KVM: add KVM_USERSPACE_IRQ_SOURCE_ID assertions
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44
45 #include <asm/processor.h>
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
48 #include <asm/pgtable.h>
49
50 #ifdef CONFIG_X86
51 #include <asm/msidef.h>
52 #endif
53
54 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
55 #include "coalesced_mmio.h"
56 #endif
57
58 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
59 #include <linux/pci.h>
60 #include <linux/interrupt.h>
61 #include "irq.h"
62 #endif
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 static int msi2intx = 1;
68 module_param(msi2intx, bool, 0);
69
70 DEFINE_SPINLOCK(kvm_lock);
71 LIST_HEAD(vm_list);
72
73 static cpumask_t cpus_hardware_enabled;
74
75 struct kmem_cache *kvm_vcpu_cache;
76 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
77
78 static __read_mostly struct preempt_ops kvm_preempt_ops;
79
80 struct dentry *kvm_debugfs_dir;
81
82 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
83 unsigned long arg);
84
85 static bool kvm_rebooting;
86
87 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
88
89 #ifdef CONFIG_X86
90 static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev)
91 {
92 int vcpu_id;
93 struct kvm_vcpu *vcpu;
94 struct kvm_ioapic *ioapic = ioapic_irqchip(dev->kvm);
95 int dest_id = (dev->guest_msi.address_lo & MSI_ADDR_DEST_ID_MASK)
96 >> MSI_ADDR_DEST_ID_SHIFT;
97 int vector = (dev->guest_msi.data & MSI_DATA_VECTOR_MASK)
98 >> MSI_DATA_VECTOR_SHIFT;
99 int dest_mode = test_bit(MSI_ADDR_DEST_MODE_SHIFT,
100 (unsigned long *)&dev->guest_msi.address_lo);
101 int trig_mode = test_bit(MSI_DATA_TRIGGER_SHIFT,
102 (unsigned long *)&dev->guest_msi.data);
103 int delivery_mode = test_bit(MSI_DATA_DELIVERY_MODE_SHIFT,
104 (unsigned long *)&dev->guest_msi.data);
105 u32 deliver_bitmask;
106
107 BUG_ON(!ioapic);
108
109 deliver_bitmask = kvm_ioapic_get_delivery_bitmask(ioapic,
110 dest_id, dest_mode);
111 /* IOAPIC delivery mode value is the same as MSI here */
112 switch (delivery_mode) {
113 case IOAPIC_LOWEST_PRIORITY:
114 vcpu = kvm_get_lowest_prio_vcpu(ioapic->kvm, vector,
115 deliver_bitmask);
116 if (vcpu != NULL)
117 kvm_apic_set_irq(vcpu, vector, trig_mode);
118 else
119 printk(KERN_INFO "kvm: null lowest priority vcpu!\n");
120 break;
121 case IOAPIC_FIXED:
122 for (vcpu_id = 0; deliver_bitmask != 0; vcpu_id++) {
123 if (!(deliver_bitmask & (1 << vcpu_id)))
124 continue;
125 deliver_bitmask &= ~(1 << vcpu_id);
126 vcpu = ioapic->kvm->vcpus[vcpu_id];
127 if (vcpu)
128 kvm_apic_set_irq(vcpu, vector, trig_mode);
129 }
130 break;
131 default:
132 printk(KERN_INFO "kvm: unsupported MSI delivery mode\n");
133 }
134 }
135 #else
136 static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev) {}
137 #endif
138
139 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
140 int assigned_dev_id)
141 {
142 struct list_head *ptr;
143 struct kvm_assigned_dev_kernel *match;
144
145 list_for_each(ptr, head) {
146 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
147 if (match->assigned_dev_id == assigned_dev_id)
148 return match;
149 }
150 return NULL;
151 }
152
153 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
154 {
155 struct kvm_assigned_dev_kernel *assigned_dev;
156
157 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
158 interrupt_work);
159
160 /* This is taken to safely inject irq inside the guest. When
161 * the interrupt injection (or the ioapic code) uses a
162 * finer-grained lock, update this
163 */
164 mutex_lock(&assigned_dev->kvm->lock);
165 if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_GUEST_INTX)
166 kvm_set_irq(assigned_dev->kvm,
167 assigned_dev->irq_source_id,
168 assigned_dev->guest_irq, 1);
169 else if (assigned_dev->irq_requested_type &
170 KVM_ASSIGNED_DEV_GUEST_MSI) {
171 assigned_device_msi_dispatch(assigned_dev);
172 enable_irq(assigned_dev->host_irq);
173 }
174 mutex_unlock(&assigned_dev->kvm->lock);
175 kvm_put_kvm(assigned_dev->kvm);
176 }
177
178 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
179 {
180 struct kvm_assigned_dev_kernel *assigned_dev =
181 (struct kvm_assigned_dev_kernel *) dev_id;
182
183 kvm_get_kvm(assigned_dev->kvm);
184 schedule_work(&assigned_dev->interrupt_work);
185 disable_irq_nosync(irq);
186 return IRQ_HANDLED;
187 }
188
189 /* Ack the irq line for an assigned device */
190 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
191 {
192 struct kvm_assigned_dev_kernel *dev;
193
194 if (kian->gsi == -1)
195 return;
196
197 dev = container_of(kian, struct kvm_assigned_dev_kernel,
198 ack_notifier);
199 kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
200 enable_irq(dev->host_irq);
201 }
202
203 static void kvm_free_assigned_device(struct kvm *kvm,
204 struct kvm_assigned_dev_kernel
205 *assigned_dev)
206 {
207 if (irqchip_in_kernel(kvm) && assigned_dev->irq_requested_type)
208 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
209 if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
210 pci_disable_msi(assigned_dev->dev);
211
212 kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
213
214 if (assigned_dev->irq_source_id != -1)
215 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
216 assigned_dev->irq_source_id = -1;
217
218 if (cancel_work_sync(&assigned_dev->interrupt_work))
219 /* We had pending work. That means we will have to take
220 * care of kvm_put_kvm.
221 */
222 kvm_put_kvm(kvm);
223
224 pci_reset_function(assigned_dev->dev);
225
226 pci_release_regions(assigned_dev->dev);
227 pci_disable_device(assigned_dev->dev);
228 pci_dev_put(assigned_dev->dev);
229
230 list_del(&assigned_dev->list);
231 kfree(assigned_dev);
232 }
233
234 void kvm_free_all_assigned_devices(struct kvm *kvm)
235 {
236 struct list_head *ptr, *ptr2;
237 struct kvm_assigned_dev_kernel *assigned_dev;
238
239 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
240 assigned_dev = list_entry(ptr,
241 struct kvm_assigned_dev_kernel,
242 list);
243
244 kvm_free_assigned_device(kvm, assigned_dev);
245 }
246 }
247
248 static int assigned_device_update_intx(struct kvm *kvm,
249 struct kvm_assigned_dev_kernel *adev,
250 struct kvm_assigned_irq *airq)
251 {
252 adev->guest_irq = airq->guest_irq;
253 adev->ack_notifier.gsi = airq->guest_irq;
254
255 if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_INTX)
256 return 0;
257
258 if (irqchip_in_kernel(kvm)) {
259 if (!msi2intx &&
260 adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI) {
261 free_irq(adev->host_irq, (void *)kvm);
262 pci_disable_msi(adev->dev);
263 }
264
265 if (!capable(CAP_SYS_RAWIO))
266 return -EPERM;
267
268 if (airq->host_irq)
269 adev->host_irq = airq->host_irq;
270 else
271 adev->host_irq = adev->dev->irq;
272
273 /* Even though this is PCI, we don't want to use shared
274 * interrupts. Sharing host devices with guest-assigned devices
275 * on the same interrupt line is not a happy situation: there
276 * are going to be long delays in accepting, acking, etc.
277 */
278 if (request_irq(adev->host_irq, kvm_assigned_dev_intr,
279 0, "kvm_assigned_intx_device", (void *)adev))
280 return -EIO;
281 }
282
283 adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_INTX |
284 KVM_ASSIGNED_DEV_HOST_INTX;
285 return 0;
286 }
287
288 #ifdef CONFIG_X86
289 static int assigned_device_update_msi(struct kvm *kvm,
290 struct kvm_assigned_dev_kernel *adev,
291 struct kvm_assigned_irq *airq)
292 {
293 int r;
294
295 if (airq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI) {
296 /* x86 don't care upper address of guest msi message addr */
297 adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_MSI;
298 adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_INTX;
299 adev->guest_msi.address_lo = airq->guest_msi.addr_lo;
300 adev->guest_msi.data = airq->guest_msi.data;
301 adev->ack_notifier.gsi = -1;
302 } else if (msi2intx) {
303 adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_INTX;
304 adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_MSI;
305 adev->guest_irq = airq->guest_irq;
306 adev->ack_notifier.gsi = airq->guest_irq;
307 }
308
309 if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
310 return 0;
311
312 if (irqchip_in_kernel(kvm)) {
313 if (!msi2intx) {
314 if (adev->irq_requested_type &
315 KVM_ASSIGNED_DEV_HOST_INTX)
316 free_irq(adev->host_irq, (void *)adev);
317
318 r = pci_enable_msi(adev->dev);
319 if (r)
320 return r;
321 }
322
323 adev->host_irq = adev->dev->irq;
324 if (request_irq(adev->host_irq, kvm_assigned_dev_intr, 0,
325 "kvm_assigned_msi_device", (void *)adev))
326 return -EIO;
327 }
328
329 if (!msi2intx)
330 adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_MSI;
331
332 adev->irq_requested_type |= KVM_ASSIGNED_DEV_HOST_MSI;
333 return 0;
334 }
335 #endif
336
337 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
338 struct kvm_assigned_irq
339 *assigned_irq)
340 {
341 int r = 0;
342 struct kvm_assigned_dev_kernel *match;
343
344 mutex_lock(&kvm->lock);
345
346 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
347 assigned_irq->assigned_dev_id);
348 if (!match) {
349 mutex_unlock(&kvm->lock);
350 return -EINVAL;
351 }
352
353 if (!match->irq_requested_type) {
354 INIT_WORK(&match->interrupt_work,
355 kvm_assigned_dev_interrupt_work_handler);
356 if (irqchip_in_kernel(kvm)) {
357 /* Register ack nofitier */
358 match->ack_notifier.gsi = -1;
359 match->ack_notifier.irq_acked =
360 kvm_assigned_dev_ack_irq;
361 kvm_register_irq_ack_notifier(kvm,
362 &match->ack_notifier);
363
364 /* Request IRQ source ID */
365 r = kvm_request_irq_source_id(kvm);
366 if (r < 0)
367 goto out_release;
368 else
369 match->irq_source_id = r;
370
371 #ifdef CONFIG_X86
372 /* Determine host device irq type, we can know the
373 * result from dev->msi_enabled */
374 if (msi2intx)
375 pci_enable_msi(match->dev);
376 #endif
377 }
378 }
379
380 if ((!msi2intx &&
381 (assigned_irq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI)) ||
382 (msi2intx && match->dev->msi_enabled)) {
383 #ifdef CONFIG_X86
384 r = assigned_device_update_msi(kvm, match, assigned_irq);
385 if (r) {
386 printk(KERN_WARNING "kvm: failed to enable "
387 "MSI device!\n");
388 goto out_release;
389 }
390 #else
391 r = -ENOTTY;
392 #endif
393 } else if (assigned_irq->host_irq == 0 && match->dev->irq == 0) {
394 /* Host device IRQ 0 means don't support INTx */
395 if (!msi2intx) {
396 printk(KERN_WARNING
397 "kvm: wait device to enable MSI!\n");
398 r = 0;
399 } else {
400 printk(KERN_WARNING
401 "kvm: failed to enable MSI device!\n");
402 r = -ENOTTY;
403 goto out_release;
404 }
405 } else {
406 /* Non-sharing INTx mode */
407 r = assigned_device_update_intx(kvm, match, assigned_irq);
408 if (r) {
409 printk(KERN_WARNING "kvm: failed to enable "
410 "INTx device!\n");
411 goto out_release;
412 }
413 }
414
415 mutex_unlock(&kvm->lock);
416 return r;
417 out_release:
418 mutex_unlock(&kvm->lock);
419 kvm_free_assigned_device(kvm, match);
420 return r;
421 }
422
423 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
424 struct kvm_assigned_pci_dev *assigned_dev)
425 {
426 int r = 0;
427 struct kvm_assigned_dev_kernel *match;
428 struct pci_dev *dev;
429
430 mutex_lock(&kvm->lock);
431
432 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
433 assigned_dev->assigned_dev_id);
434 if (match) {
435 /* device already assigned */
436 r = -EINVAL;
437 goto out;
438 }
439
440 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
441 if (match == NULL) {
442 printk(KERN_INFO "%s: Couldn't allocate memory\n",
443 __func__);
444 r = -ENOMEM;
445 goto out;
446 }
447 dev = pci_get_bus_and_slot(assigned_dev->busnr,
448 assigned_dev->devfn);
449 if (!dev) {
450 printk(KERN_INFO "%s: host device not found\n", __func__);
451 r = -EINVAL;
452 goto out_free;
453 }
454 if (pci_enable_device(dev)) {
455 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
456 r = -EBUSY;
457 goto out_put;
458 }
459 r = pci_request_regions(dev, "kvm_assigned_device");
460 if (r) {
461 printk(KERN_INFO "%s: Could not get access to device regions\n",
462 __func__);
463 goto out_disable;
464 }
465
466 pci_reset_function(dev);
467
468 match->assigned_dev_id = assigned_dev->assigned_dev_id;
469 match->host_busnr = assigned_dev->busnr;
470 match->host_devfn = assigned_dev->devfn;
471 match->dev = dev;
472 match->irq_source_id = -1;
473 match->kvm = kvm;
474
475 list_add(&match->list, &kvm->arch.assigned_dev_head);
476
477 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
478 r = kvm_iommu_map_guest(kvm, match);
479 if (r)
480 goto out_list_del;
481 }
482
483 out:
484 mutex_unlock(&kvm->lock);
485 return r;
486 out_list_del:
487 list_del(&match->list);
488 pci_release_regions(dev);
489 out_disable:
490 pci_disable_device(dev);
491 out_put:
492 pci_dev_put(dev);
493 out_free:
494 kfree(match);
495 mutex_unlock(&kvm->lock);
496 return r;
497 }
498 #endif
499
500 static inline int valid_vcpu(int n)
501 {
502 return likely(n >= 0 && n < KVM_MAX_VCPUS);
503 }
504
505 inline int kvm_is_mmio_pfn(pfn_t pfn)
506 {
507 if (pfn_valid(pfn))
508 return PageReserved(pfn_to_page(pfn));
509
510 return true;
511 }
512
513 /*
514 * Switches to specified vcpu, until a matching vcpu_put()
515 */
516 void vcpu_load(struct kvm_vcpu *vcpu)
517 {
518 int cpu;
519
520 mutex_lock(&vcpu->mutex);
521 cpu = get_cpu();
522 preempt_notifier_register(&vcpu->preempt_notifier);
523 kvm_arch_vcpu_load(vcpu, cpu);
524 put_cpu();
525 }
526
527 void vcpu_put(struct kvm_vcpu *vcpu)
528 {
529 preempt_disable();
530 kvm_arch_vcpu_put(vcpu);
531 preempt_notifier_unregister(&vcpu->preempt_notifier);
532 preempt_enable();
533 mutex_unlock(&vcpu->mutex);
534 }
535
536 static void ack_flush(void *_completed)
537 {
538 }
539
540 void kvm_flush_remote_tlbs(struct kvm *kvm)
541 {
542 int i, cpu, me;
543 cpumask_t cpus;
544 struct kvm_vcpu *vcpu;
545
546 me = get_cpu();
547 cpus_clear(cpus);
548 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
549 vcpu = kvm->vcpus[i];
550 if (!vcpu)
551 continue;
552 if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
553 continue;
554 cpu = vcpu->cpu;
555 if (cpu != -1 && cpu != me)
556 cpu_set(cpu, cpus);
557 }
558 if (cpus_empty(cpus))
559 goto out;
560 ++kvm->stat.remote_tlb_flush;
561 smp_call_function_mask(cpus, ack_flush, NULL, 1);
562 out:
563 put_cpu();
564 }
565
566 void kvm_reload_remote_mmus(struct kvm *kvm)
567 {
568 int i, cpu, me;
569 cpumask_t cpus;
570 struct kvm_vcpu *vcpu;
571
572 me = get_cpu();
573 cpus_clear(cpus);
574 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
575 vcpu = kvm->vcpus[i];
576 if (!vcpu)
577 continue;
578 if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
579 continue;
580 cpu = vcpu->cpu;
581 if (cpu != -1 && cpu != me)
582 cpu_set(cpu, cpus);
583 }
584 if (cpus_empty(cpus))
585 goto out;
586 smp_call_function_mask(cpus, ack_flush, NULL, 1);
587 out:
588 put_cpu();
589 }
590
591
592 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
593 {
594 struct page *page;
595 int r;
596
597 mutex_init(&vcpu->mutex);
598 vcpu->cpu = -1;
599 vcpu->kvm = kvm;
600 vcpu->vcpu_id = id;
601 init_waitqueue_head(&vcpu->wq);
602
603 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
604 if (!page) {
605 r = -ENOMEM;
606 goto fail;
607 }
608 vcpu->run = page_address(page);
609
610 r = kvm_arch_vcpu_init(vcpu);
611 if (r < 0)
612 goto fail_free_run;
613 return 0;
614
615 fail_free_run:
616 free_page((unsigned long)vcpu->run);
617 fail:
618 return r;
619 }
620 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
621
622 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
623 {
624 kvm_arch_vcpu_uninit(vcpu);
625 free_page((unsigned long)vcpu->run);
626 }
627 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
628
629 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
630 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
631 {
632 return container_of(mn, struct kvm, mmu_notifier);
633 }
634
635 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
636 struct mm_struct *mm,
637 unsigned long address)
638 {
639 struct kvm *kvm = mmu_notifier_to_kvm(mn);
640 int need_tlb_flush;
641
642 /*
643 * When ->invalidate_page runs, the linux pte has been zapped
644 * already but the page is still allocated until
645 * ->invalidate_page returns. So if we increase the sequence
646 * here the kvm page fault will notice if the spte can't be
647 * established because the page is going to be freed. If
648 * instead the kvm page fault establishes the spte before
649 * ->invalidate_page runs, kvm_unmap_hva will release it
650 * before returning.
651 *
652 * The sequence increase only need to be seen at spin_unlock
653 * time, and not at spin_lock time.
654 *
655 * Increasing the sequence after the spin_unlock would be
656 * unsafe because the kvm page fault could then establish the
657 * pte after kvm_unmap_hva returned, without noticing the page
658 * is going to be freed.
659 */
660 spin_lock(&kvm->mmu_lock);
661 kvm->mmu_notifier_seq++;
662 need_tlb_flush = kvm_unmap_hva(kvm, address);
663 spin_unlock(&kvm->mmu_lock);
664
665 /* we've to flush the tlb before the pages can be freed */
666 if (need_tlb_flush)
667 kvm_flush_remote_tlbs(kvm);
668
669 }
670
671 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
672 struct mm_struct *mm,
673 unsigned long start,
674 unsigned long end)
675 {
676 struct kvm *kvm = mmu_notifier_to_kvm(mn);
677 int need_tlb_flush = 0;
678
679 spin_lock(&kvm->mmu_lock);
680 /*
681 * The count increase must become visible at unlock time as no
682 * spte can be established without taking the mmu_lock and
683 * count is also read inside the mmu_lock critical section.
684 */
685 kvm->mmu_notifier_count++;
686 for (; start < end; start += PAGE_SIZE)
687 need_tlb_flush |= kvm_unmap_hva(kvm, start);
688 spin_unlock(&kvm->mmu_lock);
689
690 /* we've to flush the tlb before the pages can be freed */
691 if (need_tlb_flush)
692 kvm_flush_remote_tlbs(kvm);
693 }
694
695 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
696 struct mm_struct *mm,
697 unsigned long start,
698 unsigned long end)
699 {
700 struct kvm *kvm = mmu_notifier_to_kvm(mn);
701
702 spin_lock(&kvm->mmu_lock);
703 /*
704 * This sequence increase will notify the kvm page fault that
705 * the page that is going to be mapped in the spte could have
706 * been freed.
707 */
708 kvm->mmu_notifier_seq++;
709 /*
710 * The above sequence increase must be visible before the
711 * below count decrease but both values are read by the kvm
712 * page fault under mmu_lock spinlock so we don't need to add
713 * a smb_wmb() here in between the two.
714 */
715 kvm->mmu_notifier_count--;
716 spin_unlock(&kvm->mmu_lock);
717
718 BUG_ON(kvm->mmu_notifier_count < 0);
719 }
720
721 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
722 struct mm_struct *mm,
723 unsigned long address)
724 {
725 struct kvm *kvm = mmu_notifier_to_kvm(mn);
726 int young;
727
728 spin_lock(&kvm->mmu_lock);
729 young = kvm_age_hva(kvm, address);
730 spin_unlock(&kvm->mmu_lock);
731
732 if (young)
733 kvm_flush_remote_tlbs(kvm);
734
735 return young;
736 }
737
738 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
739 .invalidate_page = kvm_mmu_notifier_invalidate_page,
740 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
741 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
742 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
743 };
744 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
745
746 static struct kvm *kvm_create_vm(void)
747 {
748 struct kvm *kvm = kvm_arch_create_vm();
749 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
750 struct page *page;
751 #endif
752
753 if (IS_ERR(kvm))
754 goto out;
755
756 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
757 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
758 if (!page) {
759 kfree(kvm);
760 return ERR_PTR(-ENOMEM);
761 }
762 kvm->coalesced_mmio_ring =
763 (struct kvm_coalesced_mmio_ring *)page_address(page);
764 #endif
765
766 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
767 {
768 int err;
769 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
770 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
771 if (err) {
772 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
773 put_page(page);
774 #endif
775 kfree(kvm);
776 return ERR_PTR(err);
777 }
778 }
779 #endif
780
781 kvm->mm = current->mm;
782 atomic_inc(&kvm->mm->mm_count);
783 spin_lock_init(&kvm->mmu_lock);
784 kvm_io_bus_init(&kvm->pio_bus);
785 mutex_init(&kvm->lock);
786 kvm_io_bus_init(&kvm->mmio_bus);
787 init_rwsem(&kvm->slots_lock);
788 atomic_set(&kvm->users_count, 1);
789 spin_lock(&kvm_lock);
790 list_add(&kvm->vm_list, &vm_list);
791 spin_unlock(&kvm_lock);
792 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
793 kvm_coalesced_mmio_init(kvm);
794 #endif
795 out:
796 return kvm;
797 }
798
799 /*
800 * Free any memory in @free but not in @dont.
801 */
802 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
803 struct kvm_memory_slot *dont)
804 {
805 if (!dont || free->rmap != dont->rmap)
806 vfree(free->rmap);
807
808 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
809 vfree(free->dirty_bitmap);
810
811 if (!dont || free->lpage_info != dont->lpage_info)
812 vfree(free->lpage_info);
813
814 free->npages = 0;
815 free->dirty_bitmap = NULL;
816 free->rmap = NULL;
817 free->lpage_info = NULL;
818 }
819
820 void kvm_free_physmem(struct kvm *kvm)
821 {
822 int i;
823
824 for (i = 0; i < kvm->nmemslots; ++i)
825 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
826 }
827
828 static void kvm_destroy_vm(struct kvm *kvm)
829 {
830 struct mm_struct *mm = kvm->mm;
831
832 spin_lock(&kvm_lock);
833 list_del(&kvm->vm_list);
834 spin_unlock(&kvm_lock);
835 kvm_io_bus_destroy(&kvm->pio_bus);
836 kvm_io_bus_destroy(&kvm->mmio_bus);
837 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
838 if (kvm->coalesced_mmio_ring != NULL)
839 free_page((unsigned long)kvm->coalesced_mmio_ring);
840 #endif
841 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
842 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
843 #endif
844 kvm_arch_destroy_vm(kvm);
845 mmdrop(mm);
846 }
847
848 void kvm_get_kvm(struct kvm *kvm)
849 {
850 atomic_inc(&kvm->users_count);
851 }
852 EXPORT_SYMBOL_GPL(kvm_get_kvm);
853
854 void kvm_put_kvm(struct kvm *kvm)
855 {
856 if (atomic_dec_and_test(&kvm->users_count))
857 kvm_destroy_vm(kvm);
858 }
859 EXPORT_SYMBOL_GPL(kvm_put_kvm);
860
861
862 static int kvm_vm_release(struct inode *inode, struct file *filp)
863 {
864 struct kvm *kvm = filp->private_data;
865
866 kvm_put_kvm(kvm);
867 return 0;
868 }
869
870 /*
871 * Allocate some memory and give it an address in the guest physical address
872 * space.
873 *
874 * Discontiguous memory is allowed, mostly for framebuffers.
875 *
876 * Must be called holding mmap_sem for write.
877 */
878 int __kvm_set_memory_region(struct kvm *kvm,
879 struct kvm_userspace_memory_region *mem,
880 int user_alloc)
881 {
882 int r;
883 gfn_t base_gfn;
884 unsigned long npages;
885 unsigned long i;
886 struct kvm_memory_slot *memslot;
887 struct kvm_memory_slot old, new;
888
889 r = -EINVAL;
890 /* General sanity checks */
891 if (mem->memory_size & (PAGE_SIZE - 1))
892 goto out;
893 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
894 goto out;
895 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
896 goto out;
897 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
898 goto out;
899 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
900 goto out;
901
902 memslot = &kvm->memslots[mem->slot];
903 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
904 npages = mem->memory_size >> PAGE_SHIFT;
905
906 if (!npages)
907 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
908
909 new = old = *memslot;
910
911 new.base_gfn = base_gfn;
912 new.npages = npages;
913 new.flags = mem->flags;
914
915 /* Disallow changing a memory slot's size. */
916 r = -EINVAL;
917 if (npages && old.npages && npages != old.npages)
918 goto out_free;
919
920 /* Check for overlaps */
921 r = -EEXIST;
922 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
923 struct kvm_memory_slot *s = &kvm->memslots[i];
924
925 if (s == memslot)
926 continue;
927 if (!((base_gfn + npages <= s->base_gfn) ||
928 (base_gfn >= s->base_gfn + s->npages)))
929 goto out_free;
930 }
931
932 /* Free page dirty bitmap if unneeded */
933 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
934 new.dirty_bitmap = NULL;
935
936 r = -ENOMEM;
937
938 /* Allocate if a slot is being created */
939 #ifndef CONFIG_S390
940 if (npages && !new.rmap) {
941 new.rmap = vmalloc(npages * sizeof(struct page *));
942
943 if (!new.rmap)
944 goto out_free;
945
946 memset(new.rmap, 0, npages * sizeof(*new.rmap));
947
948 new.user_alloc = user_alloc;
949 /*
950 * hva_to_rmmap() serialzies with the mmu_lock and to be
951 * safe it has to ignore memslots with !user_alloc &&
952 * !userspace_addr.
953 */
954 if (user_alloc)
955 new.userspace_addr = mem->userspace_addr;
956 else
957 new.userspace_addr = 0;
958 }
959 if (npages && !new.lpage_info) {
960 int largepages = npages / KVM_PAGES_PER_HPAGE;
961 if (npages % KVM_PAGES_PER_HPAGE)
962 largepages++;
963 if (base_gfn % KVM_PAGES_PER_HPAGE)
964 largepages++;
965
966 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
967
968 if (!new.lpage_info)
969 goto out_free;
970
971 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
972
973 if (base_gfn % KVM_PAGES_PER_HPAGE)
974 new.lpage_info[0].write_count = 1;
975 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
976 new.lpage_info[largepages-1].write_count = 1;
977 }
978
979 /* Allocate page dirty bitmap if needed */
980 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
981 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
982
983 new.dirty_bitmap = vmalloc(dirty_bytes);
984 if (!new.dirty_bitmap)
985 goto out_free;
986 memset(new.dirty_bitmap, 0, dirty_bytes);
987 }
988 #endif /* not defined CONFIG_S390 */
989
990 if (!npages)
991 kvm_arch_flush_shadow(kvm);
992
993 spin_lock(&kvm->mmu_lock);
994 if (mem->slot >= kvm->nmemslots)
995 kvm->nmemslots = mem->slot + 1;
996
997 *memslot = new;
998 spin_unlock(&kvm->mmu_lock);
999
1000 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1001 if (r) {
1002 spin_lock(&kvm->mmu_lock);
1003 *memslot = old;
1004 spin_unlock(&kvm->mmu_lock);
1005 goto out_free;
1006 }
1007
1008 kvm_free_physmem_slot(&old, &new);
1009 #ifdef CONFIG_DMAR
1010 /* map the pages in iommu page table */
1011 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1012 if (r)
1013 goto out;
1014 #endif
1015 return 0;
1016
1017 out_free:
1018 kvm_free_physmem_slot(&new, &old);
1019 out:
1020 return r;
1021
1022 }
1023 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1024
1025 int kvm_set_memory_region(struct kvm *kvm,
1026 struct kvm_userspace_memory_region *mem,
1027 int user_alloc)
1028 {
1029 int r;
1030
1031 down_write(&kvm->slots_lock);
1032 r = __kvm_set_memory_region(kvm, mem, user_alloc);
1033 up_write(&kvm->slots_lock);
1034 return r;
1035 }
1036 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1037
1038 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1039 struct
1040 kvm_userspace_memory_region *mem,
1041 int user_alloc)
1042 {
1043 if (mem->slot >= KVM_MEMORY_SLOTS)
1044 return -EINVAL;
1045 return kvm_set_memory_region(kvm, mem, user_alloc);
1046 }
1047
1048 int kvm_get_dirty_log(struct kvm *kvm,
1049 struct kvm_dirty_log *log, int *is_dirty)
1050 {
1051 struct kvm_memory_slot *memslot;
1052 int r, i;
1053 int n;
1054 unsigned long any = 0;
1055
1056 r = -EINVAL;
1057 if (log->slot >= KVM_MEMORY_SLOTS)
1058 goto out;
1059
1060 memslot = &kvm->memslots[log->slot];
1061 r = -ENOENT;
1062 if (!memslot->dirty_bitmap)
1063 goto out;
1064
1065 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1066
1067 for (i = 0; !any && i < n/sizeof(long); ++i)
1068 any = memslot->dirty_bitmap[i];
1069
1070 r = -EFAULT;
1071 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1072 goto out;
1073
1074 if (any)
1075 *is_dirty = 1;
1076
1077 r = 0;
1078 out:
1079 return r;
1080 }
1081
1082 int is_error_page(struct page *page)
1083 {
1084 return page == bad_page;
1085 }
1086 EXPORT_SYMBOL_GPL(is_error_page);
1087
1088 int is_error_pfn(pfn_t pfn)
1089 {
1090 return pfn == bad_pfn;
1091 }
1092 EXPORT_SYMBOL_GPL(is_error_pfn);
1093
1094 static inline unsigned long bad_hva(void)
1095 {
1096 return PAGE_OFFSET;
1097 }
1098
1099 int kvm_is_error_hva(unsigned long addr)
1100 {
1101 return addr == bad_hva();
1102 }
1103 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1104
1105 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1106 {
1107 int i;
1108
1109 for (i = 0; i < kvm->nmemslots; ++i) {
1110 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1111
1112 if (gfn >= memslot->base_gfn
1113 && gfn < memslot->base_gfn + memslot->npages)
1114 return memslot;
1115 }
1116 return NULL;
1117 }
1118 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1119
1120 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1121 {
1122 gfn = unalias_gfn(kvm, gfn);
1123 return gfn_to_memslot_unaliased(kvm, gfn);
1124 }
1125
1126 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1127 {
1128 int i;
1129
1130 gfn = unalias_gfn(kvm, gfn);
1131 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1132 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1133
1134 if (gfn >= memslot->base_gfn
1135 && gfn < memslot->base_gfn + memslot->npages)
1136 return 1;
1137 }
1138 return 0;
1139 }
1140 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1141
1142 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1143 {
1144 struct kvm_memory_slot *slot;
1145
1146 gfn = unalias_gfn(kvm, gfn);
1147 slot = gfn_to_memslot_unaliased(kvm, gfn);
1148 if (!slot)
1149 return bad_hva();
1150 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1151 }
1152 EXPORT_SYMBOL_GPL(gfn_to_hva);
1153
1154 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1155 {
1156 struct page *page[1];
1157 unsigned long addr;
1158 int npages;
1159 pfn_t pfn;
1160
1161 might_sleep();
1162
1163 addr = gfn_to_hva(kvm, gfn);
1164 if (kvm_is_error_hva(addr)) {
1165 get_page(bad_page);
1166 return page_to_pfn(bad_page);
1167 }
1168
1169 npages = get_user_pages_fast(addr, 1, 1, page);
1170
1171 if (unlikely(npages != 1)) {
1172 struct vm_area_struct *vma;
1173
1174 down_read(&current->mm->mmap_sem);
1175 vma = find_vma(current->mm, addr);
1176
1177 if (vma == NULL || addr < vma->vm_start ||
1178 !(vma->vm_flags & VM_PFNMAP)) {
1179 up_read(&current->mm->mmap_sem);
1180 get_page(bad_page);
1181 return page_to_pfn(bad_page);
1182 }
1183
1184 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1185 up_read(&current->mm->mmap_sem);
1186 BUG_ON(!kvm_is_mmio_pfn(pfn));
1187 } else
1188 pfn = page_to_pfn(page[0]);
1189
1190 return pfn;
1191 }
1192
1193 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1194
1195 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1196 {
1197 pfn_t pfn;
1198
1199 pfn = gfn_to_pfn(kvm, gfn);
1200 if (!kvm_is_mmio_pfn(pfn))
1201 return pfn_to_page(pfn);
1202
1203 WARN_ON(kvm_is_mmio_pfn(pfn));
1204
1205 get_page(bad_page);
1206 return bad_page;
1207 }
1208
1209 EXPORT_SYMBOL_GPL(gfn_to_page);
1210
1211 void kvm_release_page_clean(struct page *page)
1212 {
1213 kvm_release_pfn_clean(page_to_pfn(page));
1214 }
1215 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1216
1217 void kvm_release_pfn_clean(pfn_t pfn)
1218 {
1219 if (!kvm_is_mmio_pfn(pfn))
1220 put_page(pfn_to_page(pfn));
1221 }
1222 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1223
1224 void kvm_release_page_dirty(struct page *page)
1225 {
1226 kvm_release_pfn_dirty(page_to_pfn(page));
1227 }
1228 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1229
1230 void kvm_release_pfn_dirty(pfn_t pfn)
1231 {
1232 kvm_set_pfn_dirty(pfn);
1233 kvm_release_pfn_clean(pfn);
1234 }
1235 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1236
1237 void kvm_set_page_dirty(struct page *page)
1238 {
1239 kvm_set_pfn_dirty(page_to_pfn(page));
1240 }
1241 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1242
1243 void kvm_set_pfn_dirty(pfn_t pfn)
1244 {
1245 if (!kvm_is_mmio_pfn(pfn)) {
1246 struct page *page = pfn_to_page(pfn);
1247 if (!PageReserved(page))
1248 SetPageDirty(page);
1249 }
1250 }
1251 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1252
1253 void kvm_set_pfn_accessed(pfn_t pfn)
1254 {
1255 if (!kvm_is_mmio_pfn(pfn))
1256 mark_page_accessed(pfn_to_page(pfn));
1257 }
1258 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1259
1260 void kvm_get_pfn(pfn_t pfn)
1261 {
1262 if (!kvm_is_mmio_pfn(pfn))
1263 get_page(pfn_to_page(pfn));
1264 }
1265 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1266
1267 static int next_segment(unsigned long len, int offset)
1268 {
1269 if (len > PAGE_SIZE - offset)
1270 return PAGE_SIZE - offset;
1271 else
1272 return len;
1273 }
1274
1275 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1276 int len)
1277 {
1278 int r;
1279 unsigned long addr;
1280
1281 addr = gfn_to_hva(kvm, gfn);
1282 if (kvm_is_error_hva(addr))
1283 return -EFAULT;
1284 r = copy_from_user(data, (void __user *)addr + offset, len);
1285 if (r)
1286 return -EFAULT;
1287 return 0;
1288 }
1289 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1290
1291 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1292 {
1293 gfn_t gfn = gpa >> PAGE_SHIFT;
1294 int seg;
1295 int offset = offset_in_page(gpa);
1296 int ret;
1297
1298 while ((seg = next_segment(len, offset)) != 0) {
1299 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1300 if (ret < 0)
1301 return ret;
1302 offset = 0;
1303 len -= seg;
1304 data += seg;
1305 ++gfn;
1306 }
1307 return 0;
1308 }
1309 EXPORT_SYMBOL_GPL(kvm_read_guest);
1310
1311 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1312 unsigned long len)
1313 {
1314 int r;
1315 unsigned long addr;
1316 gfn_t gfn = gpa >> PAGE_SHIFT;
1317 int offset = offset_in_page(gpa);
1318
1319 addr = gfn_to_hva(kvm, gfn);
1320 if (kvm_is_error_hva(addr))
1321 return -EFAULT;
1322 pagefault_disable();
1323 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1324 pagefault_enable();
1325 if (r)
1326 return -EFAULT;
1327 return 0;
1328 }
1329 EXPORT_SYMBOL(kvm_read_guest_atomic);
1330
1331 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1332 int offset, int len)
1333 {
1334 int r;
1335 unsigned long addr;
1336
1337 addr = gfn_to_hva(kvm, gfn);
1338 if (kvm_is_error_hva(addr))
1339 return -EFAULT;
1340 r = copy_to_user((void __user *)addr + offset, data, len);
1341 if (r)
1342 return -EFAULT;
1343 mark_page_dirty(kvm, gfn);
1344 return 0;
1345 }
1346 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1347
1348 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1349 unsigned long len)
1350 {
1351 gfn_t gfn = gpa >> PAGE_SHIFT;
1352 int seg;
1353 int offset = offset_in_page(gpa);
1354 int ret;
1355
1356 while ((seg = next_segment(len, offset)) != 0) {
1357 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1358 if (ret < 0)
1359 return ret;
1360 offset = 0;
1361 len -= seg;
1362 data += seg;
1363 ++gfn;
1364 }
1365 return 0;
1366 }
1367
1368 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1369 {
1370 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1371 }
1372 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1373
1374 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1375 {
1376 gfn_t gfn = gpa >> PAGE_SHIFT;
1377 int seg;
1378 int offset = offset_in_page(gpa);
1379 int ret;
1380
1381 while ((seg = next_segment(len, offset)) != 0) {
1382 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1383 if (ret < 0)
1384 return ret;
1385 offset = 0;
1386 len -= seg;
1387 ++gfn;
1388 }
1389 return 0;
1390 }
1391 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1392
1393 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1394 {
1395 struct kvm_memory_slot *memslot;
1396
1397 gfn = unalias_gfn(kvm, gfn);
1398 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1399 if (memslot && memslot->dirty_bitmap) {
1400 unsigned long rel_gfn = gfn - memslot->base_gfn;
1401
1402 /* avoid RMW */
1403 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1404 set_bit(rel_gfn, memslot->dirty_bitmap);
1405 }
1406 }
1407
1408 /*
1409 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1410 */
1411 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1412 {
1413 DEFINE_WAIT(wait);
1414
1415 for (;;) {
1416 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1417
1418 if (kvm_cpu_has_interrupt(vcpu) ||
1419 kvm_cpu_has_pending_timer(vcpu) ||
1420 kvm_arch_vcpu_runnable(vcpu)) {
1421 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1422 break;
1423 }
1424 if (signal_pending(current))
1425 break;
1426
1427 vcpu_put(vcpu);
1428 schedule();
1429 vcpu_load(vcpu);
1430 }
1431
1432 finish_wait(&vcpu->wq, &wait);
1433 }
1434
1435 void kvm_resched(struct kvm_vcpu *vcpu)
1436 {
1437 if (!need_resched())
1438 return;
1439 cond_resched();
1440 }
1441 EXPORT_SYMBOL_GPL(kvm_resched);
1442
1443 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1444 {
1445 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1446 struct page *page;
1447
1448 if (vmf->pgoff == 0)
1449 page = virt_to_page(vcpu->run);
1450 #ifdef CONFIG_X86
1451 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1452 page = virt_to_page(vcpu->arch.pio_data);
1453 #endif
1454 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1455 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1456 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1457 #endif
1458 else
1459 return VM_FAULT_SIGBUS;
1460 get_page(page);
1461 vmf->page = page;
1462 return 0;
1463 }
1464
1465 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1466 .fault = kvm_vcpu_fault,
1467 };
1468
1469 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1470 {
1471 vma->vm_ops = &kvm_vcpu_vm_ops;
1472 return 0;
1473 }
1474
1475 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1476 {
1477 struct kvm_vcpu *vcpu = filp->private_data;
1478
1479 kvm_put_kvm(vcpu->kvm);
1480 return 0;
1481 }
1482
1483 static const struct file_operations kvm_vcpu_fops = {
1484 .release = kvm_vcpu_release,
1485 .unlocked_ioctl = kvm_vcpu_ioctl,
1486 .compat_ioctl = kvm_vcpu_ioctl,
1487 .mmap = kvm_vcpu_mmap,
1488 };
1489
1490 /*
1491 * Allocates an inode for the vcpu.
1492 */
1493 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1494 {
1495 int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1496 if (fd < 0)
1497 kvm_put_kvm(vcpu->kvm);
1498 return fd;
1499 }
1500
1501 /*
1502 * Creates some virtual cpus. Good luck creating more than one.
1503 */
1504 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1505 {
1506 int r;
1507 struct kvm_vcpu *vcpu;
1508
1509 if (!valid_vcpu(n))
1510 return -EINVAL;
1511
1512 vcpu = kvm_arch_vcpu_create(kvm, n);
1513 if (IS_ERR(vcpu))
1514 return PTR_ERR(vcpu);
1515
1516 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1517
1518 r = kvm_arch_vcpu_setup(vcpu);
1519 if (r)
1520 return r;
1521
1522 mutex_lock(&kvm->lock);
1523 if (kvm->vcpus[n]) {
1524 r = -EEXIST;
1525 goto vcpu_destroy;
1526 }
1527 kvm->vcpus[n] = vcpu;
1528 mutex_unlock(&kvm->lock);
1529
1530 /* Now it's all set up, let userspace reach it */
1531 kvm_get_kvm(kvm);
1532 r = create_vcpu_fd(vcpu);
1533 if (r < 0)
1534 goto unlink;
1535 return r;
1536
1537 unlink:
1538 mutex_lock(&kvm->lock);
1539 kvm->vcpus[n] = NULL;
1540 vcpu_destroy:
1541 mutex_unlock(&kvm->lock);
1542 kvm_arch_vcpu_destroy(vcpu);
1543 return r;
1544 }
1545
1546 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1547 {
1548 if (sigset) {
1549 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1550 vcpu->sigset_active = 1;
1551 vcpu->sigset = *sigset;
1552 } else
1553 vcpu->sigset_active = 0;
1554 return 0;
1555 }
1556
1557 static long kvm_vcpu_ioctl(struct file *filp,
1558 unsigned int ioctl, unsigned long arg)
1559 {
1560 struct kvm_vcpu *vcpu = filp->private_data;
1561 void __user *argp = (void __user *)arg;
1562 int r;
1563 struct kvm_fpu *fpu = NULL;
1564 struct kvm_sregs *kvm_sregs = NULL;
1565
1566 if (vcpu->kvm->mm != current->mm)
1567 return -EIO;
1568 switch (ioctl) {
1569 case KVM_RUN:
1570 r = -EINVAL;
1571 if (arg)
1572 goto out;
1573 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1574 break;
1575 case KVM_GET_REGS: {
1576 struct kvm_regs *kvm_regs;
1577
1578 r = -ENOMEM;
1579 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1580 if (!kvm_regs)
1581 goto out;
1582 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1583 if (r)
1584 goto out_free1;
1585 r = -EFAULT;
1586 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1587 goto out_free1;
1588 r = 0;
1589 out_free1:
1590 kfree(kvm_regs);
1591 break;
1592 }
1593 case KVM_SET_REGS: {
1594 struct kvm_regs *kvm_regs;
1595
1596 r = -ENOMEM;
1597 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1598 if (!kvm_regs)
1599 goto out;
1600 r = -EFAULT;
1601 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1602 goto out_free2;
1603 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1604 if (r)
1605 goto out_free2;
1606 r = 0;
1607 out_free2:
1608 kfree(kvm_regs);
1609 break;
1610 }
1611 case KVM_GET_SREGS: {
1612 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1613 r = -ENOMEM;
1614 if (!kvm_sregs)
1615 goto out;
1616 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1617 if (r)
1618 goto out;
1619 r = -EFAULT;
1620 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1621 goto out;
1622 r = 0;
1623 break;
1624 }
1625 case KVM_SET_SREGS: {
1626 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1627 r = -ENOMEM;
1628 if (!kvm_sregs)
1629 goto out;
1630 r = -EFAULT;
1631 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1632 goto out;
1633 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1634 if (r)
1635 goto out;
1636 r = 0;
1637 break;
1638 }
1639 case KVM_GET_MP_STATE: {
1640 struct kvm_mp_state mp_state;
1641
1642 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1643 if (r)
1644 goto out;
1645 r = -EFAULT;
1646 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1647 goto out;
1648 r = 0;
1649 break;
1650 }
1651 case KVM_SET_MP_STATE: {
1652 struct kvm_mp_state mp_state;
1653
1654 r = -EFAULT;
1655 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1656 goto out;
1657 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1658 if (r)
1659 goto out;
1660 r = 0;
1661 break;
1662 }
1663 case KVM_TRANSLATE: {
1664 struct kvm_translation tr;
1665
1666 r = -EFAULT;
1667 if (copy_from_user(&tr, argp, sizeof tr))
1668 goto out;
1669 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1670 if (r)
1671 goto out;
1672 r = -EFAULT;
1673 if (copy_to_user(argp, &tr, sizeof tr))
1674 goto out;
1675 r = 0;
1676 break;
1677 }
1678 case KVM_DEBUG_GUEST: {
1679 struct kvm_debug_guest dbg;
1680
1681 r = -EFAULT;
1682 if (copy_from_user(&dbg, argp, sizeof dbg))
1683 goto out;
1684 r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
1685 if (r)
1686 goto out;
1687 r = 0;
1688 break;
1689 }
1690 case KVM_SET_SIGNAL_MASK: {
1691 struct kvm_signal_mask __user *sigmask_arg = argp;
1692 struct kvm_signal_mask kvm_sigmask;
1693 sigset_t sigset, *p;
1694
1695 p = NULL;
1696 if (argp) {
1697 r = -EFAULT;
1698 if (copy_from_user(&kvm_sigmask, argp,
1699 sizeof kvm_sigmask))
1700 goto out;
1701 r = -EINVAL;
1702 if (kvm_sigmask.len != sizeof sigset)
1703 goto out;
1704 r = -EFAULT;
1705 if (copy_from_user(&sigset, sigmask_arg->sigset,
1706 sizeof sigset))
1707 goto out;
1708 p = &sigset;
1709 }
1710 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1711 break;
1712 }
1713 case KVM_GET_FPU: {
1714 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1715 r = -ENOMEM;
1716 if (!fpu)
1717 goto out;
1718 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1719 if (r)
1720 goto out;
1721 r = -EFAULT;
1722 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1723 goto out;
1724 r = 0;
1725 break;
1726 }
1727 case KVM_SET_FPU: {
1728 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1729 r = -ENOMEM;
1730 if (!fpu)
1731 goto out;
1732 r = -EFAULT;
1733 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1734 goto out;
1735 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1736 if (r)
1737 goto out;
1738 r = 0;
1739 break;
1740 }
1741 default:
1742 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1743 }
1744 out:
1745 kfree(fpu);
1746 kfree(kvm_sregs);
1747 return r;
1748 }
1749
1750 static long kvm_vm_ioctl(struct file *filp,
1751 unsigned int ioctl, unsigned long arg)
1752 {
1753 struct kvm *kvm = filp->private_data;
1754 void __user *argp = (void __user *)arg;
1755 int r;
1756
1757 if (kvm->mm != current->mm)
1758 return -EIO;
1759 switch (ioctl) {
1760 case KVM_CREATE_VCPU:
1761 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1762 if (r < 0)
1763 goto out;
1764 break;
1765 case KVM_SET_USER_MEMORY_REGION: {
1766 struct kvm_userspace_memory_region kvm_userspace_mem;
1767
1768 r = -EFAULT;
1769 if (copy_from_user(&kvm_userspace_mem, argp,
1770 sizeof kvm_userspace_mem))
1771 goto out;
1772
1773 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1774 if (r)
1775 goto out;
1776 break;
1777 }
1778 case KVM_GET_DIRTY_LOG: {
1779 struct kvm_dirty_log log;
1780
1781 r = -EFAULT;
1782 if (copy_from_user(&log, argp, sizeof log))
1783 goto out;
1784 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1785 if (r)
1786 goto out;
1787 break;
1788 }
1789 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1790 case KVM_REGISTER_COALESCED_MMIO: {
1791 struct kvm_coalesced_mmio_zone zone;
1792 r = -EFAULT;
1793 if (copy_from_user(&zone, argp, sizeof zone))
1794 goto out;
1795 r = -ENXIO;
1796 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1797 if (r)
1798 goto out;
1799 r = 0;
1800 break;
1801 }
1802 case KVM_UNREGISTER_COALESCED_MMIO: {
1803 struct kvm_coalesced_mmio_zone zone;
1804 r = -EFAULT;
1805 if (copy_from_user(&zone, argp, sizeof zone))
1806 goto out;
1807 r = -ENXIO;
1808 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1809 if (r)
1810 goto out;
1811 r = 0;
1812 break;
1813 }
1814 #endif
1815 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
1816 case KVM_ASSIGN_PCI_DEVICE: {
1817 struct kvm_assigned_pci_dev assigned_dev;
1818
1819 r = -EFAULT;
1820 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
1821 goto out;
1822 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
1823 if (r)
1824 goto out;
1825 break;
1826 }
1827 case KVM_ASSIGN_IRQ: {
1828 struct kvm_assigned_irq assigned_irq;
1829
1830 r = -EFAULT;
1831 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
1832 goto out;
1833 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
1834 if (r)
1835 goto out;
1836 break;
1837 }
1838 #endif
1839 default:
1840 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1841 }
1842 out:
1843 return r;
1844 }
1845
1846 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1847 {
1848 struct page *page[1];
1849 unsigned long addr;
1850 int npages;
1851 gfn_t gfn = vmf->pgoff;
1852 struct kvm *kvm = vma->vm_file->private_data;
1853
1854 addr = gfn_to_hva(kvm, gfn);
1855 if (kvm_is_error_hva(addr))
1856 return VM_FAULT_SIGBUS;
1857
1858 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1859 NULL);
1860 if (unlikely(npages != 1))
1861 return VM_FAULT_SIGBUS;
1862
1863 vmf->page = page[0];
1864 return 0;
1865 }
1866
1867 static struct vm_operations_struct kvm_vm_vm_ops = {
1868 .fault = kvm_vm_fault,
1869 };
1870
1871 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1872 {
1873 vma->vm_ops = &kvm_vm_vm_ops;
1874 return 0;
1875 }
1876
1877 static const struct file_operations kvm_vm_fops = {
1878 .release = kvm_vm_release,
1879 .unlocked_ioctl = kvm_vm_ioctl,
1880 .compat_ioctl = kvm_vm_ioctl,
1881 .mmap = kvm_vm_mmap,
1882 };
1883
1884 static int kvm_dev_ioctl_create_vm(void)
1885 {
1886 int fd;
1887 struct kvm *kvm;
1888
1889 kvm = kvm_create_vm();
1890 if (IS_ERR(kvm))
1891 return PTR_ERR(kvm);
1892 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
1893 if (fd < 0)
1894 kvm_put_kvm(kvm);
1895
1896 return fd;
1897 }
1898
1899 static long kvm_dev_ioctl(struct file *filp,
1900 unsigned int ioctl, unsigned long arg)
1901 {
1902 long r = -EINVAL;
1903
1904 switch (ioctl) {
1905 case KVM_GET_API_VERSION:
1906 r = -EINVAL;
1907 if (arg)
1908 goto out;
1909 r = KVM_API_VERSION;
1910 break;
1911 case KVM_CREATE_VM:
1912 r = -EINVAL;
1913 if (arg)
1914 goto out;
1915 r = kvm_dev_ioctl_create_vm();
1916 break;
1917 case KVM_CHECK_EXTENSION:
1918 r = kvm_dev_ioctl_check_extension(arg);
1919 break;
1920 case KVM_GET_VCPU_MMAP_SIZE:
1921 r = -EINVAL;
1922 if (arg)
1923 goto out;
1924 r = PAGE_SIZE; /* struct kvm_run */
1925 #ifdef CONFIG_X86
1926 r += PAGE_SIZE; /* pio data page */
1927 #endif
1928 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1929 r += PAGE_SIZE; /* coalesced mmio ring page */
1930 #endif
1931 break;
1932 case KVM_TRACE_ENABLE:
1933 case KVM_TRACE_PAUSE:
1934 case KVM_TRACE_DISABLE:
1935 r = kvm_trace_ioctl(ioctl, arg);
1936 break;
1937 default:
1938 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1939 }
1940 out:
1941 return r;
1942 }
1943
1944 static struct file_operations kvm_chardev_ops = {
1945 .unlocked_ioctl = kvm_dev_ioctl,
1946 .compat_ioctl = kvm_dev_ioctl,
1947 };
1948
1949 static struct miscdevice kvm_dev = {
1950 KVM_MINOR,
1951 "kvm",
1952 &kvm_chardev_ops,
1953 };
1954
1955 static void hardware_enable(void *junk)
1956 {
1957 int cpu = raw_smp_processor_id();
1958
1959 if (cpu_isset(cpu, cpus_hardware_enabled))
1960 return;
1961 cpu_set(cpu, cpus_hardware_enabled);
1962 kvm_arch_hardware_enable(NULL);
1963 }
1964
1965 static void hardware_disable(void *junk)
1966 {
1967 int cpu = raw_smp_processor_id();
1968
1969 if (!cpu_isset(cpu, cpus_hardware_enabled))
1970 return;
1971 cpu_clear(cpu, cpus_hardware_enabled);
1972 kvm_arch_hardware_disable(NULL);
1973 }
1974
1975 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1976 void *v)
1977 {
1978 int cpu = (long)v;
1979
1980 val &= ~CPU_TASKS_FROZEN;
1981 switch (val) {
1982 case CPU_DYING:
1983 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1984 cpu);
1985 hardware_disable(NULL);
1986 break;
1987 case CPU_UP_CANCELED:
1988 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1989 cpu);
1990 smp_call_function_single(cpu, hardware_disable, NULL, 1);
1991 break;
1992 case CPU_ONLINE:
1993 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1994 cpu);
1995 smp_call_function_single(cpu, hardware_enable, NULL, 1);
1996 break;
1997 }
1998 return NOTIFY_OK;
1999 }
2000
2001
2002 asmlinkage void kvm_handle_fault_on_reboot(void)
2003 {
2004 if (kvm_rebooting)
2005 /* spin while reset goes on */
2006 while (true)
2007 ;
2008 /* Fault while not rebooting. We want the trace. */
2009 BUG();
2010 }
2011 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2012
2013 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2014 void *v)
2015 {
2016 if (val == SYS_RESTART) {
2017 /*
2018 * Some (well, at least mine) BIOSes hang on reboot if
2019 * in vmx root mode.
2020 */
2021 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2022 kvm_rebooting = true;
2023 on_each_cpu(hardware_disable, NULL, 1);
2024 }
2025 return NOTIFY_OK;
2026 }
2027
2028 static struct notifier_block kvm_reboot_notifier = {
2029 .notifier_call = kvm_reboot,
2030 .priority = 0,
2031 };
2032
2033 void kvm_io_bus_init(struct kvm_io_bus *bus)
2034 {
2035 memset(bus, 0, sizeof(*bus));
2036 }
2037
2038 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2039 {
2040 int i;
2041
2042 for (i = 0; i < bus->dev_count; i++) {
2043 struct kvm_io_device *pos = bus->devs[i];
2044
2045 kvm_iodevice_destructor(pos);
2046 }
2047 }
2048
2049 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
2050 gpa_t addr, int len, int is_write)
2051 {
2052 int i;
2053
2054 for (i = 0; i < bus->dev_count; i++) {
2055 struct kvm_io_device *pos = bus->devs[i];
2056
2057 if (pos->in_range(pos, addr, len, is_write))
2058 return pos;
2059 }
2060
2061 return NULL;
2062 }
2063
2064 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2065 {
2066 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2067
2068 bus->devs[bus->dev_count++] = dev;
2069 }
2070
2071 static struct notifier_block kvm_cpu_notifier = {
2072 .notifier_call = kvm_cpu_hotplug,
2073 .priority = 20, /* must be > scheduler priority */
2074 };
2075
2076 static int vm_stat_get(void *_offset, u64 *val)
2077 {
2078 unsigned offset = (long)_offset;
2079 struct kvm *kvm;
2080
2081 *val = 0;
2082 spin_lock(&kvm_lock);
2083 list_for_each_entry(kvm, &vm_list, vm_list)
2084 *val += *(u32 *)((void *)kvm + offset);
2085 spin_unlock(&kvm_lock);
2086 return 0;
2087 }
2088
2089 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2090
2091 static int vcpu_stat_get(void *_offset, u64 *val)
2092 {
2093 unsigned offset = (long)_offset;
2094 struct kvm *kvm;
2095 struct kvm_vcpu *vcpu;
2096 int i;
2097
2098 *val = 0;
2099 spin_lock(&kvm_lock);
2100 list_for_each_entry(kvm, &vm_list, vm_list)
2101 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2102 vcpu = kvm->vcpus[i];
2103 if (vcpu)
2104 *val += *(u32 *)((void *)vcpu + offset);
2105 }
2106 spin_unlock(&kvm_lock);
2107 return 0;
2108 }
2109
2110 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2111
2112 static struct file_operations *stat_fops[] = {
2113 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2114 [KVM_STAT_VM] = &vm_stat_fops,
2115 };
2116
2117 static void kvm_init_debug(void)
2118 {
2119 struct kvm_stats_debugfs_item *p;
2120
2121 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2122 for (p = debugfs_entries; p->name; ++p)
2123 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2124 (void *)(long)p->offset,
2125 stat_fops[p->kind]);
2126 }
2127
2128 static void kvm_exit_debug(void)
2129 {
2130 struct kvm_stats_debugfs_item *p;
2131
2132 for (p = debugfs_entries; p->name; ++p)
2133 debugfs_remove(p->dentry);
2134 debugfs_remove(kvm_debugfs_dir);
2135 }
2136
2137 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2138 {
2139 hardware_disable(NULL);
2140 return 0;
2141 }
2142
2143 static int kvm_resume(struct sys_device *dev)
2144 {
2145 hardware_enable(NULL);
2146 return 0;
2147 }
2148
2149 static struct sysdev_class kvm_sysdev_class = {
2150 .name = "kvm",
2151 .suspend = kvm_suspend,
2152 .resume = kvm_resume,
2153 };
2154
2155 static struct sys_device kvm_sysdev = {
2156 .id = 0,
2157 .cls = &kvm_sysdev_class,
2158 };
2159
2160 struct page *bad_page;
2161 pfn_t bad_pfn;
2162
2163 static inline
2164 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2165 {
2166 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2167 }
2168
2169 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2170 {
2171 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2172
2173 kvm_arch_vcpu_load(vcpu, cpu);
2174 }
2175
2176 static void kvm_sched_out(struct preempt_notifier *pn,
2177 struct task_struct *next)
2178 {
2179 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2180
2181 kvm_arch_vcpu_put(vcpu);
2182 }
2183
2184 int kvm_init(void *opaque, unsigned int vcpu_size,
2185 struct module *module)
2186 {
2187 int r;
2188 int cpu;
2189
2190 kvm_init_debug();
2191
2192 r = kvm_arch_init(opaque);
2193 if (r)
2194 goto out_fail;
2195
2196 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2197
2198 if (bad_page == NULL) {
2199 r = -ENOMEM;
2200 goto out;
2201 }
2202
2203 bad_pfn = page_to_pfn(bad_page);
2204
2205 r = kvm_arch_hardware_setup();
2206 if (r < 0)
2207 goto out_free_0;
2208
2209 for_each_online_cpu(cpu) {
2210 smp_call_function_single(cpu,
2211 kvm_arch_check_processor_compat,
2212 &r, 1);
2213 if (r < 0)
2214 goto out_free_1;
2215 }
2216
2217 on_each_cpu(hardware_enable, NULL, 1);
2218 r = register_cpu_notifier(&kvm_cpu_notifier);
2219 if (r)
2220 goto out_free_2;
2221 register_reboot_notifier(&kvm_reboot_notifier);
2222
2223 r = sysdev_class_register(&kvm_sysdev_class);
2224 if (r)
2225 goto out_free_3;
2226
2227 r = sysdev_register(&kvm_sysdev);
2228 if (r)
2229 goto out_free_4;
2230
2231 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2232 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2233 __alignof__(struct kvm_vcpu),
2234 0, NULL);
2235 if (!kvm_vcpu_cache) {
2236 r = -ENOMEM;
2237 goto out_free_5;
2238 }
2239
2240 kvm_chardev_ops.owner = module;
2241
2242 r = misc_register(&kvm_dev);
2243 if (r) {
2244 printk(KERN_ERR "kvm: misc device register failed\n");
2245 goto out_free;
2246 }
2247
2248 kvm_preempt_ops.sched_in = kvm_sched_in;
2249 kvm_preempt_ops.sched_out = kvm_sched_out;
2250 #ifndef CONFIG_X86
2251 msi2intx = 0;
2252 #endif
2253
2254 return 0;
2255
2256 out_free:
2257 kmem_cache_destroy(kvm_vcpu_cache);
2258 out_free_5:
2259 sysdev_unregister(&kvm_sysdev);
2260 out_free_4:
2261 sysdev_class_unregister(&kvm_sysdev_class);
2262 out_free_3:
2263 unregister_reboot_notifier(&kvm_reboot_notifier);
2264 unregister_cpu_notifier(&kvm_cpu_notifier);
2265 out_free_2:
2266 on_each_cpu(hardware_disable, NULL, 1);
2267 out_free_1:
2268 kvm_arch_hardware_unsetup();
2269 out_free_0:
2270 __free_page(bad_page);
2271 out:
2272 kvm_arch_exit();
2273 kvm_exit_debug();
2274 out_fail:
2275 return r;
2276 }
2277 EXPORT_SYMBOL_GPL(kvm_init);
2278
2279 void kvm_exit(void)
2280 {
2281 kvm_trace_cleanup();
2282 misc_deregister(&kvm_dev);
2283 kmem_cache_destroy(kvm_vcpu_cache);
2284 sysdev_unregister(&kvm_sysdev);
2285 sysdev_class_unregister(&kvm_sysdev_class);
2286 unregister_reboot_notifier(&kvm_reboot_notifier);
2287 unregister_cpu_notifier(&kvm_cpu_notifier);
2288 on_each_cpu(hardware_disable, NULL, 1);
2289 kvm_arch_hardware_unsetup();
2290 kvm_arch_exit();
2291 kvm_exit_debug();
2292 __free_page(bad_page);
2293 }
2294 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.083099 seconds and 5 git commands to generate.