KVM: Replace irq_requested with more generic irq_requested_type
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44
45 #include <asm/processor.h>
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
48 #include <asm/pgtable.h>
49
50 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
51 #include "coalesced_mmio.h"
52 #endif
53
54 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
55 #include <linux/pci.h>
56 #include <linux/interrupt.h>
57 #include "irq.h"
58 #endif
59
60 MODULE_AUTHOR("Qumranet");
61 MODULE_LICENSE("GPL");
62
63 DEFINE_SPINLOCK(kvm_lock);
64 LIST_HEAD(vm_list);
65
66 static cpumask_t cpus_hardware_enabled;
67
68 struct kmem_cache *kvm_vcpu_cache;
69 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
70
71 static __read_mostly struct preempt_ops kvm_preempt_ops;
72
73 struct dentry *kvm_debugfs_dir;
74
75 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
76 unsigned long arg);
77
78 bool kvm_rebooting;
79
80 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
81 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
82 int assigned_dev_id)
83 {
84 struct list_head *ptr;
85 struct kvm_assigned_dev_kernel *match;
86
87 list_for_each(ptr, head) {
88 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
89 if (match->assigned_dev_id == assigned_dev_id)
90 return match;
91 }
92 return NULL;
93 }
94
95 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
96 {
97 struct kvm_assigned_dev_kernel *assigned_dev;
98
99 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
100 interrupt_work);
101
102 /* This is taken to safely inject irq inside the guest. When
103 * the interrupt injection (or the ioapic code) uses a
104 * finer-grained lock, update this
105 */
106 mutex_lock(&assigned_dev->kvm->lock);
107 kvm_set_irq(assigned_dev->kvm,
108 assigned_dev->irq_source_id,
109 assigned_dev->guest_irq, 1);
110 mutex_unlock(&assigned_dev->kvm->lock);
111 kvm_put_kvm(assigned_dev->kvm);
112 }
113
114 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
115 {
116 struct kvm_assigned_dev_kernel *assigned_dev =
117 (struct kvm_assigned_dev_kernel *) dev_id;
118
119 kvm_get_kvm(assigned_dev->kvm);
120 schedule_work(&assigned_dev->interrupt_work);
121 disable_irq_nosync(irq);
122 return IRQ_HANDLED;
123 }
124
125 /* Ack the irq line for an assigned device */
126 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
127 {
128 struct kvm_assigned_dev_kernel *dev;
129
130 if (kian->gsi == -1)
131 return;
132
133 dev = container_of(kian, struct kvm_assigned_dev_kernel,
134 ack_notifier);
135 kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
136 enable_irq(dev->host_irq);
137 }
138
139 static void kvm_free_assigned_device(struct kvm *kvm,
140 struct kvm_assigned_dev_kernel
141 *assigned_dev)
142 {
143 if (irqchip_in_kernel(kvm) && assigned_dev->irq_requested_type)
144 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
145
146 kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
147 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
148
149 if (cancel_work_sync(&assigned_dev->interrupt_work))
150 /* We had pending work. That means we will have to take
151 * care of kvm_put_kvm.
152 */
153 kvm_put_kvm(kvm);
154
155 pci_reset_function(assigned_dev->dev);
156
157 pci_release_regions(assigned_dev->dev);
158 pci_disable_device(assigned_dev->dev);
159 pci_dev_put(assigned_dev->dev);
160
161 list_del(&assigned_dev->list);
162 kfree(assigned_dev);
163 }
164
165 void kvm_free_all_assigned_devices(struct kvm *kvm)
166 {
167 struct list_head *ptr, *ptr2;
168 struct kvm_assigned_dev_kernel *assigned_dev;
169
170 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
171 assigned_dev = list_entry(ptr,
172 struct kvm_assigned_dev_kernel,
173 list);
174
175 kvm_free_assigned_device(kvm, assigned_dev);
176 }
177 }
178
179 static int assigned_device_update_intx(struct kvm *kvm,
180 struct kvm_assigned_dev_kernel *adev,
181 struct kvm_assigned_irq *airq)
182 {
183 if (adev->irq_requested_type & KVM_ASSIGNED_DEV_GUEST_INTX) {
184 adev->guest_irq = airq->guest_irq;
185 adev->ack_notifier.gsi = airq->guest_irq;
186 return 0;
187 }
188
189 if (irqchip_in_kernel(kvm)) {
190 if (!capable(CAP_SYS_RAWIO))
191 return -EPERM;
192
193 if (airq->host_irq)
194 adev->host_irq = airq->host_irq;
195 else
196 adev->host_irq = adev->dev->irq;
197 adev->guest_irq = airq->guest_irq;
198 adev->ack_notifier.gsi = airq->guest_irq;
199
200 /* Even though this is PCI, we don't want to use shared
201 * interrupts. Sharing host devices with guest-assigned devices
202 * on the same interrupt line is not a happy situation: there
203 * are going to be long delays in accepting, acking, etc.
204 */
205 if (request_irq(adev->host_irq, kvm_assigned_dev_intr,
206 0, "kvm_assigned_intx_device", (void *)adev))
207 return -EIO;
208 }
209
210 adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_INTX |
211 KVM_ASSIGNED_DEV_HOST_INTX;
212 return 0;
213 }
214
215 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
216 struct kvm_assigned_irq
217 *assigned_irq)
218 {
219 int r = 0;
220 struct kvm_assigned_dev_kernel *match;
221
222 mutex_lock(&kvm->lock);
223
224 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
225 assigned_irq->assigned_dev_id);
226 if (!match) {
227 mutex_unlock(&kvm->lock);
228 return -EINVAL;
229 }
230
231 if (!match->irq_requested_type) {
232 INIT_WORK(&match->interrupt_work,
233 kvm_assigned_dev_interrupt_work_handler);
234 if (irqchip_in_kernel(kvm)) {
235 /* Register ack nofitier */
236 match->ack_notifier.gsi = -1;
237 match->ack_notifier.irq_acked =
238 kvm_assigned_dev_ack_irq;
239 kvm_register_irq_ack_notifier(kvm,
240 &match->ack_notifier);
241
242 /* Request IRQ source ID */
243 r = kvm_request_irq_source_id(kvm);
244 if (r < 0)
245 goto out_release;
246 else
247 match->irq_source_id = r;
248 }
249 }
250
251 r = assigned_device_update_intx(kvm, match, assigned_irq);
252 if (r)
253 goto out_release;
254
255 mutex_unlock(&kvm->lock);
256 return r;
257 out_release:
258 mutex_unlock(&kvm->lock);
259 kvm_free_assigned_device(kvm, match);
260 return r;
261 }
262
263 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
264 struct kvm_assigned_pci_dev *assigned_dev)
265 {
266 int r = 0;
267 struct kvm_assigned_dev_kernel *match;
268 struct pci_dev *dev;
269
270 mutex_lock(&kvm->lock);
271
272 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
273 assigned_dev->assigned_dev_id);
274 if (match) {
275 /* device already assigned */
276 r = -EINVAL;
277 goto out;
278 }
279
280 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
281 if (match == NULL) {
282 printk(KERN_INFO "%s: Couldn't allocate memory\n",
283 __func__);
284 r = -ENOMEM;
285 goto out;
286 }
287 dev = pci_get_bus_and_slot(assigned_dev->busnr,
288 assigned_dev->devfn);
289 if (!dev) {
290 printk(KERN_INFO "%s: host device not found\n", __func__);
291 r = -EINVAL;
292 goto out_free;
293 }
294 if (pci_enable_device(dev)) {
295 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
296 r = -EBUSY;
297 goto out_put;
298 }
299 r = pci_request_regions(dev, "kvm_assigned_device");
300 if (r) {
301 printk(KERN_INFO "%s: Could not get access to device regions\n",
302 __func__);
303 goto out_disable;
304 }
305
306 pci_reset_function(dev);
307
308 match->assigned_dev_id = assigned_dev->assigned_dev_id;
309 match->host_busnr = assigned_dev->busnr;
310 match->host_devfn = assigned_dev->devfn;
311 match->dev = dev;
312
313 match->kvm = kvm;
314
315 list_add(&match->list, &kvm->arch.assigned_dev_head);
316
317 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
318 r = kvm_iommu_map_guest(kvm, match);
319 if (r)
320 goto out_list_del;
321 }
322
323 out:
324 mutex_unlock(&kvm->lock);
325 return r;
326 out_list_del:
327 list_del(&match->list);
328 pci_release_regions(dev);
329 out_disable:
330 pci_disable_device(dev);
331 out_put:
332 pci_dev_put(dev);
333 out_free:
334 kfree(match);
335 mutex_unlock(&kvm->lock);
336 return r;
337 }
338 #endif
339
340 static inline int valid_vcpu(int n)
341 {
342 return likely(n >= 0 && n < KVM_MAX_VCPUS);
343 }
344
345 inline int kvm_is_mmio_pfn(pfn_t pfn)
346 {
347 if (pfn_valid(pfn))
348 return PageReserved(pfn_to_page(pfn));
349
350 return true;
351 }
352
353 /*
354 * Switches to specified vcpu, until a matching vcpu_put()
355 */
356 void vcpu_load(struct kvm_vcpu *vcpu)
357 {
358 int cpu;
359
360 mutex_lock(&vcpu->mutex);
361 cpu = get_cpu();
362 preempt_notifier_register(&vcpu->preempt_notifier);
363 kvm_arch_vcpu_load(vcpu, cpu);
364 put_cpu();
365 }
366
367 void vcpu_put(struct kvm_vcpu *vcpu)
368 {
369 preempt_disable();
370 kvm_arch_vcpu_put(vcpu);
371 preempt_notifier_unregister(&vcpu->preempt_notifier);
372 preempt_enable();
373 mutex_unlock(&vcpu->mutex);
374 }
375
376 static void ack_flush(void *_completed)
377 {
378 }
379
380 void kvm_flush_remote_tlbs(struct kvm *kvm)
381 {
382 int i, cpu, me;
383 cpumask_t cpus;
384 struct kvm_vcpu *vcpu;
385
386 me = get_cpu();
387 cpus_clear(cpus);
388 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
389 vcpu = kvm->vcpus[i];
390 if (!vcpu)
391 continue;
392 if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
393 continue;
394 cpu = vcpu->cpu;
395 if (cpu != -1 && cpu != me)
396 cpu_set(cpu, cpus);
397 }
398 if (cpus_empty(cpus))
399 goto out;
400 ++kvm->stat.remote_tlb_flush;
401 smp_call_function_mask(cpus, ack_flush, NULL, 1);
402 out:
403 put_cpu();
404 }
405
406 void kvm_reload_remote_mmus(struct kvm *kvm)
407 {
408 int i, cpu, me;
409 cpumask_t cpus;
410 struct kvm_vcpu *vcpu;
411
412 me = get_cpu();
413 cpus_clear(cpus);
414 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
415 vcpu = kvm->vcpus[i];
416 if (!vcpu)
417 continue;
418 if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
419 continue;
420 cpu = vcpu->cpu;
421 if (cpu != -1 && cpu != me)
422 cpu_set(cpu, cpus);
423 }
424 if (cpus_empty(cpus))
425 goto out;
426 smp_call_function_mask(cpus, ack_flush, NULL, 1);
427 out:
428 put_cpu();
429 }
430
431
432 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
433 {
434 struct page *page;
435 int r;
436
437 mutex_init(&vcpu->mutex);
438 vcpu->cpu = -1;
439 vcpu->kvm = kvm;
440 vcpu->vcpu_id = id;
441 init_waitqueue_head(&vcpu->wq);
442
443 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
444 if (!page) {
445 r = -ENOMEM;
446 goto fail;
447 }
448 vcpu->run = page_address(page);
449
450 r = kvm_arch_vcpu_init(vcpu);
451 if (r < 0)
452 goto fail_free_run;
453 return 0;
454
455 fail_free_run:
456 free_page((unsigned long)vcpu->run);
457 fail:
458 return r;
459 }
460 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
461
462 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
463 {
464 kvm_arch_vcpu_uninit(vcpu);
465 free_page((unsigned long)vcpu->run);
466 }
467 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
468
469 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
470 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
471 {
472 return container_of(mn, struct kvm, mmu_notifier);
473 }
474
475 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
476 struct mm_struct *mm,
477 unsigned long address)
478 {
479 struct kvm *kvm = mmu_notifier_to_kvm(mn);
480 int need_tlb_flush;
481
482 /*
483 * When ->invalidate_page runs, the linux pte has been zapped
484 * already but the page is still allocated until
485 * ->invalidate_page returns. So if we increase the sequence
486 * here the kvm page fault will notice if the spte can't be
487 * established because the page is going to be freed. If
488 * instead the kvm page fault establishes the spte before
489 * ->invalidate_page runs, kvm_unmap_hva will release it
490 * before returning.
491 *
492 * The sequence increase only need to be seen at spin_unlock
493 * time, and not at spin_lock time.
494 *
495 * Increasing the sequence after the spin_unlock would be
496 * unsafe because the kvm page fault could then establish the
497 * pte after kvm_unmap_hva returned, without noticing the page
498 * is going to be freed.
499 */
500 spin_lock(&kvm->mmu_lock);
501 kvm->mmu_notifier_seq++;
502 need_tlb_flush = kvm_unmap_hva(kvm, address);
503 spin_unlock(&kvm->mmu_lock);
504
505 /* we've to flush the tlb before the pages can be freed */
506 if (need_tlb_flush)
507 kvm_flush_remote_tlbs(kvm);
508
509 }
510
511 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
512 struct mm_struct *mm,
513 unsigned long start,
514 unsigned long end)
515 {
516 struct kvm *kvm = mmu_notifier_to_kvm(mn);
517 int need_tlb_flush = 0;
518
519 spin_lock(&kvm->mmu_lock);
520 /*
521 * The count increase must become visible at unlock time as no
522 * spte can be established without taking the mmu_lock and
523 * count is also read inside the mmu_lock critical section.
524 */
525 kvm->mmu_notifier_count++;
526 for (; start < end; start += PAGE_SIZE)
527 need_tlb_flush |= kvm_unmap_hva(kvm, start);
528 spin_unlock(&kvm->mmu_lock);
529
530 /* we've to flush the tlb before the pages can be freed */
531 if (need_tlb_flush)
532 kvm_flush_remote_tlbs(kvm);
533 }
534
535 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
536 struct mm_struct *mm,
537 unsigned long start,
538 unsigned long end)
539 {
540 struct kvm *kvm = mmu_notifier_to_kvm(mn);
541
542 spin_lock(&kvm->mmu_lock);
543 /*
544 * This sequence increase will notify the kvm page fault that
545 * the page that is going to be mapped in the spte could have
546 * been freed.
547 */
548 kvm->mmu_notifier_seq++;
549 /*
550 * The above sequence increase must be visible before the
551 * below count decrease but both values are read by the kvm
552 * page fault under mmu_lock spinlock so we don't need to add
553 * a smb_wmb() here in between the two.
554 */
555 kvm->mmu_notifier_count--;
556 spin_unlock(&kvm->mmu_lock);
557
558 BUG_ON(kvm->mmu_notifier_count < 0);
559 }
560
561 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
562 struct mm_struct *mm,
563 unsigned long address)
564 {
565 struct kvm *kvm = mmu_notifier_to_kvm(mn);
566 int young;
567
568 spin_lock(&kvm->mmu_lock);
569 young = kvm_age_hva(kvm, address);
570 spin_unlock(&kvm->mmu_lock);
571
572 if (young)
573 kvm_flush_remote_tlbs(kvm);
574
575 return young;
576 }
577
578 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
579 .invalidate_page = kvm_mmu_notifier_invalidate_page,
580 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
581 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
582 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
583 };
584 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
585
586 static struct kvm *kvm_create_vm(void)
587 {
588 struct kvm *kvm = kvm_arch_create_vm();
589 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
590 struct page *page;
591 #endif
592
593 if (IS_ERR(kvm))
594 goto out;
595
596 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
597 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
598 if (!page) {
599 kfree(kvm);
600 return ERR_PTR(-ENOMEM);
601 }
602 kvm->coalesced_mmio_ring =
603 (struct kvm_coalesced_mmio_ring *)page_address(page);
604 #endif
605
606 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
607 {
608 int err;
609 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
610 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
611 if (err) {
612 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
613 put_page(page);
614 #endif
615 kfree(kvm);
616 return ERR_PTR(err);
617 }
618 }
619 #endif
620
621 kvm->mm = current->mm;
622 atomic_inc(&kvm->mm->mm_count);
623 spin_lock_init(&kvm->mmu_lock);
624 kvm_io_bus_init(&kvm->pio_bus);
625 mutex_init(&kvm->lock);
626 kvm_io_bus_init(&kvm->mmio_bus);
627 init_rwsem(&kvm->slots_lock);
628 atomic_set(&kvm->users_count, 1);
629 spin_lock(&kvm_lock);
630 list_add(&kvm->vm_list, &vm_list);
631 spin_unlock(&kvm_lock);
632 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
633 kvm_coalesced_mmio_init(kvm);
634 #endif
635 out:
636 return kvm;
637 }
638
639 /*
640 * Free any memory in @free but not in @dont.
641 */
642 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
643 struct kvm_memory_slot *dont)
644 {
645 if (!dont || free->rmap != dont->rmap)
646 vfree(free->rmap);
647
648 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
649 vfree(free->dirty_bitmap);
650
651 if (!dont || free->lpage_info != dont->lpage_info)
652 vfree(free->lpage_info);
653
654 free->npages = 0;
655 free->dirty_bitmap = NULL;
656 free->rmap = NULL;
657 free->lpage_info = NULL;
658 }
659
660 void kvm_free_physmem(struct kvm *kvm)
661 {
662 int i;
663
664 for (i = 0; i < kvm->nmemslots; ++i)
665 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
666 }
667
668 static void kvm_destroy_vm(struct kvm *kvm)
669 {
670 struct mm_struct *mm = kvm->mm;
671
672 spin_lock(&kvm_lock);
673 list_del(&kvm->vm_list);
674 spin_unlock(&kvm_lock);
675 kvm_io_bus_destroy(&kvm->pio_bus);
676 kvm_io_bus_destroy(&kvm->mmio_bus);
677 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
678 if (kvm->coalesced_mmio_ring != NULL)
679 free_page((unsigned long)kvm->coalesced_mmio_ring);
680 #endif
681 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
682 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
683 #endif
684 kvm_arch_destroy_vm(kvm);
685 mmdrop(mm);
686 }
687
688 void kvm_get_kvm(struct kvm *kvm)
689 {
690 atomic_inc(&kvm->users_count);
691 }
692 EXPORT_SYMBOL_GPL(kvm_get_kvm);
693
694 void kvm_put_kvm(struct kvm *kvm)
695 {
696 if (atomic_dec_and_test(&kvm->users_count))
697 kvm_destroy_vm(kvm);
698 }
699 EXPORT_SYMBOL_GPL(kvm_put_kvm);
700
701
702 static int kvm_vm_release(struct inode *inode, struct file *filp)
703 {
704 struct kvm *kvm = filp->private_data;
705
706 kvm_put_kvm(kvm);
707 return 0;
708 }
709
710 /*
711 * Allocate some memory and give it an address in the guest physical address
712 * space.
713 *
714 * Discontiguous memory is allowed, mostly for framebuffers.
715 *
716 * Must be called holding mmap_sem for write.
717 */
718 int __kvm_set_memory_region(struct kvm *kvm,
719 struct kvm_userspace_memory_region *mem,
720 int user_alloc)
721 {
722 int r;
723 gfn_t base_gfn;
724 unsigned long npages;
725 unsigned long i;
726 struct kvm_memory_slot *memslot;
727 struct kvm_memory_slot old, new;
728
729 r = -EINVAL;
730 /* General sanity checks */
731 if (mem->memory_size & (PAGE_SIZE - 1))
732 goto out;
733 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
734 goto out;
735 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
736 goto out;
737 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
738 goto out;
739 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
740 goto out;
741
742 memslot = &kvm->memslots[mem->slot];
743 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
744 npages = mem->memory_size >> PAGE_SHIFT;
745
746 if (!npages)
747 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
748
749 new = old = *memslot;
750
751 new.base_gfn = base_gfn;
752 new.npages = npages;
753 new.flags = mem->flags;
754
755 /* Disallow changing a memory slot's size. */
756 r = -EINVAL;
757 if (npages && old.npages && npages != old.npages)
758 goto out_free;
759
760 /* Check for overlaps */
761 r = -EEXIST;
762 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
763 struct kvm_memory_slot *s = &kvm->memslots[i];
764
765 if (s == memslot)
766 continue;
767 if (!((base_gfn + npages <= s->base_gfn) ||
768 (base_gfn >= s->base_gfn + s->npages)))
769 goto out_free;
770 }
771
772 /* Free page dirty bitmap if unneeded */
773 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
774 new.dirty_bitmap = NULL;
775
776 r = -ENOMEM;
777
778 /* Allocate if a slot is being created */
779 #ifndef CONFIG_S390
780 if (npages && !new.rmap) {
781 new.rmap = vmalloc(npages * sizeof(struct page *));
782
783 if (!new.rmap)
784 goto out_free;
785
786 memset(new.rmap, 0, npages * sizeof(*new.rmap));
787
788 new.user_alloc = user_alloc;
789 /*
790 * hva_to_rmmap() serialzies with the mmu_lock and to be
791 * safe it has to ignore memslots with !user_alloc &&
792 * !userspace_addr.
793 */
794 if (user_alloc)
795 new.userspace_addr = mem->userspace_addr;
796 else
797 new.userspace_addr = 0;
798 }
799 if (npages && !new.lpage_info) {
800 int largepages = npages / KVM_PAGES_PER_HPAGE;
801 if (npages % KVM_PAGES_PER_HPAGE)
802 largepages++;
803 if (base_gfn % KVM_PAGES_PER_HPAGE)
804 largepages++;
805
806 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
807
808 if (!new.lpage_info)
809 goto out_free;
810
811 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
812
813 if (base_gfn % KVM_PAGES_PER_HPAGE)
814 new.lpage_info[0].write_count = 1;
815 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
816 new.lpage_info[largepages-1].write_count = 1;
817 }
818
819 /* Allocate page dirty bitmap if needed */
820 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
821 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
822
823 new.dirty_bitmap = vmalloc(dirty_bytes);
824 if (!new.dirty_bitmap)
825 goto out_free;
826 memset(new.dirty_bitmap, 0, dirty_bytes);
827 }
828 #endif /* not defined CONFIG_S390 */
829
830 if (!npages)
831 kvm_arch_flush_shadow(kvm);
832
833 spin_lock(&kvm->mmu_lock);
834 if (mem->slot >= kvm->nmemslots)
835 kvm->nmemslots = mem->slot + 1;
836
837 *memslot = new;
838 spin_unlock(&kvm->mmu_lock);
839
840 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
841 if (r) {
842 spin_lock(&kvm->mmu_lock);
843 *memslot = old;
844 spin_unlock(&kvm->mmu_lock);
845 goto out_free;
846 }
847
848 kvm_free_physmem_slot(&old, &new);
849 #ifdef CONFIG_DMAR
850 /* map the pages in iommu page table */
851 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
852 if (r)
853 goto out;
854 #endif
855 return 0;
856
857 out_free:
858 kvm_free_physmem_slot(&new, &old);
859 out:
860 return r;
861
862 }
863 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
864
865 int kvm_set_memory_region(struct kvm *kvm,
866 struct kvm_userspace_memory_region *mem,
867 int user_alloc)
868 {
869 int r;
870
871 down_write(&kvm->slots_lock);
872 r = __kvm_set_memory_region(kvm, mem, user_alloc);
873 up_write(&kvm->slots_lock);
874 return r;
875 }
876 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
877
878 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
879 struct
880 kvm_userspace_memory_region *mem,
881 int user_alloc)
882 {
883 if (mem->slot >= KVM_MEMORY_SLOTS)
884 return -EINVAL;
885 return kvm_set_memory_region(kvm, mem, user_alloc);
886 }
887
888 int kvm_get_dirty_log(struct kvm *kvm,
889 struct kvm_dirty_log *log, int *is_dirty)
890 {
891 struct kvm_memory_slot *memslot;
892 int r, i;
893 int n;
894 unsigned long any = 0;
895
896 r = -EINVAL;
897 if (log->slot >= KVM_MEMORY_SLOTS)
898 goto out;
899
900 memslot = &kvm->memslots[log->slot];
901 r = -ENOENT;
902 if (!memslot->dirty_bitmap)
903 goto out;
904
905 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
906
907 for (i = 0; !any && i < n/sizeof(long); ++i)
908 any = memslot->dirty_bitmap[i];
909
910 r = -EFAULT;
911 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
912 goto out;
913
914 if (any)
915 *is_dirty = 1;
916
917 r = 0;
918 out:
919 return r;
920 }
921
922 int is_error_page(struct page *page)
923 {
924 return page == bad_page;
925 }
926 EXPORT_SYMBOL_GPL(is_error_page);
927
928 int is_error_pfn(pfn_t pfn)
929 {
930 return pfn == bad_pfn;
931 }
932 EXPORT_SYMBOL_GPL(is_error_pfn);
933
934 static inline unsigned long bad_hva(void)
935 {
936 return PAGE_OFFSET;
937 }
938
939 int kvm_is_error_hva(unsigned long addr)
940 {
941 return addr == bad_hva();
942 }
943 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
944
945 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
946 {
947 int i;
948
949 for (i = 0; i < kvm->nmemslots; ++i) {
950 struct kvm_memory_slot *memslot = &kvm->memslots[i];
951
952 if (gfn >= memslot->base_gfn
953 && gfn < memslot->base_gfn + memslot->npages)
954 return memslot;
955 }
956 return NULL;
957 }
958 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
959
960 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
961 {
962 gfn = unalias_gfn(kvm, gfn);
963 return gfn_to_memslot_unaliased(kvm, gfn);
964 }
965
966 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
967 {
968 int i;
969
970 gfn = unalias_gfn(kvm, gfn);
971 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
972 struct kvm_memory_slot *memslot = &kvm->memslots[i];
973
974 if (gfn >= memslot->base_gfn
975 && gfn < memslot->base_gfn + memslot->npages)
976 return 1;
977 }
978 return 0;
979 }
980 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
981
982 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
983 {
984 struct kvm_memory_slot *slot;
985
986 gfn = unalias_gfn(kvm, gfn);
987 slot = gfn_to_memslot_unaliased(kvm, gfn);
988 if (!slot)
989 return bad_hva();
990 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
991 }
992 EXPORT_SYMBOL_GPL(gfn_to_hva);
993
994 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
995 {
996 struct page *page[1];
997 unsigned long addr;
998 int npages;
999 pfn_t pfn;
1000
1001 might_sleep();
1002
1003 addr = gfn_to_hva(kvm, gfn);
1004 if (kvm_is_error_hva(addr)) {
1005 get_page(bad_page);
1006 return page_to_pfn(bad_page);
1007 }
1008
1009 npages = get_user_pages_fast(addr, 1, 1, page);
1010
1011 if (unlikely(npages != 1)) {
1012 struct vm_area_struct *vma;
1013
1014 down_read(&current->mm->mmap_sem);
1015 vma = find_vma(current->mm, addr);
1016
1017 if (vma == NULL || addr < vma->vm_start ||
1018 !(vma->vm_flags & VM_PFNMAP)) {
1019 up_read(&current->mm->mmap_sem);
1020 get_page(bad_page);
1021 return page_to_pfn(bad_page);
1022 }
1023
1024 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1025 up_read(&current->mm->mmap_sem);
1026 BUG_ON(!kvm_is_mmio_pfn(pfn));
1027 } else
1028 pfn = page_to_pfn(page[0]);
1029
1030 return pfn;
1031 }
1032
1033 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1034
1035 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1036 {
1037 pfn_t pfn;
1038
1039 pfn = gfn_to_pfn(kvm, gfn);
1040 if (!kvm_is_mmio_pfn(pfn))
1041 return pfn_to_page(pfn);
1042
1043 WARN_ON(kvm_is_mmio_pfn(pfn));
1044
1045 get_page(bad_page);
1046 return bad_page;
1047 }
1048
1049 EXPORT_SYMBOL_GPL(gfn_to_page);
1050
1051 void kvm_release_page_clean(struct page *page)
1052 {
1053 kvm_release_pfn_clean(page_to_pfn(page));
1054 }
1055 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1056
1057 void kvm_release_pfn_clean(pfn_t pfn)
1058 {
1059 if (!kvm_is_mmio_pfn(pfn))
1060 put_page(pfn_to_page(pfn));
1061 }
1062 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1063
1064 void kvm_release_page_dirty(struct page *page)
1065 {
1066 kvm_release_pfn_dirty(page_to_pfn(page));
1067 }
1068 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1069
1070 void kvm_release_pfn_dirty(pfn_t pfn)
1071 {
1072 kvm_set_pfn_dirty(pfn);
1073 kvm_release_pfn_clean(pfn);
1074 }
1075 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1076
1077 void kvm_set_page_dirty(struct page *page)
1078 {
1079 kvm_set_pfn_dirty(page_to_pfn(page));
1080 }
1081 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1082
1083 void kvm_set_pfn_dirty(pfn_t pfn)
1084 {
1085 if (!kvm_is_mmio_pfn(pfn)) {
1086 struct page *page = pfn_to_page(pfn);
1087 if (!PageReserved(page))
1088 SetPageDirty(page);
1089 }
1090 }
1091 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1092
1093 void kvm_set_pfn_accessed(pfn_t pfn)
1094 {
1095 if (!kvm_is_mmio_pfn(pfn))
1096 mark_page_accessed(pfn_to_page(pfn));
1097 }
1098 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1099
1100 void kvm_get_pfn(pfn_t pfn)
1101 {
1102 if (!kvm_is_mmio_pfn(pfn))
1103 get_page(pfn_to_page(pfn));
1104 }
1105 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1106
1107 static int next_segment(unsigned long len, int offset)
1108 {
1109 if (len > PAGE_SIZE - offset)
1110 return PAGE_SIZE - offset;
1111 else
1112 return len;
1113 }
1114
1115 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1116 int len)
1117 {
1118 int r;
1119 unsigned long addr;
1120
1121 addr = gfn_to_hva(kvm, gfn);
1122 if (kvm_is_error_hva(addr))
1123 return -EFAULT;
1124 r = copy_from_user(data, (void __user *)addr + offset, len);
1125 if (r)
1126 return -EFAULT;
1127 return 0;
1128 }
1129 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1130
1131 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1132 {
1133 gfn_t gfn = gpa >> PAGE_SHIFT;
1134 int seg;
1135 int offset = offset_in_page(gpa);
1136 int ret;
1137
1138 while ((seg = next_segment(len, offset)) != 0) {
1139 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1140 if (ret < 0)
1141 return ret;
1142 offset = 0;
1143 len -= seg;
1144 data += seg;
1145 ++gfn;
1146 }
1147 return 0;
1148 }
1149 EXPORT_SYMBOL_GPL(kvm_read_guest);
1150
1151 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1152 unsigned long len)
1153 {
1154 int r;
1155 unsigned long addr;
1156 gfn_t gfn = gpa >> PAGE_SHIFT;
1157 int offset = offset_in_page(gpa);
1158
1159 addr = gfn_to_hva(kvm, gfn);
1160 if (kvm_is_error_hva(addr))
1161 return -EFAULT;
1162 pagefault_disable();
1163 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1164 pagefault_enable();
1165 if (r)
1166 return -EFAULT;
1167 return 0;
1168 }
1169 EXPORT_SYMBOL(kvm_read_guest_atomic);
1170
1171 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1172 int offset, int len)
1173 {
1174 int r;
1175 unsigned long addr;
1176
1177 addr = gfn_to_hva(kvm, gfn);
1178 if (kvm_is_error_hva(addr))
1179 return -EFAULT;
1180 r = copy_to_user((void __user *)addr + offset, data, len);
1181 if (r)
1182 return -EFAULT;
1183 mark_page_dirty(kvm, gfn);
1184 return 0;
1185 }
1186 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1187
1188 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1189 unsigned long len)
1190 {
1191 gfn_t gfn = gpa >> PAGE_SHIFT;
1192 int seg;
1193 int offset = offset_in_page(gpa);
1194 int ret;
1195
1196 while ((seg = next_segment(len, offset)) != 0) {
1197 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1198 if (ret < 0)
1199 return ret;
1200 offset = 0;
1201 len -= seg;
1202 data += seg;
1203 ++gfn;
1204 }
1205 return 0;
1206 }
1207
1208 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1209 {
1210 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1211 }
1212 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1213
1214 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1215 {
1216 gfn_t gfn = gpa >> PAGE_SHIFT;
1217 int seg;
1218 int offset = offset_in_page(gpa);
1219 int ret;
1220
1221 while ((seg = next_segment(len, offset)) != 0) {
1222 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1223 if (ret < 0)
1224 return ret;
1225 offset = 0;
1226 len -= seg;
1227 ++gfn;
1228 }
1229 return 0;
1230 }
1231 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1232
1233 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1234 {
1235 struct kvm_memory_slot *memslot;
1236
1237 gfn = unalias_gfn(kvm, gfn);
1238 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1239 if (memslot && memslot->dirty_bitmap) {
1240 unsigned long rel_gfn = gfn - memslot->base_gfn;
1241
1242 /* avoid RMW */
1243 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1244 set_bit(rel_gfn, memslot->dirty_bitmap);
1245 }
1246 }
1247
1248 /*
1249 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1250 */
1251 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1252 {
1253 DEFINE_WAIT(wait);
1254
1255 for (;;) {
1256 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1257
1258 if (kvm_cpu_has_interrupt(vcpu) ||
1259 kvm_cpu_has_pending_timer(vcpu) ||
1260 kvm_arch_vcpu_runnable(vcpu)) {
1261 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1262 break;
1263 }
1264 if (signal_pending(current))
1265 break;
1266
1267 vcpu_put(vcpu);
1268 schedule();
1269 vcpu_load(vcpu);
1270 }
1271
1272 finish_wait(&vcpu->wq, &wait);
1273 }
1274
1275 void kvm_resched(struct kvm_vcpu *vcpu)
1276 {
1277 if (!need_resched())
1278 return;
1279 cond_resched();
1280 }
1281 EXPORT_SYMBOL_GPL(kvm_resched);
1282
1283 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1284 {
1285 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1286 struct page *page;
1287
1288 if (vmf->pgoff == 0)
1289 page = virt_to_page(vcpu->run);
1290 #ifdef CONFIG_X86
1291 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1292 page = virt_to_page(vcpu->arch.pio_data);
1293 #endif
1294 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1295 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1296 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1297 #endif
1298 else
1299 return VM_FAULT_SIGBUS;
1300 get_page(page);
1301 vmf->page = page;
1302 return 0;
1303 }
1304
1305 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1306 .fault = kvm_vcpu_fault,
1307 };
1308
1309 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1310 {
1311 vma->vm_ops = &kvm_vcpu_vm_ops;
1312 return 0;
1313 }
1314
1315 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1316 {
1317 struct kvm_vcpu *vcpu = filp->private_data;
1318
1319 kvm_put_kvm(vcpu->kvm);
1320 return 0;
1321 }
1322
1323 static const struct file_operations kvm_vcpu_fops = {
1324 .release = kvm_vcpu_release,
1325 .unlocked_ioctl = kvm_vcpu_ioctl,
1326 .compat_ioctl = kvm_vcpu_ioctl,
1327 .mmap = kvm_vcpu_mmap,
1328 };
1329
1330 /*
1331 * Allocates an inode for the vcpu.
1332 */
1333 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1334 {
1335 int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1336 if (fd < 0)
1337 kvm_put_kvm(vcpu->kvm);
1338 return fd;
1339 }
1340
1341 /*
1342 * Creates some virtual cpus. Good luck creating more than one.
1343 */
1344 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1345 {
1346 int r;
1347 struct kvm_vcpu *vcpu;
1348
1349 if (!valid_vcpu(n))
1350 return -EINVAL;
1351
1352 vcpu = kvm_arch_vcpu_create(kvm, n);
1353 if (IS_ERR(vcpu))
1354 return PTR_ERR(vcpu);
1355
1356 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1357
1358 r = kvm_arch_vcpu_setup(vcpu);
1359 if (r)
1360 return r;
1361
1362 mutex_lock(&kvm->lock);
1363 if (kvm->vcpus[n]) {
1364 r = -EEXIST;
1365 goto vcpu_destroy;
1366 }
1367 kvm->vcpus[n] = vcpu;
1368 mutex_unlock(&kvm->lock);
1369
1370 /* Now it's all set up, let userspace reach it */
1371 kvm_get_kvm(kvm);
1372 r = create_vcpu_fd(vcpu);
1373 if (r < 0)
1374 goto unlink;
1375 return r;
1376
1377 unlink:
1378 mutex_lock(&kvm->lock);
1379 kvm->vcpus[n] = NULL;
1380 vcpu_destroy:
1381 mutex_unlock(&kvm->lock);
1382 kvm_arch_vcpu_destroy(vcpu);
1383 return r;
1384 }
1385
1386 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1387 {
1388 if (sigset) {
1389 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1390 vcpu->sigset_active = 1;
1391 vcpu->sigset = *sigset;
1392 } else
1393 vcpu->sigset_active = 0;
1394 return 0;
1395 }
1396
1397 static long kvm_vcpu_ioctl(struct file *filp,
1398 unsigned int ioctl, unsigned long arg)
1399 {
1400 struct kvm_vcpu *vcpu = filp->private_data;
1401 void __user *argp = (void __user *)arg;
1402 int r;
1403 struct kvm_fpu *fpu = NULL;
1404 struct kvm_sregs *kvm_sregs = NULL;
1405
1406 if (vcpu->kvm->mm != current->mm)
1407 return -EIO;
1408 switch (ioctl) {
1409 case KVM_RUN:
1410 r = -EINVAL;
1411 if (arg)
1412 goto out;
1413 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1414 break;
1415 case KVM_GET_REGS: {
1416 struct kvm_regs *kvm_regs;
1417
1418 r = -ENOMEM;
1419 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1420 if (!kvm_regs)
1421 goto out;
1422 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1423 if (r)
1424 goto out_free1;
1425 r = -EFAULT;
1426 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1427 goto out_free1;
1428 r = 0;
1429 out_free1:
1430 kfree(kvm_regs);
1431 break;
1432 }
1433 case KVM_SET_REGS: {
1434 struct kvm_regs *kvm_regs;
1435
1436 r = -ENOMEM;
1437 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1438 if (!kvm_regs)
1439 goto out;
1440 r = -EFAULT;
1441 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1442 goto out_free2;
1443 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1444 if (r)
1445 goto out_free2;
1446 r = 0;
1447 out_free2:
1448 kfree(kvm_regs);
1449 break;
1450 }
1451 case KVM_GET_SREGS: {
1452 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1453 r = -ENOMEM;
1454 if (!kvm_sregs)
1455 goto out;
1456 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1457 if (r)
1458 goto out;
1459 r = -EFAULT;
1460 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1461 goto out;
1462 r = 0;
1463 break;
1464 }
1465 case KVM_SET_SREGS: {
1466 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1467 r = -ENOMEM;
1468 if (!kvm_sregs)
1469 goto out;
1470 r = -EFAULT;
1471 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1472 goto out;
1473 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1474 if (r)
1475 goto out;
1476 r = 0;
1477 break;
1478 }
1479 case KVM_GET_MP_STATE: {
1480 struct kvm_mp_state mp_state;
1481
1482 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1483 if (r)
1484 goto out;
1485 r = -EFAULT;
1486 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1487 goto out;
1488 r = 0;
1489 break;
1490 }
1491 case KVM_SET_MP_STATE: {
1492 struct kvm_mp_state mp_state;
1493
1494 r = -EFAULT;
1495 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1496 goto out;
1497 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1498 if (r)
1499 goto out;
1500 r = 0;
1501 break;
1502 }
1503 case KVM_TRANSLATE: {
1504 struct kvm_translation tr;
1505
1506 r = -EFAULT;
1507 if (copy_from_user(&tr, argp, sizeof tr))
1508 goto out;
1509 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1510 if (r)
1511 goto out;
1512 r = -EFAULT;
1513 if (copy_to_user(argp, &tr, sizeof tr))
1514 goto out;
1515 r = 0;
1516 break;
1517 }
1518 case KVM_DEBUG_GUEST: {
1519 struct kvm_debug_guest dbg;
1520
1521 r = -EFAULT;
1522 if (copy_from_user(&dbg, argp, sizeof dbg))
1523 goto out;
1524 r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
1525 if (r)
1526 goto out;
1527 r = 0;
1528 break;
1529 }
1530 case KVM_SET_SIGNAL_MASK: {
1531 struct kvm_signal_mask __user *sigmask_arg = argp;
1532 struct kvm_signal_mask kvm_sigmask;
1533 sigset_t sigset, *p;
1534
1535 p = NULL;
1536 if (argp) {
1537 r = -EFAULT;
1538 if (copy_from_user(&kvm_sigmask, argp,
1539 sizeof kvm_sigmask))
1540 goto out;
1541 r = -EINVAL;
1542 if (kvm_sigmask.len != sizeof sigset)
1543 goto out;
1544 r = -EFAULT;
1545 if (copy_from_user(&sigset, sigmask_arg->sigset,
1546 sizeof sigset))
1547 goto out;
1548 p = &sigset;
1549 }
1550 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1551 break;
1552 }
1553 case KVM_GET_FPU: {
1554 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1555 r = -ENOMEM;
1556 if (!fpu)
1557 goto out;
1558 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1559 if (r)
1560 goto out;
1561 r = -EFAULT;
1562 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1563 goto out;
1564 r = 0;
1565 break;
1566 }
1567 case KVM_SET_FPU: {
1568 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1569 r = -ENOMEM;
1570 if (!fpu)
1571 goto out;
1572 r = -EFAULT;
1573 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1574 goto out;
1575 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1576 if (r)
1577 goto out;
1578 r = 0;
1579 break;
1580 }
1581 default:
1582 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1583 }
1584 out:
1585 kfree(fpu);
1586 kfree(kvm_sregs);
1587 return r;
1588 }
1589
1590 static long kvm_vm_ioctl(struct file *filp,
1591 unsigned int ioctl, unsigned long arg)
1592 {
1593 struct kvm *kvm = filp->private_data;
1594 void __user *argp = (void __user *)arg;
1595 int r;
1596
1597 if (kvm->mm != current->mm)
1598 return -EIO;
1599 switch (ioctl) {
1600 case KVM_CREATE_VCPU:
1601 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1602 if (r < 0)
1603 goto out;
1604 break;
1605 case KVM_SET_USER_MEMORY_REGION: {
1606 struct kvm_userspace_memory_region kvm_userspace_mem;
1607
1608 r = -EFAULT;
1609 if (copy_from_user(&kvm_userspace_mem, argp,
1610 sizeof kvm_userspace_mem))
1611 goto out;
1612
1613 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1614 if (r)
1615 goto out;
1616 break;
1617 }
1618 case KVM_GET_DIRTY_LOG: {
1619 struct kvm_dirty_log log;
1620
1621 r = -EFAULT;
1622 if (copy_from_user(&log, argp, sizeof log))
1623 goto out;
1624 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1625 if (r)
1626 goto out;
1627 break;
1628 }
1629 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1630 case KVM_REGISTER_COALESCED_MMIO: {
1631 struct kvm_coalesced_mmio_zone zone;
1632 r = -EFAULT;
1633 if (copy_from_user(&zone, argp, sizeof zone))
1634 goto out;
1635 r = -ENXIO;
1636 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1637 if (r)
1638 goto out;
1639 r = 0;
1640 break;
1641 }
1642 case KVM_UNREGISTER_COALESCED_MMIO: {
1643 struct kvm_coalesced_mmio_zone zone;
1644 r = -EFAULT;
1645 if (copy_from_user(&zone, argp, sizeof zone))
1646 goto out;
1647 r = -ENXIO;
1648 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1649 if (r)
1650 goto out;
1651 r = 0;
1652 break;
1653 }
1654 #endif
1655 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
1656 case KVM_ASSIGN_PCI_DEVICE: {
1657 struct kvm_assigned_pci_dev assigned_dev;
1658
1659 r = -EFAULT;
1660 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
1661 goto out;
1662 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
1663 if (r)
1664 goto out;
1665 break;
1666 }
1667 case KVM_ASSIGN_IRQ: {
1668 struct kvm_assigned_irq assigned_irq;
1669
1670 r = -EFAULT;
1671 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
1672 goto out;
1673 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
1674 if (r)
1675 goto out;
1676 break;
1677 }
1678 #endif
1679 default:
1680 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1681 }
1682 out:
1683 return r;
1684 }
1685
1686 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1687 {
1688 struct page *page[1];
1689 unsigned long addr;
1690 int npages;
1691 gfn_t gfn = vmf->pgoff;
1692 struct kvm *kvm = vma->vm_file->private_data;
1693
1694 addr = gfn_to_hva(kvm, gfn);
1695 if (kvm_is_error_hva(addr))
1696 return VM_FAULT_SIGBUS;
1697
1698 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1699 NULL);
1700 if (unlikely(npages != 1))
1701 return VM_FAULT_SIGBUS;
1702
1703 vmf->page = page[0];
1704 return 0;
1705 }
1706
1707 static struct vm_operations_struct kvm_vm_vm_ops = {
1708 .fault = kvm_vm_fault,
1709 };
1710
1711 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1712 {
1713 vma->vm_ops = &kvm_vm_vm_ops;
1714 return 0;
1715 }
1716
1717 static const struct file_operations kvm_vm_fops = {
1718 .release = kvm_vm_release,
1719 .unlocked_ioctl = kvm_vm_ioctl,
1720 .compat_ioctl = kvm_vm_ioctl,
1721 .mmap = kvm_vm_mmap,
1722 };
1723
1724 static int kvm_dev_ioctl_create_vm(void)
1725 {
1726 int fd;
1727 struct kvm *kvm;
1728
1729 kvm = kvm_create_vm();
1730 if (IS_ERR(kvm))
1731 return PTR_ERR(kvm);
1732 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
1733 if (fd < 0)
1734 kvm_put_kvm(kvm);
1735
1736 return fd;
1737 }
1738
1739 static long kvm_dev_ioctl(struct file *filp,
1740 unsigned int ioctl, unsigned long arg)
1741 {
1742 long r = -EINVAL;
1743
1744 switch (ioctl) {
1745 case KVM_GET_API_VERSION:
1746 r = -EINVAL;
1747 if (arg)
1748 goto out;
1749 r = KVM_API_VERSION;
1750 break;
1751 case KVM_CREATE_VM:
1752 r = -EINVAL;
1753 if (arg)
1754 goto out;
1755 r = kvm_dev_ioctl_create_vm();
1756 break;
1757 case KVM_CHECK_EXTENSION:
1758 r = kvm_dev_ioctl_check_extension(arg);
1759 break;
1760 case KVM_GET_VCPU_MMAP_SIZE:
1761 r = -EINVAL;
1762 if (arg)
1763 goto out;
1764 r = PAGE_SIZE; /* struct kvm_run */
1765 #ifdef CONFIG_X86
1766 r += PAGE_SIZE; /* pio data page */
1767 #endif
1768 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1769 r += PAGE_SIZE; /* coalesced mmio ring page */
1770 #endif
1771 break;
1772 case KVM_TRACE_ENABLE:
1773 case KVM_TRACE_PAUSE:
1774 case KVM_TRACE_DISABLE:
1775 r = kvm_trace_ioctl(ioctl, arg);
1776 break;
1777 default:
1778 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1779 }
1780 out:
1781 return r;
1782 }
1783
1784 static struct file_operations kvm_chardev_ops = {
1785 .unlocked_ioctl = kvm_dev_ioctl,
1786 .compat_ioctl = kvm_dev_ioctl,
1787 };
1788
1789 static struct miscdevice kvm_dev = {
1790 KVM_MINOR,
1791 "kvm",
1792 &kvm_chardev_ops,
1793 };
1794
1795 static void hardware_enable(void *junk)
1796 {
1797 int cpu = raw_smp_processor_id();
1798
1799 if (cpu_isset(cpu, cpus_hardware_enabled))
1800 return;
1801 cpu_set(cpu, cpus_hardware_enabled);
1802 kvm_arch_hardware_enable(NULL);
1803 }
1804
1805 static void hardware_disable(void *junk)
1806 {
1807 int cpu = raw_smp_processor_id();
1808
1809 if (!cpu_isset(cpu, cpus_hardware_enabled))
1810 return;
1811 cpu_clear(cpu, cpus_hardware_enabled);
1812 kvm_arch_hardware_disable(NULL);
1813 }
1814
1815 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1816 void *v)
1817 {
1818 int cpu = (long)v;
1819
1820 val &= ~CPU_TASKS_FROZEN;
1821 switch (val) {
1822 case CPU_DYING:
1823 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1824 cpu);
1825 hardware_disable(NULL);
1826 break;
1827 case CPU_UP_CANCELED:
1828 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1829 cpu);
1830 smp_call_function_single(cpu, hardware_disable, NULL, 1);
1831 break;
1832 case CPU_ONLINE:
1833 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1834 cpu);
1835 smp_call_function_single(cpu, hardware_enable, NULL, 1);
1836 break;
1837 }
1838 return NOTIFY_OK;
1839 }
1840
1841
1842 asmlinkage void kvm_handle_fault_on_reboot(void)
1843 {
1844 if (kvm_rebooting)
1845 /* spin while reset goes on */
1846 while (true)
1847 ;
1848 /* Fault while not rebooting. We want the trace. */
1849 BUG();
1850 }
1851 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1852
1853 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1854 void *v)
1855 {
1856 if (val == SYS_RESTART) {
1857 /*
1858 * Some (well, at least mine) BIOSes hang on reboot if
1859 * in vmx root mode.
1860 */
1861 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1862 kvm_rebooting = true;
1863 on_each_cpu(hardware_disable, NULL, 1);
1864 }
1865 return NOTIFY_OK;
1866 }
1867
1868 static struct notifier_block kvm_reboot_notifier = {
1869 .notifier_call = kvm_reboot,
1870 .priority = 0,
1871 };
1872
1873 void kvm_io_bus_init(struct kvm_io_bus *bus)
1874 {
1875 memset(bus, 0, sizeof(*bus));
1876 }
1877
1878 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1879 {
1880 int i;
1881
1882 for (i = 0; i < bus->dev_count; i++) {
1883 struct kvm_io_device *pos = bus->devs[i];
1884
1885 kvm_iodevice_destructor(pos);
1886 }
1887 }
1888
1889 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
1890 gpa_t addr, int len, int is_write)
1891 {
1892 int i;
1893
1894 for (i = 0; i < bus->dev_count; i++) {
1895 struct kvm_io_device *pos = bus->devs[i];
1896
1897 if (pos->in_range(pos, addr, len, is_write))
1898 return pos;
1899 }
1900
1901 return NULL;
1902 }
1903
1904 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
1905 {
1906 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
1907
1908 bus->devs[bus->dev_count++] = dev;
1909 }
1910
1911 static struct notifier_block kvm_cpu_notifier = {
1912 .notifier_call = kvm_cpu_hotplug,
1913 .priority = 20, /* must be > scheduler priority */
1914 };
1915
1916 static int vm_stat_get(void *_offset, u64 *val)
1917 {
1918 unsigned offset = (long)_offset;
1919 struct kvm *kvm;
1920
1921 *val = 0;
1922 spin_lock(&kvm_lock);
1923 list_for_each_entry(kvm, &vm_list, vm_list)
1924 *val += *(u32 *)((void *)kvm + offset);
1925 spin_unlock(&kvm_lock);
1926 return 0;
1927 }
1928
1929 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
1930
1931 static int vcpu_stat_get(void *_offset, u64 *val)
1932 {
1933 unsigned offset = (long)_offset;
1934 struct kvm *kvm;
1935 struct kvm_vcpu *vcpu;
1936 int i;
1937
1938 *val = 0;
1939 spin_lock(&kvm_lock);
1940 list_for_each_entry(kvm, &vm_list, vm_list)
1941 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
1942 vcpu = kvm->vcpus[i];
1943 if (vcpu)
1944 *val += *(u32 *)((void *)vcpu + offset);
1945 }
1946 spin_unlock(&kvm_lock);
1947 return 0;
1948 }
1949
1950 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
1951
1952 static struct file_operations *stat_fops[] = {
1953 [KVM_STAT_VCPU] = &vcpu_stat_fops,
1954 [KVM_STAT_VM] = &vm_stat_fops,
1955 };
1956
1957 static void kvm_init_debug(void)
1958 {
1959 struct kvm_stats_debugfs_item *p;
1960
1961 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
1962 for (p = debugfs_entries; p->name; ++p)
1963 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
1964 (void *)(long)p->offset,
1965 stat_fops[p->kind]);
1966 }
1967
1968 static void kvm_exit_debug(void)
1969 {
1970 struct kvm_stats_debugfs_item *p;
1971
1972 for (p = debugfs_entries; p->name; ++p)
1973 debugfs_remove(p->dentry);
1974 debugfs_remove(kvm_debugfs_dir);
1975 }
1976
1977 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
1978 {
1979 hardware_disable(NULL);
1980 return 0;
1981 }
1982
1983 static int kvm_resume(struct sys_device *dev)
1984 {
1985 hardware_enable(NULL);
1986 return 0;
1987 }
1988
1989 static struct sysdev_class kvm_sysdev_class = {
1990 .name = "kvm",
1991 .suspend = kvm_suspend,
1992 .resume = kvm_resume,
1993 };
1994
1995 static struct sys_device kvm_sysdev = {
1996 .id = 0,
1997 .cls = &kvm_sysdev_class,
1998 };
1999
2000 struct page *bad_page;
2001 pfn_t bad_pfn;
2002
2003 static inline
2004 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2005 {
2006 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2007 }
2008
2009 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2010 {
2011 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2012
2013 kvm_arch_vcpu_load(vcpu, cpu);
2014 }
2015
2016 static void kvm_sched_out(struct preempt_notifier *pn,
2017 struct task_struct *next)
2018 {
2019 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2020
2021 kvm_arch_vcpu_put(vcpu);
2022 }
2023
2024 int kvm_init(void *opaque, unsigned int vcpu_size,
2025 struct module *module)
2026 {
2027 int r;
2028 int cpu;
2029
2030 kvm_init_debug();
2031
2032 r = kvm_arch_init(opaque);
2033 if (r)
2034 goto out_fail;
2035
2036 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2037
2038 if (bad_page == NULL) {
2039 r = -ENOMEM;
2040 goto out;
2041 }
2042
2043 bad_pfn = page_to_pfn(bad_page);
2044
2045 r = kvm_arch_hardware_setup();
2046 if (r < 0)
2047 goto out_free_0;
2048
2049 for_each_online_cpu(cpu) {
2050 smp_call_function_single(cpu,
2051 kvm_arch_check_processor_compat,
2052 &r, 1);
2053 if (r < 0)
2054 goto out_free_1;
2055 }
2056
2057 on_each_cpu(hardware_enable, NULL, 1);
2058 r = register_cpu_notifier(&kvm_cpu_notifier);
2059 if (r)
2060 goto out_free_2;
2061 register_reboot_notifier(&kvm_reboot_notifier);
2062
2063 r = sysdev_class_register(&kvm_sysdev_class);
2064 if (r)
2065 goto out_free_3;
2066
2067 r = sysdev_register(&kvm_sysdev);
2068 if (r)
2069 goto out_free_4;
2070
2071 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2072 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2073 __alignof__(struct kvm_vcpu),
2074 0, NULL);
2075 if (!kvm_vcpu_cache) {
2076 r = -ENOMEM;
2077 goto out_free_5;
2078 }
2079
2080 kvm_chardev_ops.owner = module;
2081
2082 r = misc_register(&kvm_dev);
2083 if (r) {
2084 printk(KERN_ERR "kvm: misc device register failed\n");
2085 goto out_free;
2086 }
2087
2088 kvm_preempt_ops.sched_in = kvm_sched_in;
2089 kvm_preempt_ops.sched_out = kvm_sched_out;
2090
2091 return 0;
2092
2093 out_free:
2094 kmem_cache_destroy(kvm_vcpu_cache);
2095 out_free_5:
2096 sysdev_unregister(&kvm_sysdev);
2097 out_free_4:
2098 sysdev_class_unregister(&kvm_sysdev_class);
2099 out_free_3:
2100 unregister_reboot_notifier(&kvm_reboot_notifier);
2101 unregister_cpu_notifier(&kvm_cpu_notifier);
2102 out_free_2:
2103 on_each_cpu(hardware_disable, NULL, 1);
2104 out_free_1:
2105 kvm_arch_hardware_unsetup();
2106 out_free_0:
2107 __free_page(bad_page);
2108 out:
2109 kvm_arch_exit();
2110 kvm_exit_debug();
2111 out_fail:
2112 return r;
2113 }
2114 EXPORT_SYMBOL_GPL(kvm_init);
2115
2116 void kvm_exit(void)
2117 {
2118 kvm_trace_cleanup();
2119 misc_deregister(&kvm_dev);
2120 kmem_cache_destroy(kvm_vcpu_cache);
2121 sysdev_unregister(&kvm_sysdev);
2122 sysdev_class_unregister(&kvm_sysdev_class);
2123 unregister_reboot_notifier(&kvm_reboot_notifier);
2124 unregister_cpu_notifier(&kvm_cpu_notifier);
2125 on_each_cpu(hardware_disable, NULL, 1);
2126 kvm_arch_hardware_unsetup();
2127 kvm_arch_exit();
2128 kvm_exit_debug();
2129 __free_page(bad_page);
2130 }
2131 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.073447 seconds and 5 git commands to generate.