime_before(cur, stop));
2015 }
2016
2017 kvm_arch_vcpu_blocking(vcpu);
2018
2019 for (;;) {
2020 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2021
2022 if (kvm_vcpu_check_block(vcpu) < 0)
2023 break;
2024
2025 waited = true;
2026 schedule();
2027 }
2028
2029 finish_swait(&vcpu->wq, &wait);
2030 cur = ktime_get();
2031
2032 kvm_arch_vcpu_unblocking(vcpu);
2033 out:
2034 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2035
2036 if (halt_poll_ns) {
2037 if (block_ns <= vcpu->halt_poll_ns)
2038 ;
2039 /* we had a long block, shrink polling */
2040 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2041 shrink_halt_poll_ns(vcpu);
2042 /* we had a short halt and our poll time is too small */
2043 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2044 block_ns < halt_poll_ns)
2045 grow_halt_poll_ns(vcpu);
2046 } else
2047 vcpu->halt_poll_ns = 0;
2048
2049 trace_kvm_vcpu_wakeup(block_ns, waited);
2050 }
2051 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2052
2053 #ifndef CONFIG_S390
2054 /*
2055 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2056 */
2057 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2058 {
2059 int me;
2060 int cpu = vcpu->cpu;
2061 struct swait_queue_head *wqp;
2062
2063 wqp = kvm_arch_vcpu_wq(vcpu);
2064 if (swait_active(wqp)) {
2065 swake_up(wqp);
2066 ++vcpu->stat.halt_wakeup;
2067 }
2068
2069 me = get_cpu();
2070 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2071 if (kvm_arch_vcpu_should_kick(vcpu))
2072 smp_send_reschedule(cpu);
2073 put_cpu();
2074 }
2075 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2076 #endif /* !CONFIG_S390 */
2077
2078 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2079 {
2080 struct pid *pid;
2081 struct task_struct *task = NULL;
2082 int ret = 0;
2083
2084 rcu_read_lock();
2085 pid = rcu_dereference(target->pid);
2086 if (pid)
2087 task = get_pid_task(pid, PIDTYPE_PID);
2088 rcu_read_unlock();
2089 if (!task)
2090 return ret;
2091 ret = yield_to(task, 1);
2092 put_task_struct(task);
2093
2094 return ret;
2095 }
2096 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2097
2098 /*
2099 * Helper that checks whether a VCPU is eligible for directed yield.
2100 * Most eligible candidate to yield is decided by following heuristics:
2101 *
2102 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2103 * (preempted lock holder), indicated by @in_spin_loop.
2104 * Set at the beiginning and cleared at the end of interception/PLE handler.
2105 *
2106 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2107 * chance last time (mostly it has become eligible now since we have probably
2108 * yielded to lockholder in last iteration. This is done by toggling
2109 * @dy_eligible each time a VCPU checked for eligibility.)
2110 *
2111 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2112 * to preempted lock-holder could result in wrong VCPU selection and CPU
2113 * burning. Giving priority for a potential lock-holder increases lock
2114 * progress.
2115 *
2116 * Since algorithm is based on heuristics, accessing another VCPU data without
2117 * locking does not harm. It may result in trying to yield to same VCPU, fail
2118 * and continue with next VCPU and so on.
2119 */
2120 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2121 {
2122 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2123 bool eligible;
2124
2125 eligible = !vcpu->spin_loop.in_spin_loop ||
2126 vcpu->spin_loop.dy_eligible;
2127
2128 if (vcpu->spin_loop.in_spin_loop)
2129 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2130
2131 return eligible;
2132 #else
2133 return true;
2134 #endif
2135 }
2136
2137 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2138 {
2139 struct kvm *kvm = me->kvm;
2140 struct kvm_vcpu *vcpu;
2141 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2142 int yielded = 0;
2143 int try = 3;
2144 int pass;
2145 int i;
2146
2147 kvm_vcpu_set_in_spin_loop(me, true);
2148 /*
2149 * We boost the priority of a VCPU that is runnable but not
2150 * currently running, because it got preempted by something
2151 * else and called schedule in __vcpu_run. Hopefully that
2152 * VCPU is holding the lock that we need and will release it.
2153 * We approximate round-robin by starting at the last boosted VCPU.
2154 */
2155 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2156 kvm_for_each_vcpu(i, vcpu, kvm) {
2157 if (!pass && i <= last_boosted_vcpu) {
2158 i = last_boosted_vcpu;
2159 continue;
2160 } else if (pass && i > last_boosted_vcpu)
2161 break;
2162 if (!ACCESS_ONCE(vcpu->preempted))
2163 continue;
2164 if (vcpu == me)
2165 continue;
2166 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2167 continue;
2168 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2169 continue;
2170
2171 yielded = kvm_vcpu_yield_to(vcpu);
2172 if (yielded > 0) {
2173 kvm->last_boosted_vcpu = i;
2174 break;
2175 } else if (yielded < 0) {
2176 try--;
2177 if (!try)
2178 break;
2179 }
2180 }
2181 }
2182 kvm_vcpu_set_in_spin_loop(me, false);
2183
2184 /* Ensure vcpu is not eligible during next spinloop */
2185 kvm_vcpu_set_dy_eligible(me, false);
2186 }
2187 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2188
2189 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2190 {
2191 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2192 struct page *page;
2193
2194 if (vmf->pgoff == 0)
2195 page = virt_to_page(vcpu->run);
2196 #ifdef CONFIG_X86
2197 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2198 page = virt_to_page(vcpu->arch.pio_data);
2199 #endif
2200 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2201 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2202 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2203 #endif
2204 else
2205 return kvm_arch_vcpu_fault(vcpu, vmf);
2206 get_page(page);
2207 vmf->page = page;
2208 return 0;
2209 }
2210
2211 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2212 .fault = kvm_vcpu_fault,
2213 };
2214
2215 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2216 {
2217 vma->vm_ops = &kvm_vcpu_vm_ops;
2218 return 0;
2219 }
2220
2221 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2222 {
2223 struct kvm_vcpu *vcpu = filp->private_data;
2224
2225 kvm_put_kvm(vcpu->kvm);
2226 return 0;
2227 }
2228
2229 static struct file_operations kvm_vcpu_fops = {
2230 .release = kvm_vcpu_release,
2231 .unlocked_ioctl = kvm_vcpu_ioctl,
2232 #ifdef CONFIG_KVM_COMPAT
2233 .compat_ioctl = kvm_vcpu_compat_ioctl,
2234 #endif
2235 .mmap = kvm_vcpu_mmap,
2236 .llseek = noop_llseek,
2237 };
2238
2239 /*
2240 * Allocates an inode for the vcpu.
2241 */
2242 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2243 {
2244 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2245 }
2246
2247 /*
2248 * Creates some virtual cpus. Good luck creating more than one.
2249 */
2250 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2251 {
2252 int r;
2253 struct kvm_vcpu *vcpu;
2254
2255 if (id >= KVM_MAX_VCPUS)
2256 return -EINVAL;
2257
2258 vcpu = kvm_arch_vcpu_create(kvm, id);
2259 if (IS_ERR(vcpu))
2260 return PTR_ERR(vcpu);
2261
2262 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2263
2264 r = kvm_arch_vcpu_setup(vcpu);
2265 if (r)
2266 goto vcpu_destroy;
2267
2268 mutex_lock(&kvm->lock);
2269 if (!kvm_vcpu_compatible(vcpu)) {
2270 r = -EINVAL;
2271 goto unlock_vcpu_destroy;
2272 }
2273 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2274 r = -EINVAL;
2275 goto unlock_vcpu_destroy;
2276 }
2277 if (kvm_get_vcpu_by_id(kvm, id)) {
2278 r = -EEXIST;
2279 goto unlock_vcpu_destroy;
2280 }
2281
2282 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2283
2284 /* Now it's all set up, let userspace reach it */
2285 kvm_get_kvm(kvm);
2286 r = create_vcpu_fd(vcpu);
2287 if (r < 0) {
2288 kvm_put_kvm(kvm);
2289 goto unlock_vcpu_destroy;
2290 }
2291
2292 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2293
2294 /*
2295 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2296 * before kvm->online_vcpu's incremented value.
2297 */
2298 smp_wmb();
2299 atomic_inc(&kvm->online_vcpus);
2300
2301 mutex_unlock(&kvm->lock);
2302 kvm_arch_vcpu_postcreate(vcpu);
2303 return r;
2304
2305 unlock_vcpu_destroy:
2306 mutex_unlock(&kvm->lock);
2307 vcpu_destroy:
2308 kvm_arch_vcpu_destroy(vcpu);
2309 return r;
2310 }
2311
2312 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2313 {
2314 if (sigset) {
2315 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2316 vcpu->sigset_active = 1;
2317 vcpu->sigset = *sigset;
2318 } else
2319 vcpu->sigset_active = 0;
2320 return 0;
2321 }
2322
2323 static long kvm_vcpu_ioctl(struct file *filp,
2324 unsigned int ioctl, unsigned long arg)
2325 {
2326 struct kvm_vcpu *vcpu = filp->private_data;
2327 void __user *argp = (void __user *)arg;
2328 int r;
2329 struct kvm_fpu *fpu = NULL;
2330 struct kvm_sregs *kvm_sregs = NULL;
2331
2332 if (vcpu->kvm->mm != current->mm)
2333 return -EIO;
2334
2335 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2336 return -EINVAL;
2337
2338 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2339 /*
2340 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2341 * so vcpu_load() would break it.
2342 */
2343 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2344 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2345 #endif
2346
2347
2348 r = vcpu_load(vcpu);
2349 if (r)
2350 return r;
2351 switch (ioctl) {
2352 case KVM_RUN:
2353 r = -EINVAL;
2354 if (arg)
2355 goto out;
2356 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2357 /* The thread running this VCPU changed. */
2358 struct pid *oldpid = vcpu->pid;
2359 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2360
2361 rcu_assign_pointer(vcpu->pid, newpid);
2362 if (oldpid)
2363 synchronize_rcu();
2364 put_pid(oldpid);
2365 }
2366 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2367 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2368 break;
2369 case KVM_GET_REGS: {
2370 struct kvm_regs *kvm_regs;
2371
2372 r = -ENOMEM;
2373 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2374 if (!kvm_regs)
2375 goto out;
2376 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2377 if (r)
2378 goto out_free1;
2379 r = -EFAULT;
2380 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2381 goto out_free1;
2382 r = 0;
2383 out_free1:
2384 kfree(kvm_regs);
2385 break;
2386 }
2387 case KVM_SET_REGS: {
2388 struct kvm_regs *kvm_regs;
2389
2390 r = -ENOMEM;
2391 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2392 if (IS_ERR(kvm_regs)) {
2393 r = PTR_ERR(kvm_regs);
2394 goto out;
2395 }
2396 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2397 kfree(kvm_regs);
2398 break;
2399 }
2400 case KVM_GET_SREGS: {
2401 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2402 r = -ENOMEM;
2403 if (!kvm_sregs)
2404 goto out;
2405 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2406 if (r)
2407 goto out;
2408 r = -EFAULT;
2409 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2410 goto out;
2411 r = 0;
2412 break;
2413 }
2414 case KVM_SET_SREGS: {
2415 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2416 if (IS_ERR(kvm_sregs)) {
2417 r = PTR_ERR(kvm_sregs);
2418 kvm_sregs = NULL;
2419 goto out;
2420 }
2421 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2422 break;
2423 }
2424 case KVM_GET_MP_STATE: {
2425 struct kvm_mp_state mp_state;
2426
2427 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2428 if (r)
2429 goto out;
2430 r = -EFAULT;
2431 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2432 goto out;
2433 r = 0;
2434 break;
2435 }
2436 case KVM_SET_MP_STATE: {
2437 struct kvm_mp_state mp_state;
2438
2439 r = -EFAULT;
2440 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2441 goto out;
2442 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2443 break;
2444 }
2445 case KVM_TRANSLATE: {
2446 struct kvm_translation tr;
2447
2448 r = -EFAULT;
2449 if (copy_from_user(&tr, argp, sizeof(tr)))
2450 goto out;
2451 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2452 if (r)
2453 goto out;
2454 r = -EFAULT;
2455 if (copy_to_user(argp, &tr, sizeof(tr)))
2456 goto out;
2457 r = 0;
2458 break;
2459 }
2460 case KVM_SET_GUEST_DEBUG: {
2461 struct kvm_guest_debug dbg;
2462
2463 r = -EFAULT;
2464 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2465 goto out;
2466 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2467 break;
2468 }
2469 case KVM_SET_SIGNAL_MASK: {
2470 struct kvm_signal_mask __user *sigmask_arg = argp;
2471 struct kvm_signal_mask kvm_sigmask;
2472 sigset_t sigset, *p;
2473
2474 p = NULL;
2475 if (argp) {
2476 r = -EFAULT;
2477 if (copy_from_user(&kvm_sigmask, argp,
2478 sizeof(kvm_sigmask)))
2479 goto out;
2480 r = -EINVAL;
2481 if (kvm_sigmask.len != sizeof(sigset))
2482 goto out;
2483 r = -EFAULT;
2484 if (copy_from_user(&sigset, sigmask_arg->sigset,
2485 sizeof(sigset)))
2486 goto out;
2487 p = &sigset;
2488 }
2489 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2490 break;
2491 }
2492 case KVM_GET_FPU: {
2493 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2494 r = -ENOMEM;
2495 if (!fpu)
2496 goto out;
2497 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2498 if (r)
2499 goto out;
2500 r = -EFAULT;
2501 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2502 goto out;
2503 r = 0;
2504 break;
2505 }
2506 case KVM_SET_FPU: {
2507 fpu = memdup_user(argp, sizeof(*fpu));
2508 if (IS_ERR(fpu)) {
2509 r = PTR_ERR(fpu);
2510 fpu = NULL;
2511 goto out;
2512 }
2513 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2514 break;
2515 }
2516 default:
2517 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2518 }
2519 out:
2520 vcpu_put(vcpu);
2521 kfree(fpu);
2522 kfree(kvm_sregs);
2523 return r;
2524 }
2525
2526 #ifdef CONFIG_KVM_COMPAT
2527 static long kvm_vcpu_compat_ioctl(struct file *filp,
2528 unsigned int ioctl, unsigned long arg)
2529 {
2530 struct kvm_vcpu *vcpu = filp->private_data;
2531 void __user *argp = compat_ptr(arg);
2532 int r;
2533
2534 if (vcpu->kvm->mm != current->mm)
2535 return -EIO;
2536
2537 switch (ioctl) {
2538 case KVM_SET_SIGNAL_MASK: {
2539 struct kvm_signal_mask __user *sigmask_arg = argp;
2540 struct kvm_signal_mask kvm_sigmask;
2541 compat_sigset_t csigset;
2542 sigset_t sigset;
2543
2544 if (argp) {
2545 r = -EFAULT;
2546 if (copy_from_user(&kvm_sigmask, argp,
2547 sizeof(kvm_sigmask)))
2548 goto out;
2549 r = -EINVAL;
2550 if (kvm_sigmask.len != sizeof(csigset))
2551 goto out;
2552 r = -EFAULT;
2553 if (copy_from_user(&csigset, sigmask_arg->sigset,
2554 sizeof(csigset)))
2555 goto out;
2556 sigset_from_compat(&sigset, &csigset);
2557 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2558 } else
2559 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2560 break;
2561 }
2562 default:
2563 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2564 }
2565
2566 out:
2567 return r;
2568 }
2569 #endif
2570
2571 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2572 int (*accessor)(struct kvm_device *dev,
2573 struct kvm_device_attr *attr),
2574 unsigned long arg)
2575 {
2576 struct kvm_device_attr attr;
2577
2578 if (!accessor)
2579 return -EPERM;
2580
2581 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2582 return -EFAULT;
2583
2584 return accessor(dev, &attr);
2585 }
2586
2587 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2588 unsigned long arg)
2589 {
2590 struct kvm_device *dev = filp->private_data;
2591
2592 switch (ioctl) {
2593 case KVM_SET_DEVICE_ATTR:
2594 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2595 case KVM_GET_DEVICE_ATTR:
2596 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2597 case KVM_HAS_DEVICE_ATTR:
2598 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2599 default:
2600 if (dev->ops->ioctl)
2601 return dev->ops->ioctl(dev, ioctl, arg);
2602
2603 return -ENOTTY;
2604 }
2605 }
2606
2607 static int kvm_device_release(struct inode *inode, struct file *filp)
2608 {
2609 struct kvm_device *dev = filp->private_data;
2610 struct kvm *kvm = dev->kvm;
2611
2612 kvm_put_kvm(kvm);
2613 return 0;
2614 }
2615
2616 static const struct file_operations kvm_device_fops = {
2617 .unlocked_ioctl = kvm_device_ioctl,
2618 #ifdef CONFIG_KVM_COMPAT
2619 .compat_ioctl = kvm_device_ioctl,
2620 #endif
2621 .release = kvm_device_release,
2622 };
2623
2624 struct kvm_device *kvm_device_from_filp(struct file *filp)
2625 {
2626 if (filp->f_op != &kvm_device_fops)
2627 return NULL;
2628
2629 return filp->private_data;
2630 }
2631
2632 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2633 #ifdef CONFIG_KVM_MPIC
2634 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2635 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2636 #endif
2637
2638 #ifdef CONFIG_KVM_XICS
2639 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2640 #endif
2641 };
2642
2643 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2644 {
2645 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2646 return -ENOSPC;
2647
2648 if (kvm_device_ops_table[type] != NULL)
2649 return -EEXIST;
2650
2651 kvm_device_ops_table[type] = ops;
2652 return 0;
2653 }
2654
2655 void kvm_unregister_device_ops(u32 type)
2656 {
2657 if (kvm_device_ops_table[type] != NULL)
2658 kvm_device_ops_table[type] = NULL;
2659 }
2660
2661 static int kvm_ioctl_create_device(struct kvm *kvm,
2662 struct kvm_create_device *cd)
2663 {
2664 struct kvm_device_ops *ops = NULL;
2665 struct kvm_device *dev;
2666 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2667 int ret;
2668
2669 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2670 return -ENODEV;
2671
2672 ops = kvm_device_ops_table[cd->type];
2673 if (ops == NULL)
2674 return -ENODEV;
2675
2676 if (test)
2677 return 0;
2678
2679 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2680 if (!dev)
2681 return -ENOMEM;
2682
2683 dev->ops = ops;
2684 dev->kvm = kvm;
2685
2686 ret = ops->create(dev, cd->type);
2687 if (ret < 0) {
2688 kfree(dev);
2689 return ret;
2690 }
2691
2692 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2693 if (ret < 0) {
2694 ops->destroy(dev);
2695 return ret;
2696 }
2697
2698 list_add(&dev->vm_node, &kvm->devices);
2699 kvm_get_kvm(kvm);
2700 cd->fd = ret;
2701 return 0;
2702 }
2703
2704 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2705 {
2706 switch (arg) {
2707 case KVM_CAP_USER_MEMORY:
2708 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2709 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2710 case KVM_CAP_INTERNAL_ERROR_DATA:
2711 #ifdef CONFIG_HAVE_KVM_MSI
2712 case KVM_CAP_SIGNAL_MSI:
2713 #endif
2714 #ifdef CONFIG_HAVE_KVM_IRQFD
2715 case KVM_CAP_IRQFD:
2716 case KVM_CAP_IRQFD_RESAMPLE:
2717 #endif
2718 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2719 case KVM_CAP_CHECK_EXTENSION_VM:
2720 return 1;
2721 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2722 case KVM_CAP_IRQ_ROUTING:
2723 return KVM_MAX_IRQ_ROUTES;
2724 #endif
2725 #if KVM_ADDRESS_SPACE_NUM > 1
2726 case KVM_CAP_MULTI_ADDRESS_SPACE:
2727 return KVM_ADDRESS_SPACE_NUM;
2728 #endif
2729 default:
2730 break;
2731 }
2732 return kvm_vm_ioctl_check_extension(kvm, arg);
2733 }
2734
2735 static long kvm_vm_ioctl(struct file *filp,
2736 unsigned int ioctl, unsigned long arg)
2737 {
2738 struct kvm *kvm = filp->private_data;
2739 void __user *argp = (void __user *)arg;
2740 int r;
2741
2742 if (kvm->mm != current->mm)
2743 return -EIO;
2744 switch (ioctl) {
2745 case KVM_CREATE_VCPU:
2746 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2747 break;
2748 case KVM_SET_USER_MEMORY_REGION: {
2749 struct kvm_userspace_memory_region kvm_userspace_mem;
2750
2751 r = -EFAULT;
2752 if (copy_from_user(&kvm_userspace_mem, argp,
2753 sizeof(kvm_userspace_mem)))
2754 goto out;
2755
2756 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2757 break;
2758 }
2759 case KVM_GET_DIRTY_LOG: {
2760 struct kvm_dirty_log log;
2761
2762 r = -EFAULT;
2763 if (copy_from_user(&log, argp, sizeof(log)))
2764 goto out;
2765 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2766 break;
2767 }
2768 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2769 case KVM_REGISTER_COALESCED_MMIO: {
2770 struct kvm_coalesced_mmio_zone zone;
2771
2772 r = -EFAULT;
2773 if (copy_from_user(&zone, argp, sizeof(zone)))
2774 goto out;
2775 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2776 break;
2777 }
2778 case KVM_UNREGISTER_COALESCED_MMIO: {
2779 struct kvm_coalesced_mmio_zone zone;
2780
2781 r = -EFAULT;
2782 if (copy_from_user(&zone, argp, sizeof(zone)))
2783 goto out;
2784 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2785 break;
2786 }
2787 #endif
2788 case KVM_IRQFD: {
2789 struct kvm_irqfd data;
2790
2791 r = -EFAULT;
2792 if (copy_from_user(&data, argp, sizeof(data)))
2793 goto out;
2794 r = kvm_irqfd(kvm, &data);
2795 break;
2796 }
2797 case KVM_IOEVENTFD: {
2798 struct kvm_ioeventfd data;
2799
2800 r = -EFAULT;
2801 if (copy_from_user(&data, argp, sizeof(data)))
2802 goto out;
2803 r = kvm_ioeventfd(kvm, &data);
2804 break;
2805 }
2806 #ifdef CONFIG_HAVE_KVM_MSI
2807 case KVM_SIGNAL_MSI: {
2808 struct kvm_msi msi;
2809
2810 r = -EFAULT;
2811 if (copy_from_user(&msi, argp, sizeof(msi)))
2812 goto out;
2813 r = kvm_send_userspace_msi(kvm, &msi);
2814 break;
2815 }
2816 #endif
2817 #ifdef __KVM_HAVE_IRQ_LINE
2818 case KVM_IRQ_LINE_STATUS:
2819 case KVM_IRQ_LINE: {
2820 struct kvm_irq_level irq_event;
2821
2822 r = -EFAULT;
2823 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2824 goto out;
2825
2826 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2827 ioctl == KVM_IRQ_LINE_STATUS);
2828 if (r)
2829 goto out;
2830
2831 r = -EFAULT;
2832 if (ioctl == KVM_IRQ_LINE_STATUS) {
2833 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2834 goto out;
2835 }
2836
2837 r = 0;
2838 break;
2839 }
2840 #endif
2841 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2842 case KVM_SET_GSI_ROUTING: {
2843 struct kvm_irq_routing routing;
2844 struct kvm_irq_routing __user *urouting;
2845 struct kvm_irq_routing_entry *entries;
2846
2847 r = -EFAULT;
2848 if (copy_from_user(&routing, argp, sizeof(routing)))
2849 goto out;
2850 r = -EINVAL;
2851 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2852 goto out;
2853 if (routing.flags)
2854 goto out;
2855 r = -ENOMEM;
2856 entries = vmalloc(routing.nr * sizeof(*entries));
2857 if (!entries)
2858 goto out;
2859 r = -EFAULT;
2860 urouting = argp;
2861 if (copy_from_user(entries, urouting->entries,
2862 routing.nr * sizeof(*entries)))
2863 goto out_free_irq_routing;
2864 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2865 routing.flags);
2866 out_free_irq_routing:
2867 vfree(entries);
2868 break;
2869 }
2870 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2871 case KVM_CREATE_DEVICE: {
2872 struct kvm_create_device cd;
2873
2874 r = -EFAULT;
2875 if (copy_from_user(&cd, argp, sizeof(cd)))
2876 goto out;
2877
2878 r = kvm_ioctl_create_device(kvm, &cd);
2879 if (r)
2880 goto out;
2881
2882 r = -EFAULT;
2883 if (copy_to_user(argp, &cd, sizeof(cd)))
2884 goto out;
2885
2886 r = 0;
2887 break;
2888 }
2889 case KVM_CHECK_EXTENSION:
2890 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2891 break;
2892 default:
2893 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2894 }
2895 out:
2896 return r;
2897 }
2898
2899 #ifdef CONFIG_KVM_COMPAT
2900 struct compat_kvm_dirty_log {
2901 __u32 slot;
2902 __u32 padding1;
2903 union {
2904 compat_uptr_t dirty_bitmap; /* one bit per page */
2905 __u64 padding2;
2906 };
2907 };
2908
2909 static long kvm_vm_compat_ioctl(struct file *filp,
2910 unsigned int ioctl, unsigned long arg)
2911 {
2912 struct kvm *kvm = filp->private_data;
2913 int r;
2914
2915 if (kvm->mm != current->mm)
2916 return -EIO;
2917 switch (ioctl) {
2918 case KVM_GET_DIRTY_LOG: {
2919 struct compat_kvm_dirty_log compat_log;
2920 struct kvm_dirty_log log;
2921
2922 r = -EFAULT;
2923 if (copy_from_user(&compat_log, (void __user *)arg,
2924 sizeof(compat_log)))
2925 goto out;
2926 log.slot = compat_log.slot;
2927 log.padding1 = compat_log.padding1;
2928 log.padding2 = compat_log.padding2;
2929 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2930
2931 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2932 break;
2933 }
2934 default:
2935 r = kvm_vm_ioctl(filp, ioctl, arg);
2936 }
2937
2938 out:
2939 return r;
2940 }
2941 #endif
2942
2943 static struct file_operations kvm_vm_fops = {
2944 .release = kvm_vm_release,
2945 .unlocked_ioctl = kvm_vm_ioctl,
2946 #ifdef CONFIG_KVM_COMPAT
2947 .compat_ioctl = kvm_vm_compat_ioctl,
2948 #endif
2949 .llseek = noop_llseek,
2950 };
2951
2952 static int kvm_dev_ioctl_create_vm(unsigned long type)
2953 {
2954 int r;
2955 struct kvm *kvm;
2956
2957 kvm = kvm_create_vm(type);
2958 if (IS_ERR(kvm))
2959 return PTR_ERR(kvm);
2960 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2961 r = kvm_coalesced_mmio_init(kvm);
2962 if (r < 0) {
2963 kvm_put_kvm(kvm);
2964 return r;
2965 }
2966 #endif
2967 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2968 if (r < 0)
2969 kvm_put_kvm(kvm);
2970
2971 return r;
2972 }
2973
2974 static long kvm_dev_ioctl(struct file *filp,
2975 unsigned int ioctl, unsigned long arg)
2976 {
2977 long r = -EINVAL;
2978
2979 switch (ioctl) {
2980 case KVM_GET_API_VERSION:
2981 if (arg)
2982 goto out;
2983 r = KVM_API_VERSION;
2984 break;
2985 case KVM_CREATE_VM:
2986 r = kvm_dev_ioctl_create_vm(arg);
2987 break;
2988 case KVM_CHECK_EXTENSION:
2989 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2990 break;
2991 case KVM_GET_VCPU_MMAP_SIZE:
2992 if (arg)
2993 goto out;
2994 r = PAGE_SIZE; /* struct kvm_run */
2995 #ifdef CONFIG_X86
2996 r += PAGE_SIZE; /* pio data page */
2997 #endif
2998 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2999 r += PAGE_SIZE; /* coalesced mmio ring page */
3000 #endif
3001 break;
3002 case KVM_TRACE_ENABLE:
3003 case KVM_TRACE_PAUSE:
3004 case KVM_TRACE_DISABLE:
3005 r = -EOPNOTSUPP;
3006 break;
3007 default:
3008 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3009 }
3010 out:
3011 return r;
3012 }
3013
3014 static struct file_operations kvm_chardev_ops = {
3015 .unlocked_ioctl = kvm_dev_ioctl,
3016 .compat_ioctl = kvm_dev_ioctl,
3017 .llseek = noop_llseek,
3018 };
3019
3020 static struct miscdevice kvm_dev = {
3021 KVM_MINOR,
3022 "kvm",
3023 &kvm_chardev_ops,
3024 };
3025
3026 static void hardware_enable_nolock(void *junk)
3027 {
3028 int cpu = raw_smp_processor_id();
3029 int r;
3030
3031 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3032 return;
3033
3034 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3035
3036 r = kvm_arch_hardware_enable();
3037
3038 if (r) {
3039 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3040 atomic_inc(&hardware_enable_failed);
3041 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3042 }
3043 }
3044
3045 static void hardware_enable(void)
3046 {
3047 raw_spin_lock(&kvm_count_lock);
3048 if (kvm_usage_count)
3049 hardware_enable_nolock(NULL);
3050 raw_spin_unlock(&kvm_count_lock);
3051 }
3052
3053 static void hardware_disable_nolock(void *junk)
3054 {
3055 int cpu = raw_smp_processor_id();
3056
3057 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3058 return;
3059 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3060 kvm_arch_hardware_disable();
3061 }
3062
3063 static void hardware_disable(void)
3064 {
3065 raw_spin_lock(&kvm_count_lock);
3066 if (kvm_usage_count)
3067 hardware_disable_nolock(NULL);
3068 raw_spin_unlock(&kvm_count_lock);
3069 }
3070
3071 static void hardware_disable_all_nolock(void)
3072 {
3073 BUG_ON(!kvm_usage_count);
3074
3075 kvm_usage_count--;
3076 if (!kvm_usage_count)
3077 on_each_cpu(hardware_disable_nolock, NULL, 1);
3078 }
3079
3080 static void hardware_disable_all(void)
3081 {
3082 raw_spin_lock(&kvm_count_lock);
3083 hardware_disable_all_nolock();
3084 raw_spin_unlock(&kvm_count_lock);
3085 }
3086
3087 static int hardware_enable_all(void)
3088 {
3089 int r = 0;
3090
3091 raw_spin_lock(&kvm_count_lock);
3092
3093 kvm_usage_count++;
3094 if (kvm_usage_count == 1) {
3095 atomic_set(&hardware_enable_failed, 0);
3096 on_each_cpu(hardware_enable_nolock, NULL, 1);
3097
3098 if (atomic_read(&hardware_enable_failed)) {
3099 hardware_disable_all_nolock();
3100 r = -EBUSY;
3101 }
3102 }
3103
3104 raw_spin_unlock(&kvm_count_lock);
3105
3106 return r;
3107 }
3108
3109 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3110 void *v)
3111 {
3112 val &= ~CPU_TASKS_FROZEN;
3113 switch (val) {
3114 case CPU_DYING:
3115 hardware_disable();
3116 break;
3117 case CPU_STARTING:
3118 hardware_enable();
3119 break;
3120 }
3121 return NOTIFY_OK;
3122 }
3123
3124 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3125 void *v)
3126 {
3127 /*
3128 * Some (well, at least mine) BIOSes hang on reboot if
3129 * in vmx root mode.
3130 *
3131 * And Intel TXT required VMX off for all cpu when system shutdown.
3132 */
3133 pr_info("kvm: exiting hardware virtualization\n");
3134 kvm_rebooting = true;
3135 on_each_cpu(hardware_disable_nolock, NULL, 1);
3136 return NOTIFY_OK;
3137 }
3138
3139 static struct notifier_block kvm_reboot_notifier = {
3140 .notifier_call = kvm_reboot,
3141 .priority = 0,
3142 };
3143
3144 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3145 {
3146 int i;
3147
3148 for (i = 0; i < bus->dev_count; i++) {
3149 struct kvm_io_device *pos = bus->range[i].dev;
3150
3151 kvm_iodevice_destructor(pos);
3152 }
3153 kfree(bus);
3154 }
3155
3156 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3157 const struct kvm_io_range *r2)
3158 {
3159 gpa_t addr1 = r1->addr;
3160 gpa_t addr2 = r2->addr;
3161
3162 if (addr1 < addr2)
3163 return -1;
3164
3165 /* If r2->len == 0, match the exact address. If r2->len != 0,
3166 * accept any overlapping write. Any order is acceptable for
3167 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3168 * we process all of them.
3169 */
3170 if (r2->len) {
3171 addr1 += r1->len;
3172 addr2 += r2->len;
3173 }
3174
3175 if (addr1 > addr2)
3176 return 1;
3177
3178 return 0;
3179 }
3180
3181 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3182 {
3183 return kvm_io_bus_cmp(p1, p2);
3184 }
3185
3186 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3187 gpa_t addr, int len)
3188 {
3189 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3190 .addr = addr,
3191 .len = len,
3192 .dev = dev,
3193 };
3194
3195 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3196 kvm_io_bus_sort_cmp, NULL);
3197
3198 return 0;
3199 }
3200
3201 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3202 gpa_t addr, int len)
3203 {
3204 struct kvm_io_range *range, key;
3205 int off;
3206
3207 key = (struct kvm_io_range) {
3208 .addr = addr,
3209 .len = len,
3210 };
3211
3212 range = bsearch(&key, bus->range, bus->dev_count,
3213 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3214 if (range == NULL)
3215 return -ENOENT;
3216
3217 off = range - bus->range;
3218
3219 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3220 off--;
3221
3222 return off;
3223 }
3224
3225 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3226 struct kvm_io_range *range, const void *val)
3227 {
3228 int idx;
3229
3230 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3231 if (idx < 0)
3232 return -EOPNOTSUPP;
3233
3234 while (idx < bus->dev_count &&
3235 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3236 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3237 range->len, val))
3238 return idx;
3239 idx++;
3240 }
3241
3242 return -EOPNOTSUPP;
3243 }
3244
3245 /* kvm_io_bus_write - called under kvm->slots_lock */
3246 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3247 int len, const void *val)
3248 {
3249 struct kvm_io_bus *bus;
3250 struct kvm_io_range range;
3251 int r;
3252
3253 range = (struct kvm_io_range) {
3254 .addr = addr,
3255 .len = len,
3256 };
3257
3258 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3259 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3260 return r < 0 ? r : 0;
3261 }
3262
3263 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3264 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3265 gpa_t addr, int len, const void *val, long cookie)
3266 {
3267 struct kvm_io_bus *bus;
3268 struct kvm_io_range range;
3269
3270 range = (struct kvm_io_range) {
3271 .addr = addr,
3272 .len = len,
3273 };
3274
3275 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3276
3277 /* First try the device referenced by cookie. */
3278 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3279 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3280 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3281 val))
3282 return cookie;
3283
3284 /*
3285 * cookie contained garbage; fall back to search and return the
3286 * correct cookie value.
3287 */
3288 return __kvm_io_bus_write(vcpu, bus, &range, val);
3289 }
3290
3291 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3292 struct kvm_io_range *range, void *val)
3293 {
3294 int idx;
3295
3296 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3297 if (idx < 0)
3298 return -EOPNOTSUPP;
3299
3300 while (idx < bus->dev_count &&
3301 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3302 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3303 range->len, val))
3304 return idx;
3305 idx++;
3306 }
3307
3308 return -EOPNOTSUPP;
3309 }
3310 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3311
3312 /* kvm_io_bus_read - called under kvm->slots_lock */
3313 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3314 int len, void *val)
3315 {
3316 struct kvm_io_bus *bus;
3317 struct kvm_io_range range;
3318 int r;
3319
3320 range = (struct kvm_io_range) {
3321 .addr = addr,
3322 .len = len,
3323 };
3324
3325 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3326 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3327 return r < 0 ? r : 0;
3328 }
3329
3330
3331 /* Caller must hold slots_lock. */
3332 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3333 int len, struct kvm_io_device *dev)
3334 {
3335 struct kvm_io_bus *new_bus, *bus;
3336
3337 bus = kvm->buses[bus_idx];
3338 /* exclude ioeventfd which is limited by maximum fd */
3339 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3340 return -ENOSPC;
3341
3342 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3343 sizeof(struct kvm_io_range)), GFP_KERNEL);
3344 if (!new_bus)
3345 return -ENOMEM;
3346 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3347 sizeof(struct kvm_io_range)));
3348 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3349 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3350 synchronize_srcu_expedited(&kvm->srcu);
3351 kfree(bus);
3352
3353 return 0;
3354 }
3355
3356 /* Caller must hold slots_lock. */
3357 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3358 struct kvm_io_device *dev)
3359 {
3360 int i, r;
3361 struct kvm_io_bus *new_bus, *bus;
3362
3363 bus = kvm->buses[bus_idx];
3364 r = -ENOENT;
3365 for (i = 0; i < bus->dev_count; i++)
3366 if (bus->range[i].dev == dev) {
3367 r = 0;
3368 break;
3369 }
3370
3371 if (r)
3372 return r;
3373
3374 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3375 sizeof(struct kvm_io_range)), GFP_KERNEL);
3376 if (!new_bus)
3377 return -ENOMEM;
3378
3379 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3380 new_bus->dev_count--;
3381 memcpy(new_bus->range + i, bus->range + i + 1,
3382 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3383
3384 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3385 synchronize_srcu_expedited(&kvm->srcu);
3386 kfree(bus);
3387 return r;
3388 }
3389
3390 static struct notifier_block kvm_cpu_notifier = {
3391 .notifier_call = kvm_cpu_hotplug,
3392 };
3393
3394 static int vm_stat_get(void *_offset, u64 *val)
3395 {
3396 unsigned offset = (long)_offset;
3397 struct kvm *kvm;
3398
3399 *val = 0;
3400 spin_lock(&kvm_lock);
3401 list_for_each_entry(kvm, &vm_list, vm_list)
3402 *val += *(u32 *)((void *)kvm + offset);
3403 spin_unlock(&kvm_lock);
3404 return 0;
3405 }
3406
3407 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3408
3409 static int vcpu_stat_get(void *_offset, u64 *val)
3410 {
3411 unsigned offset = (long)_offset;
3412 struct kvm *kvm;
3413 struct kvm_vcpu *vcpu;
3414 int i;
3415
3416 *val = 0;
3417 spin_lock(&kvm_lock);
3418 list_for_each_entry(kvm, &vm_list, vm_list)
3419 kvm_for_each_vcpu(i, vcpu, kvm)
3420 *val += *(u32 *)((void *)vcpu + offset);
3421
3422 spin_unlock(&kvm_lock);
3423 return 0;
3424 }
3425
3426 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3427
3428 static const struct file_operations *stat_fops[] = {
3429 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3430 [KVM_STAT_VM] = &vm_stat_fops,
3431 };
3432
3433 static int kvm_init_debug(void)
3434 {
3435 int r = -EEXIST;
3436 struct kvm_stats_debugfs_item *p;
3437
3438 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3439 if (kvm_debugfs_dir == NULL)
3440 goto out;
3441
3442 for (p = debugfs_entries; p->name; ++p) {
3443 if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3444 (void *)(long)p->offset,
3445 stat_fops[p->kind]))
3446 goto out_dir;
3447 }
3448
3449 return 0;
3450
3451 out_dir:
3452 debugfs_remove_recursive(kvm_debugfs_dir);
3453 out:
3454 return r;
3455 }
3456
3457 static int kvm_suspend(void)
3458 {
3459 if (kvm_usage_count)
3460 hardware_disable_nolock(NULL);
3461 return 0;
3462 }
3463
3464 static void kvm_resume(void)
3465 {
3466 if (kvm_usage_count) {
3467 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3468 hardware_enable_nolock(NULL);
3469 }
3470 }
3471
3472 static struct syscore_ops kvm_syscore_ops = {
3473 .suspend = kvm_suspend,
3474 .resume = kvm_resume,
3475 };
3476
3477 static inline
3478 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3479 {
3480 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3481 }
3482
3483 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3484 {
3485 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3486
3487 if (vcpu->preempted)
3488 vcpu->preempted = false;
3489
3490 kvm_arch_sched_in(vcpu, cpu);
3491
3492 kvm_arch_vcpu_load(vcpu, cpu);
3493 }
3494
3495 static void kvm_sched_out(struct preempt_notifier *pn,
3496 struct task_struct *next)
3497 {
3498 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3499
3500 if (current->state == TASK_RUNNING)
3501 vcpu->preempted = true;
3502 kvm_arch_vcpu_put(vcpu);
3503 }
3504
3505 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3506 struct module *module)
3507 {
3508 int r;
3509 int cpu;
3510
3511 r = kvm_arch_init(opaque);
3512 if (r)
3513 goto out_fail;
3514
3515 /*
3516 * kvm_arch_init makes sure there's at most one caller
3517 * for architectures that support multiple implementations,
3518 * like intel and amd on x86.
3519 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3520 * conflicts in case kvm is already setup for another implementation.
3521 */
3522 r = kvm_irqfd_init();
3523 if (r)
3524 goto out_irqfd;
3525
3526 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3527 r = -ENOMEM;
3528 goto out_free_0;
3529 }
3530
3531 r = kvm_arch_hardware_setup();
3532 if (r < 0)
3533 goto out_free_0a;
3534
3535 for_each_online_cpu(cpu) {
3536 smp_call_function_single(cpu,
3537 kvm_arch_check_processor_compat,
3538 &r, 1);
3539 if (r < 0)
3540 goto out_free_1;
3541 }
3542
3543 r = register_cpu_notifier(&kvm_cpu_notifier);
3544 if (r)
3545 goto out_free_2;
3546 register_reboot_notifier(&kvm_reboot_notifier);
3547
3548 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3549 if (!vcpu_align)
3550 vcpu_align = __alignof__(struct kvm_vcpu);
3551 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3552 0, NULL);
3553 if (!kvm_vcpu_cache) {
3554 r = -ENOMEM;
3555 goto out_free_3;
3556 }
3557
3558 r = kvm_async_pf_init();
3559 if (r)
3560 goto out_free;
3561
3562 kvm_chardev_ops.owner = module;
3563 kvm_vm_fops.owner = module;
3564 kvm_vcpu_fops.owner = module;
3565
3566 r = misc_register(&kvm_dev);
3567 if (r) {
3568 pr_err("kvm: misc device register failed\n");
3569 goto out_unreg;
3570 }
3571
3572 register_syscore_ops(&kvm_syscore_ops);
3573
3574 kvm_preempt_ops.sched_in = kvm_sched_in;
3575 kvm_preempt_ops.sched_out = kvm_sched_out;
3576
3577 r = kvm_init_debug();
3578 if (r) {
3579 pr_err("kvm: create debugfs files failed\n");
3580 goto out_undebugfs;
3581 }
3582
3583 r = kvm_vfio_ops_init();
3584 WARN_ON(r);
3585
3586 return 0;
3587
3588 out_undebugfs:
3589 unregister_syscore_ops(&kvm_syscore_ops);
3590 misc_deregister(&kvm_dev);
3591 out_unreg:
3592 kvm_async_pf_deinit();
3593 out_free:
3594 kmem_cache_destroy(kvm_vcpu_cache);
3595 out_free_3:
3596 unregister_reboot_notifier(&kvm_reboot_notifier);
3597 unregister_cpu_notifier(&kvm_cpu_notifier);
3598 out_free_2:
3599 out_free_1:
3600 kvm_arch_hardware_unsetup();
3601 out_free_0a:
3602 free_cpumask_var(cpus_hardware_enabled);
3603 out_free_0:
3604 kvm_irqfd_exit();
3605 out_irqfd:
3606 kvm_arch_exit();
3607 out_fail:
3608 return r;
3609 }
3610 EXPORT_SYMBOL_GPL(kvm_init);
3611
3612 void kvm_exit(void)
3613 {
3614 debugfs_remove_recursive(kvm_debugfs_dir);
3615 misc_deregister(&kvm_dev);
3616 kmem_cache_destroy(kvm_vcpu_cache);
3617 kvm_async_pf_deinit();
3618 unregister_syscore_ops(&kvm_syscore_ops);
3619 unregister_reboot_notifier(&kvm_reboot_notifier);
3620 unregister_cpu_notifier(&kvm_cpu_notifier);
3621 on_each_cpu(hardware_disable_nolock, NULL, 1);
3622 kvm_arch_hardware_unsetup();
3623 kvm_arch_exit();
3624 kvm_irqfd_exit();
3625 free_cpumask_var(cpus_hardware_enabled);
3626 kvm_vfio_ops_exit();
3627 }
3628 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.164723 seconds and 5 git commands to generate.