KVM: set_memory_region: Identify the requested change explicitly
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68 * Ordering of locks:
69 *
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 */
72
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84
85 struct dentry *kvm_debugfs_dir;
86
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100
101 static bool largepages_enabled = true;
102
103 bool kvm_is_mmio_pfn(pfn_t pfn)
104 {
105 if (pfn_valid(pfn)) {
106 int reserved;
107 struct page *tail = pfn_to_page(pfn);
108 struct page *head = compound_trans_head(tail);
109 reserved = PageReserved(head);
110 if (head != tail) {
111 /*
112 * "head" is not a dangling pointer
113 * (compound_trans_head takes care of that)
114 * but the hugepage may have been splitted
115 * from under us (and we may not hold a
116 * reference count on the head page so it can
117 * be reused before we run PageReferenced), so
118 * we've to check PageTail before returning
119 * what we just read.
120 */
121 smp_rmb();
122 if (PageTail(tail))
123 return reserved;
124 }
125 return PageReserved(tail);
126 }
127
128 return true;
129 }
130
131 /*
132 * Switches to specified vcpu, until a matching vcpu_put()
133 */
134 int vcpu_load(struct kvm_vcpu *vcpu)
135 {
136 int cpu;
137
138 if (mutex_lock_killable(&vcpu->mutex))
139 return -EINTR;
140 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
141 /* The thread running this VCPU changed. */
142 struct pid *oldpid = vcpu->pid;
143 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
144 rcu_assign_pointer(vcpu->pid, newpid);
145 synchronize_rcu();
146 put_pid(oldpid);
147 }
148 cpu = get_cpu();
149 preempt_notifier_register(&vcpu->preempt_notifier);
150 kvm_arch_vcpu_load(vcpu, cpu);
151 put_cpu();
152 return 0;
153 }
154
155 void vcpu_put(struct kvm_vcpu *vcpu)
156 {
157 preempt_disable();
158 kvm_arch_vcpu_put(vcpu);
159 preempt_notifier_unregister(&vcpu->preempt_notifier);
160 preempt_enable();
161 mutex_unlock(&vcpu->mutex);
162 }
163
164 static void ack_flush(void *_completed)
165 {
166 }
167
168 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
169 {
170 int i, cpu, me;
171 cpumask_var_t cpus;
172 bool called = true;
173 struct kvm_vcpu *vcpu;
174
175 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
176
177 me = get_cpu();
178 kvm_for_each_vcpu(i, vcpu, kvm) {
179 kvm_make_request(req, vcpu);
180 cpu = vcpu->cpu;
181
182 /* Set ->requests bit before we read ->mode */
183 smp_mb();
184
185 if (cpus != NULL && cpu != -1 && cpu != me &&
186 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
187 cpumask_set_cpu(cpu, cpus);
188 }
189 if (unlikely(cpus == NULL))
190 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
191 else if (!cpumask_empty(cpus))
192 smp_call_function_many(cpus, ack_flush, NULL, 1);
193 else
194 called = false;
195 put_cpu();
196 free_cpumask_var(cpus);
197 return called;
198 }
199
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202 long dirty_count = kvm->tlbs_dirty;
203
204 smp_mb();
205 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
206 ++kvm->stat.remote_tlb_flush;
207 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
208 }
209
210 void kvm_reload_remote_mmus(struct kvm *kvm)
211 {
212 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
213 }
214
215 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
216 {
217 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
218 }
219
220 void kvm_make_update_eoibitmap_request(struct kvm *kvm)
221 {
222 make_all_cpus_request(kvm, KVM_REQ_EOIBITMAP);
223 }
224
225 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
226 {
227 struct page *page;
228 int r;
229
230 mutex_init(&vcpu->mutex);
231 vcpu->cpu = -1;
232 vcpu->kvm = kvm;
233 vcpu->vcpu_id = id;
234 vcpu->pid = NULL;
235 init_waitqueue_head(&vcpu->wq);
236 kvm_async_pf_vcpu_init(vcpu);
237
238 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
239 if (!page) {
240 r = -ENOMEM;
241 goto fail;
242 }
243 vcpu->run = page_address(page);
244
245 kvm_vcpu_set_in_spin_loop(vcpu, false);
246 kvm_vcpu_set_dy_eligible(vcpu, false);
247
248 r = kvm_arch_vcpu_init(vcpu);
249 if (r < 0)
250 goto fail_free_run;
251 return 0;
252
253 fail_free_run:
254 free_page((unsigned long)vcpu->run);
255 fail:
256 return r;
257 }
258 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
259
260 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
261 {
262 put_pid(vcpu->pid);
263 kvm_arch_vcpu_uninit(vcpu);
264 free_page((unsigned long)vcpu->run);
265 }
266 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
267
268 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
269 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
270 {
271 return container_of(mn, struct kvm, mmu_notifier);
272 }
273
274 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
275 struct mm_struct *mm,
276 unsigned long address)
277 {
278 struct kvm *kvm = mmu_notifier_to_kvm(mn);
279 int need_tlb_flush, idx;
280
281 /*
282 * When ->invalidate_page runs, the linux pte has been zapped
283 * already but the page is still allocated until
284 * ->invalidate_page returns. So if we increase the sequence
285 * here the kvm page fault will notice if the spte can't be
286 * established because the page is going to be freed. If
287 * instead the kvm page fault establishes the spte before
288 * ->invalidate_page runs, kvm_unmap_hva will release it
289 * before returning.
290 *
291 * The sequence increase only need to be seen at spin_unlock
292 * time, and not at spin_lock time.
293 *
294 * Increasing the sequence after the spin_unlock would be
295 * unsafe because the kvm page fault could then establish the
296 * pte after kvm_unmap_hva returned, without noticing the page
297 * is going to be freed.
298 */
299 idx = srcu_read_lock(&kvm->srcu);
300 spin_lock(&kvm->mmu_lock);
301
302 kvm->mmu_notifier_seq++;
303 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
304 /* we've to flush the tlb before the pages can be freed */
305 if (need_tlb_flush)
306 kvm_flush_remote_tlbs(kvm);
307
308 spin_unlock(&kvm->mmu_lock);
309 srcu_read_unlock(&kvm->srcu, idx);
310 }
311
312 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
313 struct mm_struct *mm,
314 unsigned long address,
315 pte_t pte)
316 {
317 struct kvm *kvm = mmu_notifier_to_kvm(mn);
318 int idx;
319
320 idx = srcu_read_lock(&kvm->srcu);
321 spin_lock(&kvm->mmu_lock);
322 kvm->mmu_notifier_seq++;
323 kvm_set_spte_hva(kvm, address, pte);
324 spin_unlock(&kvm->mmu_lock);
325 srcu_read_unlock(&kvm->srcu, idx);
326 }
327
328 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
329 struct mm_struct *mm,
330 unsigned long start,
331 unsigned long end)
332 {
333 struct kvm *kvm = mmu_notifier_to_kvm(mn);
334 int need_tlb_flush = 0, idx;
335
336 idx = srcu_read_lock(&kvm->srcu);
337 spin_lock(&kvm->mmu_lock);
338 /*
339 * The count increase must become visible at unlock time as no
340 * spte can be established without taking the mmu_lock and
341 * count is also read inside the mmu_lock critical section.
342 */
343 kvm->mmu_notifier_count++;
344 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
345 need_tlb_flush |= kvm->tlbs_dirty;
346 /* we've to flush the tlb before the pages can be freed */
347 if (need_tlb_flush)
348 kvm_flush_remote_tlbs(kvm);
349
350 spin_unlock(&kvm->mmu_lock);
351 srcu_read_unlock(&kvm->srcu, idx);
352 }
353
354 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
355 struct mm_struct *mm,
356 unsigned long start,
357 unsigned long end)
358 {
359 struct kvm *kvm = mmu_notifier_to_kvm(mn);
360
361 spin_lock(&kvm->mmu_lock);
362 /*
363 * This sequence increase will notify the kvm page fault that
364 * the page that is going to be mapped in the spte could have
365 * been freed.
366 */
367 kvm->mmu_notifier_seq++;
368 smp_wmb();
369 /*
370 * The above sequence increase must be visible before the
371 * below count decrease, which is ensured by the smp_wmb above
372 * in conjunction with the smp_rmb in mmu_notifier_retry().
373 */
374 kvm->mmu_notifier_count--;
375 spin_unlock(&kvm->mmu_lock);
376
377 BUG_ON(kvm->mmu_notifier_count < 0);
378 }
379
380 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
381 struct mm_struct *mm,
382 unsigned long address)
383 {
384 struct kvm *kvm = mmu_notifier_to_kvm(mn);
385 int young, idx;
386
387 idx = srcu_read_lock(&kvm->srcu);
388 spin_lock(&kvm->mmu_lock);
389
390 young = kvm_age_hva(kvm, address);
391 if (young)
392 kvm_flush_remote_tlbs(kvm);
393
394 spin_unlock(&kvm->mmu_lock);
395 srcu_read_unlock(&kvm->srcu, idx);
396
397 return young;
398 }
399
400 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
401 struct mm_struct *mm,
402 unsigned long address)
403 {
404 struct kvm *kvm = mmu_notifier_to_kvm(mn);
405 int young, idx;
406
407 idx = srcu_read_lock(&kvm->srcu);
408 spin_lock(&kvm->mmu_lock);
409 young = kvm_test_age_hva(kvm, address);
410 spin_unlock(&kvm->mmu_lock);
411 srcu_read_unlock(&kvm->srcu, idx);
412
413 return young;
414 }
415
416 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
417 struct mm_struct *mm)
418 {
419 struct kvm *kvm = mmu_notifier_to_kvm(mn);
420 int idx;
421
422 idx = srcu_read_lock(&kvm->srcu);
423 kvm_arch_flush_shadow_all(kvm);
424 srcu_read_unlock(&kvm->srcu, idx);
425 }
426
427 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
428 .invalidate_page = kvm_mmu_notifier_invalidate_page,
429 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
430 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
431 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
432 .test_young = kvm_mmu_notifier_test_young,
433 .change_pte = kvm_mmu_notifier_change_pte,
434 .release = kvm_mmu_notifier_release,
435 };
436
437 static int kvm_init_mmu_notifier(struct kvm *kvm)
438 {
439 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
440 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
441 }
442
443 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
444
445 static int kvm_init_mmu_notifier(struct kvm *kvm)
446 {
447 return 0;
448 }
449
450 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
451
452 static void kvm_init_memslots_id(struct kvm *kvm)
453 {
454 int i;
455 struct kvm_memslots *slots = kvm->memslots;
456
457 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
458 slots->id_to_index[i] = slots->memslots[i].id = i;
459 }
460
461 static struct kvm *kvm_create_vm(unsigned long type)
462 {
463 int r, i;
464 struct kvm *kvm = kvm_arch_alloc_vm();
465
466 if (!kvm)
467 return ERR_PTR(-ENOMEM);
468
469 r = kvm_arch_init_vm(kvm, type);
470 if (r)
471 goto out_err_nodisable;
472
473 r = hardware_enable_all();
474 if (r)
475 goto out_err_nodisable;
476
477 #ifdef CONFIG_HAVE_KVM_IRQCHIP
478 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
479 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
480 #endif
481
482 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
483
484 r = -ENOMEM;
485 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
486 if (!kvm->memslots)
487 goto out_err_nosrcu;
488 kvm_init_memslots_id(kvm);
489 if (init_srcu_struct(&kvm->srcu))
490 goto out_err_nosrcu;
491 for (i = 0; i < KVM_NR_BUSES; i++) {
492 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
493 GFP_KERNEL);
494 if (!kvm->buses[i])
495 goto out_err;
496 }
497
498 spin_lock_init(&kvm->mmu_lock);
499 kvm->mm = current->mm;
500 atomic_inc(&kvm->mm->mm_count);
501 kvm_eventfd_init(kvm);
502 mutex_init(&kvm->lock);
503 mutex_init(&kvm->irq_lock);
504 mutex_init(&kvm->slots_lock);
505 atomic_set(&kvm->users_count, 1);
506
507 r = kvm_init_mmu_notifier(kvm);
508 if (r)
509 goto out_err;
510
511 raw_spin_lock(&kvm_lock);
512 list_add(&kvm->vm_list, &vm_list);
513 raw_spin_unlock(&kvm_lock);
514
515 return kvm;
516
517 out_err:
518 cleanup_srcu_struct(&kvm->srcu);
519 out_err_nosrcu:
520 hardware_disable_all();
521 out_err_nodisable:
522 for (i = 0; i < KVM_NR_BUSES; i++)
523 kfree(kvm->buses[i]);
524 kfree(kvm->memslots);
525 kvm_arch_free_vm(kvm);
526 return ERR_PTR(r);
527 }
528
529 /*
530 * Avoid using vmalloc for a small buffer.
531 * Should not be used when the size is statically known.
532 */
533 void *kvm_kvzalloc(unsigned long size)
534 {
535 if (size > PAGE_SIZE)
536 return vzalloc(size);
537 else
538 return kzalloc(size, GFP_KERNEL);
539 }
540
541 void kvm_kvfree(const void *addr)
542 {
543 if (is_vmalloc_addr(addr))
544 vfree(addr);
545 else
546 kfree(addr);
547 }
548
549 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
550 {
551 if (!memslot->dirty_bitmap)
552 return;
553
554 kvm_kvfree(memslot->dirty_bitmap);
555 memslot->dirty_bitmap = NULL;
556 }
557
558 /*
559 * Free any memory in @free but not in @dont.
560 */
561 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
562 struct kvm_memory_slot *dont)
563 {
564 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
565 kvm_destroy_dirty_bitmap(free);
566
567 kvm_arch_free_memslot(free, dont);
568
569 free->npages = 0;
570 }
571
572 void kvm_free_physmem(struct kvm *kvm)
573 {
574 struct kvm_memslots *slots = kvm->memslots;
575 struct kvm_memory_slot *memslot;
576
577 kvm_for_each_memslot(memslot, slots)
578 kvm_free_physmem_slot(memslot, NULL);
579
580 kfree(kvm->memslots);
581 }
582
583 static void kvm_destroy_vm(struct kvm *kvm)
584 {
585 int i;
586 struct mm_struct *mm = kvm->mm;
587
588 kvm_arch_sync_events(kvm);
589 raw_spin_lock(&kvm_lock);
590 list_del(&kvm->vm_list);
591 raw_spin_unlock(&kvm_lock);
592 kvm_free_irq_routing(kvm);
593 for (i = 0; i < KVM_NR_BUSES; i++)
594 kvm_io_bus_destroy(kvm->buses[i]);
595 kvm_coalesced_mmio_free(kvm);
596 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
597 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
598 #else
599 kvm_arch_flush_shadow_all(kvm);
600 #endif
601 kvm_arch_destroy_vm(kvm);
602 kvm_free_physmem(kvm);
603 cleanup_srcu_struct(&kvm->srcu);
604 kvm_arch_free_vm(kvm);
605 hardware_disable_all();
606 mmdrop(mm);
607 }
608
609 void kvm_get_kvm(struct kvm *kvm)
610 {
611 atomic_inc(&kvm->users_count);
612 }
613 EXPORT_SYMBOL_GPL(kvm_get_kvm);
614
615 void kvm_put_kvm(struct kvm *kvm)
616 {
617 if (atomic_dec_and_test(&kvm->users_count))
618 kvm_destroy_vm(kvm);
619 }
620 EXPORT_SYMBOL_GPL(kvm_put_kvm);
621
622
623 static int kvm_vm_release(struct inode *inode, struct file *filp)
624 {
625 struct kvm *kvm = filp->private_data;
626
627 kvm_irqfd_release(kvm);
628
629 kvm_put_kvm(kvm);
630 return 0;
631 }
632
633 /*
634 * Allocation size is twice as large as the actual dirty bitmap size.
635 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
636 */
637 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
638 {
639 #ifndef CONFIG_S390
640 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
641
642 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
643 if (!memslot->dirty_bitmap)
644 return -ENOMEM;
645
646 #endif /* !CONFIG_S390 */
647 return 0;
648 }
649
650 static int cmp_memslot(const void *slot1, const void *slot2)
651 {
652 struct kvm_memory_slot *s1, *s2;
653
654 s1 = (struct kvm_memory_slot *)slot1;
655 s2 = (struct kvm_memory_slot *)slot2;
656
657 if (s1->npages < s2->npages)
658 return 1;
659 if (s1->npages > s2->npages)
660 return -1;
661
662 return 0;
663 }
664
665 /*
666 * Sort the memslots base on its size, so the larger slots
667 * will get better fit.
668 */
669 static void sort_memslots(struct kvm_memslots *slots)
670 {
671 int i;
672
673 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
674 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
675
676 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
677 slots->id_to_index[slots->memslots[i].id] = i;
678 }
679
680 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new,
681 u64 last_generation)
682 {
683 if (new) {
684 int id = new->id;
685 struct kvm_memory_slot *old = id_to_memslot(slots, id);
686 unsigned long npages = old->npages;
687
688 *old = *new;
689 if (new->npages != npages)
690 sort_memslots(slots);
691 }
692
693 slots->generation = last_generation + 1;
694 }
695
696 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
697 {
698 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
699
700 #ifdef KVM_CAP_READONLY_MEM
701 valid_flags |= KVM_MEM_READONLY;
702 #endif
703
704 if (mem->flags & ~valid_flags)
705 return -EINVAL;
706
707 return 0;
708 }
709
710 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
711 struct kvm_memslots *slots, struct kvm_memory_slot *new)
712 {
713 struct kvm_memslots *old_memslots = kvm->memslots;
714
715 update_memslots(slots, new, kvm->memslots->generation);
716 rcu_assign_pointer(kvm->memslots, slots);
717 synchronize_srcu_expedited(&kvm->srcu);
718 return old_memslots;
719 }
720
721 /*
722 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
723 * - create a new memory slot
724 * - delete an existing memory slot
725 * - modify an existing memory slot
726 * -- move it in the guest physical memory space
727 * -- just change its flags
728 *
729 * Since flags can be changed by some of these operations, the following
730 * differentiation is the best we can do for __kvm_set_memory_region():
731 */
732 enum kvm_mr_change {
733 KVM_MR_CREATE,
734 KVM_MR_DELETE,
735 KVM_MR_MOVE,
736 KVM_MR_FLAGS_ONLY,
737 };
738
739 /*
740 * Allocate some memory and give it an address in the guest physical address
741 * space.
742 *
743 * Discontiguous memory is allowed, mostly for framebuffers.
744 *
745 * Must be called holding mmap_sem for write.
746 */
747 int __kvm_set_memory_region(struct kvm *kvm,
748 struct kvm_userspace_memory_region *mem,
749 bool user_alloc)
750 {
751 int r;
752 gfn_t base_gfn;
753 unsigned long npages;
754 struct kvm_memory_slot *slot;
755 struct kvm_memory_slot old, new;
756 struct kvm_memslots *slots = NULL, *old_memslots;
757 bool old_iommu_mapped;
758 enum kvm_mr_change change;
759
760 r = check_memory_region_flags(mem);
761 if (r)
762 goto out;
763
764 r = -EINVAL;
765 /* General sanity checks */
766 if (mem->memory_size & (PAGE_SIZE - 1))
767 goto out;
768 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
769 goto out;
770 /* We can read the guest memory with __xxx_user() later on. */
771 if (user_alloc &&
772 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
773 !access_ok(VERIFY_WRITE,
774 (void __user *)(unsigned long)mem->userspace_addr,
775 mem->memory_size)))
776 goto out;
777 if (mem->slot >= KVM_MEM_SLOTS_NUM)
778 goto out;
779 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
780 goto out;
781
782 slot = id_to_memslot(kvm->memslots, mem->slot);
783 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
784 npages = mem->memory_size >> PAGE_SHIFT;
785
786 r = -EINVAL;
787 if (npages > KVM_MEM_MAX_NR_PAGES)
788 goto out;
789
790 if (!npages)
791 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
792
793 new = old = *slot;
794
795 new.id = mem->slot;
796 new.base_gfn = base_gfn;
797 new.npages = npages;
798 new.flags = mem->flags;
799
800 old_iommu_mapped = old.npages;
801
802 r = -EINVAL;
803 if (npages) {
804 if (!old.npages)
805 change = KVM_MR_CREATE;
806 else { /* Modify an existing slot. */
807 if ((mem->userspace_addr != old.userspace_addr) ||
808 (npages != old.npages))
809 goto out;
810
811 if (base_gfn != old.base_gfn)
812 change = KVM_MR_MOVE;
813 else if (new.flags != old.flags)
814 change = KVM_MR_FLAGS_ONLY;
815 else { /* Nothing to change. */
816 r = 0;
817 goto out;
818 }
819 }
820 } else if (old.npages) {
821 change = KVM_MR_DELETE;
822 } else /* Modify a non-existent slot: disallowed. */
823 goto out;
824
825 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
826 /* Check for overlaps */
827 r = -EEXIST;
828 kvm_for_each_memslot(slot, kvm->memslots) {
829 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
830 (slot->id == mem->slot))
831 continue;
832 if (!((base_gfn + npages <= slot->base_gfn) ||
833 (base_gfn >= slot->base_gfn + slot->npages)))
834 goto out;
835 }
836 }
837
838 /* Free page dirty bitmap if unneeded */
839 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
840 new.dirty_bitmap = NULL;
841
842 r = -ENOMEM;
843 if (change == KVM_MR_CREATE) {
844 new.user_alloc = user_alloc;
845 new.userspace_addr = mem->userspace_addr;
846
847 if (kvm_arch_create_memslot(&new, npages))
848 goto out_free;
849 }
850
851 /* Allocate page dirty bitmap if needed */
852 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
853 if (kvm_create_dirty_bitmap(&new) < 0)
854 goto out_free;
855 }
856
857 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
858 r = -ENOMEM;
859 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
860 GFP_KERNEL);
861 if (!slots)
862 goto out_free;
863 slot = id_to_memslot(slots, mem->slot);
864 slot->flags |= KVM_MEMSLOT_INVALID;
865
866 old_memslots = install_new_memslots(kvm, slots, NULL);
867
868 /* slot was deleted or moved, clear iommu mapping */
869 kvm_iommu_unmap_pages(kvm, &old);
870 old_iommu_mapped = false;
871 /* From this point no new shadow pages pointing to a deleted,
872 * or moved, memslot will be created.
873 *
874 * validation of sp->gfn happens in:
875 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
876 * - kvm_is_visible_gfn (mmu_check_roots)
877 */
878 kvm_arch_flush_shadow_memslot(kvm, slot);
879 slots = old_memslots;
880 }
881
882 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
883 if (r)
884 goto out_slots;
885
886 r = -ENOMEM;
887 /*
888 * We can re-use the old_memslots from above, the only difference
889 * from the currently installed memslots is the invalid flag. This
890 * will get overwritten by update_memslots anyway.
891 */
892 if (!slots) {
893 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
894 GFP_KERNEL);
895 if (!slots)
896 goto out_free;
897 }
898
899 /*
900 * IOMMU mapping: New slots need to be mapped. Old slots need to be
901 * un-mapped and re-mapped if their base changes or if flags that the
902 * iommu cares about change (read-only). Base change unmapping is
903 * handled above with slot deletion, so we only unmap incompatible
904 * flags here. Anything else the iommu might care about for existing
905 * slots (size changes, userspace addr changes) is disallowed above,
906 * so any other attribute changes getting here can be skipped.
907 */
908 if (change != KVM_MR_DELETE) {
909 if (old_iommu_mapped &&
910 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) {
911 kvm_iommu_unmap_pages(kvm, &old);
912 old_iommu_mapped = false;
913 }
914
915 if (!old_iommu_mapped) {
916 r = kvm_iommu_map_pages(kvm, &new);
917 if (r)
918 goto out_slots;
919 }
920 }
921
922 /* actual memory is freed via old in kvm_free_physmem_slot below */
923 if (change == KVM_MR_DELETE) {
924 new.dirty_bitmap = NULL;
925 memset(&new.arch, 0, sizeof(new.arch));
926 }
927
928 old_memslots = install_new_memslots(kvm, slots, &new);
929
930 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
931
932 kvm_free_physmem_slot(&old, &new);
933 kfree(old_memslots);
934
935 return 0;
936
937 out_slots:
938 kfree(slots);
939 out_free:
940 kvm_free_physmem_slot(&new, &old);
941 out:
942 return r;
943 }
944 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
945
946 int kvm_set_memory_region(struct kvm *kvm,
947 struct kvm_userspace_memory_region *mem,
948 bool user_alloc)
949 {
950 int r;
951
952 mutex_lock(&kvm->slots_lock);
953 r = __kvm_set_memory_region(kvm, mem, user_alloc);
954 mutex_unlock(&kvm->slots_lock);
955 return r;
956 }
957 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
958
959 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
960 struct
961 kvm_userspace_memory_region *mem,
962 bool user_alloc)
963 {
964 if (mem->slot >= KVM_USER_MEM_SLOTS)
965 return -EINVAL;
966 return kvm_set_memory_region(kvm, mem, user_alloc);
967 }
968
969 int kvm_get_dirty_log(struct kvm *kvm,
970 struct kvm_dirty_log *log, int *is_dirty)
971 {
972 struct kvm_memory_slot *memslot;
973 int r, i;
974 unsigned long n;
975 unsigned long any = 0;
976
977 r = -EINVAL;
978 if (log->slot >= KVM_USER_MEM_SLOTS)
979 goto out;
980
981 memslot = id_to_memslot(kvm->memslots, log->slot);
982 r = -ENOENT;
983 if (!memslot->dirty_bitmap)
984 goto out;
985
986 n = kvm_dirty_bitmap_bytes(memslot);
987
988 for (i = 0; !any && i < n/sizeof(long); ++i)
989 any = memslot->dirty_bitmap[i];
990
991 r = -EFAULT;
992 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
993 goto out;
994
995 if (any)
996 *is_dirty = 1;
997
998 r = 0;
999 out:
1000 return r;
1001 }
1002
1003 bool kvm_largepages_enabled(void)
1004 {
1005 return largepages_enabled;
1006 }
1007
1008 void kvm_disable_largepages(void)
1009 {
1010 largepages_enabled = false;
1011 }
1012 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1013
1014 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1015 {
1016 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1017 }
1018 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1019
1020 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1021 {
1022 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1023
1024 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1025 memslot->flags & KVM_MEMSLOT_INVALID)
1026 return 0;
1027
1028 return 1;
1029 }
1030 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1031
1032 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1033 {
1034 struct vm_area_struct *vma;
1035 unsigned long addr, size;
1036
1037 size = PAGE_SIZE;
1038
1039 addr = gfn_to_hva(kvm, gfn);
1040 if (kvm_is_error_hva(addr))
1041 return PAGE_SIZE;
1042
1043 down_read(&current->mm->mmap_sem);
1044 vma = find_vma(current->mm, addr);
1045 if (!vma)
1046 goto out;
1047
1048 size = vma_kernel_pagesize(vma);
1049
1050 out:
1051 up_read(&current->mm->mmap_sem);
1052
1053 return size;
1054 }
1055
1056 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1057 {
1058 return slot->flags & KVM_MEM_READONLY;
1059 }
1060
1061 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1062 gfn_t *nr_pages, bool write)
1063 {
1064 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1065 return KVM_HVA_ERR_BAD;
1066
1067 if (memslot_is_readonly(slot) && write)
1068 return KVM_HVA_ERR_RO_BAD;
1069
1070 if (nr_pages)
1071 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1072
1073 return __gfn_to_hva_memslot(slot, gfn);
1074 }
1075
1076 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1077 gfn_t *nr_pages)
1078 {
1079 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1080 }
1081
1082 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1083 gfn_t gfn)
1084 {
1085 return gfn_to_hva_many(slot, gfn, NULL);
1086 }
1087 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1088
1089 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1090 {
1091 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1092 }
1093 EXPORT_SYMBOL_GPL(gfn_to_hva);
1094
1095 /*
1096 * The hva returned by this function is only allowed to be read.
1097 * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
1098 */
1099 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
1100 {
1101 return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1102 }
1103
1104 static int kvm_read_hva(void *data, void __user *hva, int len)
1105 {
1106 return __copy_from_user(data, hva, len);
1107 }
1108
1109 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1110 {
1111 return __copy_from_user_inatomic(data, hva, len);
1112 }
1113
1114 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1115 unsigned long start, int write, struct page **page)
1116 {
1117 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1118
1119 if (write)
1120 flags |= FOLL_WRITE;
1121
1122 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1123 }
1124
1125 static inline int check_user_page_hwpoison(unsigned long addr)
1126 {
1127 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1128
1129 rc = __get_user_pages(current, current->mm, addr, 1,
1130 flags, NULL, NULL, NULL);
1131 return rc == -EHWPOISON;
1132 }
1133
1134 /*
1135 * The atomic path to get the writable pfn which will be stored in @pfn,
1136 * true indicates success, otherwise false is returned.
1137 */
1138 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1139 bool write_fault, bool *writable, pfn_t *pfn)
1140 {
1141 struct page *page[1];
1142 int npages;
1143
1144 if (!(async || atomic))
1145 return false;
1146
1147 /*
1148 * Fast pin a writable pfn only if it is a write fault request
1149 * or the caller allows to map a writable pfn for a read fault
1150 * request.
1151 */
1152 if (!(write_fault || writable))
1153 return false;
1154
1155 npages = __get_user_pages_fast(addr, 1, 1, page);
1156 if (npages == 1) {
1157 *pfn = page_to_pfn(page[0]);
1158
1159 if (writable)
1160 *writable = true;
1161 return true;
1162 }
1163
1164 return false;
1165 }
1166
1167 /*
1168 * The slow path to get the pfn of the specified host virtual address,
1169 * 1 indicates success, -errno is returned if error is detected.
1170 */
1171 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1172 bool *writable, pfn_t *pfn)
1173 {
1174 struct page *page[1];
1175 int npages = 0;
1176
1177 might_sleep();
1178
1179 if (writable)
1180 *writable = write_fault;
1181
1182 if (async) {
1183 down_read(&current->mm->mmap_sem);
1184 npages = get_user_page_nowait(current, current->mm,
1185 addr, write_fault, page);
1186 up_read(&current->mm->mmap_sem);
1187 } else
1188 npages = get_user_pages_fast(addr, 1, write_fault,
1189 page);
1190 if (npages != 1)
1191 return npages;
1192
1193 /* map read fault as writable if possible */
1194 if (unlikely(!write_fault) && writable) {
1195 struct page *wpage[1];
1196
1197 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1198 if (npages == 1) {
1199 *writable = true;
1200 put_page(page[0]);
1201 page[0] = wpage[0];
1202 }
1203
1204 npages = 1;
1205 }
1206 *pfn = page_to_pfn(page[0]);
1207 return npages;
1208 }
1209
1210 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1211 {
1212 if (unlikely(!(vma->vm_flags & VM_READ)))
1213 return false;
1214
1215 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1216 return false;
1217
1218 return true;
1219 }
1220
1221 /*
1222 * Pin guest page in memory and return its pfn.
1223 * @addr: host virtual address which maps memory to the guest
1224 * @atomic: whether this function can sleep
1225 * @async: whether this function need to wait IO complete if the
1226 * host page is not in the memory
1227 * @write_fault: whether we should get a writable host page
1228 * @writable: whether it allows to map a writable host page for !@write_fault
1229 *
1230 * The function will map a writable host page for these two cases:
1231 * 1): @write_fault = true
1232 * 2): @write_fault = false && @writable, @writable will tell the caller
1233 * whether the mapping is writable.
1234 */
1235 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1236 bool write_fault, bool *writable)
1237 {
1238 struct vm_area_struct *vma;
1239 pfn_t pfn = 0;
1240 int npages;
1241
1242 /* we can do it either atomically or asynchronously, not both */
1243 BUG_ON(atomic && async);
1244
1245 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1246 return pfn;
1247
1248 if (atomic)
1249 return KVM_PFN_ERR_FAULT;
1250
1251 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1252 if (npages == 1)
1253 return pfn;
1254
1255 down_read(&current->mm->mmap_sem);
1256 if (npages == -EHWPOISON ||
1257 (!async && check_user_page_hwpoison(addr))) {
1258 pfn = KVM_PFN_ERR_HWPOISON;
1259 goto exit;
1260 }
1261
1262 vma = find_vma_intersection(current->mm, addr, addr + 1);
1263
1264 if (vma == NULL)
1265 pfn = KVM_PFN_ERR_FAULT;
1266 else if ((vma->vm_flags & VM_PFNMAP)) {
1267 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1268 vma->vm_pgoff;
1269 BUG_ON(!kvm_is_mmio_pfn(pfn));
1270 } else {
1271 if (async && vma_is_valid(vma, write_fault))
1272 *async = true;
1273 pfn = KVM_PFN_ERR_FAULT;
1274 }
1275 exit:
1276 up_read(&current->mm->mmap_sem);
1277 return pfn;
1278 }
1279
1280 static pfn_t
1281 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1282 bool *async, bool write_fault, bool *writable)
1283 {
1284 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1285
1286 if (addr == KVM_HVA_ERR_RO_BAD)
1287 return KVM_PFN_ERR_RO_FAULT;
1288
1289 if (kvm_is_error_hva(addr))
1290 return KVM_PFN_NOSLOT;
1291
1292 /* Do not map writable pfn in the readonly memslot. */
1293 if (writable && memslot_is_readonly(slot)) {
1294 *writable = false;
1295 writable = NULL;
1296 }
1297
1298 return hva_to_pfn(addr, atomic, async, write_fault,
1299 writable);
1300 }
1301
1302 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1303 bool write_fault, bool *writable)
1304 {
1305 struct kvm_memory_slot *slot;
1306
1307 if (async)
1308 *async = false;
1309
1310 slot = gfn_to_memslot(kvm, gfn);
1311
1312 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1313 writable);
1314 }
1315
1316 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1317 {
1318 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1319 }
1320 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1321
1322 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1323 bool write_fault, bool *writable)
1324 {
1325 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1326 }
1327 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1328
1329 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1330 {
1331 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1332 }
1333 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1334
1335 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1336 bool *writable)
1337 {
1338 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1339 }
1340 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1341
1342 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1343 {
1344 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1345 }
1346
1347 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1348 {
1349 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1350 }
1351 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1352
1353 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1354 int nr_pages)
1355 {
1356 unsigned long addr;
1357 gfn_t entry;
1358
1359 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1360 if (kvm_is_error_hva(addr))
1361 return -1;
1362
1363 if (entry < nr_pages)
1364 return 0;
1365
1366 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1367 }
1368 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1369
1370 static struct page *kvm_pfn_to_page(pfn_t pfn)
1371 {
1372 if (is_error_noslot_pfn(pfn))
1373 return KVM_ERR_PTR_BAD_PAGE;
1374
1375 if (kvm_is_mmio_pfn(pfn)) {
1376 WARN_ON(1);
1377 return KVM_ERR_PTR_BAD_PAGE;
1378 }
1379
1380 return pfn_to_page(pfn);
1381 }
1382
1383 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1384 {
1385 pfn_t pfn;
1386
1387 pfn = gfn_to_pfn(kvm, gfn);
1388
1389 return kvm_pfn_to_page(pfn);
1390 }
1391
1392 EXPORT_SYMBOL_GPL(gfn_to_page);
1393
1394 void kvm_release_page_clean(struct page *page)
1395 {
1396 WARN_ON(is_error_page(page));
1397
1398 kvm_release_pfn_clean(page_to_pfn(page));
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1401
1402 void kvm_release_pfn_clean(pfn_t pfn)
1403 {
1404 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1405 put_page(pfn_to_page(pfn));
1406 }
1407 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1408
1409 void kvm_release_page_dirty(struct page *page)
1410 {
1411 WARN_ON(is_error_page(page));
1412
1413 kvm_release_pfn_dirty(page_to_pfn(page));
1414 }
1415 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1416
1417 void kvm_release_pfn_dirty(pfn_t pfn)
1418 {
1419 kvm_set_pfn_dirty(pfn);
1420 kvm_release_pfn_clean(pfn);
1421 }
1422 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1423
1424 void kvm_set_page_dirty(struct page *page)
1425 {
1426 kvm_set_pfn_dirty(page_to_pfn(page));
1427 }
1428 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1429
1430 void kvm_set_pfn_dirty(pfn_t pfn)
1431 {
1432 if (!kvm_is_mmio_pfn(pfn)) {
1433 struct page *page = pfn_to_page(pfn);
1434 if (!PageReserved(page))
1435 SetPageDirty(page);
1436 }
1437 }
1438 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1439
1440 void kvm_set_pfn_accessed(pfn_t pfn)
1441 {
1442 if (!kvm_is_mmio_pfn(pfn))
1443 mark_page_accessed(pfn_to_page(pfn));
1444 }
1445 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1446
1447 void kvm_get_pfn(pfn_t pfn)
1448 {
1449 if (!kvm_is_mmio_pfn(pfn))
1450 get_page(pfn_to_page(pfn));
1451 }
1452 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1453
1454 static int next_segment(unsigned long len, int offset)
1455 {
1456 if (len > PAGE_SIZE - offset)
1457 return PAGE_SIZE - offset;
1458 else
1459 return len;
1460 }
1461
1462 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1463 int len)
1464 {
1465 int r;
1466 unsigned long addr;
1467
1468 addr = gfn_to_hva_read(kvm, gfn);
1469 if (kvm_is_error_hva(addr))
1470 return -EFAULT;
1471 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1472 if (r)
1473 return -EFAULT;
1474 return 0;
1475 }
1476 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1477
1478 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1479 {
1480 gfn_t gfn = gpa >> PAGE_SHIFT;
1481 int seg;
1482 int offset = offset_in_page(gpa);
1483 int ret;
1484
1485 while ((seg = next_segment(len, offset)) != 0) {
1486 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1487 if (ret < 0)
1488 return ret;
1489 offset = 0;
1490 len -= seg;
1491 data += seg;
1492 ++gfn;
1493 }
1494 return 0;
1495 }
1496 EXPORT_SYMBOL_GPL(kvm_read_guest);
1497
1498 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1499 unsigned long len)
1500 {
1501 int r;
1502 unsigned long addr;
1503 gfn_t gfn = gpa >> PAGE_SHIFT;
1504 int offset = offset_in_page(gpa);
1505
1506 addr = gfn_to_hva_read(kvm, gfn);
1507 if (kvm_is_error_hva(addr))
1508 return -EFAULT;
1509 pagefault_disable();
1510 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1511 pagefault_enable();
1512 if (r)
1513 return -EFAULT;
1514 return 0;
1515 }
1516 EXPORT_SYMBOL(kvm_read_guest_atomic);
1517
1518 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1519 int offset, int len)
1520 {
1521 int r;
1522 unsigned long addr;
1523
1524 addr = gfn_to_hva(kvm, gfn);
1525 if (kvm_is_error_hva(addr))
1526 return -EFAULT;
1527 r = __copy_to_user((void __user *)addr + offset, data, len);
1528 if (r)
1529 return -EFAULT;
1530 mark_page_dirty(kvm, gfn);
1531 return 0;
1532 }
1533 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1534
1535 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1536 unsigned long len)
1537 {
1538 gfn_t gfn = gpa >> PAGE_SHIFT;
1539 int seg;
1540 int offset = offset_in_page(gpa);
1541 int ret;
1542
1543 while ((seg = next_segment(len, offset)) != 0) {
1544 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1545 if (ret < 0)
1546 return ret;
1547 offset = 0;
1548 len -= seg;
1549 data += seg;
1550 ++gfn;
1551 }
1552 return 0;
1553 }
1554
1555 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1556 gpa_t gpa)
1557 {
1558 struct kvm_memslots *slots = kvm_memslots(kvm);
1559 int offset = offset_in_page(gpa);
1560 gfn_t gfn = gpa >> PAGE_SHIFT;
1561
1562 ghc->gpa = gpa;
1563 ghc->generation = slots->generation;
1564 ghc->memslot = gfn_to_memslot(kvm, gfn);
1565 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1566 if (!kvm_is_error_hva(ghc->hva))
1567 ghc->hva += offset;
1568 else
1569 return -EFAULT;
1570
1571 return 0;
1572 }
1573 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1574
1575 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1576 void *data, unsigned long len)
1577 {
1578 struct kvm_memslots *slots = kvm_memslots(kvm);
1579 int r;
1580
1581 if (slots->generation != ghc->generation)
1582 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1583
1584 if (kvm_is_error_hva(ghc->hva))
1585 return -EFAULT;
1586
1587 r = __copy_to_user((void __user *)ghc->hva, data, len);
1588 if (r)
1589 return -EFAULT;
1590 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1591
1592 return 0;
1593 }
1594 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1595
1596 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1597 void *data, unsigned long len)
1598 {
1599 struct kvm_memslots *slots = kvm_memslots(kvm);
1600 int r;
1601
1602 if (slots->generation != ghc->generation)
1603 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1604
1605 if (kvm_is_error_hva(ghc->hva))
1606 return -EFAULT;
1607
1608 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1609 if (r)
1610 return -EFAULT;
1611
1612 return 0;
1613 }
1614 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1615
1616 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1617 {
1618 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1619 offset, len);
1620 }
1621 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1622
1623 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1624 {
1625 gfn_t gfn = gpa >> PAGE_SHIFT;
1626 int seg;
1627 int offset = offset_in_page(gpa);
1628 int ret;
1629
1630 while ((seg = next_segment(len, offset)) != 0) {
1631 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1632 if (ret < 0)
1633 return ret;
1634 offset = 0;
1635 len -= seg;
1636 ++gfn;
1637 }
1638 return 0;
1639 }
1640 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1641
1642 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1643 gfn_t gfn)
1644 {
1645 if (memslot && memslot->dirty_bitmap) {
1646 unsigned long rel_gfn = gfn - memslot->base_gfn;
1647
1648 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1649 }
1650 }
1651
1652 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1653 {
1654 struct kvm_memory_slot *memslot;
1655
1656 memslot = gfn_to_memslot(kvm, gfn);
1657 mark_page_dirty_in_slot(kvm, memslot, gfn);
1658 }
1659
1660 /*
1661 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1662 */
1663 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1664 {
1665 DEFINE_WAIT(wait);
1666
1667 for (;;) {
1668 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1669
1670 if (kvm_arch_vcpu_runnable(vcpu)) {
1671 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1672 break;
1673 }
1674 if (kvm_cpu_has_pending_timer(vcpu))
1675 break;
1676 if (signal_pending(current))
1677 break;
1678
1679 schedule();
1680 }
1681
1682 finish_wait(&vcpu->wq, &wait);
1683 }
1684
1685 #ifndef CONFIG_S390
1686 /*
1687 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1688 */
1689 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1690 {
1691 int me;
1692 int cpu = vcpu->cpu;
1693 wait_queue_head_t *wqp;
1694
1695 wqp = kvm_arch_vcpu_wq(vcpu);
1696 if (waitqueue_active(wqp)) {
1697 wake_up_interruptible(wqp);
1698 ++vcpu->stat.halt_wakeup;
1699 }
1700
1701 me = get_cpu();
1702 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1703 if (kvm_arch_vcpu_should_kick(vcpu))
1704 smp_send_reschedule(cpu);
1705 put_cpu();
1706 }
1707 #endif /* !CONFIG_S390 */
1708
1709 void kvm_resched(struct kvm_vcpu *vcpu)
1710 {
1711 if (!need_resched())
1712 return;
1713 cond_resched();
1714 }
1715 EXPORT_SYMBOL_GPL(kvm_resched);
1716
1717 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1718 {
1719 struct pid *pid;
1720 struct task_struct *task = NULL;
1721 bool ret = false;
1722
1723 rcu_read_lock();
1724 pid = rcu_dereference(target->pid);
1725 if (pid)
1726 task = get_pid_task(target->pid, PIDTYPE_PID);
1727 rcu_read_unlock();
1728 if (!task)
1729 return ret;
1730 if (task->flags & PF_VCPU) {
1731 put_task_struct(task);
1732 return ret;
1733 }
1734 ret = yield_to(task, 1);
1735 put_task_struct(task);
1736
1737 return ret;
1738 }
1739 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1740
1741 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1742 /*
1743 * Helper that checks whether a VCPU is eligible for directed yield.
1744 * Most eligible candidate to yield is decided by following heuristics:
1745 *
1746 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1747 * (preempted lock holder), indicated by @in_spin_loop.
1748 * Set at the beiginning and cleared at the end of interception/PLE handler.
1749 *
1750 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1751 * chance last time (mostly it has become eligible now since we have probably
1752 * yielded to lockholder in last iteration. This is done by toggling
1753 * @dy_eligible each time a VCPU checked for eligibility.)
1754 *
1755 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1756 * to preempted lock-holder could result in wrong VCPU selection and CPU
1757 * burning. Giving priority for a potential lock-holder increases lock
1758 * progress.
1759 *
1760 * Since algorithm is based on heuristics, accessing another VCPU data without
1761 * locking does not harm. It may result in trying to yield to same VCPU, fail
1762 * and continue with next VCPU and so on.
1763 */
1764 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1765 {
1766 bool eligible;
1767
1768 eligible = !vcpu->spin_loop.in_spin_loop ||
1769 (vcpu->spin_loop.in_spin_loop &&
1770 vcpu->spin_loop.dy_eligible);
1771
1772 if (vcpu->spin_loop.in_spin_loop)
1773 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1774
1775 return eligible;
1776 }
1777 #endif
1778
1779 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1780 {
1781 struct kvm *kvm = me->kvm;
1782 struct kvm_vcpu *vcpu;
1783 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1784 int yielded = 0;
1785 int try = 3;
1786 int pass;
1787 int i;
1788
1789 kvm_vcpu_set_in_spin_loop(me, true);
1790 /*
1791 * We boost the priority of a VCPU that is runnable but not
1792 * currently running, because it got preempted by something
1793 * else and called schedule in __vcpu_run. Hopefully that
1794 * VCPU is holding the lock that we need and will release it.
1795 * We approximate round-robin by starting at the last boosted VCPU.
1796 */
1797 for (pass = 0; pass < 2 && !yielded && try; pass++) {
1798 kvm_for_each_vcpu(i, vcpu, kvm) {
1799 if (!pass && i <= last_boosted_vcpu) {
1800 i = last_boosted_vcpu;
1801 continue;
1802 } else if (pass && i > last_boosted_vcpu)
1803 break;
1804 if (vcpu == me)
1805 continue;
1806 if (waitqueue_active(&vcpu->wq))
1807 continue;
1808 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1809 continue;
1810
1811 yielded = kvm_vcpu_yield_to(vcpu);
1812 if (yielded > 0) {
1813 kvm->last_boosted_vcpu = i;
1814 break;
1815 } else if (yielded < 0) {
1816 try--;
1817 if (!try)
1818 break;
1819 }
1820 }
1821 }
1822 kvm_vcpu_set_in_spin_loop(me, false);
1823
1824 /* Ensure vcpu is not eligible during next spinloop */
1825 kvm_vcpu_set_dy_eligible(me, false);
1826 }
1827 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1828
1829 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1830 {
1831 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1832 struct page *page;
1833
1834 if (vmf->pgoff == 0)
1835 page = virt_to_page(vcpu->run);
1836 #ifdef CONFIG_X86
1837 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1838 page = virt_to_page(vcpu->arch.pio_data);
1839 #endif
1840 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1841 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1842 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1843 #endif
1844 else
1845 return kvm_arch_vcpu_fault(vcpu, vmf);
1846 get_page(page);
1847 vmf->page = page;
1848 return 0;
1849 }
1850
1851 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1852 .fault = kvm_vcpu_fault,
1853 };
1854
1855 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1856 {
1857 vma->vm_ops = &kvm_vcpu_vm_ops;
1858 return 0;
1859 }
1860
1861 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1862 {
1863 struct kvm_vcpu *vcpu = filp->private_data;
1864
1865 kvm_put_kvm(vcpu->kvm);
1866 return 0;
1867 }
1868
1869 static struct file_operations kvm_vcpu_fops = {
1870 .release = kvm_vcpu_release,
1871 .unlocked_ioctl = kvm_vcpu_ioctl,
1872 #ifdef CONFIG_COMPAT
1873 .compat_ioctl = kvm_vcpu_compat_ioctl,
1874 #endif
1875 .mmap = kvm_vcpu_mmap,
1876 .llseek = noop_llseek,
1877 };
1878
1879 /*
1880 * Allocates an inode for the vcpu.
1881 */
1882 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1883 {
1884 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1885 }
1886
1887 /*
1888 * Creates some virtual cpus. Good luck creating more than one.
1889 */
1890 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1891 {
1892 int r;
1893 struct kvm_vcpu *vcpu, *v;
1894
1895 vcpu = kvm_arch_vcpu_create(kvm, id);
1896 if (IS_ERR(vcpu))
1897 return PTR_ERR(vcpu);
1898
1899 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1900
1901 r = kvm_arch_vcpu_setup(vcpu);
1902 if (r)
1903 goto vcpu_destroy;
1904
1905 mutex_lock(&kvm->lock);
1906 if (!kvm_vcpu_compatible(vcpu)) {
1907 r = -EINVAL;
1908 goto unlock_vcpu_destroy;
1909 }
1910 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1911 r = -EINVAL;
1912 goto unlock_vcpu_destroy;
1913 }
1914
1915 kvm_for_each_vcpu(r, v, kvm)
1916 if (v->vcpu_id == id) {
1917 r = -EEXIST;
1918 goto unlock_vcpu_destroy;
1919 }
1920
1921 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1922
1923 /* Now it's all set up, let userspace reach it */
1924 kvm_get_kvm(kvm);
1925 r = create_vcpu_fd(vcpu);
1926 if (r < 0) {
1927 kvm_put_kvm(kvm);
1928 goto unlock_vcpu_destroy;
1929 }
1930
1931 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1932 smp_wmb();
1933 atomic_inc(&kvm->online_vcpus);
1934
1935 mutex_unlock(&kvm->lock);
1936 kvm_arch_vcpu_postcreate(vcpu);
1937 return r;
1938
1939 unlock_vcpu_destroy:
1940 mutex_unlock(&kvm->lock);
1941 vcpu_destroy:
1942 kvm_arch_vcpu_destroy(vcpu);
1943 return r;
1944 }
1945
1946 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1947 {
1948 if (sigset) {
1949 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1950 vcpu->sigset_active = 1;
1951 vcpu->sigset = *sigset;
1952 } else
1953 vcpu->sigset_active = 0;
1954 return 0;
1955 }
1956
1957 static long kvm_vcpu_ioctl(struct file *filp,
1958 unsigned int ioctl, unsigned long arg)
1959 {
1960 struct kvm_vcpu *vcpu = filp->private_data;
1961 void __user *argp = (void __user *)arg;
1962 int r;
1963 struct kvm_fpu *fpu = NULL;
1964 struct kvm_sregs *kvm_sregs = NULL;
1965
1966 if (vcpu->kvm->mm != current->mm)
1967 return -EIO;
1968
1969 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1970 /*
1971 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1972 * so vcpu_load() would break it.
1973 */
1974 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1975 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1976 #endif
1977
1978
1979 r = vcpu_load(vcpu);
1980 if (r)
1981 return r;
1982 switch (ioctl) {
1983 case KVM_RUN:
1984 r = -EINVAL;
1985 if (arg)
1986 goto out;
1987 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1988 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1989 break;
1990 case KVM_GET_REGS: {
1991 struct kvm_regs *kvm_regs;
1992
1993 r = -ENOMEM;
1994 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1995 if (!kvm_regs)
1996 goto out;
1997 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1998 if (r)
1999 goto out_free1;
2000 r = -EFAULT;
2001 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2002 goto out_free1;
2003 r = 0;
2004 out_free1:
2005 kfree(kvm_regs);
2006 break;
2007 }
2008 case KVM_SET_REGS: {
2009 struct kvm_regs *kvm_regs;
2010
2011 r = -ENOMEM;
2012 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2013 if (IS_ERR(kvm_regs)) {
2014 r = PTR_ERR(kvm_regs);
2015 goto out;
2016 }
2017 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2018 kfree(kvm_regs);
2019 break;
2020 }
2021 case KVM_GET_SREGS: {
2022 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2023 r = -ENOMEM;
2024 if (!kvm_sregs)
2025 goto out;
2026 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2027 if (r)
2028 goto out;
2029 r = -EFAULT;
2030 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2031 goto out;
2032 r = 0;
2033 break;
2034 }
2035 case KVM_SET_SREGS: {
2036 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2037 if (IS_ERR(kvm_sregs)) {
2038 r = PTR_ERR(kvm_sregs);
2039 kvm_sregs = NULL;
2040 goto out;
2041 }
2042 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2043 break;
2044 }
2045 case KVM_GET_MP_STATE: {
2046 struct kvm_mp_state mp_state;
2047
2048 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2049 if (r)
2050 goto out;
2051 r = -EFAULT;
2052 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2053 goto out;
2054 r = 0;
2055 break;
2056 }
2057 case KVM_SET_MP_STATE: {
2058 struct kvm_mp_state mp_state;
2059
2060 r = -EFAULT;
2061 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2062 goto out;
2063 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2064 break;
2065 }
2066 case KVM_TRANSLATE: {
2067 struct kvm_translation tr;
2068
2069 r = -EFAULT;
2070 if (copy_from_user(&tr, argp, sizeof tr))
2071 goto out;
2072 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2073 if (r)
2074 goto out;
2075 r = -EFAULT;
2076 if (copy_to_user(argp, &tr, sizeof tr))
2077 goto out;
2078 r = 0;
2079 break;
2080 }
2081 case KVM_SET_GUEST_DEBUG: {
2082 struct kvm_guest_debug dbg;
2083
2084 r = -EFAULT;
2085 if (copy_from_user(&dbg, argp, sizeof dbg))
2086 goto out;
2087 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2088 break;
2089 }
2090 case KVM_SET_SIGNAL_MASK: {
2091 struct kvm_signal_mask __user *sigmask_arg = argp;
2092 struct kvm_signal_mask kvm_sigmask;
2093 sigset_t sigset, *p;
2094
2095 p = NULL;
2096 if (argp) {
2097 r = -EFAULT;
2098 if (copy_from_user(&kvm_sigmask, argp,
2099 sizeof kvm_sigmask))
2100 goto out;
2101 r = -EINVAL;
2102 if (kvm_sigmask.len != sizeof sigset)
2103 goto out;
2104 r = -EFAULT;
2105 if (copy_from_user(&sigset, sigmask_arg->sigset,
2106 sizeof sigset))
2107 goto out;
2108 p = &sigset;
2109 }
2110 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2111 break;
2112 }
2113 case KVM_GET_FPU: {
2114 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2115 r = -ENOMEM;
2116 if (!fpu)
2117 goto out;
2118 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2119 if (r)
2120 goto out;
2121 r = -EFAULT;
2122 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2123 goto out;
2124 r = 0;
2125 break;
2126 }
2127 case KVM_SET_FPU: {
2128 fpu = memdup_user(argp, sizeof(*fpu));
2129 if (IS_ERR(fpu)) {
2130 r = PTR_ERR(fpu);
2131 fpu = NULL;
2132 goto out;
2133 }
2134 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2135 break;
2136 }
2137 default:
2138 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2139 }
2140 out:
2141 vcpu_put(vcpu);
2142 kfree(fpu);
2143 kfree(kvm_sregs);
2144 return r;
2145 }
2146
2147 #ifdef CONFIG_COMPAT
2148 static long kvm_vcpu_compat_ioctl(struct file *filp,
2149 unsigned int ioctl, unsigned long arg)
2150 {
2151 struct kvm_vcpu *vcpu = filp->private_data;
2152 void __user *argp = compat_ptr(arg);
2153 int r;
2154
2155 if (vcpu->kvm->mm != current->mm)
2156 return -EIO;
2157
2158 switch (ioctl) {
2159 case KVM_SET_SIGNAL_MASK: {
2160 struct kvm_signal_mask __user *sigmask_arg = argp;
2161 struct kvm_signal_mask kvm_sigmask;
2162 compat_sigset_t csigset;
2163 sigset_t sigset;
2164
2165 if (argp) {
2166 r = -EFAULT;
2167 if (copy_from_user(&kvm_sigmask, argp,
2168 sizeof kvm_sigmask))
2169 goto out;
2170 r = -EINVAL;
2171 if (kvm_sigmask.len != sizeof csigset)
2172 goto out;
2173 r = -EFAULT;
2174 if (copy_from_user(&csigset, sigmask_arg->sigset,
2175 sizeof csigset))
2176 goto out;
2177 sigset_from_compat(&sigset, &csigset);
2178 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2179 } else
2180 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2181 break;
2182 }
2183 default:
2184 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2185 }
2186
2187 out:
2188 return r;
2189 }
2190 #endif
2191
2192 static long kvm_vm_ioctl(struct file *filp,
2193 unsigned int ioctl, unsigned long arg)
2194 {
2195 struct kvm *kvm = filp->private_data;
2196 void __user *argp = (void __user *)arg;
2197 int r;
2198
2199 if (kvm->mm != current->mm)
2200 return -EIO;
2201 switch (ioctl) {
2202 case KVM_CREATE_VCPU:
2203 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2204 break;
2205 case KVM_SET_USER_MEMORY_REGION: {
2206 struct kvm_userspace_memory_region kvm_userspace_mem;
2207
2208 r = -EFAULT;
2209 if (copy_from_user(&kvm_userspace_mem, argp,
2210 sizeof kvm_userspace_mem))
2211 goto out;
2212
2213 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, true);
2214 break;
2215 }
2216 case KVM_GET_DIRTY_LOG: {
2217 struct kvm_dirty_log log;
2218
2219 r = -EFAULT;
2220 if (copy_from_user(&log, argp, sizeof log))
2221 goto out;
2222 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2223 break;
2224 }
2225 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2226 case KVM_REGISTER_COALESCED_MMIO: {
2227 struct kvm_coalesced_mmio_zone zone;
2228 r = -EFAULT;
2229 if (copy_from_user(&zone, argp, sizeof zone))
2230 goto out;
2231 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2232 break;
2233 }
2234 case KVM_UNREGISTER_COALESCED_MMIO: {
2235 struct kvm_coalesced_mmio_zone zone;
2236 r = -EFAULT;
2237 if (copy_from_user(&zone, argp, sizeof zone))
2238 goto out;
2239 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2240 break;
2241 }
2242 #endif
2243 case KVM_IRQFD: {
2244 struct kvm_irqfd data;
2245
2246 r = -EFAULT;
2247 if (copy_from_user(&data, argp, sizeof data))
2248 goto out;
2249 r = kvm_irqfd(kvm, &data);
2250 break;
2251 }
2252 case KVM_IOEVENTFD: {
2253 struct kvm_ioeventfd data;
2254
2255 r = -EFAULT;
2256 if (copy_from_user(&data, argp, sizeof data))
2257 goto out;
2258 r = kvm_ioeventfd(kvm, &data);
2259 break;
2260 }
2261 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2262 case KVM_SET_BOOT_CPU_ID:
2263 r = 0;
2264 mutex_lock(&kvm->lock);
2265 if (atomic_read(&kvm->online_vcpus) != 0)
2266 r = -EBUSY;
2267 else
2268 kvm->bsp_vcpu_id = arg;
2269 mutex_unlock(&kvm->lock);
2270 break;
2271 #endif
2272 #ifdef CONFIG_HAVE_KVM_MSI
2273 case KVM_SIGNAL_MSI: {
2274 struct kvm_msi msi;
2275
2276 r = -EFAULT;
2277 if (copy_from_user(&msi, argp, sizeof msi))
2278 goto out;
2279 r = kvm_send_userspace_msi(kvm, &msi);
2280 break;
2281 }
2282 #endif
2283 #ifdef __KVM_HAVE_IRQ_LINE
2284 case KVM_IRQ_LINE_STATUS:
2285 case KVM_IRQ_LINE: {
2286 struct kvm_irq_level irq_event;
2287
2288 r = -EFAULT;
2289 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2290 goto out;
2291
2292 r = kvm_vm_ioctl_irq_line(kvm, &irq_event);
2293 if (r)
2294 goto out;
2295
2296 r = -EFAULT;
2297 if (ioctl == KVM_IRQ_LINE_STATUS) {
2298 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2299 goto out;
2300 }
2301
2302 r = 0;
2303 break;
2304 }
2305 #endif
2306 default:
2307 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2308 if (r == -ENOTTY)
2309 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2310 }
2311 out:
2312 return r;
2313 }
2314
2315 #ifdef CONFIG_COMPAT
2316 struct compat_kvm_dirty_log {
2317 __u32 slot;
2318 __u32 padding1;
2319 union {
2320 compat_uptr_t dirty_bitmap; /* one bit per page */
2321 __u64 padding2;
2322 };
2323 };
2324
2325 static long kvm_vm_compat_ioctl(struct file *filp,
2326 unsigned int ioctl, unsigned long arg)
2327 {
2328 struct kvm *kvm = filp->private_data;
2329 int r;
2330
2331 if (kvm->mm != current->mm)
2332 return -EIO;
2333 switch (ioctl) {
2334 case KVM_GET_DIRTY_LOG: {
2335 struct compat_kvm_dirty_log compat_log;
2336 struct kvm_dirty_log log;
2337
2338 r = -EFAULT;
2339 if (copy_from_user(&compat_log, (void __user *)arg,
2340 sizeof(compat_log)))
2341 goto out;
2342 log.slot = compat_log.slot;
2343 log.padding1 = compat_log.padding1;
2344 log.padding2 = compat_log.padding2;
2345 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2346
2347 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2348 break;
2349 }
2350 default:
2351 r = kvm_vm_ioctl(filp, ioctl, arg);
2352 }
2353
2354 out:
2355 return r;
2356 }
2357 #endif
2358
2359 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2360 {
2361 struct page *page[1];
2362 unsigned long addr;
2363 int npages;
2364 gfn_t gfn = vmf->pgoff;
2365 struct kvm *kvm = vma->vm_file->private_data;
2366
2367 addr = gfn_to_hva(kvm, gfn);
2368 if (kvm_is_error_hva(addr))
2369 return VM_FAULT_SIGBUS;
2370
2371 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2372 NULL);
2373 if (unlikely(npages != 1))
2374 return VM_FAULT_SIGBUS;
2375
2376 vmf->page = page[0];
2377 return 0;
2378 }
2379
2380 static const struct vm_operations_struct kvm_vm_vm_ops = {
2381 .fault = kvm_vm_fault,
2382 };
2383
2384 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2385 {
2386 vma->vm_ops = &kvm_vm_vm_ops;
2387 return 0;
2388 }
2389
2390 static struct file_operations kvm_vm_fops = {
2391 .release = kvm_vm_release,
2392 .unlocked_ioctl = kvm_vm_ioctl,
2393 #ifdef CONFIG_COMPAT
2394 .compat_ioctl = kvm_vm_compat_ioctl,
2395 #endif
2396 .mmap = kvm_vm_mmap,
2397 .llseek = noop_llseek,
2398 };
2399
2400 static int kvm_dev_ioctl_create_vm(unsigned long type)
2401 {
2402 int r;
2403 struct kvm *kvm;
2404
2405 kvm = kvm_create_vm(type);
2406 if (IS_ERR(kvm))
2407 return PTR_ERR(kvm);
2408 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2409 r = kvm_coalesced_mmio_init(kvm);
2410 if (r < 0) {
2411 kvm_put_kvm(kvm);
2412 return r;
2413 }
2414 #endif
2415 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2416 if (r < 0)
2417 kvm_put_kvm(kvm);
2418
2419 return r;
2420 }
2421
2422 static long kvm_dev_ioctl_check_extension_generic(long arg)
2423 {
2424 switch (arg) {
2425 case KVM_CAP_USER_MEMORY:
2426 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2427 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2428 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2429 case KVM_CAP_SET_BOOT_CPU_ID:
2430 #endif
2431 case KVM_CAP_INTERNAL_ERROR_DATA:
2432 #ifdef CONFIG_HAVE_KVM_MSI
2433 case KVM_CAP_SIGNAL_MSI:
2434 #endif
2435 return 1;
2436 #ifdef KVM_CAP_IRQ_ROUTING
2437 case KVM_CAP_IRQ_ROUTING:
2438 return KVM_MAX_IRQ_ROUTES;
2439 #endif
2440 default:
2441 break;
2442 }
2443 return kvm_dev_ioctl_check_extension(arg);
2444 }
2445
2446 static long kvm_dev_ioctl(struct file *filp,
2447 unsigned int ioctl, unsigned long arg)
2448 {
2449 long r = -EINVAL;
2450
2451 switch (ioctl) {
2452 case KVM_GET_API_VERSION:
2453 r = -EINVAL;
2454 if (arg)
2455 goto out;
2456 r = KVM_API_VERSION;
2457 break;
2458 case KVM_CREATE_VM:
2459 r = kvm_dev_ioctl_create_vm(arg);
2460 break;
2461 case KVM_CHECK_EXTENSION:
2462 r = kvm_dev_ioctl_check_extension_generic(arg);
2463 break;
2464 case KVM_GET_VCPU_MMAP_SIZE:
2465 r = -EINVAL;
2466 if (arg)
2467 goto out;
2468 r = PAGE_SIZE; /* struct kvm_run */
2469 #ifdef CONFIG_X86
2470 r += PAGE_SIZE; /* pio data page */
2471 #endif
2472 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2473 r += PAGE_SIZE; /* coalesced mmio ring page */
2474 #endif
2475 break;
2476 case KVM_TRACE_ENABLE:
2477 case KVM_TRACE_PAUSE:
2478 case KVM_TRACE_DISABLE:
2479 r = -EOPNOTSUPP;
2480 break;
2481 default:
2482 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2483 }
2484 out:
2485 return r;
2486 }
2487
2488 static struct file_operations kvm_chardev_ops = {
2489 .unlocked_ioctl = kvm_dev_ioctl,
2490 .compat_ioctl = kvm_dev_ioctl,
2491 .llseek = noop_llseek,
2492 };
2493
2494 static struct miscdevice kvm_dev = {
2495 KVM_MINOR,
2496 "kvm",
2497 &kvm_chardev_ops,
2498 };
2499
2500 static void hardware_enable_nolock(void *junk)
2501 {
2502 int cpu = raw_smp_processor_id();
2503 int r;
2504
2505 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2506 return;
2507
2508 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2509
2510 r = kvm_arch_hardware_enable(NULL);
2511
2512 if (r) {
2513 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2514 atomic_inc(&hardware_enable_failed);
2515 printk(KERN_INFO "kvm: enabling virtualization on "
2516 "CPU%d failed\n", cpu);
2517 }
2518 }
2519
2520 static void hardware_enable(void *junk)
2521 {
2522 raw_spin_lock(&kvm_lock);
2523 hardware_enable_nolock(junk);
2524 raw_spin_unlock(&kvm_lock);
2525 }
2526
2527 static void hardware_disable_nolock(void *junk)
2528 {
2529 int cpu = raw_smp_processor_id();
2530
2531 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2532 return;
2533 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2534 kvm_arch_hardware_disable(NULL);
2535 }
2536
2537 static void hardware_disable(void *junk)
2538 {
2539 raw_spin_lock(&kvm_lock);
2540 hardware_disable_nolock(junk);
2541 raw_spin_unlock(&kvm_lock);
2542 }
2543
2544 static void hardware_disable_all_nolock(void)
2545 {
2546 BUG_ON(!kvm_usage_count);
2547
2548 kvm_usage_count--;
2549 if (!kvm_usage_count)
2550 on_each_cpu(hardware_disable_nolock, NULL, 1);
2551 }
2552
2553 static void hardware_disable_all(void)
2554 {
2555 raw_spin_lock(&kvm_lock);
2556 hardware_disable_all_nolock();
2557 raw_spin_unlock(&kvm_lock);
2558 }
2559
2560 static int hardware_enable_all(void)
2561 {
2562 int r = 0;
2563
2564 raw_spin_lock(&kvm_lock);
2565
2566 kvm_usage_count++;
2567 if (kvm_usage_count == 1) {
2568 atomic_set(&hardware_enable_failed, 0);
2569 on_each_cpu(hardware_enable_nolock, NULL, 1);
2570
2571 if (atomic_read(&hardware_enable_failed)) {
2572 hardware_disable_all_nolock();
2573 r = -EBUSY;
2574 }
2575 }
2576
2577 raw_spin_unlock(&kvm_lock);
2578
2579 return r;
2580 }
2581
2582 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2583 void *v)
2584 {
2585 int cpu = (long)v;
2586
2587 if (!kvm_usage_count)
2588 return NOTIFY_OK;
2589
2590 val &= ~CPU_TASKS_FROZEN;
2591 switch (val) {
2592 case CPU_DYING:
2593 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2594 cpu);
2595 hardware_disable(NULL);
2596 break;
2597 case CPU_STARTING:
2598 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2599 cpu);
2600 hardware_enable(NULL);
2601 break;
2602 }
2603 return NOTIFY_OK;
2604 }
2605
2606
2607 asmlinkage void kvm_spurious_fault(void)
2608 {
2609 /* Fault while not rebooting. We want the trace. */
2610 BUG();
2611 }
2612 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2613
2614 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2615 void *v)
2616 {
2617 /*
2618 * Some (well, at least mine) BIOSes hang on reboot if
2619 * in vmx root mode.
2620 *
2621 * And Intel TXT required VMX off for all cpu when system shutdown.
2622 */
2623 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2624 kvm_rebooting = true;
2625 on_each_cpu(hardware_disable_nolock, NULL, 1);
2626 return NOTIFY_OK;
2627 }
2628
2629 static struct notifier_block kvm_reboot_notifier = {
2630 .notifier_call = kvm_reboot,
2631 .priority = 0,
2632 };
2633
2634 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2635 {
2636 int i;
2637
2638 for (i = 0; i < bus->dev_count; i++) {
2639 struct kvm_io_device *pos = bus->range[i].dev;
2640
2641 kvm_iodevice_destructor(pos);
2642 }
2643 kfree(bus);
2644 }
2645
2646 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2647 {
2648 const struct kvm_io_range *r1 = p1;
2649 const struct kvm_io_range *r2 = p2;
2650
2651 if (r1->addr < r2->addr)
2652 return -1;
2653 if (r1->addr + r1->len > r2->addr + r2->len)
2654 return 1;
2655 return 0;
2656 }
2657
2658 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2659 gpa_t addr, int len)
2660 {
2661 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2662 .addr = addr,
2663 .len = len,
2664 .dev = dev,
2665 };
2666
2667 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2668 kvm_io_bus_sort_cmp, NULL);
2669
2670 return 0;
2671 }
2672
2673 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2674 gpa_t addr, int len)
2675 {
2676 struct kvm_io_range *range, key;
2677 int off;
2678
2679 key = (struct kvm_io_range) {
2680 .addr = addr,
2681 .len = len,
2682 };
2683
2684 range = bsearch(&key, bus->range, bus->dev_count,
2685 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2686 if (range == NULL)
2687 return -ENOENT;
2688
2689 off = range - bus->range;
2690
2691 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2692 off--;
2693
2694 return off;
2695 }
2696
2697 /* kvm_io_bus_write - called under kvm->slots_lock */
2698 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2699 int len, const void *val)
2700 {
2701 int idx;
2702 struct kvm_io_bus *bus;
2703 struct kvm_io_range range;
2704
2705 range = (struct kvm_io_range) {
2706 .addr = addr,
2707 .len = len,
2708 };
2709
2710 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2711 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2712 if (idx < 0)
2713 return -EOPNOTSUPP;
2714
2715 while (idx < bus->dev_count &&
2716 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2717 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2718 return 0;
2719 idx++;
2720 }
2721
2722 return -EOPNOTSUPP;
2723 }
2724
2725 /* kvm_io_bus_read - called under kvm->slots_lock */
2726 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2727 int len, void *val)
2728 {
2729 int idx;
2730 struct kvm_io_bus *bus;
2731 struct kvm_io_range range;
2732
2733 range = (struct kvm_io_range) {
2734 .addr = addr,
2735 .len = len,
2736 };
2737
2738 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2739 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2740 if (idx < 0)
2741 return -EOPNOTSUPP;
2742
2743 while (idx < bus->dev_count &&
2744 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2745 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2746 return 0;
2747 idx++;
2748 }
2749
2750 return -EOPNOTSUPP;
2751 }
2752
2753 /* Caller must hold slots_lock. */
2754 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2755 int len, struct kvm_io_device *dev)
2756 {
2757 struct kvm_io_bus *new_bus, *bus;
2758
2759 bus = kvm->buses[bus_idx];
2760 if (bus->dev_count > NR_IOBUS_DEVS - 1)
2761 return -ENOSPC;
2762
2763 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2764 sizeof(struct kvm_io_range)), GFP_KERNEL);
2765 if (!new_bus)
2766 return -ENOMEM;
2767 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2768 sizeof(struct kvm_io_range)));
2769 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2770 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2771 synchronize_srcu_expedited(&kvm->srcu);
2772 kfree(bus);
2773
2774 return 0;
2775 }
2776
2777 /* Caller must hold slots_lock. */
2778 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2779 struct kvm_io_device *dev)
2780 {
2781 int i, r;
2782 struct kvm_io_bus *new_bus, *bus;
2783
2784 bus = kvm->buses[bus_idx];
2785 r = -ENOENT;
2786 for (i = 0; i < bus->dev_count; i++)
2787 if (bus->range[i].dev == dev) {
2788 r = 0;
2789 break;
2790 }
2791
2792 if (r)
2793 return r;
2794
2795 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2796 sizeof(struct kvm_io_range)), GFP_KERNEL);
2797 if (!new_bus)
2798 return -ENOMEM;
2799
2800 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2801 new_bus->dev_count--;
2802 memcpy(new_bus->range + i, bus->range + i + 1,
2803 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2804
2805 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2806 synchronize_srcu_expedited(&kvm->srcu);
2807 kfree(bus);
2808 return r;
2809 }
2810
2811 static struct notifier_block kvm_cpu_notifier = {
2812 .notifier_call = kvm_cpu_hotplug,
2813 };
2814
2815 static int vm_stat_get(void *_offset, u64 *val)
2816 {
2817 unsigned offset = (long)_offset;
2818 struct kvm *kvm;
2819
2820 *val = 0;
2821 raw_spin_lock(&kvm_lock);
2822 list_for_each_entry(kvm, &vm_list, vm_list)
2823 *val += *(u32 *)((void *)kvm + offset);
2824 raw_spin_unlock(&kvm_lock);
2825 return 0;
2826 }
2827
2828 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2829
2830 static int vcpu_stat_get(void *_offset, u64 *val)
2831 {
2832 unsigned offset = (long)_offset;
2833 struct kvm *kvm;
2834 struct kvm_vcpu *vcpu;
2835 int i;
2836
2837 *val = 0;
2838 raw_spin_lock(&kvm_lock);
2839 list_for_each_entry(kvm, &vm_list, vm_list)
2840 kvm_for_each_vcpu(i, vcpu, kvm)
2841 *val += *(u32 *)((void *)vcpu + offset);
2842
2843 raw_spin_unlock(&kvm_lock);
2844 return 0;
2845 }
2846
2847 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2848
2849 static const struct file_operations *stat_fops[] = {
2850 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2851 [KVM_STAT_VM] = &vm_stat_fops,
2852 };
2853
2854 static int kvm_init_debug(void)
2855 {
2856 int r = -EFAULT;
2857 struct kvm_stats_debugfs_item *p;
2858
2859 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2860 if (kvm_debugfs_dir == NULL)
2861 goto out;
2862
2863 for (p = debugfs_entries; p->name; ++p) {
2864 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2865 (void *)(long)p->offset,
2866 stat_fops[p->kind]);
2867 if (p->dentry == NULL)
2868 goto out_dir;
2869 }
2870
2871 return 0;
2872
2873 out_dir:
2874 debugfs_remove_recursive(kvm_debugfs_dir);
2875 out:
2876 return r;
2877 }
2878
2879 static void kvm_exit_debug(void)
2880 {
2881 struct kvm_stats_debugfs_item *p;
2882
2883 for (p = debugfs_entries; p->name; ++p)
2884 debugfs_remove(p->dentry);
2885 debugfs_remove(kvm_debugfs_dir);
2886 }
2887
2888 static int kvm_suspend(void)
2889 {
2890 if (kvm_usage_count)
2891 hardware_disable_nolock(NULL);
2892 return 0;
2893 }
2894
2895 static void kvm_resume(void)
2896 {
2897 if (kvm_usage_count) {
2898 WARN_ON(raw_spin_is_locked(&kvm_lock));
2899 hardware_enable_nolock(NULL);
2900 }
2901 }
2902
2903 static struct syscore_ops kvm_syscore_ops = {
2904 .suspend = kvm_suspend,
2905 .resume = kvm_resume,
2906 };
2907
2908 static inline
2909 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2910 {
2911 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2912 }
2913
2914 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2915 {
2916 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2917
2918 kvm_arch_vcpu_load(vcpu, cpu);
2919 }
2920
2921 static void kvm_sched_out(struct preempt_notifier *pn,
2922 struct task_struct *next)
2923 {
2924 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2925
2926 kvm_arch_vcpu_put(vcpu);
2927 }
2928
2929 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2930 struct module *module)
2931 {
2932 int r;
2933 int cpu;
2934
2935 r = kvm_arch_init(opaque);
2936 if (r)
2937 goto out_fail;
2938
2939 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2940 r = -ENOMEM;
2941 goto out_free_0;
2942 }
2943
2944 r = kvm_arch_hardware_setup();
2945 if (r < 0)
2946 goto out_free_0a;
2947
2948 for_each_online_cpu(cpu) {
2949 smp_call_function_single(cpu,
2950 kvm_arch_check_processor_compat,
2951 &r, 1);
2952 if (r < 0)
2953 goto out_free_1;
2954 }
2955
2956 r = register_cpu_notifier(&kvm_cpu_notifier);
2957 if (r)
2958 goto out_free_2;
2959 register_reboot_notifier(&kvm_reboot_notifier);
2960
2961 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2962 if (!vcpu_align)
2963 vcpu_align = __alignof__(struct kvm_vcpu);
2964 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2965 0, NULL);
2966 if (!kvm_vcpu_cache) {
2967 r = -ENOMEM;
2968 goto out_free_3;
2969 }
2970
2971 r = kvm_async_pf_init();
2972 if (r)
2973 goto out_free;
2974
2975 kvm_chardev_ops.owner = module;
2976 kvm_vm_fops.owner = module;
2977 kvm_vcpu_fops.owner = module;
2978
2979 r = misc_register(&kvm_dev);
2980 if (r) {
2981 printk(KERN_ERR "kvm: misc device register failed\n");
2982 goto out_unreg;
2983 }
2984
2985 register_syscore_ops(&kvm_syscore_ops);
2986
2987 kvm_preempt_ops.sched_in = kvm_sched_in;
2988 kvm_preempt_ops.sched_out = kvm_sched_out;
2989
2990 r = kvm_init_debug();
2991 if (r) {
2992 printk(KERN_ERR "kvm: create debugfs files failed\n");
2993 goto out_undebugfs;
2994 }
2995
2996 return 0;
2997
2998 out_undebugfs:
2999 unregister_syscore_ops(&kvm_syscore_ops);
3000 out_unreg:
3001 kvm_async_pf_deinit();
3002 out_free:
3003 kmem_cache_destroy(kvm_vcpu_cache);
3004 out_free_3:
3005 unregister_reboot_notifier(&kvm_reboot_notifier);
3006 unregister_cpu_notifier(&kvm_cpu_notifier);
3007 out_free_2:
3008 out_free_1:
3009 kvm_arch_hardware_unsetup();
3010 out_free_0a:
3011 free_cpumask_var(cpus_hardware_enabled);
3012 out_free_0:
3013 kvm_arch_exit();
3014 out_fail:
3015 return r;
3016 }
3017 EXPORT_SYMBOL_GPL(kvm_init);
3018
3019 void kvm_exit(void)
3020 {
3021 kvm_exit_debug();
3022 misc_deregister(&kvm_dev);
3023 kmem_cache_destroy(kvm_vcpu_cache);
3024 kvm_async_pf_deinit();
3025 unregister_syscore_ops(&kvm_syscore_ops);
3026 unregister_reboot_notifier(&kvm_reboot_notifier);
3027 unregister_cpu_notifier(&kvm_cpu_notifier);
3028 on_each_cpu(hardware_disable_nolock, NULL, 1);
3029 kvm_arch_hardware_unsetup();
3030 kvm_arch_exit();
3031 free_cpumask_var(cpus_hardware_enabled);
3032 }
3033 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.098583 seconds and 5 git commands to generate.